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Abstract

In Part I, we found a closed-form expression for the expected complexity of the sphere decoding algo-
rithm, both for the infinite and finite lattice. We continue the discussion in this paper by generalizing the
results to the complex version of the problem and using the expected complexity expressions to determine
situations where sphere decoding is practically feasible. In particular, we consider applications of sphere
decoding to detection in multi-antenna systems. We show that, for a wide range of signal-to-noise ratios,
rates, and numbers of antennas, the expected complexity is polynomial, in fact often roughly cubic. Since
many communications systems operate at noise levels for which the expected complexity turns out to be
polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be compu-
tationally intractable, can in fact be implemented in real-time—a result with many practical implications.
To provide complexity information beyond the mean, we derive a closed-form expression for the variance
of the complexity of sphere decoding algorithm in a finite lattice. Furthermore, we consider the expected
complexity of sphere decoding for channels with memory, where the lattice-generating matrix has a special
Toeplitz structure. Results indicate that the expected complexity in this case is, too, polynomial over a wide
range of SNRs, rates, data blocks, and channel impulse response lengths.

Index Terms—Sphere decoding, wireless communications, multiple-antenna systems, frequency-selective
channels, expected complexity, polynomial-time complexity.

1 Introduction

Integer least-squares problems of the form
min ||z — Hs|? (1)
S

appear in a host of applications. In communications, when the channel is linear and the noise independent,

identically distributed (iid) Gaussian, maximum-likelihood (ML) decoding leads to a least-squares cost.



When the transmitted symbols are from a finite set, this can be often cast as an integer least-squares problem.
Applications where the sphere decoding algorithm is employed for solving the integer least-squares problem
(1) include lattice codes [1, 2, 3, 4], CDMA systems [5], multi-antenna systems [6, 7, 8], etc. In all these
applications, the unknown vector s represents the transmitted signal, the matrix H represents the channel,
and the vector x represents the received signal. For example, in the multi-antenna context of V-BLAST [6]
where we have M transmit and N receive antennas, H is the (m = 2M) X (n = 2N) real channel matrix,
and for linear space-time codes (such as those in [8]) it is the equivalent channel matrix. The integer least-
squares problem also arises in the detection of signals transmitted over frequency selective finite impulse
response channels [9]. Other applications include global positioning systems (GPS) [10] and cryptography.
In fact, there is a whole family of public-key cryptosystems based on the NP-hardness of the integer least-
squares problem [11, 12, 13].

In this paper, we continue with the study of complexity of sphere decoding started in Part I. In Section 2
and Section 4, we demonstrate the use of the expressions for expected complexity to determine situations
where sphere decoding is practically feasible, i.e., we use those expressions to search for the transition from
polynomial to exponential expected complexity. In particular, in Section 2, the expected complexity of
sphere decoding for an infinite lattice, relevant for GPS applications, is examined over a range of values of
the system parameters. In Section 4, we study the complexity of sphere decoding employed for ML detection
in multi-antenna wireless communication systems. Since in this application the underlying optimization
problem is complex-valued, we first generalize the expected complexity results to the complex version of the
integer least-squares problem in Section 3. Using these expressions, we show in Section 4 that over a wide
range of rates, signal-to-noise ratios (SNRs) and dimensions (in fact, those that are typically encountered in
communications problems), the expected complexity of the sphere decoding algorithm is polynomial, often
cubic. In order to provide complexity information beyond the first-order statistics that we found in Part I, in
Section 5 we calculate the variance of complexity of sphere decoding. Application of the sphere decoding
algorithm to frequency-selective channels and the complexity of the algorithm therein are studied in Section
6. The complexity of the algorithm for the case when the system of equations in (1) is overdetermined and
some variations of the basic sphere decoding algorithm are discussed in Section 7, while the conclusion is
in Section 8. Many of the results of this paper and various extensions can be found in the first author’s PhD

dissertation [14].



2 Expected Complexity Exponent of Sphere Decoding in Infinite Lattice

As a measure of complexity, instead of the complexity itself, it is often useful to look at the complexity

exponent, defined as
~logC(m,o?,d?)
N logm ’

2

€c

In other words, for the particular complexity exponent e, the expected complexity of sphere decoding is
C(m, o, d?) = O(m®).

When plotted, e. is more visually appealing since the complexity exponent approaches a constant if the

m
logm

expected complexity is polynomial, and grows like if C(m, o2, d?) is exponential.
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Figure 1: The complexity exponent as a function of m for o> = 0.01,0.1,1,10 with € = .1 chosen for the
sphere decoder applied to an infinite lattice.

Using the closed-form expression for the expected complexity of sphere decoding in an infinite lattice
given by (28) in Part I, the complexity exponent is plotted as a function of m for different values of o2 in
Figure 1. As can be seen from the figure, for small enough noise the expected complexity is polynomial, as

indicated by the constant e. over a wide range of m. On the other hand, for large noise e, clearly exhibits the

m
logm

behavior and the computational complexity of the algorithm is exponential. We thus see the transition

from polynomial-time to exponential complexity which, for a wide range of m, takes place at 02 ~ 1.



3 Generalization of Complexity Results to the Complex Case

In many applications, one is confronted with a complex version of the integer least-squares problem. In this

case, we may generally assume that the model is
x =Hs+ v, 3)

where now v € CV*! is comprised of i.i.d. CN(0,0?) (circularly-symmetric complex normal) entries,
H ¢ ¢V*M is comprised of i.i.d. CA(0,1) entries, and s € CZ* is an M-dimensional complex vector
whose entries have real and imaginary parts that are integers. As before, we are interested in the problem:

min ||x — Hs|%. 4)

seczM

The standard sphere decoding algorithm given in Section 3.1 of Part I can be applied, provided we use the
complex QR decomposition and modify the algorithm to accommodate for complex inputs. In particular,
the algorithm now runs over complex dimensions £ = 1,2, ..., M. Therefore, instead of finding points that
belong to an interval on a real line, step 2 and step 3 of the algorithm in Section 3.1 of Part I need to be
modified so that they compute coordinates of the points within a disc in a complex plane. In the other steps
of the algorithm all that one needs to do is replace the real operations with appropriate complex ones. We
are omitting the details of the algorithm and its complexity analysis for brevity and because they closely

parallel the real case and state the complexity results below.

Corollary 1 (Expected complexity of sphere decoding over infinite lattice). Consider the model
x=Hs+ v,

where v € CN*1 is comprised of i.i.d. CN(0,0?) entries, H € CVN*M is comprised of i.i.d. CN(0,1)
entries, and s € CZM is an M-dimensional vector whose entries are complex vectors with integer numbers
for real and imaginary parts. Then the expected complexity of the sphere decoding algorithm with a search

radius d for solving the integer least-squares problem,

min ||x — Hs||?,
scczM



is given by
M [e'e)
C(M, 0% d*) =" Fy(k) Zy( N - M+k>r2k(l), ©)
k=1

where the number of elementary operations per visited point in complex dimension k is Fp,(k) = 8k + 24,

and where 1oy, (1) is the number of ways | can be represented as the sum of 2k squared integers.

Corollary 2 (Expected complexity for finding the optimal solution). Consider the setting of Corollary 1
in Part I. Given any 0 < € < 1, consider a strategy where we first choose a radius such that we find a lattice
point with probability 1 — €, and then increase it to a probability of 1 — €2, and so on, if no point is found.

Then the expected complexity of the sphere decoding algorithm to find the optimal solution is given by

9 = -l a;No?
C(M,o%e) =3 (1~ ZF Zv N = Mtk ) ok (0), (©)

i=
where F,(k) = 8k+24, roi (1) is the number of ways | can be represented as the sum of 2k squared integers,
(-, -) denotes a normalized gamma function, and where o; is chosen such that
y(N,N)=1—¢, i=1,2,... (7)
When confronted with a complex integer least-squares problem over a finite lattice, similar results hold.
The next corollary is the complex analog of Theorem 2 in Part 1.

Corollary 3. [Expected complexity of the sphere decoding over a finite lattice] Consider the model
x=Hs+ v,

where v € CN*Y is comprised of i.i.d. CN(0,0?) entries, H € CN*M is comprised of i.i.d. CN(0,1)
entries, and s € CD%/[ is an M-dimensional vector whose entries are complex-valued elements of an L*-

QAM constellation. Define the signal-to-noise ratio as

M(L?—1)

p= 602

Then the expected complexity of the sphere decoding algorithm with a search radius d, chosen such that

2_
d?> = aN M(%p 1), for solving the integer least-squares problem

min ||x — Hs||?,
seCDY



1. for a 4-QAM constellation,

) M 2 o oN
C(M,p,d*) = Fy(k) ) _ Vg N - M+k (8)
k=1 =0 \ ! L+ 3=y
2. fora 16-QAM,
M 2%
1 2k aN
2y —
C(M,p,d*) = ZFp(k‘)Z 2@2 9201 ()Y <1_|_76W,N - M‘Hf) )
k=1 q 1=0 M(L*-1)

where goi1(q) is the coefficient of x? in the polynomial

(1+ 2+ 2% + 291 4 22 + 2%,

3. for a 64-QAM constellation, the expected complexity is

M
1 alN
C(M,p,d*) = Fy(k Z@ D Gokjogiiss (@)Y <7q N—M+k)7 (10)
k=1

q J0,91,J2,93 1+ M(L?-1)

where gopjo i1 j»j5 (@) is the coefficient of x9 in the polynomial

2k . . . .
T el @)k @ @)
J05J15J25,J3

2k

where jo + j1 + jo + j3 = 2k and S —%,andwhere
J0,J15J2,73
Yo(xr) = 1+z+at+2°+ 20 4220 230 4 249
Pi(e) = 142+ +27 + 21 4 2% + 2%,
Po(x) = 142z 422 + 29 + 216 + 225,
P3(z) = 1+ 21+ 221+ 22% + 216

4. similar expressions can be obtained for 256-QAM, etc., constellations.

The number of elementary operations per visited point in (8)-(10) is F),(k) = 8k + 20 + 4L, while (-

,+) in



(8)-(10) denotes a normalized gamma function.

4 Expected Complexity Exponent of Sphere Decoding in Finite Lattices:
ML Detection in Multi-Antenna Systems

In this section, we use the expressions from Section 3 to study the expected complexity of sphere decoding
employed for ML detection in multi-antenna systems. Figure 2 shows a multi-antenna system with M-

transmit and N -receive antennas.
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Figure 2: Multiple antenna system
The received signal x is related to the transmitted symbol s via
x=Hs+ v, (1D

where H € CV*M is the known channel matrix comprised of iid complex-Gaussian entries CA/(0, 1), and
v € CV*1 s the additive noise vector, comprised of iid complex-Gaussian entries CA/ (0, 02). Furthermore,
entries in the symbol vector s are chosen from a complex-valued L2-QAM constellation, i.e., both the real
and the imaginary components of s are elements of an L-PAM constellation Dy,. As in Section 3, the SNR

p is given by
_ E{tr(Hss*H*)} M(L*-1)
P= BE{tr(vv*)} 602

where tr (-) denotes trace of its argument. The transmission rate is defined as the number of bits transmitted



per channel use,

R= MlogL?> =2M1log L.

We consider the expected complexity of sphere decoding algorithm for signal detection in the system
shown in Figure 2 with equal (M = NN) number of transmit and receive antennas, for various QAM mod-
ulation schemes. The expected complexity C'(M, p, €) is a function of both the symbol vector size M and
the SNR p.! We shall consider “snapshots” in each dimension, i.e., we keep either M or p variable fixed

and examine the expected complexity as a function of the other variable. Figure 3 shows the complexity
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Figure 3: The complexity exponent as a function of M for p = 20db and L = 2,4, 8, 16.

exponent, defined as
o — 108C(M, p,e)
“ log2M

as a function of M for a fixed SNR p = 20db and L2-QAM constellations with L = 2.4, 8,16. For low
rates (i.e., small constellations) the expected complexity is polynomial, whereas for high rates (i.e., large
constellations) it is exponential. Simulation results suggest that the complexity is polynomial as long as
the rate is sufficiently, but not necessarily all that much, below the Shannon capacity corresponding to the

SNR. Since this is the regime at which most communication systems operate, it suggests that ML decoding

'In all the simulations presented, the complexities are for the scheme that finds the optimal solution. In other words, our initial
radius is determined so that we find a lattice point with probability .9 (i.e., e = .1). If no lattice point is found, we increase the
radius so that this probability increases to .99, and so on.



can be feasible. For instance, the complexity exponents curves in Figure 3 that correspond to L = 8 and
L = 16 modulation schemes appear to be in the exponential regime. However, as is illustrated in Figure 3
for M = 5, the data rates corresponding to the points on those two curves are larger than the corresponding
ergodic capacity,

C.o = B {log det (I; + H'H)} .

For instance, when M = 5 (and SNR 20dB), ergodic capacity is C,, = 27.6. For the same system parame-
ters, only the rates provided by the modulation schemes corresponding to L = 2 and L = 4 (Ry = 10 and
Ry = 20, respectively, as denoted in Figure 3) can be supported by the channel. The other two modulation
schemes cannot be employed (we assume uncoded transmission). Note that the expected complexity expo-
nent in the data transmission regime that is supportable by the channel complexity is roughly cubic — which,
in fact, is the complexity of the heuristic techniques. For comparison, exhaustive search in M = N = 5,

16-QAM system requires examining k = 4'° ~ 10° points, which is roughly of sixth order.
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Figure 4: The complexity exponent as a function of p for M = N =5 and L = 2,4,8,16.

Figure 4 shows the complexity as a function of SNR for M = 5 and L?-QAM constellations with I =
2,4,8,16. A particular modulation scheme can be used only in the range of SNRs that supports transmission
at the rate corresponding to that modulation scheme. We note that in such a range, the complexity exponent
is roughly cubic. For instance, although the complexity for L. = 16 appears to be high over a wide range of

SNR, it is only for p > py9 = 27.9dB that this modulation scheme can be employed (p4¢ is the SNR for



which the capacity C,,, = 40 = R4(L = 16)). The complexity exponent at pyo and L = 16 is e, ~ 4.4.
The other SNRs marked on Figure 4, p3g = 21.6dB, and pyy = 14.9d B, have similar meanings (only for
L =8 and L = 4, respectively).
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Figure 5: The complexity exponent distribution for M = N =5, L = 4, and SN R = 16, 18, 20, 22dB.

Figures 3-4 show the analytically obtained expected complexity, that is, the first-order statistics. In
Figure 5, the empirical distribution of the complexity exponent, p(e.), is shown for M = N = 5 transmit
and receive antennas, 16-QAM modulation scheme, and for 4 different SNR values. From Figure 4, we see
that the lowest SNR in Figure 5 (16dB) roughly corresponds to the minimum SNR required for transmission
on the particular system with the modulation scheme of choice. The outer dashed lines in each graph of
Figure 5 denote the complexity exponents which are three standard deviations away from the mean. The
middle dashed line denotes the mean itself, i.e., the expected complexity. We can make the following

observations in relation to the distributions as the SNR increases:

10



e The expected complexity decreases, which was already implied by the results illustrated in Figure 4.
e The variance of the complexity decreases, as illustrated with tightening of the standard deviation.

e The “point-mass” segments become more pronounced. This is expected: for large SNRs, the radius

of the sphere will be small and only a small (discrete) number of lattice points are found inside.

More discussion on the variance of sphere decoding will follow in the next section of the paper.
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Figure 6: Sphere decoder vs. nulling and cancelling, M = N =5, L = 4, and corresponding e..

Finally, Figure 6 shows the improvement in performance of sphere decoding over the MMSE nulling
and cancelling with optimal ordering for a multi-antenna system employing M = N = 5 transmit and
receive antennas and 16-QAM modulation scheme. The complexity of ML decoding for a single frame via
sphere decoding here is comparable to that of nulling and cancelling, whereas the performance improvement

is significant. The range of signal-to-noise ratios in Figure 6 is typical for indoor applications ([6]).

S On the Variance of Computational Complexity of Sphere Decoding

Recall the basic real-valued integer least-squares problem that we focused on in Part I. As argued there, the
complexity of sphere decoding is a random variable which depends upon the realization of the generator

matrix H and the noise vector v. So far we have considered its first moment, i.e., the expected complexity.

11



In this section, we find the variance of the complexity of sphere decoding for a finite lattice. Using the

results derived in Part I of the paper, we can express the variance as

Var = E{
k

:E{

k=11

Ms

2
[ p(k)fp(k) - E:n(k,Pa dz)fp(k)] }

1

[Np(k) fp (k) = Epk, p,d) fo(k)] Y [No(0).fp (1) = Ep(L, p, d%) f(1)] }

=1

MsiMs

E{N p(l)} - Ep(k,p, dz)Ep(l7Pa d2)] fp(k)fp(l)7 (12)

Il
—

where N, (4) is the number of points in a sphere of dimension 7 and radius d, and where f,(7) is the number
of operations (flop count) per visited point in dimension ¢. The average number of points per dimension,
Ey(i,p,d?) = ENy(i), i = 1,2,...,m, has been given in Theorem 2 in Part I of the paper. What remains
to be determined in (12) is the correlation £ { N, (k)N (1)}, i.e., the expected number of pairs of points that
fall inside the spheres of radius d and dimensions k and [, centered at the received vector. To this end, recall

that a skewed lattice point H s belongs to a sphere of radius d around the received vector x iff
d* > |l — Hs|* = |l — QRs|* = [|Q"z — Rs|* = ||y — Rs|”,

where we denoted y = Q*z. Therefore, for any pair of points (sg, sc¢), where sp and s¢ are k-dimensional

and [-dimensional vectors in Df and DlL, respectively, we wish to calculate

E{N,(k)N,(D} = Y plly* = Riwssl® < % |l — Ryscl® < d?)
(sB>sc) =t} =t
= Y pl<d t.<d), (13)
(sB,sc)

where the vectors y* and %' are k-dimensional and [-dimensional, respectively, and the upper-triangular
matrices Ry, j, and R;; are k X k and [ x [, respectively, and are defined by the following partitioning of the
vector y and the matrix R

Yy Yy Ry km—t Bk Ry im—1 Rm—iy
Y= = l ,and R = =

y y Okxc(m—k) Bk Otxc(m—1y  Ruy

12



Assume that s; has been transmitted. Then we can write

ty = lly" — Repsnll® = [lu" + Repst — Repsnl® = [u* + Rex (st — s8) |17,
N—_——
=S
and
t. = || I R 2 l R - R 2 ! R _ 2
c=lly nscll” = [lu' + Rygse — Rygscll” = [[u' + Ry (st — sc) I,
N—_——
=S¢
where u = (Q*v, and where u* and u! are k-dimensional and [-dimensional vectors, respectively, obtained

by partitioning u as

Without loss of generality, we will assume that k¥ < [. Let s* denote the vector comprised of the last &

entries of s.. Then one can show (see Appendix A) that

1. If s = s%,
- 2(02 + |[scll?)” 2
2. If sy # sk,
d? d?
p(ty < d*t. < d?) = / B(ty, te)dtpdtc, (15)
tb:(] tc=0
where
co oo —jwpty—jwet _ 9 2 k)12y\k/2
1 dwpdw e~ IWpt—IWete (1 2jwe(0” + ||s¢|| ))
— —o0 Ak/2 [(% _ 2jwc) (% _ 2jwb) _ ﬁ] Jwelo Sc
and where

app, = ||sb||2 + 0%, o= ||s'§\|2 + 02, ap = sZslj + 02, and A = apyaee — a%c.

The summation in (13) is over all possible pairs of points (s, s.). This is a formidable task for even
small to moderate (k, (). To ease the calculation, we count the number of pairs of points (s, s¢) that give the

same p (tb <d?t. < d2). From (14) and (15) it follows that the probability is completely determined by
2

the quadruplet (||sp |2, ||s¥|1%, s;sk, [|sc||?). Therefore, we can enumerate all pairs of lattice points (sp, S¢)

13



by counting number of solutions to the system of equations
lssll* = B, Is1> =, spse =6, and ||sc[* = n,

where 3,~, §,n are integer numbers that satisfy the constraints imposed by dimensions & and [/, and by the
span of the constellation L.
We will show the enumeration for a 2-PAM constellation. Since the constellation is symmetric, and

all points are equally likely to be transmitted, we can assume that the point s; comprised of all —1/2 has

been sent. Let us first count the number of pairs (s;, s¥) that give a particular triplet (|[s;||2, ||s¥||?, s;s5).
Since the transmitted vector has all entries equal to —1/2, the entries of s; and s’c€ can only be 0 and 1.

k

Therefore, each entry of s, s7, and szslj can simultaneously only take on the values (0,0,0), (1,0,0),

(0,1,0), and (1,1,1). So, we form a multinomial in three variables, where each variable represents one of

the components in an admissible triplet,

g1(z,y,2) = (2%°2° + 219%20 + 2% + 2yl = 1+ 2+ y + 2y

Therefore, the polynomial

g(x,y,2) = gl (z,y,2) = (L+z+y+ay)”

— Z k wk2+k4yk3+k4 k4
kla k27 k37 k4
k1+ka+k3+kq=k,k1>0,k2>0,k3>0,k4>0

k!
R SO (s 1 o s

BA+v<k+6,6<8,6<y

xﬁyyz‘s, (16)

kY ; : . k!
, 5350 ) in the following manner: there are (S T 3 o S11

counts all possible triplets (||s3]|2, ||s¥||?

pairs of points (s, s¥) such that

lsoll® = 8, IsI* =, spsé = 4.

The number of vectors s. which, in addition to satisfying the above, have ||s.||? = 7, is given by (f?:]f/)

Combining the above, we conclude that

k! <l—k>
(k+06— B3 —0)(r— 93 \n—~

14



is the number of pairs of points (s, s.) such that [|sp||2 = 3, ||s¥[|? = v, sjsk = 6, and ||s.||> = 7, which
gives us the full enumeration that we were seeking for.

The results of this section can be summarized in the following theorem:

Theorem 1. [Variance of complexity of the sphere decoding algorithm over D" lattice] Consider the
model

r=Hs+ v,

where v € R is comprised of i.i.d. N'(0,0?) entries, H € R™*™ is comprised of i.i.d. N'(0,1) entries,
and s € Dy is an m-dimensional vector whose entries are elements of an 2-PAM constellation. Then the
variance of the complexity of the sphere decoding algorithm with a search radius of d for solving the integer
least-squares problem

min ||z — Hs|?,
seDy?

is given by
Var = 3N [E{N(K)N, (D} — Ep(k, p, a2 Ey(l, p, d%)] f,(k) £, (D),

where*

- , , k! I~k
EOLIN} = 2 pltn = e < ) gt o ()

where E,(i, p, d2) is computed in Section 4.4 in Part I, where +~v < k+6,0 < 3,0 <y, n—~v<Il—k,

and where p(t, < d?,t. < d?) is given by expressions (14) and (15) wherein ||sp||> = 3, ||s8||? = v,
spsk =6, and ||s.||? = .
Proof: Follows from the above discussions.

U

Though we do not give enumeration for L. > 2, the variance of complexity of the sphere decoding
algorithm for those cases can, in principle, be found by calculating summation (13) over all possible pairs
of points (sp, S¢).

We illustrate the variance results summarized in Theorem 1 on an example withm =n = 2, L = 2.

The middle curve in Figure 7 is the expected complexity exponent. The top curve in Figure 7 corresponds

The expression for £ {N,(k)N, (1)} is derived under the assumption k& < I. Due to symmetry, the expression for k > [ is
obtained by simply swapping symbols k and [.

15
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Figure 7: Example with m = n = 2, L = 2. The curves from the top to the bottom are the exponents for
the expected complexity, the expected complexity plus one standard deviation, and the expected complexity
minus one standard deviation, respectively. The solid lines are obtained theoretically, and the dashed lines
are obtained empirically from the flop count in MATLAB 5.

to the exponent of the expected complexity plus one standard deviation, and the bottom curve corresponds
to the exponent of the expected complexity minus one standard deviation. The variance is computed using

Theorem 1 where the integral in (15) is computed numerically, using Mathematica.

6 Sphere Decoding for Detection in Frequency-Selective Channels

The sphere decoding algorithm that we considered in Part I assumes no special structure on the channel ma-
trix H and requires computing its () R factorization. In this section, we describe how the sphere decoding
idea can be employed for detection on frequency-selective channels directly, without performing the QR
factorization of the corresponding (banded Toeplitz) channel matrix. This observation was first made in [9].
Furthermore, we consider the expected complexity of the algorithm for this special case of the lattice gener-
ating matrix. To this end, consider the frequency-selective channel model in Figure 8, with the input/output

relation given by

I
v =Y hjsi_ji1+vi,
i=1

16
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Figure 8: Frequency-selective channel

where h;,i = 1,. .., are the coefficients of the channel impulse response assumed to be Gaussian N (0, 1),
s; is the ith symbol in a transmitted sequence (chosen from an L-PAM constellation), and v; denotes Gaus-
sian A/ (0, 02) noise.® The data is assumed to be transmitted in blocks of 7" symbols which are separated by

guard intervals of [ — 1 symbols. To employ the sphere decoding algorithm, we write the channel model as

r=Hs+ v, a7
where s = [s1 52 ... s7]" € D% is the vector of the transmitted data sequence, z = [z1 ©2 ... T74_1]"is
the vector of the received sequence, and v = [v1 v2 ... vyyy_1]” is the vector of an additive white Gaussian

noise. The matrix H € R(TH=DxT i given by

h1
ha hy
H=| N hy
hy "o hs
Iy

Here is where the banded Toeplitz structure of H comes in handy. Recall that the lattice point H s lies in a
sphere of radius d if, and only if,
& > |z — Hs|?. (18)

3We have assumed a real model to follow [9]. Both the algorithm, as well as the complexity analysis, can be easily extended to
the (perhaps more realistic) complex model. However, in the interest of space, we shall refrain from considering also the complex
case. The complexity analysis in the real case is already quite involved (including a certain enumeration of integer-entried Toeplitz
matrices) and the interested reader should be able to extend our results in a straightforward fashion.
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The RHS of (18) can be expanded as
d* > (xrii-1 — hisT)? + (@pgi—2 — lusT—1 — hi—1sT)? + ... (19)

where the first term depends only on s, the second term on {s7, sp—1} and so on. Therefore, considering

the first term only, a necessary condition for H s to lie inside the sphere is that

d* > (vri1-1 — hist)?

This condition is equivalent to s7 belonging to the interval*

—d+T7r411 d+xr4-1
et ) QN e e sl Y
[ h l == { h 20

Of course, (20) is by no means sufficient. For every st satisfying (20), defining
d_y = d* = (@1 — lust)”,

and

Tr_1 1 = Tr4i-2 — li-18T,

a stronger necessary condition can be found by looking at the first two terms in (19), which leads to s7_1

belonging to the interval

—dr—1+xp_q)T dr—1+xp_qr
<spg < | ———E 21
[ iy -‘ = { hi J @b

One can continue in a similar fashion for s7_o, and so on until s;. However, these 1" conditions used to find

s are necessary but still not sufficient. Only if an additional constraint,
dg = d% — (1'1\2 — hlsl)z > (xp—1 —hj—181— ... — h181_1)2 +.o 4 (1 — h181)2, (22)

is satisfied, will the point s indeed belong to the sphere, i.e., satisfy condition (18).

We can summarize the algorithm as follows:

*We assume that h; > 0. Note that the boundaries of intervals here and below change when dividing by h; < 0.
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Input: H, x, d.
1. Setk =T, d% = d?, TT|IT41 = TT+1-1
2. (Bounds for si) Set UB(s) = Ldkﬂzil;‘kﬂj S = {_d%f“k“} -1
3. (Increase si) si = si + 1. If s, < UB(sg) go to 5, else to 4.
4. (Increase k) k = k + 1; if kK = T + 1, terminate algorithm, else go to 3.

5. (Decrease k) If k = 1 goto 6. Else k = k — 1, Thlkt1 = Thl-1 — ZT:IZ(J]:IFZT) hitrk—jsj, di =

2 2
di1 = (Tpgipge — Pusk+1)™

6. Ifd? = d? — (z1)2 — hys1)? > (27— — hi—151 — ... — hisi_1)? + ...+ (x1 — h151)?, solution found.
Save s and its distance from x, d?p —d3+ (v — 151 — ... —hisi—1)? + ...+ (71 — h1s1)?, and
go to 3.

Remark: one can immediately notice a potential drawback to the aforementioned algorithm. The addi-
tional constraint (22) means that the 7" previously considered constraints might have not been particularly
stringent. This would clearly have negative impact on the complexity. Indeed, as we shall argue shortly, we
observe that there are scenarios where performing the QR factorization and then employing sphere decoding

may, in fact, be the more favorable approach.

6.1 Expected Complexity of Sphere Decoding Algorithm for Frequency-Selective Channels

For simplicity, we will assume that 7" > [ (the case 1" < [ is treated similarly). To find the expected
complexity of sphere decoding for a banded Toeplitz matrix H, we follow the procedure outlined in Part 1.

First note that (18) can be written as

2

)s||

O@-1)x1 Oq—1)xT

d2 > ||Z‘T — HT’TS||2 —+ ||x — — (H —

zT Hrr
where 2T is the T-dimensional vectors comprised of the last 7" entries of the vector x, and Hr 7 is the
matrix comprised of the last 7" rows of H. Then the algorithm described in the previous section visits all

T-dimensional points s such that

d*> > =" — Hrrs|?,
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while the additional constraint in step 6 of the pseudocode ensures that the more strict condition (18) is
satisfied. Suppose that the lattice point s; was transmitted and that the vector z = Hs; + v was observed.
To find the expected number of the T-dimensional points tested in step 6 of the code, we need to compute
the probability that

lo" — Hrrsal® = 0" + Hrr(se — sa)|* < &2,

where v”' is T-dimensional vector comprised of the last 7" entries of the vector v. The expected number of

points in a 7-dimensional sphere of radius d can now be found as
By(T.d?) = 3 p(llo” + Hr(se — sa)|* < i),
(st,5a)

where the summation is over all pairs of points (s¢, Sg).

Similar expression holds for expected number of points in a k-dimensional sphere, k < 7. In particular,

Ey(k,d®) = Y p(|o* + Hep(sh — sh)|? < d?),

(sf:58)

where v, sf, and s’; are k-dimensional vectors, and Hy, . is k X k matrix obtained by the partitions
T+I—-1-k T—k T—k
o't 5 S, Hr_pyi17—k Hr—psi—1k
v = k , St = & ySa = & 7H =
v sy sy Hy 7, Hy g

In Appendix B, we show that the probability that a point H chSIfL belongs to the k-dimensional sphere of

radius d is

1 d2 oo )
I+ Hiash =P <) = o [ 7 ey taua, @3)

27 t=0 =—00

where

P(w) = z (24)

V(1 + jw202) N TTL 1+ jw2(o? + p)]

is the characteristic function of |[v* + Hy x(sF — s¥)||2, and where ¢ = min(k,[). Furthermore, p;,i =

1,...,1 are the eigenvalues of the matrix (S; — Sy)*(S; — Sa), where, for k < [, §; and S, are k x k
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matrices defined as

ST .- St,T—k Sa, T v Sa,T—k
St T Sa,T .
St - ’ Sa - ) (25)
e St T-1 e Sa,T—-1
L Sth . L S(I,T i

while for & > [ they are k& x | matrices defined as

St T—k+l --- St T—k+1 Sa, T—k+l - Sa,T—k+1
St, T cee St, T—I+1 Sa,T s Sa,T—1+1
S = , o Sa= , . (20
St, T . Sa,T .
St T—1 o ST
St, T Sa, T

The expected complexity of the sphere decoding algorithm is given by (cf. (18), Part I)
T
C(T, 02, d?) = Z expected # of points in k-dim sphere of radius d) - f} 7o, (k).
k=1

From the pseudocode of the sphere decoding algorithm for a banded Toeplitz lattice generating matrix H
given in the previous section, we find that the number of elementary operations per point in a k-dimensional
sphere is
2-min(T —k+14+1,T)—2(T —k)+9+2L, k<T,
I(l-1)+11+42L, k=T.

fP,Toep(k) -

Note that f;, r.,(7") includes the number of operations for testing the additional constraint in step 6 of the

code. Combining all of the above, we can write the expression for the expected complexity as

T d?

1 o0 .
O d) =Yt Y o / B(w)e I dusdt, o
k=1 (shok) 10 Swmmoe

where ®(w) is given by (24).

For given [ and k, one can often find the closed-form expression for the probability (23). [In many cases,
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(23) is a linear combination of a number of incomplete gamma functions.] Alternatively, one can compute
(23) by means of numerical integration (with, e.g., Mathematica or MATLAB). However, the more pressing
problem is one of finding an efficient enumeration of the eigenvalues of the matrix (S; —S,)*(S¢ — S,) over
the lattice, i.e., counting the number of pairs of points (s, s,) which yield the particular set of eigenvalues
of (8¢ —8,)* (St —S,). Unfortunately, unlike the enumeration via generating functions in Part I of the paper,
this enumeration appears to be difficult to obtain. Thus we leave the expression for the expected complexity
of sphere decoding for a banded Toeplitz H in the form (27). Note that for small dimensional problems
(i.e., problems with small [ and T), one can compute (27) by actually going over all possible pairs of points

(sF,s8), k=1,2,...,T.

a

6.2 Some Comments

In the previous section, we considered the expected complexity of sphere decoding which exploits the
banded Toeplitz structure of the channel matrix H. However, there is a range of system parameters I,
T, and L, for which it is more efficient to first perform the ()R factorization of H. This is due to the fact
that the sphere decoding which directly uses H may impose less strict conditions on lattice points than the
sphere decoding which uses the upper-triangular matrix R from the ()R factorization — as implied by the
need to impose additional conditions (22) when doing the former. The matrices () and R obtained from the
QR factorization of the banded Toeplitz H do not have as nice statistical properties as () and R obtained
from the factorization of the full, Gaussian iid matrix H. Hence, we illustrate the previous point by means
of simulations.

For illustration, consider an example with [ = 12, T" = 20, and L = 2. In Figure 9, we plot the
(empirically calculated) complexity exponent e. as a function of SNR. Note that in the range of SNRs
where the BER performance is < 1073, the complexity of the the sphere decoding algorithm which exploits
Toeplitz structure of the matrix H is always less than the combined complexity of the () R factorization and
the standard sphere decoding which makes use of the matrix R.

On the other hand, consider the case with [ = 8, T" = 16, and L = 4. As Figure 10 shows, the range of
SNRs where the sphere decoding with () R factorization is more preferable than the sphere decoding which
exploits Toeplitz structure of H is quite wide. In fact, only in the range of BER that are < 10~% does the
algorithm that exploits the Toeplitz structure of H become preferable.

Note that the Viterbi algorithm, which has the same performance as sphere decoding permitting a guard

interval, has the complexity which is exponential in the channel length and is linear in the block length
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Figure 9: BER performance and the expected complexity exponent of sphere decoding, T' = 20, | = 12,
L = 2. The plot on the RHS shows both the complexity exponent of the algorithm which uses Toeplitz
structure of H and the exponent of the algorithm which uses Q) R factorization (for the latter, the complexity
of the QR factorization is included).

T. Therefore, for the example in Figure 10, the complexity of the Viterbi algorithm is on the order of
TL' ~ 108 flops. On the other hand, the sphere decoding algorithm solves the same ML detection problem
with T ~ 10* flops on average, which is a considerable computational saving. Sphere decoding offers
computational savings over the Viterbi algorithm for this particular set of parameters and, in general, for
the cases where the length of the channel is large. However, for short channels, low modulation schemes,
and very long block lengths, the Viterbi algorithm has lower (essentially linear in the data block length)

complexity than the sphere decoding.

7 Remarks

In this, and in Part I of the paper, we studied the complexity of sphere decoding for finding an m-dimensional
vector s so that Hs is the closest lattice point to the given n-dimensional vector z, i.e., we studied the

complexity of sphere decoding employed for solving

min ||z — Hs||?,
seDT
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Figure 10: BER performance and the expected complexity exponent of sphere decoding, T = 16, | = 8§,
L = 4. The plot on the RHS shows both the complexity exponent of the algorithm which uses Toeplitz
structure of H and the exponent of the algorithm which uses QR factorization (for the latter, the complexity
of the QR factorization is included).

when n > m. On the other hand, for a finite lattice D7*, one can employ sphere decoding for solving the
same problem even when n < m, provided one performs an additional partial exhaustive search over the
remaining m — n dimensions. We omit the details for brevity. However, it is easy to see that the expected

complexity of this scheme is given by
C(n7 m, p, d2) = C(m7 P d2) ’ Lm—n’

where C/(m, p, d?) is given by Theorem 2 in Part L.

On another note, the expected complexity that we discussed in this paper accounts for finding all the
lattice points in the sphere. The point among those found that is closest to x is the solution to the integer least-
squares problem. There are some more efficient variations on the basic sphere decoding algorithm which

potentially avoid having to search all lattice points inside the sphere. We briefly mention two variations here.
e Sphere decoding with radius update.

Whenever the algorithm finds a point s;, inside the sphere (note that H s;,, is not necessarily the closest
point to ), we set the new radius of the sphere d?> = ||z — Hs;,||? and restart the algorithm. The radius

update may be particularly useful at lower SNRs, where the number of points in the initial sphere is relatively
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large. However, it may not be beneficial at high SNR, since restarting the sphere decoder may be costly.
In any event, computing the expected complexity for this modification of sphere decoding appears to be

complicated, since it requires the calculation of the distribution of the radii that are updated.
o Schnorr-Euchner version of sphere decoding.

This strategy was proposed in [15]. The likelihood that the point will be found early is maximized if the
search at each dimension k is performed from the middle of the allowed interval for sj, and if the radius
update strategy (as described above) is used. In particular, recall the step 2 of the sphere decoding algorithm

in Section 3.1 of Part I. There, we set the upper and the lower bounds on sk,

—d) + dy +
k yk\k+1-| _1, UB(si)=| k Z/k|k+1J

LB(sg) =
(50) =1 Tk,k Tk,k

and the search for s was performed by examining the points
LB(Sk), LB(Sk) +1, ..., UB(Sk)

In the Schnorr-Euchner version of the sphere decoding algorithm, however, one starts from

A Yk|k+1
8k] = [——
oy

and performs the search in the order of, say,

(3], [8k] — 1, [8%] +1, ...

The expected complexity of the Schnorr-Euchner version of the sphere decoding algorithm is no greater than
the expected complexity of the basic algorithm that we derived in Part I. However, computing its expected
complexity in a closed form appears to be formidable. More details about the Schnorr-Euchner version of

the sphere decoding, and some improvements thereof, can be found in [3].

8 Conclusion

In this paper, we generalized the results on the expected complexity of sphere decoding to the complex ver-

sion of the problem. We also calculated second-order statistics, i.e., we found the variance of the complexity
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of sphere decoding. Moreover, we studied applications of sphere decoding to communication systems. In
particular, we considered the application to ML detection in multi-antenna systems. Furthermore, we studied
the expected complexity of the sphere decoding algorithm for frequency-selective channels. In both cases,
it turns out that over a wide range of SNRs, rates, and dimensions the expected complexity is often cubic
or sub-cubic. Since many communications systems operate at noise levels for which this is the case, this
suggests that maximume-likelihood decoding, which was hitherto thought to be computationally intractable,
can in fact be implemented with complexity similar to heuristic methods, but with significant performance
gains—a result with many practical implications.

There are quite a few open problems that remain and possible directions for further work and research.
With regards to FIR channels, there is need for an efficient (number-theoretic) enumeration technique that
would result in a more explicit complexity expression. Second-order statistics for the FIR case also need to
be computed. On a different note, for FIR channels, the sphere decoding algorithm does not at all exploit the
Markovian property of the channel, which is precisely what the Viterbi algorithm does. Practical algorithms
that combine both structures (the lattice and the Markovian property) are highly desirable, and some steps
in this direction have been taken in [16]. In this paper we have considered only real- (or complex-) valued
lattices. ML decoding of linear error-correcting codes can be viewed as finding closet lattice points (in a
Hamming distance sense) generated in Galois field. Moreover, when error-correcting codes are coupled
with analog channels (through some modulation scheme) problems of joint detection and decoding arise.
Some preliminary work using the ideas of this paper appear in [17].

Finally, we should remark that an important message of this two-part paper is that, for problems where
there is an underlying statistical model, the complexity of any algorithm is best viewed as a random vari-
able (see also [18] and the references therein). A methodology for how to determine the statistics for one
such algorithm has been presented in this paper; however, we believe that the general approach may find

applications in other areas (other than closest point searches) as well.

Acknowledgement: The authors would like to thank Radhika Gowaikar for useful discussions on simplify-

ing the derivation in Appendix A.

A Appendix: Calculation of the Probability p(t, < d?,t. < d?)

Recall that

ty = Huk + Rk,kst2 and t. = Hul + RZ,ZSCHZ.
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We distinguish between the following two cases: s, = s* and s, # s¥, where s* denotes a vector comprised
of the last k entries of s..

— k.
1. sp = szt

Since k < [, if R;;s. belongs to the [-dimensional sphere of radius d then it must be that Ry, ;s belongs to

the k-dimensional sphere of radius d and, therefore,
pty < d* te < d?) = p(t. < d).
But from (20) in Part I of the paper,

(te < d?) = <—d2 £>
Ple =)= 22 + s 2)

2. sy # sk

To find p(t, < d?,t. < d?), we consider the characteristic function of (¢, t.),
q)(wlh wc) = Eejwbtb'i'jwctc.

Denote

vy = uk + Rk,ksb, Ve = ul + Rl,lsc'

Consider two entries, v ; and v, ;, of the vectors v, and v.:

k
Upi = Um—k+i T "m—k+im—k+iSbi T+ § T'm—k-+i,m—k+qSb,q> (28)
g=i+1
and
!
Vej = Um—l+j + Pm—i4+j,m—i+jSc,j T § T'm—I+j,m—I+qSc,q- (29)
q=j+1

where 7; ; is the (4, j) entry of matrix R. The 7"227 ; are independent, with x2-distribution of m — i+ 1 degrees

of freedom, while the non-diagonal entries 7; ; are independent Gaussian (see, e.g., [19]). Therefore, vy ;

-k

. " is independent from v, where 1/(’;_’“ is defined by the partition

and v, ; are independent for ¢ # j. So, v
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Hence, we can write

D(wpwe) = Befrtvtont

— EeierlnlPrive P | peivelve—vEI

= O (wp, we)Po(we). (30)

Furthermore,

. 2 2 .
Ee]“)c(”c,lfk+1+"'+’/c,l) EeJWC||VC||2

Dy (we) = Bedwellvevel? = peiwetiat +viis) 31)

Eej%(”f,lfwl"'“""”g,l) " Bejwellvk|I?”

To calculate 1 (wp, w.), we need to find joint distribution for (v} ;, v j). However, for 1 ; and v, j given by
(28) and (29), it is difficult to do so. Instead, we can consider an equivalent problem which is quite easier to
solve. To this end, recall Lemma 1 in Part I which asserts that R, has the same distribution as the upper
triangular matrix obtained from the QR factorization of a k£ x k matrix G comprised of iid Gaussian entries.

Therefore, for an isotropically distributed unitary matrix @), we can write
2 = Qjvy = Qpu" + Qf Ry sy = w + Gssy,
where w = quk and G = @} Ry, ;. have iid Gaussian entries. Similarly,
ze = QivF = w+ GsP. (32)

Thus, the i entry of z;, and the j** entry of z, can be written as

k
Zpi = Wi + E 9iqSb,qs
q=1

and

k
Zc7j = w.y + Z gj7q807q'
q=1

We note that 2 ; and z. ; are independent for 7 # j and jointly Gaussian otherwise, i.e.,
0
(2b,is 2c,j) ~ N s Zbe | i,
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where
5 sp]|? + 02 sisk 4 o2 apy  Ape
bc g =
sasp +0?  |sell” + o pe Geo
is the covariance matrix of the joint Gaussian probability density function f(zs, 2 ;). Therefore, the char-

acteristic function @ (wy,w.) can be written as

By (wpywe) = BeinlalP+ivelzl?

_ Eejwb(zg,l+"'+Zl?,k)+jw0(zg,1"'+Zg,k)
— Eejwbzil'i'jwczilEejwbzig'i'jw‘:zg,z . Eejwbzl%,k—l—ijzg,k

— (Eejwbzg,l"'jwczf,l) b
Recall that on page 13 we denoted det Xy, = appQce — a%c = A. Therefore, we can write

: 2 . 2 : 2 . 2
Ee]wab,1+]wczc,1 — //ejwbzb,l'f‘]wczc,lf(zb’l,2071)dzb’1d2071

) | A6
1 —3l Zh,1  “c,1 X
:fﬁﬁﬁ//”%wwhe ot Ly dze
T
. R =2y, % 2,1
. —al 1 zen | o w o
- m//e A ARl iy de
T
B 1
2 bl
Va8 —2iw) (% — 25) - %
and thus we have
1
Q1 (wp, we) = . (33)

k
VAo — ) (55 — 2jen) - ]

On the other hand, using (32), denominator of (31) can be written as

. . . . 2 2 . k
EeiwellvEI? — peiwellzel® — peiwe(22i++225) ( Eeywczil)
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Note that E22; = 0% + ||s¥||?> = acc, and hence we can write

g 1
Ee‘]chCJ _ ijzcl 2acc chl

\/—chc V1= 2jwe(0? + [sE]?)

and thus we have
1

V(I =2jwe(0? + [sE[2)F

Similarly, the numerator of (31) can be written as

FeiwelvE?

1
\/(1 — 2jwe(0? + HSCHZ))l‘

EejWCHVCHQ —

Combining the two expressions above, we obtain

— 924 2 k||2)k
TR (I G L )

V(1= 2jwe(0? + [|sc]?))!

Finally, combining (33) and (34), we obtain

1 (1 = 2jwe(o® + [1s51)""?
872 (1 2ju) (% — 2jn) — g (1 2enlo® el

D (wp, we) = (35)

A2

The probability density function can be found by taking the inverse Fourier transform of the characteristic

function in (35),

(b(tlntc) = f_l [(I)(wbﬂwc)]

B / / dwbdwce—jwbtb—jwctc (1 — 2](4}0(0 + ”SkH ))k/Q
_ L : _
ir o AR [(4% — 2j0) (% — 2jn) — ] (- 2elo® el

A2

and thus the probability p(t, < d?,t. < d?) can be found as

d? d?
p(ty < d* t, < d?) = / ¢(tb,tc)dtbdtc.
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B Appendix: Calculation of the Characteristic Function ¢(w) in Section 6.1

Note that we can write the random variable |[v* + Hy, (sf — s¥)||? as
o + Hi(sf = sb)I? = o + A2 = || 1, A | , (36)

where ¢ = min(k, 1), the g-dimensional vector h? is defined as
ht = [hl—q+1 hl—q+2 R hl]*>

the k£ x ¢ matrix A is defined as

A=S, —S,,

and where the matrices Sy, S, are given by equations (25), (26).

The characteristic function of ||v* + Hy, x(s¥ — s%)||? can be found as

P(w) = Eeﬂ'WIIv’”er,k(Sff—8’5)||2
I, A ok LI, 0 vk
jw [ pk*  pa* U ] —[ hq*}[%# 1
0 * * h4 =1 h4
_ }( . de 0 2k dhidv®,
(37
where
1
<25 —

By simplifying the integrand in (37), we obtain

Cob R ] (202 + jw) Ik JwA oF
o
JwA* $1g+ jwA*A || e
1
P(w)=——= | e =z dvkdhq,
(2m)F+ag2k
and, finally,
1
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where the determinant of 7 is found as

1 k
detZ = <2 2—|—jw> det I + JwA*A — jwA*

1 ij]

5oz + jw
20
. k .
1+ jw20? 1 jw
= (Y20 et |p, 4+ — T
( 252 ) ¢ [2 q+1—|—jw202
_|_

1 , -
i=1

DIE

where p;,i = 1,...,q are the eigenvalues of the matrix A*A. In evaluating detZ we used the matrix

inversion lemma,

A B L
det =det Adet(D — CA™"B).
C D

Combining all of the above, we obtain (24), i.e.,

v/ 2k+q

d(w) = .
VL 0202 I T 1+ jw2(o? + py)]
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