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ABSTRACT
Forward symbolic execution is a program analysis technique that
allows using symbolic inputs to explore program executions. The
traditional applications of this technique have focused on programs
that manipulate primitive data types, such as integer or boolean.
Recent extensions have shown how to handle reference types at
their representation level. The extensions have favorably been backed
by advances in constraint solving technology, and together they
have made symbolic execution applicable, at least in theory, to a
large class of programs. In practice, however, the increased poten-
tial for applications has created significant issues with scalability
of symbolic execution to programs of non-trivial size—the ensuing
path conditions rapidly become unfeasibly complex.

We present Dianju, a new technique that aims to address the scal-
ability of symbolic execution. The fundamental idea in Dianju is
to perform symbolic execution of commonly used library classes
(such as strings, sets and maps) at the abstract level rather than
the representation level. Dianju defines semantics of operations on
symbolic objects of these classes, which allows Dianju to abstract
away from the complexity that is normally inherent in library im-
plementations, thus promising scalable analyses based on symbolic
execution.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Verification and Testing

Keywords
Symbolic Execution, Korat, Test Input Generation, Model Check-
ing

1. INTRODUCTION

Forward symbolic execution is a program analysis technique that
allows using symbolic inputs to explore program executions [7,
21]. The traditional applications of this technique have focused on
programs that manipulate primitive data types, such as integer or
boolean. Recent frameworks have generalized symbolic execution
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to handle reference (and array) types [2, 3, 8, 11, 13, 16, 20, 22, 27,
33–36,38].

Some of these frameworks simply combine symbolic execution of
primitives together with concrete manipulations of heap, while oth-
ers show how to treat both primitives and references symbolically.
A common aspect of these generalizations, however, is that they
perform at the representation level (i.e., the level of class declara-
tions in the source code) of the data they manipulate. In particular,
symbolic manipulations of references are defined at the level of
equality comparisons among references or destructive updates of
relevant fields. For example, manipulations on an object are de-
fined in terms of updates to its fields.

The generalizations have favorably been backed by advances in
constraint solving technology [4,29], and together they have made
symbolic execution applicable, at least in theory, to a large class of
programs, particularly those written in modern programming lan-
guages, such as Java. In practice, however, the increased poten-
tial for applications has created significant issues with scalability
of symbolic execution to programs of non-trivial size—the ensuing
path conditions rapidly become unfeasibly complex.

We believe a key obstacle to the scalability of symbolic execution is
performing it at the representation level. Indeed if theentireimple-
mentation needs to be checked, such execution is necessary. How-
ever, it is redundant if the aim is to only check the client code. Con-
sider as a simple illustration, a program that uses as a client a library
implementation of the abstract data type set. Let’s say the method
adds an element, saye, to a set, sayS, and then checks whether
e belongs toS. Executing this program using representation level
manipulations involves executing methods that implement the add
and membership check operations. For performance reasons, sets
are typically implemented using complex data structures, such as
balanced binary search trees, which involve complex (balancing)
operations. Symbolically executing these operations (even to small
bounded iteration depths) rapidly generates large path conditions
which quickly lead to infeasible analyses.

We present Dianju, a new technique that aims to address the scal-
ability of symbolic execution. The fundamental idea in Dianju is
to perform symbolic execution of commonly used library classes
(such as strings, sets and maps [31]) at theabstract level rather
than the representation level. Dianju defines semantics of opera-
tions on symbolic objects of these classes, which allows Dianju
to abstract away from the complexity that is normally inherent in
implementations of library code, thus promising scalable analyses
based on symbolic execution. To solve path conditions that repre-



sent constraints on symbolic objects, Dianju provides specialized
constraint solvers for a variety of constraints on strings, sets and
maps (in addition to simple enumerators for primitives).

Dianju can also be used for efficient test input generation. In ad-
dition to benefits that existing testing frameworks can reap from
generalizing symbolic execution to library classes, Dianju provides
two novel techniques for generating inputs. One, Dianju provides
specialized generators for objects of library classes, including strings,
sets, and maps. The set generator, for example, can enumerate sets
(as defined by abstract mathematical objects). Given a bounded do-
main of possible elements of the set, Dianju set generator directly
enumerates all sets on those elements in a highly optimized fashion.
These abstract mathematical objects are then translated into con-
crete Java objects (such as those of the classjava.util.HashSet
using a sequence of method invocations ofadd starting from an
empty-set. Thus objects of a class that declares a field of a sup-
ported library type can be enumerated in an asymptotically optimal
fashion.

Two, Dianju exploits relationships among different fields of an ob-
ject. Usually classes that declare several fields require all their ob-
jects to satisfy certain invariants, known as class invariants [23].
Dianju symbolically executes the class invariant (if provided by the
user) and extracts constraints on the field values of the supported li-
brary types. Dianju feeds these constraints to its generators, which
enables the generators to focus their enumeration on objects that
satisfy the class invariants.

Dianju builds on ideas we have developed in our previous work
on Korat [6] and generalized symbolic execution [20]. A key dis-
tinction of Dianju from that work is that Dianju does not require de-
tailed class invariants. For example, in Korat, if a field is declared to
be of typejava.util.Set , the user must give class invariants for
the actual class that implements the desired sets. Writing invariants
for classes such asjava.util.TreeSet or java.util.HashSet
correctly can be rather challenging. Dianju’s direct support of li-
brary classes not only eliminates the need for detailed invariants,
but it also reduces the number of inputs generated.

As a comparison with Korat, consider generatingHashSet objects
with 9 elements. Korat evaluates over 3 million candidate struc-
tures (of which it generates 26,687 as valid structures) whereas
Dianju evaluates exactly the 29 = 512 sets that can be (mathemati-
cally) constructed from 9 elements. Korat’s generation ofHashSet
objects respects non-isomorphism with respect to the (buckets of
linked lists) implementation. However, Dianju’s generation respects
non-isomorphism with respect to the mathematical notion of a set.
While the former notion is necessary to systematically check li-
brary implementations, it is the latter notion that we really need in
order to check client code.

Even though Dianju’s test generation is exhaustive, it employs some
simple heuristics, which allow it further enhance its efficiency. For
example, the Dianju constraint solver makes use of the literals in
the constraints that symbolic execution builds to generate candidate
solutions: if a string literal is used in a comparison constraint, that
literal is added to the set of candidate values for symbolic strings.

The observation that the efficiency of program analyses depends
on the implementation choices that programmers make is not new,
e.g., model checking literature advocates the use of types that sup-
port efficient checking [17]. Dianju, however, does not propose to

discourage the use of types that optimize implementations, since
programmers must be allowed to use efficient library implemen-
tations. Instead, Dianju identifies and supports their use through
providing analyses targeted on commonly used libraries.

This paper makes the following contributions:

• It introduces the idea of generalizing forward symbolic exe-
cution of Java programs to directly support commonly used
library classes.

• It introduces the idea of specialized generators for objects
of library classes in conjunction with the use of (partially
specified) class invariants.

• It introduces the idea of using symbolic execution to ex-
tract constraints from class invariants of complex structures
to tune their generation.

• It presents a series of small illustrative examples that display
the optimization potential of Dianju.

2. BACKGROUND: SYMBOLIC EXECUTION

Forward symbolic execution is a technique for executing a program
on symbolic values [21]. There are two fundamental aspects of
symbolic execution: (1) defining semantics to operations that are
originally defined for concrete values and (2) maintaining apath
conditionfor the current program path being executed—a path con-
dition specifies necessary constraints on input variables that must
be satisfied to execute the corresponding path.

As an example, consider the following program that returns the
absolute value of its input:

int abs(int i) {
L1. int result;
L2. if (i < 0)
L3. result = -1 * i;
L4. else result = i;
L5. return result;

}

To symbolically execute this program we consider its behavior on
a primitive integer input, sayI . We make no assumptions about the
value ofI (except what can be deduced from the type declaration).
So, when we encounter a conditional statement, we consider both
possible outcomes of the condition. To perform operations on sym-
bols, we treat them simply as variables, e.g., the statement on line
3 updates the value ofresult to be-1 * I . Of course, a tool for
symbolic execution needs to modify the type ofresult to note
updates involving symbols and to provide support for manipulating
expressions, such as-1 * I .

Symbolic execution of the above program explores the following
two paths:

path 1:
[I < 0] L1 -> L2 -> L3 -> L5

path 2:
[I >= 0] L1 -> L2 -> L4 -> L5



Note that for each path that is explored, there is a corresponding
path condition (shown in square brackets). While execution on a
concrete input would have followed exactly one of these two paths,
symbolic execution explores both. In general, symbolic execution
can systematically explore all program paths up to a bounded path
length. Tools that implement such exhaustive exploration often use
iterated depth first search [15], where the search depth is iteratively
increased, until a sufficiency criterion for exploration has been met.

3. EXAMPLES

We present two small examples that illustrate the potential opti-
mizations that Dianju can provide. The first example illustrates
how Dianju generalizes symbolic execution over library classes.
The second example illustrates how Dianju’s specialized generators
and constraint solving ability can even be used to check formulas
that express equivalences on sets.

3.1 CoverMe

As an illustration of Dianju’s symbolic execution, consider the class
CoverMe that is inspired by the implementation of another of our
software testing frameworks that we internally call CoverMe. As
its name suggests this framework aims to automatically achieve a
desired level of code coverage for a given program. Consider the
following class declaration:

class CoverMe {
String jar;
Set cover;
Map b2s;

// class invariant
boolean repOk() {

1: if (jar == null || cover == null || b2s == null)
2: return false;
3: if (cover.contains(null))
4: return false;
5: if (b2s.keySet().contains(null))
6: return false;
7: if (b2s.values().contains(null))
8: return false;
9: if (!b2s.values().containsAll(cover))

10: return false;
11: return true;

}
}

Objects of classCoverMe represent a code coverage criteria. The
field jar names the relevant jar file that contains the code. The
field cover represents a set of sourcecode line numbers to cover.
The fieldb2s is a mapping between line numbers in the bytecode
and the sourcecode.

The methodrepOk represents the class invariant ofCoverMe . For
a set, the methodcontains checks if the set contains the given
element; the methodcontainsAll checks if the set contains all
of the elements in the given collection. For a map, the method
keySet returns a set view of the keys contained in the map; the
methodvalues returns a collection view of the values contained
in the map.CoverMe.repOk uses these methods that are defined
in the Java Collection Framework to require that all fields are non-
null, andnull is not a value in the setcover , or the set of keys or
the set of values in the mapb2s . The method returns false, if any
of these constraints is violated and returns true otherwise.

The implementation ofrepOk is deceptively simple. Notice partic-
ularly the use of (keySet andvalues ) views that are backed by
the underlying map. Constraints in path conditions that symbolic
execution builds involve these views and therefore have a uniquely
complex nature.

Consider symbolically executingrepOk , which has one input pa-
rameter, i.e., the implicit parameterthis . Notice that all fields of
CoverMe have library types that Dianju supports. Dianju initial-
izes each field to a new symbolic value of the appropriate type.
Consider the case when symbolic execution explores the path that
reaches statement 4 (i.e., the path1 -> 3 -> 4 ), whererepOk re-
turns false. For this path, symbolic execution builds the following
path condition:

[ SymbolicString_0 != null &&
SymbolicSet_1 != null &&
SymbolicMap_2 != null &&
SymbolicSet_1.contains(null) ]

whereSymbolicString 0 represents the value ofjar , SymbolicSet 1
represents the value ofcover , andSymbolicMap 2 represents the
value ofb2s . For these constraints, Dianju’s constraint solver gen-
erates the following satisfying assignment:

[ SymbolicString_0 = ‘‘jar’’,
SymbolicSet_1 = { null },
SymbolicMap_2 = {} ]

If we executerepOk on the object corresponding to this assign-
ment,repOk will follow the path1 -> 3 -> 4 and return false.

Given therepOk , test generation aims at enumerating inputs for
which repOk returns true. In therepOk for CoverMe , there is one
execution path on which this method returns true:1 -> 3 -> 5
-> 7 -> 9 -> 11 . For this path, Dianju builds the following path
condition:

[ SymbolicString_0 != null &&
SymbolicSet_1 != null &&
SymbolicMap_2 != null &&
!SymbolicSet_1.contains(null) &&
!SymbolicSet_3.contains(null) &&
!SymbolicSet_4.contains(null) &&
SymbolicSet_4.containsAll(SymbolicSet_1) ]

whereSymbolicString 0 represents the value ofjar , SymbolicSet 1
represents the value ofcover , SymbolicMap 2 represents the value
of b2s , SymbolicSet 3 represents thekeySet view of the map,
andSymbolicSet 4 represents thevalues view of the map.

For these constraints, Dianju’s constraint solver generates the fol-
lowing satisfying assignment:

[ SymbolicString_0 = ‘‘jar’’,
SymbolicSet_1 = {},
SymbolicMap_2 = {},
SymbolicSet_3 = {},
SymbolicSet_4 = {} ]



Since Dianju’s generation is based on specialized generators, it is
easy for Dianju to enumerate all solutions within given bounds1

For example, another solution that Dianju generates corresponding
to the path that returns true is:

[ SymbolicString_0 = ‘‘jar’’,
SymbolicSet_1 = { 1 },
SymbolicMap_2 = { 0=0, 1=0, 2=1 },
SymbolicSet_3 = { 0, 1, 2 },
SymbolicSet_4 = { 0, 1 } ]

During exhaustive enumeration using a bound of four (i.e., 4 string
literals and 4 integer objects that form the elements of the sets, and
the keys and the values of the maps), Dianju considers 16,384 dis-
tinct candidate structures, of which it generates 6,872 as valid struc-
tures (i.e., as satisfyingrepOk ). Dianju completes its generation of
all inputs in one-tenth of a second (using a Pentium-M processor at
1.7GHz with 512MB of RAM).

3.2 CheckMe

Even though our primary design goal in Dianju is to enable efficient
symbolic execution of programs to check their correctness, Dianju
has other applications. For example, we can use Dianju’s constraint
solving capability to check set equivalences. As an example, con-
sider the following implication, which is taken from the definition
of equality of two sets, sayS andT : S ⊆ T ∧T ⊆ S ⇒ S = T .

We can check this implication (for small sets) by writing it as a Java
predicate. For example the following predicate suffices:

boolean checkImplication(Set S, Set T) {
// =>

1: if (S.containsAll(T) && T.containsAll(S))
2: if (S.equals(T))
3: return true;
4: else return false;
5: return true;

}

Dianju can symbolically explore all paths incheckImplication
and determine (by checking on all small sets) the feasibility of
the only predicate path (1 -> 2 -> 4 ) that returns false. In this
case Dianju fails to find a satisfying assignment to this path and
therefore determines that the path is infeasible, i.e., the implication
holds. Using sets of size up to 8, Dianju checks the implication on
65,536 inputs and completes its analysis in one-tenth of a second.

Dianju’s ability to solve constraints on sets, maps, strings and inte-
gers has obvious applications to checking declarative specifications
similar to those given in Alloy [18]. It is indeed very interesting to
explore adding a transitive closure operator and quantifiers to Di-
anju to allow programmers to write essentially in Java Alloy-like
specifications and automatically analyze them. Alternatively, since
Dianju solves constraints at an abstract level, it could leverage Al-
loy’s translation to SAT and off-the-shelf SAT technology. We plan
to explore these relations further in future work.

1If no bounds are given, Dianju tries to automatically infer “rea-
sonable” bounds and values (Section 4.6).

4. ABSTRACT SYMBOLIC EXECUTION

Dianju performs symbolic execution by systematically exploring
program paths, building path conditions, and checking their fea-
sibility. For test generation usingrepOk (class invariant), Dianju
symbolically executesrepOk and solves constraints represented by
path conditions that correspond to paths inrepOk on which it re-
turns true. The details of the basic symbolic execution, which op-
erates on concrete heap and symbolic primitives and uses off-the-
shelf implementations of decision procedures, such as the Omega
library [28] and CVC-lite [4], can be found elsewhere [20]. Here
we concentrate on the new features that Dianju provides for sym-
bolically executing library classes.

Dianju test generation algorithm proceeds as follows. To generate
objects of classC, Dianju proceeds as follows.

• It replaces declared types of field inC (and transitively re-
places declared types of field in those types) with correspond-
ing symbolic field types.

• It replaces operations on original types with its library op-
erations that enable symbolic execution. The symbolic op-
erations build symbolic expressions, which represent values
of variables that have symbolic types, and add constraints to
path conditions.

• It executesrepOk on a freshly allocated object of classC, ini-
tializes the object fields to freshly allocated symbolic objects
of appropriate symbolic types.

• It solves the path condition constraints for paths on which
repOk returns true.

Symbolic execution of a method that takes multiple inputs follows
suit: the formal parameters can be treated as fields of a new class
and the method can be wrapped into a new method that takes ex-
actly one input, which is an object of the new class. [6].

We have implemented several of Dianju’s modules and the tool is
currently undergoing further development.

4.1 Building constraints and updating state

Dianju enables symbolic execution via program instrumentation at
the bytecode level [14,19,30] using Javassist [10] and the Bytecode
Engineering Library [12]. For example, the bytecodes

88: getfield #46; //Field cover:Ljava/util/Set;
91: invokeinterface #71, 2; //InterfaceMethod java/uti-

l/Collection.containsAll:(Ljava/util/Collection;)Z

are replaced with:

88: getfield #31; //Field cover:Ldianju/symbolic/
SymbolicSet;

91: invokevirtual #94; //Method dianju/symbolic/Symbo-
licSet.containsAllConstraint:(Ldianju/symbolic/SymbolicSet;)Z

We implement systematic path exploration using backtracking. Di-
anju library predicates that represent predicates of an instrumented



type non-deterministically return true and false, which enables ex-
ploration of both branches at each condition. The backtracking al-
gorithm follows a simple state-less search [15].

Dianju declares the abstract classConstraint to model constraints.
It is subclassed byStringConstraint , SetConstraint , and
MapConstraint (besides similar classes that represent constraints
on primitives), which are also abstract classes. Each of these is
subclassed by concrete classes that represent the constraints that
correspond to the API methods that return booleans—it is these
methods together with the ‘==’ comparison, which introduce non-
determinism and therefore form the basis for generating the path
conditions.

Methods which update state are represented by corresponding meth-
ods that update symbolic state. For example, the method that adds
a new element to a set is modeled by a Dianju method, which per-
forms the addition symbolically and returns a boolean depending
on the original symbolic state of the set variable: if Dianju can-
not determine with certainty whether the object originally existed
in the set it non-deterministically returns true and false. Dianju’s
exploration can therefore traverse infeasible paths, however, when
it solves constraints it can determine whether any input (within the
bounds it explores) can actually execute the path.

A limitation of the current Dianju prototype is that it assumes object
equality is based on object identity (as is the case for theObject
class). Since in Java a class may override theequals method and
re-define equality among its objects, a more sophisticated treatment
is required.

4.2 Solving constraints

Dianju essentially uses an enumerate-and-filter approach to solve
constraints. However, it optimizes its search using specialized gen-
erators for known types and focusing their generation based on the
constraints.

Given a path condition, Dianju determines dependencies among
symbolic variables. These dependencies arise, for example, when a
keySet view is taken on a map. Dianju groups together constraints
based on their dependency relationship and solves each group of
constraints in isolation, and then combines these solutions using
cross product. For systematic generation, Dianju exhaustively enu-
merates the solutions for each group using its specialized genera-
tors (Section 4.3) and takes a cross product of the enumerations.
Dianju then filters each resulting candidate using the constraint it is
solving.

The first step in solving a group of constraints is to identify sym-
bolic variables that must have the same value according to the equal-
ity constraints. Dianju builds equivalence classes and solves the
given constraints using systematic enumeration for exactly one rep-
resentative from each equivalence class. Once it finds a satisfying
solution with respect to the representatives, it generates a complete
solution for all the symbolic variables.

Dianju generates candidate solutions and interprets the constraints
in the path condition on each candidate to determine its feasibil-
ity. Dianju’s enumerative solver can generate one, several, or all
satisfying assignments (within a bound) as desired by the user.

4.3 Providing specialized generators

Dianju supports specialized generators for sets and maps (in ad-
dition to those for strings and primitives, which perform simple
enumeration from a pool of literals). Korat, in contrast, supports
specialized generators at the representation level [25].

4.3.1 Set generator
Dianju’s set generator uses the well-known mathematical result that
the number of subsets of a given finite set of cardinalityn is 2n.
The set generator class has a field calleddomain , which represents
the pool of elements from which sets are to be generated. (These el-
ements can indeed be symbolic objects.) For a pool of sizen, each
integeri between0 and2n−1 (inclusive) is translated to its binary
form, which represents a subset of the pool and is among the gen-
erates sets. For example, for the pool{hello, world}, the binary
string “01” represents the set{world}. The generator supports op-
erations for adding and removing elements from thedomain , to
focus generation on desired sets.

4.3.2 Map generator
Maps can be viewed mathematically as functions. (A map maps
any given key that exists in the map to exactly one value.) Dianju’s
map generator is based on this observation. The generator uses
two domains as a basis for its generation. The fieldkeyDomain
indicates the pool of elements that represent the keys and the field
valueDomain indicates the pool of elements that represent the val-
ues. For akeyDomain pool of sizen and avalueDomain pool of
size m, there aremn maps. The map generator translates each
integer between0 andmn − 1 (inclusive) into a string that repre-
sents the integer as a base-m number. These strings represent the
maps. The generator supports operations for adding and remov-
ing elements from thekeyDomain and thevalueDomain , to focus
generation on desired maps.

4.3.3 Generator efficiency
Specialized generators for sets and maps provide highly efficient
generation. For example, Dianju can generate all220 (> 1 mil-
lion) java.util.HashSet objects constructed out of a pool of 20
java.lang.String objects ({"0", ..., "19" }) in one second
(on a Pentium-M processor at 1.7GHz with 512MB of RAM). This
really should not come as a surprise, and results from specialized
generators should not be compared in the raw with general purpose
constraint solvers such as Korat or Alloy, since specialized genera-
tors already “know” what to generate and how to generate it.

4.4 Concretizing abstract sets and maps

The set and map generators provide generation at an abstract level.
These abstract objects need to be concretized into actual Java ob-
jects to test programs. The concretization translation is straightfor-
ward and uses API level calls to generate appropriate objects. For
example, the following code concretizes the abstract set{1, 2 }
into a java.util.HashSet object:

Set s = new HashSet();
s.add("1");
s.add("2");

It is worth pointing out that Dianju’s test generation combines ab-
stract level generation and concrete level generation. Consider, for
example, a classC that declares a fields of typeSet . Dianju will
generate an object ofCby first generating aHashSet (or TreeSet ,



if that is desired) object as above and then explicitly setting the field
s of a freshly allocated object of classC.

4.5 Using constraints to focus generation

During symbolic execution, Dianju uses constraints on equality and
set membership to make the generators more efficient. For exam-
ple, consider the constraint!s.contains(null) (on a sets) in
the path condition. Dianju notifies the set generator to remove
null from its pool of elements. This makes the generator focus on
enumerating relevant sets. For the constraints that Dianju cannot
convey directly to its generators, it uses exhaustive enumeration.

4.6 Bounding input sizes

Dianju does not require the user to provide bounds on the number of
elements to consider in each pool for generation. Instead, it tries to
determine automatically from the given constraints what the range
of elements should be. For example, if Dianju solver encounters
a constraint of the types.contains("hello") , it adds"hello"
to the domain for generating that set. Additionally Dianju provides
some default values that it tries for the elements, based on the ele-
ment types. As stated before Dianju allows the user to initialize the
domains to tune the generation. Dianju also notifies the user of the
domains used in generation.

5. DISCUSSION

Dianju has its set of limitations. Some of these arise from the com-
plexity inherent in the Java Collections Framework (JCF). For ex-
ample, JCF allows views to update the underlying collections. It
sometimes becomes infeasible to keep building constraints in or-
der to track all the updates. When Dianju’s exploration hits such a
control point, Dianju uses the current path condition to systemat-
ically concretize symbolic objects into concrete objects. Dianju’s
symbolic execution then takes the form of bounded exhaustive test-
ing where, say all sets up to a certain size will be explored. Notice
that Dianju does not need to concretize all the symbolic objects,
it can heuristically select a subset that simplifies the current path
condition to a sufficient degree.

Efficient handling of arrays symbolically presents a challenge to
Dianju. Symbolic execution of integers together with the use of
arrays typically makes the exploration of paths explode (because
a symbolic index into an array can refer several array elements
and must also remain within the array bounds). We handle arrays
by non-deterministically initializing them with small lengths at the
point when they are accessed first.

Based on the work we have presented here, we plan to develop
an extensible framework that allows users to “plug-in” symbolic
execution for the types they desire and to define the semantics of
their symbolic execution.

Dianju’s solving, in particular, and symbolic execution, in general,
can benefit from incremental constraint solving [37]. We can define
a notion of similarity on paths based on the length of their common
prefix. Then a solution to the path condition on a path that has
already been explored can be used as a starting point for searching
for a solution to the path condition on a similar path.

Our previous work on TestEra [26] presents an abstract treatment of
arrays and commonly used classes, such asjava.lang.Integer ,

and has a flavor similar to Dianju but uses specifications written
in Alloy [18]—a first-order declarative language. Our more recent
work on generalized symbolic execution [20] treats strings symbol-
ically, and builds string constraints and implements a rudimentary
algorithm for solving them.

5.1 Hybrid approaches to symbolic execution

We believe techniques based on symbolic execution hold a lot of
promise for increasing software reliability. Dianju presents a hy-
brid approach that aims to scale symbolic execution using a com-
bination of abstract level and representation level executions. An-
other hybrid approach that we are exploring is to perform symbolic
executionselectivelyby treating a dynamic subset of all possible
variables/fields as symbolic [14, 19, 30]. We have used this ap-
proach in data structure repair. The experimental results are en-
couraging: repair based on symbolic execution seems to scale lin-
early with the size of the corrupt structure (for a small fixed number
of corrupt fields).

5.2 Unification of Verification and Repair

A key insight that our work provides is that scalable approaches
to symbolic execution can unify the fields of software verifica-
tion and resilient computing—two fields that have traditionally em-
ployed very different algorithms. The ability to efficiently solve
constraints that are given as predicates in an imperative language
enables not only approaches for bounded exhaustive testing [6, 20,
24] but also approaches for repairing structurally complex data [14,
19,30].

5.3 Assert-first programming

Our envisioned unification has the potential to pave the way for
an unprecedented increase in software reliability at a much lower
cost. The use of assertions poses a minimal burden on practitioners:
an assertion can be written using the underlying programming lan-
guage and there is no need to learn a new annotation/specification
language. Assertions, in fact, are already one of the most com-
monly used forms of program annotations. Fully automatic analy-
ses based on assertions can make them a lot more attractive.

The act of writing an assertion makes the user consider what behav-
ior is intended. This focus on intent is the key idea behind the suc-
cess of test-first programming [5]. We believeassert-first program-
mingcan in fact realize the same benefits as test-first programming
but at a lower cost: writing an assertion is often less work than
manually writing a high quality test-suite. Having written appro-
priate assertions, the user can rely on our symbolic execution based
analyses to fully automatically test the code before deployment as
well as ensure that any executions that go awry once the code is
deployed will be corrected at run-time.

In some cases, the code already contains assertions, as is strongly
advocated by defensive programming [23]. For example, the SGLIB
C library [1] comes with annotated class invariants. Abstract sym-
bolic execution enables testing and repair in such a case for free.

The use of assertions in hardware verification is already immensely
popular: assertion-based verification is an essential part of modern-
day chip design [9,32]. We believe the time has also come to realize
the potential benefits that assertions offer in software.



6. CONCLUSION

We have presented Dianju, a new technique that aims to address
the scalability of symbolic execution. The fundamental idea in Di-
anju is to perform symbolic execution of commonly used library
classes (such as strings, sets and maps) at the abstract level rather
than the representation level. Dianju defines semantics of opera-
tions on symbolic objects of these classes, which allows Dianju to
abstract away from the complexity that is normally inherent in li-
brary implementations, thus promising scalable analyses based on
symbolic execution.

Dianju uses specialized generators, which enable it to enumerate
objects in a highly efficient manner. Dianju further guides the gen-
eration based on the path condition constraints that it builds during
symbolic execution.

We believe Dianju presents a promising new approach for making
analyses based on symbolic execution feasible for a wide class of
programs, including those that use advanced constructs of modern
programming languages.
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