
Spring 2005 Option III Course

EE382C.3 Verification and Validation

Instructor

Sarfraz Khurshid
ACES 5.120
(512)-471-8244
khurshid@ece.utexas.edu

Time and Location

All lectures will be 1:00-5:00pm. The location will be as follows.

Jan 21-22 TCC 2.110
Feb 18-19 TCC 2.110
Mar 11-12 TCC 1.124
Apr 15-16 TCC 2.110
May 13-14 TCC 2.110

Prerequisites

The students are expected to have basic knowledge of data structures and object-oriented
programming, and considerable programming experience.

Outline

The process of software validation includes reasoning about (the correctness of) programs,
whether formally—a process that is termed verification—or informally, and testing pro-
grams. This course focuses on verification and testing. The course is organized as a
series of research/tool paper presentations and discussions. The selected papers will cover
traditional and state-of-the-art techniques for software validation. (See the References
Section for a list of candidate papers. Different papers may be selected in view of class
preferences.) The course content will cover both techniques for dynamic analysis, such
as glass box and black box testing, equivalence partitioning, boundary value analysis,



test strategy and automation, regression testing and debugging, and techniques for static
analysis, such as shape analysis, and also techniques for software model checking including
those that employ artificial intelligence based heuristics.

Grading

The grade will be based on class participation (10%), homeworks and quizes (50%) and
a final group project (40%). Students must participate actively in the class. The final
project will be done in a group of three or four students. A typical project would involve
performing a case study using a tool studied in the class. With instructor’s permission,
the students may choose to work on a suitable idea of their own. Good projects will result
in work that is of a quality expected for conference/workshop publication. At the end of
the course, students will present their projects to the class.

Background Reading

The following texts provide some basic material that would help students understand the
more advanced material in papers:

1. Model Checking by Edmund M. Clarke, Orna Grumberg and Doron A. Peled. ISBN:
0262032708

2. A Practitioner’s Guide to Software Test Design by Lee Copeland. ISBN: 158053791X
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