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Abstract

In Part I, we found a closed-form expression for the expected complexity of the sphere decoding algo-

rithm, both for the infinite and finite lattice. We continue the discussion in this paper by generalizing the

results to the complex version of the problem and using the expected complexity expressions to determine

situations where sphere decoding is practically feasible. In particular, we consider applications of sphere

decoding to detection in multi-antenna systems. We show that, for a wide range of signal-to-noise ratios,

rates, and numbers of antennas, the expected complexity is polynomial, in fact often roughly cubic. Since

many communications systems operate at noise levels for which the expected complexity turns out to be

polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be compu-

tationally intractable, can in fact be implemented in real-time—a result with many practical implications.

To provide complexity information beyond the mean, we derive a closed-form expression for the variance

of the complexity of sphere decoding algorithm in a finite lattice. Furthermore, we consider the expected

complexity of sphere decoding for channels with memory, where the lattice-generating matrix has a special

Toeplitz structure. Results indicate that the expected complexity in this case is, too, polynomial over a wide

range of SNRs, rates, data blocks, and channel impulse response lengths.

Index Terms—Sphere decoding, wireless communications, multiple-antenna systems, frequency-selective

channels, expected complexity, polynomial-time complexity.

1 Introduction

Integer least-squares problems of the form

min
s

‖x−Hs‖2
(1)

appear in a host of applications. In communications, when the channel is linear and the noise independent,

identically distributed (iid) Gaussian, maximum-likelihood (ML) decoding leads to a least-squares cost.



When the transmitted symbols are from a finite set, this can be often cast as an integer least-squares problem.

Applications where the sphere decoding algorithm is employed for solving the integer least-squares problem

(1) include lattice codes [1, 2, 3, 4], CDMA systems [5], multi-antenna systems [6, 7, 8], etc. In all these

applications, the unknown vector s represents the transmitted signal, the matrix H represents the channel,

and the vector x represents the received signal. For example, in the multi-antenna context of V-BLAST [6]

where we have M transmit and N receive antennas, H is the (m = 2M) × (n = 2N) real channel matrix,

and for linear space-time codes (such as those in [8]) it is the equivalent channel matrix. The integer least-

squares problem also arises in the detection of signals transmitted over frequency selective finite impulse

response channels [9]. Other applications include global positioning systems (GPS) [10] and cryptography.

In fact, there is a whole family of public-key cryptosystems based on the NP-hardness of the integer least-

squares problem [11, 12, 13].

In this paper, we continue with the study of complexity of sphere decoding started in Part I. In Section 2

and Section 4, we demonstrate the use of the expressions for expected complexity to determine situations

where sphere decoding is practically feasible, i.e., we use those expressions to search for the transition from

polynomial to exponential expected complexity. In particular, in Section 2, the expected complexity of

sphere decoding for an infinite lattice, relevant for GPS applications, is examined over a range of values of

the system parameters. In Section 4, we study the complexity of sphere decoding employed for ML detection

in multi-antenna wireless communication systems. Since in this application the underlying optimization

problem is complex-valued, we first generalize the expected complexity results to the complex version of the

integer least-squares problem in Section 3. Using these expressions, we show in Section 4 that over a wide

range of rates, signal-to-noise ratios (SNRs) and dimensions (in fact, those that are typically encountered in

communications problems), the expected complexity of the sphere decoding algorithm is polynomial, often

cubic. In order to provide complexity information beyond the first-order statistics that we found in Part I, in

Section 5 we calculate the variance of complexity of sphere decoding. Application of the sphere decoding

algorithm to frequency-selective channels and the complexity of the algorithm therein are studied in Section

6. The complexity of the algorithm for the case when the system of equations in (1) is overdetermined and

some variations of the basic sphere decoding algorithm are discussed in Section 7, while the conclusion is

in Section 8. Many of the results of this paper and various extensions can be found in the first author’s PhD

dissertation [14].
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2 Expected Complexity Exponent of Sphere Decoding in Infinite Lattice

As a measure of complexity, instead of the complexity itself, it is often useful to look at the complexity

exponent, defined as

ec =
logC(m,σ2, d2)

logm
. (2)

In other words, for the particular complexity exponent ec, the expected complexity of sphere decoding is

C(m,σ2, d2) = O(mec).

When plotted, ec is more visually appealing since the complexity exponent approaches a constant if the

expected complexity is polynomial, and grows like m
log m if C(m,σ2, d2) is exponential.
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Figure 1: The complexity exponent as a function of m for σ2 = 0.01, 0.1, 1, 10 with ε = .1 chosen for the

sphere decoder applied to an infinite lattice.

Using the closed-form expression for the expected complexity of sphere decoding in an infinite lattice

given by (28) in Part I, the complexity exponent is plotted as a function of m for different values of σ 2 in

Figure 1. As can be seen from the figure, for small enough noise the expected complexity is polynomial, as

indicated by the constant ec over a wide range ofm. On the other hand, for large noise ec clearly exhibits the

m
log m behavior and the computational complexity of the algorithm is exponential. We thus see the transition

from polynomial-time to exponential complexity which, for a wide range of m, takes place at σ2 ≈ 1.
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3 Generalization of Complexity Results to the Complex Case

In many applications, one is confronted with a complex version of the integer least-squares problem. In this

case, we may generally assume that the model is

x = Hs + v, (3)

where now v ∈ CN×1 is comprised of i.i.d. CN (0, σ2) (circularly-symmetric complex normal) entries,

H ∈ CN×M is comprised of i.i.d. CN (0, 1) entries, and s ∈ CZM is an M -dimensional complex vector

whose entries have real and imaginary parts that are integers. As before, we are interested in the problem:

min
s∈CZM

‖x −Hs‖2. (4)

The standard sphere decoding algorithm given in Section 3.1 of Part I can be applied, provided we use the

complex QR decomposition and modify the algorithm to accommodate for complex inputs. In particular,

the algorithm now runs over complex dimensions k = 1, 2, . . . ,M . Therefore, instead of finding points that

belong to an interval on a real line, step 2 and step 3 of the algorithm in Section 3.1 of Part I need to be

modified so that they compute coordinates of the points within a disc in a complex plane. In the other steps

of the algorithm all that one needs to do is replace the real operations with appropriate complex ones. We

are omitting the details of the algorithm and its complexity analysis for brevity and because they closely

parallel the real case and state the complexity results below.

Corollary 1 (Expected complexity of sphere decoding over infinite lattice). Consider the model

x = Hs + v,

where v ∈ CN×1 is comprised of i.i.d. CN (0, σ2) entries, H ∈ CN×M is comprised of i.i.d. CN (0, 1)

entries, and s ∈ CZM is an M -dimensional vector whose entries are complex vectors with integer numbers

for real and imaginary parts. Then the expected complexity of the sphere decoding algorithm with a search

radius d for solving the integer least-squares problem,

min
s∈CZM

‖x −Hs‖2,
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is given by

C(M,σ2, d2) =

M∑

k=1

Fp(k)

∞∑

l=0

γ

(
d2

σ2 + l
, N −M + k

)

r2k(l), (5)

where the number of elementary operations per visited point in complex dimension k is Fp(k) = 8k + 24,

and where r2k(l) is the number of ways l can be represented as the sum of 2k squared integers.

Corollary 2 (Expected complexity for finding the optimal solution). Consider the setting of Corollary 1

in Part I. Given any 0 < ε� 1, consider a strategy where we first choose a radius such that we find a lattice

point with probability 1 − ε, and then increase it to a probability of 1 − ε2, and so on, if no point is found.

Then the expected complexity of the sphere decoding algorithm to find the optimal solution is given by

C(M,σ2, ε) =
∞∑

i=1

(1 − ε)εi−1
M∑

k=1

Fp(k)
∞∑

l=0

γ

(
αiNσ

2

σ2 + l
, N −M + k

)

r2k(l), (6)

where Fp(k) = 8k+24, r2k(l) is the number of ways l can be represented as the sum of 2k squared integers,

γ(·, ·) denotes a normalized gamma function, and where αi is chosen such that

γ (αiN,N) = 1 − εi, i = 1, 2, . . . (7)

When confronted with a complex integer least-squares problem over a finite lattice, similar results hold.

The next corollary is the complex analog of Theorem 2 in Part I.

Corollary 3. [Expected complexity of the sphere decoding over a finite lattice] Consider the model

x = Hs + v,

where v ∈ CN×1 is comprised of i.i.d. CN (0, σ2) entries, H ∈ CN×M is comprised of i.i.d. CN (0, 1)

entries, and s ∈ CDM
L is an M -dimensional vector whose entries are complex-valued elements of an L2-

QAM constellation. Define the signal-to-noise ratio as

ρ =
M(L2 − 1)

6σ2
.

Then the expected complexity of the sphere decoding algorithm with a search radius d, chosen such that

d2 = αN M(L2−1)
6ρ , for solving the integer least-squares problem

min
s∈CDM

L

‖x −Hs‖2,
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1. for a 4-QAM constellation,

C(M,ρ, d2) =

M∑

k=1

Fp(k)

2k∑

l=0




2k

l



 γ

(

αN

1 + 6ρl
M(L2−1)

, N −M + k

)

(8)

2. for a 16-QAM,

C(M,ρ, d2) =
M∑

k=1

Fp(k)
∑

q

1

22k

2k∑

l=0




2k

l



 g2kl(q)γ

(

αN

1 + 6ρq
M(L2−1)

, N −M + k

)

, (9)

where g2kl(q) is the coefficient of xq in the polynomial

(1 + x+ x4 + x9)l(1 + 2x+ x4)2k−l.

3. for a 64-QAM constellation, the expected complexity is

C(M,ρ, d2) =

M∑

k=1

Fp(k)
∑

q

1

42k

∑

j0,j1,j2,j3

g2kj0j1j2j3(q)γ

(

αN

1 + 6ρq
M(L2−1)

, N −M + k

)

, (10)

where g2kj0j1j2j3(q) is the coefficient of xq in the polynomial




2k

j0, j1, j2, j3



ψj0
0 (x)ψj1

1 (x)ψj2
2 (x)ψj3

3 (x),

where j0 + j1 + j2 + j3 = 2k and




2k

j0, j1, j2, j3



 = (2k)!
j0!j1!j2!j3!

, and where

ψ0(x) = 1 + x+ x4 + x9 + x16 + x25 + x36 + x49,

ψ1(x) = 1 + 2x+ x4 + x9 + x16 + x25 + x36,

ψ2(x) = 1 + 2x+ 2x4 + x9 + x16 + x25,

ψ3(x) = 1 + 2x+ 2x4 + 2x9 + x16.

4. similar expressions can be obtained for 256-QAM, etc., constellations.

The number of elementary operations per visited point in (8)-(10) is Fp(k) = 8k+ 20 + 4L, while γ(·, ·) in
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(8)-(10) denotes a normalized gamma function.

4 Expected Complexity Exponent of Sphere Decoding in Finite Lattices:

ML Detection in Multi-Antenna Systems

In this section, we use the expressions from Section 3 to study the expected complexity of sphere decoding

employed for ML detection in multi-antenna systems. Figure 2 shows a multi-antenna system with M -

transmit and N -receive antennas.
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Figure 2: Multiple antenna system

The received signal x is related to the transmitted symbol s via

x = Hs + v, (11)

where H ∈ CN×M is the known channel matrix comprised of iid complex-Gaussian entries CN (0, 1), and

v ∈ CN×1 is the additive noise vector, comprised of iid complex-Gaussian entries CN (0, σ2). Furthermore,

entries in the symbol vector s are chosen from a complex-valued L2-QAM constellation, i.e., both the real

and the imaginary components of s are elements of an L-PAM constellation DL. As in Section 3, the SNR

ρ is given by

ρ =
E{tr (Hss

∗
H

∗)}
E{tr (vv∗)} =

M(L2 − 1)

6σ2
,

where tr (·) denotes trace of its argument. The transmission rate is defined as the number of bits transmitted
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per channel use,

R = M logL2 = 2M logL.

We consider the expected complexity of sphere decoding algorithm for signal detection in the system

shown in Figure 2 with equal (M = N ) number of transmit and receive antennas, for various QAM mod-

ulation schemes. The expected complexity C(M,ρ, ε) is a function of both the symbol vector size M and

the SNR ρ.1 We shall consider “snapshots” in each dimension, i.e., we keep either M or ρ variable fixed

and examine the expected complexity as a function of the other variable. Figure 3 shows the complexity
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Figure 3: The complexity exponent as a function of M for ρ = 20db and L = 2, 4, 8, 16.

exponent, defined as

ec =
logC(M,ρ, ε)

log 2M
,

as a function of M for a fixed SNR ρ = 20db and L2-QAM constellations with L = 2, 4, 8, 16. For low

rates (i.e., small constellations) the expected complexity is polynomial, whereas for high rates (i.e., large

constellations) it is exponential. Simulation results suggest that the complexity is polynomial as long as

the rate is sufficiently, but not necessarily all that much, below the Shannon capacity corresponding to the

SNR. Since this is the regime at which most communication systems operate, it suggests that ML decoding

1In all the simulations presented, the complexities are for the scheme that finds the optimal solution. In other words, our initial

radius is determined so that we find a lattice point with probability .9 (i.e., ε = .1). If no lattice point is found, we increase the

radius so that this probability increases to .99, and so on.
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can be feasible. For instance, the complexity exponents curves in Figure 3 that correspond to L = 8 and

L = 16 modulation schemes appear to be in the exponential regime. However, as is illustrated in Figure 3

for M = 5, the data rates corresponding to the points on those two curves are larger than the corresponding

ergodic capacity,

Cerg = E {log det (IM + H
∗
H)} .

For instance, when M = 5 (and SNR 20dB), ergodic capacity is Cerg = 27.6. For the same system parame-

ters, only the rates provided by the modulation schemes corresponding to L = 2 and L = 4 (R1 = 10 and

R2 = 20, respectively, as denoted in Figure 3) can be supported by the channel. The other two modulation

schemes cannot be employed (we assume uncoded transmission). Note that the expected complexity expo-

nent in the data transmission regime that is supportable by the channel complexity is roughly cubic – which,

in fact, is the complexity of the heuristic techniques. For comparison, exhaustive search in M = N = 5,

16-QAM system requires examining k = 410 ≈ 106 points, which is roughly of sixth order.
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Figure 4: The complexity exponent as a function of ρ for M = N = 5 and L = 2, 4, 8, 16.

Figure 4 shows the complexity as a function of SNR for M = 5 and L2-QAM constellations with L =

2, 4, 8, 16. A particular modulation scheme can be used only in the range of SNRs that supports transmission

at the rate corresponding to that modulation scheme. We note that in such a range, the complexity exponent

is roughly cubic. For instance, although the complexity for L = 16 appears to be high over a wide range of

SNR, it is only for ρ > ρ40 = 27.9dB that this modulation scheme can be employed (ρ40 is the SNR for
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which the capacity Cerg = 40 = R4(L = 16)). The complexity exponent at ρ40 and L = 16 is ec ≈ 4.4.

The other SNRs marked on Figure 4, ρ30 = 21.6dB, and ρ20 = 14.9dB, have similar meanings (only for

L = 8 and L = 4, respectively).
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Figure 5: The complexity exponent distribution for M = N = 5, L = 4, and SNR = 16, 18, 20, 22dB.

Figures 3-4 show the analytically obtained expected complexity, that is, the first-order statistics. In

Figure 5, the empirical distribution of the complexity exponent, p(ec), is shown for M = N = 5 transmit

and receive antennas, 16-QAM modulation scheme, and for 4 different SNR values. From Figure 4, we see

that the lowest SNR in Figure 5 (16dB) roughly corresponds to the minimum SNR required for transmission

on the particular system with the modulation scheme of choice. The outer dashed lines in each graph of

Figure 5 denote the complexity exponents which are three standard deviations away from the mean. The

middle dashed line denotes the mean itself, i.e., the expected complexity. We can make the following

observations in relation to the distributions as the SNR increases:
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• The expected complexity decreases, which was already implied by the results illustrated in Figure 4.

• The variance of the complexity decreases, as illustrated with tightening of the standard deviation.

• The “point-mass” segments become more pronounced. This is expected: for large SNRs, the radius

of the sphere will be small and only a small (discrete) number of lattice points are found inside.

More discussion on the variance of sphere decoding will follow in the next section of the paper.
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Figure 6: Sphere decoder vs. nulling and cancelling, M = N = 5, L = 4, and corresponding ec.

Finally, Figure 6 shows the improvement in performance of sphere decoding over the MMSE nulling

and cancelling with optimal ordering for a multi-antenna system employing M = N = 5 transmit and

receive antennas and 16-QAM modulation scheme. The complexity of ML decoding for a single frame via

sphere decoding here is comparable to that of nulling and cancelling, whereas the performance improvement

is significant. The range of signal-to-noise ratios in Figure 6 is typical for indoor applications ([6]).

5 On the Variance of Computational Complexity of Sphere Decoding

Recall the basic real-valued integer least-squares problem that we focused on in Part I. As argued there, the

complexity of sphere decoding is a random variable which depends upon the realization of the generator

matrix H and the noise vector v. So far we have considered its first moment, i.e., the expected complexity.
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In this section, we find the variance of the complexity of sphere decoding for a finite lattice. Using the

results derived in Part I of the paper, we can express the variance as

V ar = E

{
m∑

k=1

[
Np(k)fp(k) −Ep(k, ρ, d

2)fp(k)
]

}2

= E

{
m∑

k=1

[
Np(k)fp(k) −Ep(k, ρ, d

2)fp(k)
]

m∑

l=1

[
Np(l)fp(l) −Ep(l, ρ, d

2)fp(l)
]

}

=

m∑

k=1

m∑

l=1

[
E {Np(k)Np(l)} −Ep(k, ρ, d

2)Ep(l, ρ, d
2)
]
fp(k)fp(l), (12)

where Np(i) is the number of points in a sphere of dimension i and radius d, and where fp(i) is the number

of operations (flop count) per visited point in dimension i. The average number of points per dimension,

Ep(i, ρ, d
2) = ENp(i), i = 1, 2, . . . ,m, has been given in Theorem 2 in Part I of the paper. What remains

to be determined in (12) is the correlation E {Np(k)Np(l)}, i.e., the expected number of pairs of points that

fall inside the spheres of radius d and dimensions k and l, centered at the received vector. To this end, recall

that a skewed lattice point Hs belongs to a sphere of radius d around the received vector x iff

d2 ≥ ‖x−Hs‖2 = ‖x−QRs‖2 = ‖Q∗x−Rs‖2 = ‖y −Rs‖2,

where we denoted y = Q∗x. Therefore, for any pair of points (sB , sC), where sB and sC are k-dimensional

and l-dimensional vectors in Dk
L and Dl

L, respectively, we wish to calculate

E {Np(k)Np(l)} =
∑

(sB ,sC)

p(‖yk −Rk,ksB‖2

︸ ︷︷ ︸

=tb

≤ d2, ‖yl −Rl,lsC‖2

︸ ︷︷ ︸

=tc

≤ d2)

=
∑

(sB ,sC)

p
(
tb ≤ d2, tc ≤ d2

)
, (13)

where the vectors yk and yl are k-dimensional and l-dimensional, respectively, and the upper-triangular

matrices Rk,k and Rl,l are k × k and l× l, respectively, and are defined by the following partitioning of the

vector y and the matrix R

y =




yn−k

yk



 =




yn−l

yl



 , and R =




Rm−k,m−k Rm−k,k

0k×(m−k) Rk,k



 =




Rm−l,m−l Rm−l,l

0l×(m−l) Rl,l



 .
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Assume that st has been transmitted. Then we can write

tb = ‖yk −Rk,ksB‖2 = ‖uk +Rk,kst −Rk,ksB‖2 = ‖uk +Rk,k (st − sB)
︸ ︷︷ ︸

=sb

‖2,

and

tc = ‖yl −Rl,lsC‖2 = ‖ul +Rl,lst −Rl,lsC‖2 = ‖ul +Rl,l (st − sC)
︸ ︷︷ ︸

=sc

‖2,

where u = Q∗v, and where uk and ul are k-dimensional and l-dimensional vectors, respectively, obtained

by partitioning u as

u =




un−k

uk



 =




un−l

ul



 .

Without loss of generality, we will assume that k ≤ l. Let sk
c denote the vector comprised of the last k

entries of sc. Then one can show (see Appendix A) that

1. If sb = sk
c ,

p
(
tb ≤ d2, tc ≤ d2

)
= γ

(
d2

2(σ2 + ‖sc‖2)
,
l

2

)

(14)

2. If sb 6= sk
c ,

p(tb ≤ d2, tc ≤ d2) =

∫ d2

tb=0

∫ d2

tc=0
φ(tb, tc)dtbdtc, (15)

where

φ(tb, tc) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞

dωbdωce
−jωbtb−jωctc

∆k/2
[(

abb

∆ − 2jωc

) (
acc

∆ − 2jωb

)
− a2

bc

∆2

]k/2

(
1 − 2jωc(σ

2 + ‖sk
c‖2)

)k/2

(1 − 2jωc(σ2 + ‖sc‖2))l/2
,

and where

abb = ‖sb‖2 + σ2, acc = ‖sk
c‖2 + σ2, abc = s∗bs

k
c + σ2, and ∆ = abbacc − a2

bc.

The summation in (13) is over all possible pairs of points (sb, sc). This is a formidable task for even

small to moderate (k, l). To ease the calculation, we count the number of pairs of points (sb, sc) that give the

same p
(
tb ≤ d2, tc ≤ d2

)
. From (14) and (15) it follows that the probability is completely determined by

the quadruplet (‖sb‖2, ‖sk
c‖2, s∗bs

k
c , ‖sc‖2). Therefore, we can enumerate all pairs of lattice points (sb, sc)
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by counting number of solutions to the system of equations

‖sb‖2 = β, ‖sk
c‖2 = γ, s∗bs

k
c = δ, and ‖sc‖2 = η,

where β, γ, δ, η are integer numbers that satisfy the constraints imposed by dimensions k and l, and by the

span of the constellation L.

We will show the enumeration for a 2-PAM constellation. Since the constellation is symmetric, and

all points are equally likely to be transmitted, we can assume that the point st comprised of all −1/2 has

been sent. Let us first count the number of pairs (sb, s
k
c ) that give a particular triplet (‖sb‖2, ‖sk

c‖2, s∗bs
k
c ).

Since the transmitted vector has all entries equal to −1/2, the entries of sb and sk
c can only be 0 and 1.

Therefore, each entry of sb, s
k
c , and s∗bs

k
c can simultaneously only take on the values (0, 0, 0), (1, 0, 0),

(0, 1, 0), and (1, 1, 1). So, we form a multinomial in three variables, where each variable represents one of

the components in an admissible triplet,

g1(x, y, z) = (x0y0z0 + x1y0z0 + x0y1z0 + x1y1z1) = 1 + x+ y + xyz.

Therefore, the polynomial

gk(x, y, z) = gk
1 (x, y, z) = (1 + x+ y + xyz)k

=
∑

k1+k2+k3+k4=k,k1≥0,k2≥0,k3≥0,k4≥0

(
k

k1, k2, k3, k4

)

xk2+k4yk3+k4zk4

=
∑

β+γ≤k+δ,δ≤β,δ≤γ

k!

(k + δ − β − γ)!(β − δ)!(γ − δ)!δ!
xβyγzδ , (16)

counts all possible triplets (‖sb‖2, ‖sk
c‖2, s∗bs

k
c ) in the following manner: there are k!

(k+δ−β−γ)!(β−δ)!(γ−δ)!δ!

pairs of points (sb, s
k
c ) such that

‖sb‖2 = β, ‖sk
c‖2 = γ, s∗bs

k
c = δ.

The number of vectors sc which, in addition to satisfying the above, have ‖sc‖2 = η, is given by
(

l−k
η−γ

)
.

Combining the above, we conclude that

k!

(k + δ − β − γ)!(β − δ)!(γ − δ)!δ!

(
l − k

η − γ

)
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is the number of pairs of points (sb, sc) such that ‖sb‖2 = β, ‖sk
c‖2 = γ, s∗bs

k
c = δ, and ‖sc‖2 = η, which

gives us the full enumeration that we were seeking for.

The results of this section can be summarized in the following theorem:

Theorem 1. [Variance of complexity of the sphere decoding algorithm over Dm
2 lattice] Consider the

model

x = Hs+ v,

where v ∈ Rn×1 is comprised of i.i.d. N (0, σ2) entries, H ∈ Rn×m is comprised of i.i.d. N (0, 1) entries,

and s ∈ Dm
2 is an m-dimensional vector whose entries are elements of an 2-PAM constellation. Then the

variance of the complexity of the sphere decoding algorithm with a search radius of d for solving the integer

least-squares problem

min
s∈Dm

2

‖x−Hs‖2,

is given by

V ar =
m∑

k=1

m∑

l=1

[
E {Np(k)Np(l)} −Ep(k, ρ, d

2)Ep(l, ρ, d
2)
]
fp(k)fp(l),

where2

E {Np(k)Np(l)} =
∑

β,γ,δ,η

p(tb ≤ d2, tc ≤ d2)
k!

(k + δ − β − γ)!(β − δ)!(γ − δ)!δ!

(
l − k

η − γ

)

,

where Ep(i, ρ, d
2) is computed in Section 4.4 in Part I, where β + γ ≤ k+ δ, δ ≤ β, δ ≤ γ, η− γ ≤ l− k,

and where p(tb ≤ d2, tc ≤ d2) is given by expressions (14) and (15) wherein ‖sb‖2 = β, ‖sk
c‖2 = γ,

s∗bs
k
c = δ, and ‖sc‖2 = η.

Proof: Follows from the above discussions.

Though we do not give enumeration for L > 2, the variance of complexity of the sphere decoding

algorithm for those cases can, in principle, be found by calculating summation (13) over all possible pairs

of points (sb, sc).

We illustrate the variance results summarized in Theorem 1 on an example with m = n = 2, L = 2.

The middle curve in Figure 7 is the expected complexity exponent. The top curve in Figure 7 corresponds

2The expression for E {Np(k)Np(l)} is derived under the assumption k ≤ l. Due to symmetry, the expression for k > l is

obtained by simply swapping symbols k and l.
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Figure 7: Example with m = n = 2, L = 2. The curves from the top to the bottom are the exponents for

the expected complexity, the expected complexity plus one standard deviation, and the expected complexity

minus one standard deviation, respectively. The solid lines are obtained theoretically, and the dashed lines

are obtained empirically from the flop count in MATLAB 5.

to the exponent of the expected complexity plus one standard deviation, and the bottom curve corresponds

to the exponent of the expected complexity minus one standard deviation. The variance is computed using

Theorem 1 where the integral in (15) is computed numerically, using Mathematica.

6 Sphere Decoding for Detection in Frequency-Selective Channels

The sphere decoding algorithm that we considered in Part I assumes no special structure on the channel ma-

trix H and requires computing its QR factorization. In this section, we describe how the sphere decoding

idea can be employed for detection on frequency-selective channels directly, without performing the QR

factorization of the corresponding (banded Toeplitz) channel matrix. This observation was first made in [9].

Furthermore, we consider the expected complexity of the algorithm for this special case of the lattice gener-

ating matrix. To this end, consider the frequency-selective channel model in Figure 8, with the input/output

relation given by

xi =

l∑

j=1

hjsi−j+1 + vi,
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Figure 8: Frequency-selective channel

where hi, i = 1, . . . , l are the coefficients of the channel impulse response assumed to be Gaussian N (0, 1),

si is the ith symbol in a transmitted sequence (chosen from an L-PAM constellation), and vi denotes Gaus-

sian N (0, σ2) noise.3 The data is assumed to be transmitted in blocks of T symbols which are separated by

guard intervals of l − 1 symbols. To employ the sphere decoding algorithm, we write the channel model as

x = Hs+ v, (17)

where s = [s1 s2 . . . sT ]∗ ∈ DT
L is the vector of the transmitted data sequence, x = [x1 x2 . . . xT+l−1]

∗
is

the vector of the received sequence, and v = [v1 v2 . . . vT+l−1]
∗

is the vector of an additive white Gaussian

noise. The matrix H ∈ R(T+l−1)×T is given by

H =





















h1

h2 h1

...
. . .

. . .

hl
. . .

. . . h1

hl
. . . h2

. . .
...

hl





















.

Here is where the banded Toeplitz structure of H comes in handy. Recall that the lattice point Hs lies in a

sphere of radius d if, and only if,

d2 ≥ ‖x−Hs‖2 . (18)

3We have assumed a real model to follow [9]. Both the algorithm, as well as the complexity analysis, can be easily extended to

the (perhaps more realistic) complex model. However, in the interest of space, we shall refrain from considering also the complex

case. The complexity analysis in the real case is already quite involved (including a certain enumeration of integer-entried Toeplitz

matrices) and the interested reader should be able to extend our results in a straightforward fashion.
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The RHS of (18) can be expanded as

d2 ≥ (xT+l−1 − hlsT )2 + (xT+l−2 − hlsT−1 − hl−1sT )2 + . . . (19)

where the first term depends only on sT , the second term on {sT , sT−1} and so on. Therefore, considering

the first term only, a necessary condition for Hs to lie inside the sphere is that

d2 ≥ (xT+l−1 − hlsT )2.

This condition is equivalent to sT belonging to the interval4

⌈−d+ xT+l−1

hl

⌉

≤ sT ≤
⌊
d+ xT+l−1

hl

⌋

. (20)

Of course, (20) is by no means sufficient. For every sT satisfying (20), defining

d2
T−1 = d2 − (xT+l−1 − hlsT )2 ,

and

xT−1|T = xT+l−2 − hl−1sT ,

a stronger necessary condition can be found by looking at the first two terms in (19), which leads to sT−1

belonging to the interval

⌈−dT−1 + xT−1|T

hl

⌉

≤ sT−1 ≤
⌊
dT−1 + xT−1|T

hl

⌋

. (21)

One can continue in a similar fashion for sT−2, and so on until s1. However, these T conditions used to find

s are necessary but still not sufficient. Only if an additional constraint,

d2
0 = d2

1 − (x1|2 − hls1)
2 ≥ (xl−1 − hl−1s1 − . . . − h1sl−1)

2 + . . .+ (x1 − h1s1)
2, (22)

is satisfied, will the point s indeed belong to the sphere, i.e., satisfy condition (18).

We can summarize the algorithm as follows:

4We assume that hl > 0. Note that the boundaries of intervals here and below change when dividing by hl < 0.
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Input: H , x, d.

1. Set k = T , d2
T = d2, xT |T+1 = xT+l−1

2. (Bounds for sk) Set UB(sk) = bdk+xk|k+1

hl
c, sk = d−dk+xk|k+1

hl
e − 1

3. (Increase sk) sk = sk + 1. If sk ≤ UB(sk) go to 5, else to 4.

4. (Increase k) k = k + 1; if k = T + 1, terminate algorithm, else go to 3.

5. (Decrease k) If k = 1 go to 6. Else k = k − 1, xk|k+1 = xk+l−1 −∑min(k+l,T )
j=k+1 hl+k−jsj , d2

k =

d2
k+1 − (xk+1|k+2 − hlsk+1)

2.

6. If d2
0 = d2

1 − (x1|2 −hls1)
2 ≥ (xl−1 −hl−1s1 − . . .−h1sl−1)

2 + . . .+(x1 −h1s1)
2, solution found.

Save s and its distance from x, d2
T − d2

0 +(xl−1 −hl−1s1 − . . .−h1sl−1)
2 + . . .+(x1 −h1s1)

2, and

go to 3.

Remark: one can immediately notice a potential drawback to the aforementioned algorithm. The addi-

tional constraint (22) means that the T previously considered constraints might have not been particularly

stringent. This would clearly have negative impact on the complexity. Indeed, as we shall argue shortly, we

observe that there are scenarios where performing the QR factorization and then employing sphere decoding

may, in fact, be the more favorable approach.

6.1 Expected Complexity of Sphere Decoding Algorithm for Frequency-Selective Channels

For simplicity, we will assume that T ≥ l (the case T < l is treated similarly). To find the expected

complexity of sphere decoding for a banded Toeplitz matrix H , we follow the procedure outlined in Part I.

First note that (18) can be written as

d2 ≥ ‖xT −HT,T s‖2 +

∥
∥
∥
∥
∥
∥

x−




0(l−1)×1

xT



− (H −




0(l−1)×T

HT,T



)s

∥
∥
∥
∥
∥
∥

2

,

where xT is the T -dimensional vectors comprised of the last T entries of the vector x, and HT,T is the

matrix comprised of the last T rows of H . Then the algorithm described in the previous section visits all

T -dimensional points s such that

d2 ≥ ‖xT −HT,T s‖2,
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while the additional constraint in step 6 of the pseudocode ensures that the more strict condition (18) is

satisfied. Suppose that the lattice point st was transmitted and that the vector x = Hst + v was observed.

To find the expected number of the T -dimensional points tested in step 6 of the code, we need to compute

the probability that

‖xT −HT,T sa‖2 = ‖vT +HT,T (st − sa)‖2 ≤ d2,

where vT is T -dimensional vector comprised of the last T entries of the vector v. The expected number of

points in a T -dimensional sphere of radius d can now be found as

Ep(T, d
2) =

∑

(st,sa)

p(‖vT +HT,T (st − sa)‖2 ≤ d2),

where the summation is over all pairs of points (st, sa).

Similar expression holds for expected number of points in a k-dimensional sphere, k < T . In particular,

Ep(k, d
2) =

∑

(sk
t ,sk

a)

p(‖vk +Hk,k(s
k
t − sk

a)‖2 ≤ d2),

where vk, sk
t , and sk

a are k-dimensional vectors, and Hk,k is k × k matrix obtained by the partitions

v =




vT+l−1−k

vk



 , st =




sT−k
t

sk
t



 , sa =




sT−k
a

sk
a



 ,H =




HT−k+l−1,T−k HT−k+l−1,k

Hk,T−k Hk,k



 .

In Appendix B, we show that the probability that a point Hk,ks
k
a belongs to the k-dimensional sphere of

radius d is

p(‖vk +Hk,k(s
k
t − sk

a)‖2 ≤ d2) =
1

2π

∫ d2

t=0

∫ ∞

ω=−∞
Φ(ω)e−jωtdωdt, (23)

where

Φ(ω) =

√
2k+q

√

(1 + jω2σ2)k−q∏q
i=1 [1 + jω2(σ2 + ρi)]

(24)

is the characteristic function of ‖vk + Hk,k(s
k
t − sk

a)‖2, and where q = min(k, l). Furthermore, ρi, i =

1, . . . , l are the eigenvalues of the matrix (St − Sa)
∗(St − Sa), where, for k ≤ l, St and Sa are k × k
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matrices defined as

St =











st,T . . . st,T−k

st,T
...

. . . st,T−1

st,T











, Sa =











sa,T . . . sa,T−k

sa,T
...

. . . sa,T−1

sa,T











, (25)

while for k > l they are k × l matrices defined as

St =


















st,T−k+l . . . st,T−k+1

...
...

. . .
...

st,T . . . st,T−l+1

st,T
...

. . . st,T−1

st,T


















, Sa =


















sa,T−k+l . . . sa,T−k+1

...
...

. . .
...

sa,T . . . sa,T−l+1

sa,T
...

. . . sa,T−1

sa,T


















. (26)

The expected complexity of the sphere decoding algorithm is given by (cf. (18), Part I)

C(T, σ2, d2) =

T∑

k=1

(expected # of points in k-dim sphere of radius d) · fp,Toep(k).

From the pseudocode of the sphere decoding algorithm for a banded Toeplitz lattice generating matrix H

given in the previous section, we find that the number of elementary operations per point in a k-dimensional

sphere is

fp,Toep(k) =







2 · min(T − k + l + 1, T ) − 2(T − k) + 9 + 2L, k < T,

l(l − 1) + 11 + 2L, k = T.

Note that fp,Toep(T ) includes the number of operations for testing the additional constraint in step 6 of the

code. Combining all of the above, we can write the expression for the expected complexity as

C(T, σ2, d2) =

T∑

k=1

fp,Toep(k)
∑

(sk
t ,sk

a)

1

2π

∫ d2

t=0

∫ ∞

ω=−∞
Φ(ω)e−jωtdωdt, (27)

where Φ(ω) is given by (24).

For given l and k, one can often find the closed-form expression for the probability (23). [In many cases,
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(23) is a linear combination of a number of incomplete gamma functions.] Alternatively, one can compute

(23) by means of numerical integration (with, e.g., Mathematica or MATLAB). However, the more pressing

problem is one of finding an efficient enumeration of the eigenvalues of the matrix (St −Sa)
∗(St −Sa) over

the lattice, i.e., counting the number of pairs of points (st, sa) which yield the particular set of eigenvalues

of (St−Sa)
∗(St−Sa). Unfortunately, unlike the enumeration via generating functions in Part I of the paper,

this enumeration appears to be difficult to obtain. Thus we leave the expression for the expected complexity

of sphere decoding for a banded Toeplitz H in the form (27). Note that for small dimensional problems

(i.e., problems with small l and T ), one can compute (27) by actually going over all possible pairs of points

(sk
t , s

k
a), k = 1, 2, . . . , T .

6.2 Some Comments

In the previous section, we considered the expected complexity of sphere decoding which exploits the

banded Toeplitz structure of the channel matrix H . However, there is a range of system parameters l,

T , and L, for which it is more efficient to first perform the QR factorization of H . This is due to the fact

that the sphere decoding which directly uses H may impose less strict conditions on lattice points than the

sphere decoding which uses the upper-triangular matrix R from the QR factorization – as implied by the

need to impose additional conditions (22) when doing the former. The matrices Q and R obtained from the

QR factorization of the banded Toeplitz H do not have as nice statistical properties as Q and R obtained

from the factorization of the full, Gaussian iid matrix H . Hence, we illustrate the previous point by means

of simulations.

For illustration, consider an example with l = 12, T = 20, and L = 2. In Figure 9, we plot the

(empirically calculated) complexity exponent ec as a function of SNR. Note that in the range of SNRs

where the BER performance is < 10−3, the complexity of the the sphere decoding algorithm which exploits

Toeplitz structure of the matrix H is always less than the combined complexity of the QR factorization and

the standard sphere decoding which makes use of the matrix R.

On the other hand, consider the case with l = 8, T = 16, and L = 4. As Figure 10 shows, the range of

SNRs where the sphere decoding with QR factorization is more preferable than the sphere decoding which

exploits Toeplitz structure of H is quite wide. In fact, only in the range of BER that are < 10−4 does the

algorithm that exploits the Toeplitz structure of H become preferable.

Note that the Viterbi algorithm, which has the same performance as sphere decoding permitting a guard

interval, has the complexity which is exponential in the channel length and is linear in the block length
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Figure 9: BER performance and the expected complexity exponent of sphere decoding, T = 20, l = 12,

L = 2. The plot on the RHS shows both the complexity exponent of the algorithm which uses Toeplitz

structure of H and the exponent of the algorithm which uses QR factorization (for the latter, the complexity

of the QR factorization is included).

T . Therefore, for the example in Figure 10, the complexity of the Viterbi algorithm is on the order of

TLl ∼ 106 flops. On the other hand, the sphere decoding algorithm solves the same ML detection problem

with T ec ∼ 104 flops on average, which is a considerable computational saving. Sphere decoding offers

computational savings over the Viterbi algorithm for this particular set of parameters and, in general, for

the cases where the length of the channel is large. However, for short channels, low modulation schemes,

and very long block lengths, the Viterbi algorithm has lower (essentially linear in the data block length)

complexity than the sphere decoding.

7 Remarks

In this, and in Part I of the paper, we studied the complexity of sphere decoding for finding anm-dimensional

vector s so that Hs is the closest lattice point to the given n-dimensional vector x, i.e., we studied the

complexity of sphere decoding employed for solving

min
s∈Dm

L

‖x−Hs‖2,
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Figure 10: BER performance and the expected complexity exponent of sphere decoding, T = 16, l = 8,

L = 4. The plot on the RHS shows both the complexity exponent of the algorithm which uses Toeplitz

structure of H and the exponent of the algorithm which uses QR factorization (for the latter, the complexity

of the QR factorization is included).

when n ≥ m. On the other hand, for a finite lattice Dm
L , one can employ sphere decoding for solving the

same problem even when n < m, provided one performs an additional partial exhaustive search over the

remaining m − n dimensions. We omit the details for brevity. However, it is easy to see that the expected

complexity of this scheme is given by

C(n,m, ρ, d2) = C(m, ρ, d2) · Lm−n,

where C(m, ρ, d2) is given by Theorem 2 in Part I.

On another note, the expected complexity that we discussed in this paper accounts for finding all the

lattice points in the sphere. The point among those found that is closest to x is the solution to the integer least-

squares problem. There are some more efficient variations on the basic sphere decoding algorithm which

potentially avoid having to search all lattice points inside the sphere. We briefly mention two variations here.

• Sphere decoding with radius update.

Whenever the algorithm finds a point sin inside the sphere (note that Hsin is not necessarily the closest

point to x), we set the new radius of the sphere d2 = ‖x − Hsin‖2 and restart the algorithm. The radius

update may be particularly useful at lower SNRs, where the number of points in the initial sphere is relatively
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large. However, it may not be beneficial at high SNR, since restarting the sphere decoder may be costly.

In any event, computing the expected complexity for this modification of sphere decoding appears to be

complicated, since it requires the calculation of the distribution of the radii that are updated.

• Schnorr-Euchner version of sphere decoding.

This strategy was proposed in [15]. The likelihood that the point will be found early is maximized if the

search at each dimension k is performed from the middle of the allowed interval for sk, and if the radius

update strategy (as described above) is used. In particular, recall the step 2 of the sphere decoding algorithm

in Section 3.1 of Part I. There, we set the upper and the lower bounds on sk,

LB(sk) = d
−d′

k + yk|k+1

rk,k
e − 1, UB(sk) = b

d
′

k + yk|k+1

rk,k
c,

and the search for sk was performed by examining the points

LB(sk), LB(sk) + 1, . . . , UB(sk).

In the Schnorr-Euchner version of the sphere decoding algorithm, however, one starts from

[ŝk] = [
yk|k+1

rk,k
],

and performs the search in the order of, say,

[ŝk], [ŝk] − 1, [ŝk] + 1, . . .

The expected complexity of the Schnorr-Euchner version of the sphere decoding algorithm is no greater than

the expected complexity of the basic algorithm that we derived in Part I. However, computing its expected

complexity in a closed form appears to be formidable. More details about the Schnorr-Euchner version of

the sphere decoding, and some improvements thereof, can be found in [3].

8 Conclusion

In this paper, we generalized the results on the expected complexity of sphere decoding to the complex ver-

sion of the problem. We also calculated second-order statistics, i.e., we found the variance of the complexity
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of sphere decoding. Moreover, we studied applications of sphere decoding to communication systems. In

particular, we considered the application to ML detection in multi-antenna systems. Furthermore, we studied

the expected complexity of the sphere decoding algorithm for frequency-selective channels. In both cases,

it turns out that over a wide range of SNRs, rates, and dimensions the expected complexity is often cubic

or sub-cubic. Since many communications systems operate at noise levels for which this is the case, this

suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable,

can in fact be implemented with complexity similar to heuristic methods, but with significant performance

gains—a result with many practical implications.

There are quite a few open problems that remain and possible directions for further work and research.

With regards to FIR channels, there is need for an efficient (number-theoretic) enumeration technique that

would result in a more explicit complexity expression. Second-order statistics for the FIR case also need to

be computed. On a different note, for FIR channels, the sphere decoding algorithm does not at all exploit the

Markovian property of the channel, which is precisely what the Viterbi algorithm does. Practical algorithms

that combine both structures (the lattice and the Markovian property) are highly desirable, and some steps

in this direction have been taken in [16]. In this paper we have considered only real- (or complex-) valued

lattices. ML decoding of linear error-correcting codes can be viewed as finding closet lattice points (in a

Hamming distance sense) generated in Galois field. Moreover, when error-correcting codes are coupled

with analog channels (through some modulation scheme) problems of joint detection and decoding arise.

Some preliminary work using the ideas of this paper appear in [17].

Finally, we should remark that an important message of this two-part paper is that, for problems where

there is an underlying statistical model, the complexity of any algorithm is best viewed as a random vari-

able (see also [18] and the references therein). A methodology for how to determine the statistics for one

such algorithm has been presented in this paper; however, we believe that the general approach may find

applications in other areas (other than closest point searches) as well.

Acknowledgement: The authors would like to thank Radhika Gowaikar for useful discussions on simplify-

ing the derivation in Appendix A.

A Appendix: Calculation of the Probability p(tb ≤ d2, tc ≤ d2)

Recall that

tb = ‖uk +Rk,ksb‖2 and tc = ‖ul +Rl,lsc‖2.
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We distinguish between the following two cases: sb = sk
c and sb 6= sk

c , where sk
c denotes a vector comprised

of the last k entries of sc.

1. sb = sk
c :

Since k ≤ l, if Rl,lsc belongs to the l-dimensional sphere of radius d then it must be that Rk,ksb belongs to

the k-dimensional sphere of radius d and, therefore,

p(tb ≤ d2, tc ≤ d2) = p(tc ≤ d2).

But from (20) in Part I of the paper,

p(tc ≤ d2) = γ

(
d2

2(σ2 + ‖sc‖2)
,
l

2

)

.

2. sb 6= sk
c :

To find p(tb ≤ d2, tc ≤ d2), we consider the characteristic function of (tb, tc),

Φ(ωb, ωc) = Eejωbtb+jωctc .

Denote

νb = uk +Rk,ksb, νc = ul +Rl,lsc.

Consider two entries, νb,i and νc,j, of the vectors νb and νc:

νb,i = um−k+i + rm−k+i,m−k+isb,i +

k∑

q=i+1

rm−k+i,m−k+qsb,q, (28)

and

νc,j = um−l+j + rm−l+j,m−l+jsc,j +

l∑

q=j+1

rm−l+j,m−l+qsc,q. (29)

where ri,j is the (i, j) entry of matrix R. The r2
i,i are independent, with χ2-distribution of m− i+1 degrees

of freedom, while the non-diagonal entries ri,j are independent Gaussian (see, e.g., [19]). Therefore, νb,i

and νc,j are independent for i 6= j. So, ν l−k
c is independent from νb, where ν l−k

c is defined by the partition

νc =




νl−k

c

νk
c



 .
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Hence, we can write

Φ(ωb, ωc) = Eejωbtb+jωctc

= Eejωb‖νb‖
2+jωc‖νk

c ‖
2 · Eejωc‖νc−νk

c ‖
2

= Φ1(ωb, ωc)Φ2(ωc). (30)

Furthermore,

Φ2(ωc) = Eejωc‖νc−νk
c ‖

2

= Eejωc(ν2
c,1+...+ν2

c,l−k
)Ee

jωc(ν2
c,l−k+1

+...+ν2
c,l

)

Eejωc(ν2
c,l−k+1

+...+ν2
c,l

)
=
Eejωc‖νc‖2

Eejωc‖νk
c ‖

2
. (31)

To calculate Φ1(ωb, ωc), we need to find joint distribution for (νb,i, νc,j). However, for νb,i and νc,j given by

(28) and (29), it is difficult to do so. Instead, we can consider an equivalent problem which is quite easier to

solve. To this end, recall Lemma 1 in Part I which asserts that Rk,k has the same distribution as the upper

triangular matrix obtained from the QR factorization of a k× k matrix G comprised of iid Gaussian entries.

Therefore, for an isotropically distributed unitary matrix Qb, we can write

zb = Q∗
bνb = Q∗

bu
k +Q∗

bRk,ksb = w +Gsb,

where w = Q∗
bu

k and G = Q∗
bRk,k have iid Gaussian entries. Similarly,

zc = Q∗
bν

k
c = w +Gsk

c . (32)

Thus, the ith entry of zb and the jth entry of zc can be written as

zb,i = wi +

k∑

q=1

gi,qsb,q,

and

zc,j = wj +

k∑

q=1

gj,qsc,q.

We note that zb,i and zc,j are independent for i 6= j and jointly Gaussian otherwise, i.e.,

(zb,i, zc,j) ∼ N








0

0



 ,Σbc



 δij ,
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where

Σbc =




‖sb‖2 + σ2 s∗bs

k
c + σ2

s∗as
k
b + σ2 ‖sk

c‖2 + σ2



 =




abb abc

abc acc





is the covariance matrix of the joint Gaussian probability density function f(zb,i, zc,j). Therefore, the char-

acteristic function Φ1(ωb, ωc) can be written as

Φ1(ωb, ωc) = Eejωb‖zb‖
2+jωc‖zc‖2

= Eejωb(z
2
b,1

+...+z2
b,k

)+jωc(z2
c,1...+z2

c,k
)

= Eejωbz
2
b,1

+jωcz2
c,1Eejωbz2

b,2
+jωcz2

c,2 . . . Eejωbz
2
b,k

+jωcz2
c,k

=
(

Eejωbz
2
b,1

+jωcz2
c,1

)k

Recall that on page 13 we denoted detΣbc = abbacc − a2
bc = ∆. Therefore, we can write

Eejωbz
2
b,1

+jωcz2
c,1 =

∫ ∫

ejωbz
2
b,1

+jωcz2
c,1f(zb,1, zc,1)dzb,1dzc,1

=
1

√

(2π)2∆

∫ ∫

ejωbz
2
b,1

+jωcz2
c,1 · e

− 1

2
[ zb,1 zc,1 ]Σ−1

bc









zb,1

zc,1









dzb,1dzc,1

=
1

√

(2π)2∆

∫ ∫

e

− 1

2
[ zb,1 zc,1 ]









acc

∆ − 2jωb −abc

∆

−abc

∆
abb

∆ − 2jωc

















zb,1

zc,1









dzb,1dzc,1

=
1

√

∆
[(

abb

∆ − 2jωc

) (
acc

∆ − 2jωb

)
− a2

bc

∆2

] ,

and thus we have

Φ1(ωb, ωc) =
1

√

∆k
[(

abb

∆ − 2jωc

) (
acc

∆ − 2jωb

)
− a2

bc

∆2

]k
. (33)

On the other hand, using (32), denominator of (31) can be written as

Eejωc‖νk
c ‖

2

= Eejωc‖zc‖2

= Eejωc(z2
c,1+...+z2

c,k
) =

(

Eejωcz2
c,1

)k
.
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Note that Ez2
c,1 = σ2 + ‖sk

c‖2 = acc, and hence we can write

Eejωcz2
c,1 =

1√
2πacc

∫

ejωcz2
c,1−

z2
c,1

2acc dzc,1 =
1

√

1 − 2jωc(σ2 + ‖sk
c‖2)

,

and thus we have

Eejωc‖νk
c ‖

2

=
1

√

(1 − 2jωc(σ2 + ‖sk
c‖2))k

.

Similarly, the numerator of (31) can be written as

Eejωc‖νc‖2

=
1

√

(1 − 2jωc(σ2 + ‖sc‖2))l
.

Combining the two expressions above, we obtain

Φ2(ωc) =

√

(1 − 2jωc(σ2 + ‖sk
c‖2)k

√

(1 − 2jωc(σ2 + ‖sc‖2))l
. (34)

Finally, combining (33) and (34), we obtain

Φ(ωb, ωc) =
1

∆k/2
[(

abb

∆ − 2jωc

) (
acc

∆ − 2jωb

)
− a2

bc

∆2

]k/2

(
1 − 2jωc(σ

2 + ‖sk
c‖2)

)k/2

(1 − 2jωc(σ2 + ‖sc‖2))l/2
. (35)

The probability density function can be found by taking the inverse Fourier transform of the characteristic

function in (35),

φ(tb, tc) = F−1 [Φ(ωb, ωc)]

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞

dωbdωce
−jωbtb−jωctc

∆k/2
[(

abb

∆ − 2jωc

) (
acc

∆ − 2jωb

)
− a2

bc

∆2

]k/2

(
1 − 2jωc(σ

2 + ‖sk
c‖2)

)k/2

(1 − 2jωc(σ2 + ‖sc‖2))l/2
.

and thus the probability p(tb ≤ d2, tc ≤ d2) can be found as

p(tb ≤ d2, tc ≤ d2) =

∫ d2

tb=0

∫ d2

tc=0
φ(tb, tc)dtbdtc.
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B Appendix: Calculation of the Characteristic Function Φ(ω) in Section 6.1

Note that we can write the random variable ‖vk +Hk,k(s
k
t − sk

a)‖2 as

‖vk +Hk,k(s
k
t − sk

a)‖2 = ‖vk + Λhq‖2 =

∥
∥
∥
∥
∥
∥

[

Ik Λ
]




vk

hq





∥
∥
∥
∥
∥
∥

2

, (36)

where q = min(k, l), the q-dimensional vector hq is defined as

hq = [hl−q+1 hl−q+2 . . . hl]
∗,

the k × q matrix Λ is defined as

Λ = St − Sa,

and where the matrices St, Sa are given by equations (25), (26).

The characteristic function of ‖vk +Hk,k(s
k
t − sk

a)‖2 can be found as

Φ(ω) = Eejω‖vk+Hk,k(sk
t −sk

a)‖2

=

∫ ∞

−∞
e

jω [ vk∗ hq∗ ]









Ik Λ

Λ∗ Λ∗Λ

















vk

hq









φe

−[ vk∗ hq∗ ]









1
2σ2 Ik 0

0 1
2Iq

















vk

hq









dhqdvk,

(37)

where

φ =
1

√

(2π)k+qσ2k
.

By simplifying the integrand in (37), we obtain

Φ(ω) =
1

√

(2π)k+qσ2k

∫

e

−[ vk∗ hq∗ ]




( 1
2σ2 + jω)Ik jωΛ

jωΛ∗ 1
2Iq + jωΛ∗Λ





︸ ︷︷ ︸
=I









vk

hq









dvkdhq,

and, finally,

Φ(ω) =
1√

σ2k det I
,
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where the determinant of I is found as

det I =

(
1

2σ2
+ jω

)k

det

[

1

2
Iq + jωΛ∗Λ − jωΛ∗ 1

1
2σ2 + jω

jωΛ

]

=

(
1 + jω2σ2

2σ2

)k

det

[
1

2
Iq +

jω

1 + jω2σ2
Λ∗Λ

]

=
1

2k+qσ2k

(
1 + jω2σ2

)k−q
q
∏

i=1

[
1 + jω2(σ2 + ρi)

]
,

where ρi, i = 1, . . . , q are the eigenvalues of the matrix Λ∗Λ. In evaluating det I we used the matrix

inversion lemma,

det




A B

C D



 = detAdet(D − CA−1B).

Combining all of the above, we obtain (24), i.e.,

Φ(ω) =

√
2k+q

√

(1 + jω2σ2)k−q∏q
i=1 [1 + jω2(σ2 + ρi)]

.
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