
Software Tools for Technology Transfer manuscript No�
�will be inserted by the editor�

Exploring Very Large State Spaces Using Genetic

Algorithms

Patrice Godefroid� and Sarfraz Khurshid�

� Bell Laboratories� Lucent Technologies� e�mail� god�bell�labs�com

� Laboratory for Computer Science� Massachusetts Institute of Technology� e�mail� khurshid�lcs�mit�edu

Received� date � Revised version� date

Abstract� We present a novel framework for explor�

ing very large state spaces of concurrent reactive sys�

tems� Our framework exploits application�independent

heuristics using genetic algorithms to guide a state�space

search towards error states� We have implemented this

framework in conjunction with VeriSoft� a tool for ex�

ploring the state spaces of software applications com�

posed of several concurrent processes executing arbitrary

code� We present experimental results obtained with sev�

eral examples of programs� including a C implementa�

tion of a public�key authentication protocol� We discuss

heuristics and properties of state spaces that help a ge�

netic search detect deadlocks and assertion violations�

For �nding errors in very large state spaces� our exper�

iments show that a genetic search using simple heuris�

tics can signi�cantly outperform random and systematic

searches�

� Introduction

Model checking ��	 is an automatic technique for ver�

ifying �nite�state concurrent systems� The state space

of a concurrent system is a directed graph that repre�

sents the combined behavior of all the concurrent com�

ponents in the system� Model checking typically involves

exhaustively searching the state space of a system to

determine whether some property of the system is sat�

is�ed or not� State�space exploration techniques have

been used successfully to detect subtle yet important

errors in the design and implementation of several com�

plex hardware and software concurrent reactive systems

�e�g�� see �
� �� ���

	�� It is worth noting that the main

practical interest of systematic state�space exploration

�and of veri�cation� in general� is to �nd errors that

would be hard to detect and reproduce otherwise�

The main practical limitation when model checking

real systems is dealing with the so�called state�explosion

� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

problem� the number of states contained in the state

space of large complex systems can be huge� even in��

nite� thereby making exhaustive state�space exploration

intractable� Several approaches have been proposed to

address the state�explosion problem� including symbolic

veri�cation� partial�order methods and symmetry meth�

ods� Although these approaches have increased the scope

of model checking to state spaces that are several orders

of magnitude larger� many realistic state spaces are still

too large to be handled� and state explosion remains a

fundamental problem in model checking�

When a problem is computationally too hard to solve

using an exact and complete algorithm� it is common in

computer science to explore the use of heuristics in order

to �nd approximate solutions to the problem� or to con�

verge faster towards some solutions� Maybe surprisingly�

the idea of exploiting heuristics for model checking has

received very little attention so far� This may be due to

two reasons� First� model checking is not an optimization

problem� the primary goal is not to �nd a best solution

�e�g�� the shortest path leading to some state�� it is to

�nd any solution �e�g�� any reachable error state�� Sec�

ond� the historic emphasis in model checking has been on

completeness� the primary goal is to exhaustively check

every reachable state of the system�

In this paper� we explore the use of genetic algo�

rithms ���	 for exploring very large state spaces in search

for error states� Genetic algorithms are search algorithms

inspired by the mechanics of genetics and natural selec�

tion� These search algorithms combine survival of the

�ttest among chromosome�like string structures with a

structured yet randomized information exchange� Ge�

netic algorithms are often viewed as function optimizers�

although the range of problems they have been applied

to is quite broad �
�	�

We present a framework that uses genetic algorithms

to exploit heuristics for guiding a search in the state

space of a concurrent reactive system towards errors like

deadlocks and assertion violations� At each visited state

during a state�space exploration� the genetic algorithm

decides which transition to explore next when there are

more than one enabled outgoing transitions� We have im�

plemented this framework in conjunction with VeriSoft ���	�

an existing tool for exploring the state spaces of systems

composed of several concurrent software processes exe�

cuting arbitrary code� We present experimental results

obtained with several examples of programs� including

a C implementation of a public�key authentication pro�

tocol� From these experiments� we discuss general prop�

erties of state spaces that seem to help a genetic search

�nd errors quickly� When the state space to be explored

is very large� our experiments show that a genetic search

using simple application�independent heuristics can sig�

ni�cantly outperform random and systematic searches�

The rest of the paper is organized as follows� In Sec�

tion
� we recall the basic principles of genetic algo�

rithms� Section � describes our framework and the ge�

netic algorithms we use� We discuss how to modify a

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms �

11 0 0 0 1 0 110 0 0

0 0 10 0 00 1111 0

parent: a parent: b

offspring: c offspring: d

crossover:

0 1111 10 1111 0

offspring: c offspring: c’

mutation:

Fig� �� Illustration of crossover and mutation operators� Candidate solutions are encoded as strings of bits� Parents a and b are recombined

to produce o�spring c and d� a crossover is performed at the �th bit� i�e�� the tails of both parents are swapped starting from the �th bit�

O�spring c is then mutated to produce c�� a mutation is performed at the �rd bit� i�e�� the value of the �rd bit is �ipped�

model checker to let its search be guided by a genetic al�

gorithm� In Section �� we describe several programs and

properties we have analyzed using our implementation�

We then discuss results of experiments� and study the

in�uence of various parameters on the e�ectiveness of a

genetic search� In Section � we compare our framework

to related work� We conclude in Section ��

� Genetic Algorithms

A genetic algorithm �GA� provides an algorithmic frame�

work for exploiting heuristics that simulates natural�

evolution processes like selection and mutation� It evolves

candidate solutions to problems that have large solu�

tion spaces and are not amenable to exhaustive search or

traditional optimization techniques� Genetic algorithms

have been applied to a range of learning and optimiza�

tion problems �
�	 since their inception by Holland ���	�

Typically� a genetic algorithm starts with a random

population of encoded candidate solutions� called chro�

mosomes� Through a recombination process and muta�

tion operators� it evolves the population towards an op�

timal solution� Generating an optimal solution in �nite

time is not guaranteed and the challenge is thus to design

a genetic� process that maximizes the likelihood of gen�

erating such a solution� The �rst step is typically to eval�

uate the �tness of each candidate solution in the current

population� and to select the �ttest candidate solutions

to act as parents of the next generation of candidate

solutions� After being selected for reproduction� parents

are recombined �using a crossover operator� and mu�

tated �using a mutation operator� to generate o�spring

�see Figure � for a description of these operators�� The

�ttest parents and the new o�spring form a new popu�

lation� from which the process is repeated to create new

populations� Figure
 gives a standard genetic algorithm

in pseudocode�

To illustrate �tness evaluation as well as crossover

and mutation operators� consider the boolean satis�a�

bility problem� Assume that we want to �nd a satisfy�

ing assignment to the following boolean formula� �x� �

� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

gen �� ��

P	gen
 �� random population�

fitness	gen
 �� evaluate�P	gen
��

while �fitness	gen
 T� � �� fitness has not reached desired level

gen���

S	gen
 �� select�P	gen��
�� �� select fittest chromosomes

CM	gen
 �� crossover�S	gen
�� �� perform crossover on pairs

CM	gen
 �� mutate�CM	gen
�� �� mutate resulting chromosomes

P	gen
 �� S	gen
 � CM	gen
� �� produce next generation

fitness	gen
 �� evaluate�P	gen
��

�

Fig� �� Pseudocode for a standard genetic algorithm

x� � �x�� � �x� � x� � x�� � ��x� � x� � �x�� � ��x� �

�x� ��x��� �x� � �x� ��x�� � �x� � x� � x��� Suppose

we have the following two �randomly generated� assign�

ments as candidate solutions� a � fx� � �� x� � �� x� �

�� x� � �� x� � �� x� � �g and b � fx� � �� x� � �� x� �

�� x� � �� x� � �� x� � �g� Assume we de�ne the �tness

of a candidate to be the number of clauses that become

true on the assignment� If we evaluate the formula on a�

we see that clauses � and � are false� whereas evaluating

the formula on b makes clauses
 and � false� both candi�

dates have a �tness of � but neither is a satisfying assign�

ment� We now recombine a and b to produce an o�spring

c � fx� � �� x� � �� x� � �� x� � �� x� � �� x� � �g�

which takes the �rst three variable assignments from a

and the last three from b� O�spring c does not de�ne

a satisfying assignment either since it makes clause �

false� however it has a higher �tness value of �� Now�

if we mutate the value assigned to x� in c to produce

d � fx� � �� x� � �� x� � �� x� � �� x� � �� x� � �g�

we see that d does provide a satisfying assignment to

our boolean formula� It is worth noting that the use of

GAs for solving constraint satisfaction problems has re�

ceived considerable attention �e�g�� see ���
��
�	� and

modern approaches employ various heuristics and tech�

niques much more sophisticated than those illustrated

by the simple example above�

The operations of evaluation� selection� recombina�

tion and mutation are usually performed many times in

a genetic algorithm� Selection� recombination and mu�

tation are generic operations that have been thoroughly

investigated in the literature� On the other hand� �tness

evaluation is problem speci�c and relates directly to the

structure of the solutions �i�e�� how candidate solutions

are encoded as chromosomes and relate to each other��

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms 	

Therefore� in a genetic algorithm� a major issue is the

choice of the structure of solutions and of the method of

evaluation ��tness function�� Other parameters include

the size of the population� the portion of the population

taking part in recombination� and the mutation rate�

The mutation rate de�nes the probability with which a

bit is �ipped in a chromosome that is produced by a

crossover�

� Genetic Algorithms for State�Space

Exploration

In this section� we discuss how genetic algorithms can be

used to guide a search in the state space of a concurrent

reactive system�

��� Combining Genetic Algorithms and Model

Checking

In our context� the search space to be explored is the

�possibly ini�nite� state space of the system� For sim�

plicity and without loss of generality� we assume that

the state space has a unique initial state� Candidate so�

lutions are �nite sequences of transitions in the state

space starting from the initial state� Each candidate so�

lution is encoded by a chromosome� i�e�� a �nite string of

bits� Figure � shows a simple example of encoding� How

to encode �nite paths in a graph using chromosomes is

discussed in details below�

To evaluate the �tness of a chromosome� the genetic

algorithm executes the path encoded by the chromo�

some� This is done by combining the genetic algorithm

with a model checker� Given a representation of a sys�

tem� the model checker determines the state space to

explore� The execution of a path starts in the initial

state� If there are more than one possible transitions

from the current state� the model checker informs the

genetic algorithm about the number of possibilities� The

genetic algorithm decodes a part of the chromosome it

is currently processing and informs the model checker of

which transition to take� The model checker then checks

whether the state following that transition is an error

state� If so� the current path is saved and the user is no�

ti�ed� Otherwise� the model checker repeats this process

from the new state�

Since a chromosome can only encode a �nite number

of transitions� the state space is explored up to a �xed

depth� Whenever the model checker has explored a path

up to this maximum depth� it prompts the genetic algo�

rithm to evaluate the �tness of the current chromosome�

This operation is discussed further below� Once the �t�

ness of the current chromosome has been computed� an�

other chromosome of the current population is evaluated

using the same process�

��� Genetic Encoding

We now discuss a novel chromosome�encoding scheme

that can be applied to arbitrary state spaces� Indeed�

 Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

Fig� �� Example encoding� Assume a state space with 	xed branching
of �� and 	xed depth
of ��� bits are used to represent a

chromosome� The chromosome ��� �� �� ��� encodes the path that visits the 	lled states
following the bold edges� in state space�

the simple encoding technique described in Figure � is

not satisfactory for several reasons�

First� the number of enabled transitions in a state

is typically not constant� Moreover� an upper bound on

the number of enabled transitions in a state may not be

known a priori�� Therefore� a practical encoding cannot

use a �xed number of bits to encode a single transi�

tion� We resolve this issue by dynamically interpreting

a chromosome� if there are n enabled transitions from

the current state being processed during the state�space

search� we read the next log�n� bits from the current

chromosome to decide which next transition to explore�

Second� the number of enabled transitions in a state

is not necessarily a power of
� This means that we may

have to deal with spurious encodings� encodings that fall

outside the desired interval of values� The traditional ap�

proach ��
	 to deal with this issue is to map the decoded

integer linearly into the desired interval� This approach�

however� typically introduces bias toward some values in

the desired interval� As an illustration of the bias� con�

� We assume that the number of enabled transitions in any state

is 	nite�

sider using two bits to generate a number between � and

 using the �modulo� function mod �� this function maps

� � �� � � ��
 �
 and � � �� thus� the probability

that the bits encode the number � is twice the proba�

bility that the bits encode the number �� Therefore� we

deal with spurious encodings by updating such chromo�

somes instead� if there are n enabled transitions from

the current state and the next log�n� bits of the current

chromosome decode to a value greater than or equal to n�

we randomly generate a number between � and n�� and

replace the last log�n� bits read of the chromosome by

the binary encoding of this number� Note that our pro�

cedure for updating chromosome bits in this case is nec�

essary to avoid multiple �tness evaluations of the same

chromosome to di�erent values�

Third� a suitable length �i�e�� number of bits� for

chromosomes cannot be determined in advance� Since

a chromosome can only encode a �nite number of tran�

sitions� the model checker only explores paths up to a

�xed depth� For a maximum depth d� we use su�ciently

long chromosomes so that they can encode any path of

length up to d� and we track the e�ective length of chro�

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms �

mosomes� The e�ective length at any point during a ge�

netic evolution is the maximum number of bits that have

been read from any single chromosome up to that point

in the search� Mutations and crossovers are performed

only on initial segments of chromosomes up to the �cur�

rent� e�ective length�

��� Fitness Function

An important parameter of a genetic algorithm is the

�tness function that de�nes the �tness of each chromo�

some� We consider in this work two classes of errors that

we wish to detect in state spaces� deadlocks and asser�

tion violations� Deadlocks are states with no outgoing

transitions �all the processes in the system are blocked��

Assertions are boolean expressions involving program

variables that are said to be violated when the corre�

sponding boolean expression evaluates to false� We now

discuss heuristics for guiding a genetic search towards

both classes of error states�

For deadlock detection� a simple heuristic to mea�

sure the �tness of a chromosome is to sum the number

of enabled transitions at each state along the execution

path represented by the chromosome� The intuition be�

hind this heuristic is that chromosomes with a smaller

sum seem more likely to lead to deadlocks� and should

therefore be considered �tter��

� This 	tness function assumes the system can deadlock by

evolving through a sequence of states where the number of en�

abled transitions monotonically decreases�

For detecting assertion violations� a possible heuris�

tic is to attempt maximizing assertion evaluations� To

achieve this� one can award bonus scores for chromo�

somes that lead to as many as possible assertion eval�

uations� One can also award bonuses to chromosomes

that make choices leading towards assertion statements

at control points in the control �ow graph of the pro�

gram� this can be done by instrumenting the execution

of tests �such as if�then�else� statements� in the pro�

gram using a static analysis of the program text�

When analyzing protocols with message exchanges�

a sensible heuristic is to attempt maximizing the num�

ber of messages being exchanged� We use this simple

heuristic in the analysis of Needham�Schroeder public

key authentication protocol ���	 and identify a �previ�

ously known ���	� attack on the protocol �see Section �

for details��

Note that our framework can be used to discover mul�

tiple �independent� errors of a same type in a system

without requiring to �x previously detected errors� This

can be done by awarding penalty scores to chromosomes

that lead to states where a previously discovered error

is detected� Application�speci�c heuristics can also be

used in our framework to �ne tune the performance of

the genetic algorithm if needed�

��	 Dynamically Adapting Parameters

The genetic algorithm we use in this work is a slight

variation of the pseudocode in Figure
 where the value

� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

of some parameters are adapted as the genetic evolu�

tion progresses� In particular� we keep track of the best

and worst chromosome �tness in each generation� and� if

both �tness values become equal� we increase the muta�

tion rate� in order to help the genetic evolution get out

of local maximas� Once there is an improvement in the

overall �tness� we restore the original mutation rate to

continue evolution as normal�

As mentioned in Section ��
� we also update the ef�

fective length of chromosomes during evolution�

If evolution stagnates �i�e�� the �tness does not seem

to improve for several generations� and the search does

not �nd any error� we re�start the genetic algorithm with

the initial default parameter values and a new randomly

generated seed to generate a new random initial popu�

lation� This reduces any bias that may have been intro�

duced in a previous run that used a bad� seed�

� Experimental Evaluation

We have implemented the framework presented in the

previous section in conjunction with VeriSoft ���	� a tool

that implements model�checking algorithms for explor�

ing the state spaces of systems composed of several con�

current software processes executing arbitrary code writ�

ten in full��edged programming languages such as C or

C��� We report in this section results of experiments

comparing the performances of four state�space search

algorithms�

� GA is the genetic algorithm described in the previous

section�

� GAM is GA with no crossovers �only mutations��

� RAND is a random search� that explores random

paths in a state space� and

� EXH is a search algorithm that systematically ex�

plores the state space up to some �xed depth�� and

attempts to explore it exhaustively�

The purpose of these experiments is also to identify heuris�

tics and properties of state spaces that help a genetic

search detect deadlocks and assertion violations�

	�� Examples of Programs and Properties

We report experiments performed with two sample C

programs�

����� Dining philosophers

Consider the variant of the well�known dining�philosophers

problem shown in Figure �� The pseudocode in the �g�

ure describes the behavior of a philosopher process� A

philosopher starts by thinking� which then makes him

hungry at which point he nondeterministically decides

to either pick up his left fork followed by his right fork�

or to pick up his right fork followed by his left fork�

Once a philosopher has both forks adjacent to him in

� Note that� in general� the depth of the state space of a software

system composed of processes executing arbitrary C or C�� code

may not be bounded� making the state space in	nite and a fully

exhaustive search impossible�

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

while �true� �

think�

nondeterministically

pick left�fork� pick right�fork�

OR

pick right�fork� pick left�fork�

eat�

drop left�fork� drop right�fork�

�

Fig� �� Pseudocode for nondeterministic dining philosophers

his hands� he eats� Finally� he drops �rst the left fork

and then the right fork back onto the table� and repeats

this process inde�nitely� Since several philosophers are

sitting around the same table and hence sharing one fork

with each of their two adjacent neighbors� they compete

for forks with each other� For instance� if all philosophers

around the table have picked up their left fork� the entire

system is then in a deadlock�

We denote by PHIL a C implementation of the above

system with �� philosophers� We arbitrarily choose this

large number of processes so that it is not possible to ex�

plore the state space of the system exhaustively within a

reasonable amount of time� Nondeterminism is simulated

using the system call VS toss supported by VeriSoft

�see ���	�� In what follows� we compare the e�ectiveness

of various search algorithms to �nd deadlocks in this

system�

����
 Needham�Schroeder protocol

The Needham�Schroeder public�key authentication pro�

tocol ���	 aims at providing mutual authentication� so

that two parties can verify each other�s identity before

engaging in a transaction� The protocol involves a se�

quence of message exchanges between an initiator� a re�

sponder� and a mutually�trusted key server� The exact

details of the protocol are not necessary for the dis�

cussion that follows and we omit these here� An attack

against the original protocol involving six message ex�

changes was reported in ���	� an intruder Carol is able

to impersonate an initiator Alice to set up a false ses�

sion with responder Bob� while Bob thinks he is talking

to Alice�

We denote by AUTH a C implementation� of the

Needham�Schroeder protocol� This implementation is de�

scribed by about ��� lines of C code and is much more

detailed than the protocol description analyzed in ���	�

The C code also contains an assertion that is violated

whenever an attack to the protocol occurs� We compare

below the e�ectiveness of various search algorithms to

�nd assertion violations representing attacks to this im�

plementation of the protocol�

	�� Experimental Results

In the experiments that follow� whenever a genetic search

is applied to PHIL to detect deadlocks� the heuristic

� John Havlicek provided us this implementation�

�� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

error �errors runtime average time depth

found� �runs �hrs� to find error searched

GA yes �
�	� ���
��� � min 	� sec
	

PHIL RAND no ��� ������� �
	

EXH no ��� ������� � ��

GA yes ����� ������� 	� min � sec ���

AUTH RAND no ��� ������� � ���

EXH no ��� ������� � �	

Table �� Genetic search versus random and exhaustive search

used is to minimize the sum of enabled transitions along

a single execution path� following the spirit of maxi�

mizing �tness using a GA� we use the �tness function

���� � �s����s�� where ��s� is the number of enabled

transitions in state s on path �� In contrast� whenever

a genetic search is applied to AUTH to detect protocol

attacks� the heuristic used in the experiments below is

to maximize the number of messages exchanged among

parties involved in the protocol along a single execution

path� the �tness function is ��� ��m�����s���� where

m denotes a message exchange and s a state on path ��

All experiments were performed on a Pentium III ���

MHz processor with
�� MB of RAM�

The genetic parameters we use are as follows� The

population size is set to
�� chromosomes� The �ttest

��� chromosomes in a generation reproduce� To produce

an o�spring� we randomly select two of these �ttest chro�

mosomes and perform a single point crossover� i�e�� we

randomly select an index less than the e�ective length

and perform the crossover at that index� The default mu�

tation rate is ������ i�e�� each bit of a chromosome that

is produced by a crossover is �ipped with probability

������ Once we have generated ��� children� we evaluate

their �tness and sort the entire population �which com�

prises the ��� parents and the ��� children� accordingly�

As is usual with heuristic�based approaches� we experi�

mented with di�erent values for genetic parameters and

selected the ones that seemed to increase the evolvabil�

ity for a range of systems� in particular we experimented

with di�erent population sizes� mutation rates� number

of crossover points� and numbers of parents� We limit

evolution in a particular GA run to �� generations for

PHIL and ��� generations for AUTH � The e�ective

length of chromosomes varies between �� and �
� bits�

��
�� Genetic versus Random and Exhaustive Searches

We compare the performance of the search algorithms

GA� RAND andEXH for analyzing PHIL andAUTH �

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms ��

550

600

650

700

750

800

0 5 10 15 20 25

f
i
t
n
e
s
s

generation

"max.dat"
"ave.dat"

Fig� �� GA deadlock�detection performance� The maximum and average 	tness among the parent chromosomes in a generation is plotted

against the generation number�

For GA and RAND� we limit the search to paths of

length about twice the length of the shortest path� that

leads to an error� �We discuss this choice later in this

section�� For EXH � we limit the search depth to about

the length of the shortest path that leads to an error

�with the hope of helping EXH as much as possible��

Table � summarizes our results� For PHIL� we run

GA �� times �each run starts with a randomly�generated

seed�� and let it evolve for �� generations in each run�

More than ��� of the runs identify a deadlock� In con�

trast� both RAND and EXH are unable to �nd a dead�

lock in � hours of search� For AUTH � we run GA ���

times �each run uses a randomly�generated seed�� and

let it evolve for ��� generations in each run� Only �

runs identify an attack on the C implementation of the

Needham�Schroeder protocol� Again� both RAND and

EXH are unable to �nd an attack in � hours�

� Notice that paths of di�erent lengths may witness the violation

of the same correctness property�

Despite that GA is able to �nd an attack in AUTH �

its performance is worse than when analyzing PHIL�

This may be due to our choices of �tness functions� the

heuristic for �nding deadlocks may be a better mea�

sure of �tness� than the simple heuristic of maximiz�

ing message exchanges used when exploring the state

space of AUTH � We chose to use and evaluate these

particular heuristics in our experiments because they are

application�independent and hence can be used to ana�

lyze other applications�

Figure � illustrates a run of GA on PHIL� Typically�

a genetic algorithm makes quick progress in the begin�

ning stages of evolution� Then� there are phases when it

hits local maximas before mutations further improve its

performance� Notice how the average �tness of the par�

ents steadily increases� This indicates that the genetic

operators are e�ective in maximizing �tness while ex�

ploring the state space� It should not come as a surprise

�� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

error �errors runtime average time depth

found� �runs �hrs� to find error searched

no ���� ���	��� � ��

PHIL no ���� ������� � 	�

yes ����� ������� � min �� sec
�

AUTH� no ���� ������� � ��

yes
��� ������� � min �	 sec
�

Table �� GA performance as maximum search depth changes

that the maximum �average� �tness among parents never

decreases since we are using the so�called elitist model�

in which the best chromosomes always survive to the

next generation�

��
�
 Search Deeper

We now investigate how the e�ectiveness of a genetic

search varies as we increase the maximum depth of the

search� In these experiments� we consider a simpli�ed

version of AUTH where the �rst two message exchanges

from a known attack �involving a path of �
 steps in the

state space� are hard�wired into the search algorithm

and the algorithm needs only to �nd the last � message

exchanges necessary to complete the attack� We call this

simpler problem AUTH�� and use it in the experiments

below in order to amplify di�erences between results we

observe�

Table
 tabulates our results� We run GA on PHIL

for �� generations� We compare the results of
� runs

using each of the depths ��� �� and ��� where �� is the

minimum depth required to �nd a deadlock in PHIL�

When using depths �� and ��� GA is unable to detect

a deadlock� whereas when we increase the depth to ���

�� out of
� runs detect a deadlock� When exploring the

state space of AUTH� using a depth of �
� GA is unable

to �nd an attack in
� tries� whereas when we increase

the depth to ��� GA �nds an attack � times�

The reason why a deeper maximum search depth

can actually help a genetic search may be the follow�

ing� From most reachable states in the state spaces of

PHIL and AUTH � there exists a path that leads to an

error state� Chromosomes that encode bad� initial seg�

ments are therefore not necessarily penalized since their

tails may contain a path that leads to an error state and

are su�cient to detect the error� If the exploration was

limited to the minimum depth necessary to �nd an er�

ror� chromosomes that encoded the wrong� �rst moves

would have a very low probability of producing an o��

spring that corrects these �rst moves�

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms ��

error �errors runtime average time depth

found� �runs �hrs� to find error searched

PHIL GA yes �
�	� ���
��� � min 	� sec
	

GAM yes �
�	� ��	��
 � min �
 sec
	

AUTH� GA yes �
�	� ������� � min �� sec
�

GAM yes ��	� ������� � min � sec
�

Table �� Genetic search with
GA� and without
GAM � crossover operator

On the other hand� increasing the depth of the search

should be done with caution since it obviously increases

the search space and hence the length of chromosomes�

which in turn leads to slower genetic operations and con�

vergence of the algorithm�

��
�� Mutation Alone

Here� we investigate the e�ectiveness of the crossover op�

erator by comparing the performance of GA and GAM �

i�e�� GA without crossover operations� when exploring

the state spaces of PHIL and AUTH�� The same pa�

rameter values are used for both GA and GAM �

Table � summarizes our results� The performances

of GA and GAM are comparable on PHIL� both algo�

rithms �nd the deadlock
� times out of �� runs� This

may be explained as follows� A deadlock in PHIL results

from a set of choices made by the philosophers� namely

that they all choose to pick up their left forks or they

all choose to pick up their right forks� In particular� it

does not matter in which order the philosophers pick up

their forks� what matters is which fork they pick up� Mu�

tations alone seem e�ective in �nding a deadlock since

each mutation alters some philosopher�s choice and once

the right set of choices is attained� a deadlock is reached�

In contrast� GA is more e�ective than GAM in �nd�

ing an attack on AUTH�� An attack on the protocol is

formed by a speci�c sequence of message exchanges that

allows intrusion� the messages have to be exchanged in

a precise order� simply �nding the exact set of messages

involved in the attack is not su�cient� Since crossovers

combine and preserve sub�sequences �of messages in this

case�� their e�ect in converging quickly toward a solution

becomes more important�

Therefore� it seems preferable to use GA over GAM

when exploring arbitrary state spaces� since GA is ef�

fective irrespective of the search being for a set or a

sequence of transitions�

��
�� Partial�Order Reduction

Finally� we investigate how the use of partial�order re�

duction techniques �e�g�� see ��	� a�ects the performance

of a genetic search� Roughly speaking� partial�order re�

�� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

error �errors runtime average time depth

found� �runs �hrs� to find error searched

PHIL yes �
�	� ���
��� � min 	� sec
	

PHILPO yes 	�	� ������� �� min �� sec
	

AUTH� yes �
�	� ������� � min �� sec
�

AUTHPO� yes ��	� ������� � hr �� min �� sec
�

Table �� GA performance with and without partial�order reduction

duction algorithms can dynamically prune the state space

of a concurrent system in a completely reliable way �i�e��

without missing any errors� by taking advantage of in�

dependent �i�e�� commutative� actions executed by con�

current processes� hence avoiding to consider all their in�

terleavings during a state�space exploration� The pruned

state space de�ned with partial�order algorithms is thus

a subset of the full state space� In the following exper�

iments� we consider a partial�order reduction algorithm

using a combination of the persistent�set and sleep�set

techniques as implemented in VeriSoft ���	� Let PHILPO

and AUTHPO
�

denote the reduced state spaces of PHIL

andAUTH�� respectively� that are explored when partial�

order reduction is used�

Results of experiments are tabulated in Table �� When

exploring PHILPO� GA detects a deadlock only � times

out of �� runs� Recall that GA detected a deadlock
�

times during a same number of runs when exploring

PHIL� A similar decrease in performance is observed

when GA explores AUTHPO
� �

A possible explanation for this phenomenon is the fol�

lowing� In the reduced state space resulting from partial�

order reduction� most reachable states have few outgo�

ing transitions that can be selected to be explored next

�thanks to the pruning�� Hence� the set of actions corre�

sponding to a set of possible next transitions can vary a

lot from state to state� This means that selecting transi�

tion number i in a state s may result in executing a pro�

gram action totally di�erent from the action executed

when selecting transition i in another state s�� In other

words� same transition choices made in di�erent context

may yield totally di�erent program actions� especially

when using partial�order reduction� After a crossover or

mutation operation� the tail of each resulting chromo�

some may be interpreted in an entirely di�erent context�

which harms the bene�cial e�ect of these operators�

It would be interesting to investigate how to de�ne

partial�order aware �tness functions and genetic opera�

tions that allow e�cient use of genetic algorithms in the

presence of partial�order reductions�

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms �	

	�� Summary

We summarize the main conclusions drawn from our ex�

periments in the previous subsections�

� For �nding errors in very large state spaces� a genetic

search using simple application�independent heuris�

tics can signi�cantly outperform random and system�

atic searches�

� The search depth of a genetic search should be longer

than the shortest path leading to an error� but not

too long either� In practice� in the presence of a com�

pletely unknown state space� this implies that various

search depths should be tried�

� Using both mutation and crossover operations seem

more e�ective in �nding errors reachable via speci�c

sequences of transitions than using mutation alone�

� Partial�order reduction seems to hamper rather than

help a genetic search in �nding errors in very large

state spaces�

It would be interesting to perform further experi�

ments and studies on other examples to con�rm these

general �ndings�

	 Related Work and Discussion

As mentioned in the introduction� genetic algorithms

have already been used for a broad range of applica�

tions� In particular� genetic algorithms have been used

to perform structural and functional testing of sequen�

tial programs� For instance� Pargas et al� ���	 present a

goal�oriented technique for automatic test�data genera�

tion using a genetic algorithm guided by program con�

trol dependencies� their implementation aims at achiev�

ing statement and branch coverage� Jones et al� ���	

use genetic algorithms to generate test sets that sat�

isfy the requirements for test�data�set adequacy of struc�

tural testing� More recently� Bueno et al� ��	 build upon

���	 and present a tool for the automation of both test�

data generation and infeasible�path identi�cation� In

previous work ���	� the second author presented a GA�

based framework for testing methods manipulating com�

plicated data structures� this framework was applied to

identify several �aws in a naming architecture for dy�

namic networks of devices and computers�

Genetic algorithms are part of a larger class of algo�

rithms often called evolutionary algorithms� Other types

of evolutionary algorithms than GAs have also been ap�

plied for automatic test�case generation in structural�

functional and performance testing of various systems �
��

��
�	�

In contrast with all this previous work� the problem

addressed in this paper is the exploration of �very large�

state spaces of concurrent reactive systems as de�ned

with a model checker� This requires the use of origi�

nal chromosome encodings and �tness functions suitable

for the application domain considered here� We are not

aware of any other work where genetic algorithms have

been used for state�space exploration�

�
 Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

Heuristics for choosing a search order that favor vis�

iting �rst successor states that are most likely to lead to

an error �best��rst search�� are discussed in �
�	 in the

context of symbolic model checking and in ��	 in the con�

text of explicit model checking� In particular� the HSF�

SPIN tool discussed in ��	 implements various best��rst

search algorithms� including variants of the well�known

A� algorithm with a �tness function that takes into ac�

count the distance from the start state� HSF�SPIN is

optimized for �nding short error traces by using heuris�

tics for non�exhaustive� guided state�space exploration�

It is worth noting that a best��rst search �BFS� can

be viewed as a particular case of genetic search �GS��

Indeed� the latter can simulate the former as follows� GS

uses the same �tness function as that of BFS� crossover

and mutation rates are set to �� the e�ective length of

chromosomes is set to n where n is the current gener�

ation� only a single best chromosome in a generation

produces the next generation� the number of children

produced by this unique parent is the number of out�

going transitions at the last state visited by the par�

ent and each child contains the entire parent path plus

one more �unique� transition� Backtracking strategies

�breadth��rst� depth��rst� etc�� that can be used in con�

junction with BFS can also be simulated by dynami�

cally adapting parameters of GS and appropriately de�n�

ing the creation of next generation� In contrast� a best�

�rst search cannot simulate a genetic search in general

since its �tness function� is restricted to local heuristics

based on the current state and next possible transitions�

and hence lacks the ability to simulate the global eval�

uation of an entire chromosome� Intuitively� a best��rst

search is also more deterministic� than a genetic search

since it is less general and does not include randomized

operations like crossovers and mutations� which improve

robustness with respect to sub�optimal �tness functions

by helping the search avoid being trapped in local max�

ima� Further studies are needed to determine which pa�

rameter values of a genetic search �including BFS� are

best suited for analyzing speci�c classes of programs and

properties�

Structural heuristics� which focus on the branching

structure and thread interdependence of a program� have

recently been used in the Java PathFinder �JPF� model

checker ���	� JPF implements a best��rst search using

a priority queue for storing the states to be expanded

next� JPF allows setting a bound on the queue length�

for a bound k� JPF discards from further exploration

any state that does not have a �tness higher than the

best k states currently in the queue� As an illustration�

consider expanding a state s� in which one process is

enabled to make a nondeterministic boolean choice� s

can be expanded to two possible states� one� say t� in

which the choice made is true and the other� say u� in

which the choice made is false� if the queue limit is

set to �� �at most� one of t and u will be added to the

queue for further expanding� Using best �rst search with

very small bounds on the queue length and a heuristic

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms ��

that maximizes thread interleaving� JPF has been used

to quickly �nd deadlocks in a Java implementation of

the dining�philosophers problem similar to the one dis�

cussed in Section ���� The reason why very small queue

lengths su�ce to �nd a deadlock quickly for this ex�

ample is that each philosopher makes the same nonde�

terministic choice by default with the JPF implementa�

tion� i�e�� always chooses �rst the left fork over the right

one� in which case the interleaving heuristic immediately

�nds the deadlock� It is� however� not clear how well this

heuristic performs if the philosopher�s choice depends

on other factors� such as the philosopher�s parity �as�

suming philosophers are identi�ed by unique consecutive

integers�� Consider� for example� replacing the philoso�

pher�s �purely� nondeterministic choice �VS toss����

with �VS toss��� �� �phil id � � 		 ���� where the

invocation VS toss��� nondeterministically returns ���

�false� or ��� �true�� and the integer phil id is a philoso�

pher identi�er� For this new variant� a genetic search still

quickly �nds a deadlock when using our �tness function

for �nding deadlocks� which minimizes the sum of all en�

abled transitions along an entire path �chromosome�� in

contrast� a best��rst search with a small queue length

that maximizes thread interleaving is easily lost in the

state space�

Heuristics for over and under approximating binary

decision diagram �BDD� representations when these be�

come too large or for �nding pseudo�optimal BDD�variable

orderings are also commonly used in symbolic veri�ca�

tion� Such heuristics tackle di�erent problems related to

model checking and are of di�erent nature than the ones

used here�

The issue of changing parameter values during the

run of a genetic algorithm is an active area of research

in genetic algorithms� A recent survey is given in ��	�

For instance� the ��� rule� of Rechenberg ���
�	 �for

real�coded evolution strategies� constitutes a classical

adaptive method for setting the mutation rate� This rule

states that the ratio of mutations in which the o�spring

is �tter than the parent� to all mutations should be ����

hence if the ratio is greater than ���� the mutation rate is

increased� and if the ratio is less than ���� the mutation

rate is decreased�

The Dynamic Parameter Encoding� �
�	 �DPE� al�

gorithm provides the ability to encode real�valued pa�

rameters of arbitrary precision� DPE �rst searches for

optimal values of more signi�cant digits of the param�

eters� Next it �xes the values discovered and progres�

sively searches for lesser signi�cant digits� This way the

same �xed length chromosome encodes di�erent digits

of parameters at di�erent points during the algorithm

execution� Notice that DPE requires a priori knowledge

of an upper bound on parameter values�

Our dynamic encoding of paths in a state space is

novel to the best of our knowledge� it does not require

a priori knowledge of the maximum number of enabled

transitions in any given state of a state space�

�� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

 Conclusion

We have shown in this paper that� when exploring very

large state spaces of concurrent reactive systems� genetic

algorithms using simple application�independent heuris�

tics can signi�cantly outperform traditional random and

systematic state�space searches used in current model

checkers� We have discussed in detail the engineering

challenges faced when extending a model checker with

a genetic search algorithm� We believe the use of heuris�

tics in model checking could contribute to broadening its

applicability by several additional orders of magnitude�

Further experiments and studies are needed to validate

this claim�

Acknowledgments

We thank John Havlicek for sharing with us his imple�

mentation of the Needham�Schroeder protocol� Darko

Marinov and Audris Mockus for helpful comments on

early versions of this paper� and Enoch Peserico for in�

spiring discussions on genetic algorithms� We also thank

the anonymous reviewers for helpful comments on the

presentation of the paper� The work of the second au�

thor was done partly while visiting Bell Laboratories and

was also funded in part by ITR grant �������� from the

National Science Foundation� The work of the �rst au�

thor was supported in part by NSF grant CCR���������

References

�� Hans�Georg Beyer and Hans�Paul Schwefel� Evolution

strategies�a comprehensive introduction� Natural Com�

puting� ����� �����

�� B� Boigelot and P� Godefroid� Model checking in practice�

An analysis of the ACCESS�bus protocol using SPIN� In

Proceedings of Formal Methods Europe���� volume ��	�

of Lecture Notes in Computer Science� pages �
	�����

Oxford� March �
� Springer�Verlag�

�� Paul Marcos Siqueira Bueno and Mario Jino� Identi�ca�

tion of potentially infeasible program paths by monitor�

ing the search for test data� In Proceedings of the ��th

IEEE International Conference on Automated Software

Engineering �ASE	� Grenoble� France� September �����

�� E� M� Clarke� O� Grumberg� H� Hiraishi� S� Jha� D� E�

Long� K� L� McMillan� and L� A� Ness� Veri�cation of

the Futurebus� cache coherence protocol� In Proceedings

of the Eleventh International Symposium on Computer

Hardware Description Languages and Their Apllications�

North�Holland� ���

	� Edmund M� Clarke� Orna Grumberg� and Doron A�

Peled� Model Checking� The MIT Press� Cambridge�

MA� ��

� S� Edelkamp� A� L� Lafuente� and S� Leue� Directed ex�

plicit model checking with hsf�spin� In Proceedings of the

��� SPIN Workshop� volume ��	� of Lecture Notes in

Computer Science� pages 	���� Springer�Verlag� �����

�� A� E� Eiben� R� Hinterding� and Z� Michalewicz� Param�

eter control in evolutionary algorithms� IEEE Transac�

tions on Evolutionary Computation� ������������� ��

Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms �

�� A�E� Eiben� J�I� van Hemert� E� Marchiori� and A�G�

Steenbeek� Solving binary constraint satisfaction prob�

lems using evolutionary algorithms with an adaptive �t�

ness function� In Proceedings of the �th Conference on

Parallel Problem Solving from Nature� ���

� Patrice Godefroid� Partial�Order Methods for the Ver�

i�cation of Concurrent Systems An Approach to the

State�Explosion Problem� volume ���� of Lecture Notes

in Computer Science� Springer�Verlag� January �
�

��� Patrice Godefroid� Model checking for programming lan�

guages using VeriSoft� In Proceedings of the
�th Annual

ACM Symposium on the Principles of Programming Lan�

guages �POPL	� pages ������
� Paris� France� January

���

��� Patrice Godefroid� Robert Hanmer� and Lalita Ja�

gadeesan� Model Checking Without a Model� An Anal�

ysis of the Heart�Beat Monitor of a Telephone Switch

using VeriSoft� In Proceedings of ACM SIGSOFT IS�

STA��� �International Symposium on Software Testing

and Analysis	� pages �������� Clearwater Beach� March

���

��� David E� Goldberg� Genetic Algorithms in Search� Opti�

mization� and Machine Learning� Addison�Wesley Pub�

lishing Company� Inc�� Reading� MA� ���

��� Alex Groce and Willem Visser� Model checking Java

programs using structural heuristics� In Proceedings of

the International Symposium on Software Testing and

Analysis �ISSTA	� July �����

��� John Holland� Adaptation in Natural and Arti�cial Sys�

tems� The University of Michigan Press� Ann Arbor� MI�

��	�

�	� B� F� Jones� H� H� Sthamer� and D� E� Eyres� Automatic

structural testing using genetic algorithms� Software En�

gineering Journal� pages ����
� Sep �
�

�
� Sarfraz Khurshid� Testing an intentional naming sys�

tem using genetic algorithms� In Proceedings of the �th

International Conference on Tools and Algorithms for

Construction and Analysis of Systems �TACAS	� Gen�

ova� Italy� April �����

��� Gavin Lowe� An attack on the Needham�Schroeder

public�key authentication protocol� Information Process�

ing Letters� �	�

��� Roger Needham and Michael Schroeder� Using encryp�

tion for authentication in large networks of computers�

Communications of the ACM� ���������� ����

�� Roy P� Pargas� Mary Jean Harrold� and Robert Peck�

Test�data generation using genetic algorithms� Journal of

Software Testing� Veri�cation� and Reliability� �����
��

���� ��

��� Ingo Rechenberg� Evolutionsstrategie� Optimierung tech�

nischer Systeme nach Prinzipien der biologischen Evolu�

tion� Frommann�Holzbog� Stuttgart� ����

��� Peter Ross and Dave Corne� Applications of genetic al�

gorithms� AISB Quaterly on Evolutionary Computation�

pages ������ Autumn ���

��� H� Rudin� Protocol development success stories� Part

I� In Proc� �
th IFIP WG ��� International Symposium

on Protocol Speci�cation� Testing� and Veri�cation� Lake

Buena Vista� Florida� June ��� North�Holland�

��� L� Schoofs and B� Naudts� Solving CSP instances beyond

the phase transition using stochastic search algorithms�

In Proceedings of the �th Conference on Parallel Problem

Solving from Nature� �����

�� Patrice Godefroid and Sarfraz Khurshid� Exploring Very Large State Spaces Using Genetic Algorithms

��� Nicol N� Schraudolph and Richard K� Belew� Dynamic

parameter encoding for genetic algorithms� Machine

Learning� �������� ���

�	� Alan C� Schultz� John J� Grefenstette� and Kenneth

A� De Jong� Learning to break things� Adaptive test�

ing of intelligent controllers� Handbook of Evolutionary

Computing� ���

�
� H� Sthamer� J� Wegener� and A� Baresel� Using evolu�

tionary testing to improve e�ciency and quality in soft�

ware testing� In Proceedings of the
nd Asia�Paci�c Con�

ference on Software Testing Analysis and Review� Mel�

bourne� Australia� July �����

��� J� van Hemert� Comparing classical methods for solving

binary constraint satisfaction problems with state of the

art evolutionary computation� In Applications of Evolu�

tionary Computing� Proceedings of EvoWorkshops
��
�

�����

��� Joachim Wegener and Matthias Grochtmann� Verifying

timing constraints of real�time systems by means of evo�

lutionary testing� Real�Time Systems� �	���� ���

�� C� H� Yang� Prioritized Model Checking� PhD thesis�

Stanford University� ���

