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effects
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• Micro-grids are independently controlled (small) electric 
networks, powered by local units (distributed generation).

MicroMicro--gridsgrids
• What is a micro (or nano) grid?
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• Some of the issues with Edison’s dc system:
• Voltage-transformation complexities
• Incompatibility with induction (AC)  motors

• Power electronics help to overcome difficulties
• Also introduces other benefits – DC micro-grids

• DC micro-grids
• Help eliminate long AC transmission and distribution paths
• Most modern loads are DC – modernized conventional loads too!
• No need for frequency and phase control – stability issues?

IntroductionIntroduction
• ac vs. dc micro-grids
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•DC is better suited for energy storage, renewable and 
alternative power sources

• ac vs. dc micro-grids
IntroductionIntroduction
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•DC micro-grids comprise cascade distributed power architectures 
– converters act as interfaces

•Point-of-load converters present constant-power-load (CPL) 
characteristics

•CPLs introduce a destabilizing effect
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ConstantConstant--power loadspower loads

• Characteristics



7 © Alexis Kwasinski, 2011

Simplified cascade distributed power architecture with a buck LRC.

• Characteristics

ConstantConstant--power loadspower loads
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• Constraints on state variables makes it extremely difficult to find a closed form 
solution, but they are essential to yield the limit cycle behavior.
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• The steady state fast average model
yields some insights:

• Lack of resistive coefficient in first-order term
• Unwanted dynamics introduced by the second-order term can 
not be damped.
• Necessary condition for limit cycle behavior:

• Note: x1 = iL and x2 = vC
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• Characteristics

ConstantConstant--power loadspower loads
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ConstantConstant--power loadspower loads

• Large oscillations may be observed not only when operating 
converters in open loop but also when they are regulated with 
most conventional controllers, such as PI controllers.

Simulation results for an ideal buck converter with a PI controller both for a 100 W 
CPL (continuous trace) and a 2.25 Ω resistor (dashed trace); E = 24 V, L = 0.2 mH, 

PL = 100 W, C = 470 μF. 

• Characteristics
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1 2 1 2400 , 450 , 5 , 10 ,L LE V E V P kW P kW   

LRC parameters: 
5 , 10 , 1LINE LINE DCPLL H R m C mF   

1 20.5 , 1 , 0.5, 0.54, 0.8LL mH C mF D D R     

• Large oscillations and/or voltage collapse are observed due to 
constant-power loads in micro-grids without proper controls

ControlsControls
• Characteristics
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12.5 , 480 , 480 , 2 , 0.9, 43.8o LE V L H C F R D P W       

StabilizationStabilization
• Passive methods – added resistive loads

• Linearized equation:

• Conditions:

• Issue: Inefficient solution
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1Ω resistor Ro in
parallel to CDCPL 
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12.5 , 480 , 480 200 ,
                   0.9, 35L

E V L H C F mF
D P W

    
 

StabilizationStabilization
• Passive methods – added capacitance

• Condition:

• Issues: Bulky, expensive and may reduce reliability. But may 
improve fault detection and clearance

60 mF added in parallel to CDCPL 
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StabilizationStabilization
• Passive methods – added bulk energy storage

• It can be considered an extension of the previous approach.

• Energy storage needs to be directly
connected to the main bus without
intermediate power conversion
interfaces.

• Issues: Expensive, it usually requires
a power electronic interface, batteries
and ultracapacitors may have cell
voltage equalization problems, and
reliability,   operation and safety may
be compromised.
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StabilizationStabilization

• Passive methods – load shedding

• It is also based on the condition that:

• Issues: Not practical for critical loads
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Load dropped from 10 to 2.5 kW at 
0.25 seconds

Load reduced from 49 W to 35 W
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A system

with
f is locally Lipschitz

and
f(0,0) = h(0,0) = 0

is passive if there exists a continuously differentiable positive definite 
function H(x) (called the storage function) such that
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• Linear controllers – Passivity based analysis

StabilizationStabilization

• Initial notions
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• Σ is output strictly passive if:

• A state-space system                              is zero-state observable from the output 
y=h(x), if for all initial conditions                    we have

• Consider the system Σ. The origin of f(x,0) is asymptotically stable (A.S.) if the 
system is

- strictly passive, or
- output strictly passive and zero-state observable.

- If H(x) is radially unbounded the origin of f(x,0) is globally asymptotically stable 
(A.S.) 

- In some problems H(x) can be associated with the Lyapunov function.
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• Linear controllers – Passivity based analysis

StabilizationStabilization

• Initial notions
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• Linear controllers – Passivity based analysis

StabilizationStabilization

• Consider a buck converter with ideal components and in 
continuous conduction mode. In an average sense and steady state
it can be represented by

where
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•Define the positive definite damping injection matrix Ri as
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• Linear controllers – Passivity based analysis

StabilizationStabilization
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 1( )  
2

Tx x xH M  

• Consider the storage function

• Linear controllers – Passivity based analysis

StabilizationStabilization

• is a free-evolving output strictly passive and zero-state observable
system. Therefore,          is an asymptotically stable equilibrium point of
the closed-loop system. 
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• Since

then,

• Linear controllers – Passivity based analysis

StabilizationStabilization

Hence,
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• Remarks for the buck converter:
• xe is not A.S. because the duty cycle must be between 0 and 1
• Trajectories to the left of γ need to have d >1 to maintain   

stability
• Using this property as the basis for the analysis it can be 
obtained that a necessary but not
sufficient condition for stability is

• Line and load regulation can be
achieved by adding an integral
term but stability is not ensured

• Linear controllers – Passivity based analysis

StabilizationStabilization
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x2

x1

StabilizationStabilization

• Experimental results (buck converter)

• Linear controllers
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StabilizationStabilization

• Experimental results (buck converter)

• Linear controllers

Line 
regulation

Load 
regulation
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• Linear controllers – Passivity based analysis

StabilizationStabilization

• The same analysis can be performed for boost and buck-boost 
converters yielding, respectively
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• Engineering criteria dictate that the non-linear PD controller can 
be translated into an equivalent linear PD controller of the form:
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• Formal analytical solution:
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• Consider

• And

•The perturbation is
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Unperturbed system with nonlinear PD controller, with

Perturbed system with linear PD controller, with

• Linear controllers – Passivity based analysis

StabilizationStabilization

• Perturbation theory can formalize the analysis (e.g. boost conv.)
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• Lemma 9.1 in Khalil’s: Let           be an exponentially stable equilibrium 
point of the nominal system    . Let               be a Lyapunov function of the 
nominal system which satisfies

in [0,∞) X D with c1 to c4 being some positive constants. Suppose the 
perturbation term              satisfies

Then, the origin is an exponentially stable equilibrium point of the 
perturbed system       . 
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• Linear controllers – Passivity based analysis

StabilizationStabilization
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•Taking
•It can be shown that

•Also,         is an exponentially stable equilibrium point of   ,

and

with

•Thus, stability is ensured if
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• Linear controllers – Passivity based analysis

StabilizationStabilization
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Line RegulationLoad Regulation

StabilizationStabilization

• Experimental results boost converter

• Linear controllers
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Line RegulationLoad Regulation

StabilizationStabilization

• Experimental results voltage step-down buck-boost converter

• Linear controllers
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Line RegulationLoad Regulation

StabilizationStabilization

• Experimental results voltage step-up buck-boost converter
• Linear controllers



31 © Alexis Kwasinski, 2011

• All converters with CPLs can be stabilized with PD controllers 
(adds virtual damping resitances).

• An integral term can be added for line
and load regulation

• Issues: Noise sensitivity and slow

StabilizationStabilization
• Linear Controllers - passivity-based analysis
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• Boundary control: state-dependent switching (q = q(x)).

• Stable reflective behavior is desired.

• At the boundaries between different
behavior regions trajectories are 
tangential to the boundary

• An hysteresis band is added to
avoid chattering. This band 
contains the boundary.

StabilizationStabilization
• Boundary controllers
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• Linear switching surface with a negative slope:

Switch is on below the boundary and off above the boundary
1 2 2 1( )OP OPx k x x x  

StabilizationStabilization
• Geometric controllers – 1st order boundary
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• Switching behavior regions are found considering that trajectories 
are tangential at the regions boundaries.

• For ON trajectories:

• For OFF trajectories:

• 1st order boundary controller (buck converter)
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StabilizationStabilization
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2( ) 0
2 OP
CV x x x   2

2 2 1
2

( ) (1 )( )
OP

LPV x k x x x
x

 
    

 


• Lyapunov is used to determine stable and unstable reflective 
regions. This analysis identifies the need for k < 0

• 1st order boundary controller (buck converter)

StabilizationStabilization
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StabilizationStabilization

• Simulated and experimental verification

• 1st order boundary controller (buck converter)

L = 480 µH, C = 480 µF, E = 17.5 V, PL = 60 W, xOP = [4.8    12.5] T
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StabilizationStabilization

• Simulated and experimental verification

• 1st order boundary controller (buck converter)

Buck converter with L = 500 μH, C = 1 mF, 
E = 22.2 V,  PL = 108 W, k = –1, xOP = [6   

18] T
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Line regulation: ∆E = +10V (57%)

Load regulation: ∆PL = +20W (+29.3%) No regulation: ∆PL = +45W (+75%) Load regulation: ∆PL = +45W (+75%)

Line regulation: ∆E = +10V (57%)

StabilizationStabilization

• Line regulation is unnecessary. Load regulation based on moving boundary
• 1st order boundary controller (buck converter)
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StabilizationStabilization

• Same analysis steps and results than for the buck converter.

• 1st order boundary controller (boost and buck-boost)

Boost (k<0)

Boost (k>0)

Buck-Boost
(k<0)

Buck-Boost
(k>0)



40 © Alexis Kwasinski, 2011

StabilizationStabilization

• Experimental results.

• 1st order boundary controller (boost and buck-boost)

Boost (k<0)

Boost (k>0)

Buck-Boost
(k<0)

Buck-Boost
(k>0)
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StabilizationStabilization

• Experimental results for line and load regulation

• 1st order boundary controller (boost and buck-boost)

Boost: Load 
regulation

Boost: Line 
regulation

Buck-Boost: 
Load regulation

Buck-Boost: 
Line regulation
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• First order boundary with a negative slope is valid for all types of 
basic converter topologies.

• Advantages:  Robust, fast dynamic response, easy to implement .

• Geometric controllers

StabilizationStabilization
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• Most renewable and alternative sources, energy storage, and 
modern loads are dc.

• Integration can be achieved through power electronics, but other 
stability issues are introduced due to CPLs.

• Control-related methods appear to be a more practical solution 
for CPL stabilization without reducing system efficiency.

• Nonlinear analysis is essential due to nonlinear CPL behavior.

•Boundary control offers more advantages than linear controllers 
and are equally simple to implement.

• Extended work focusing on rectifiers and multiple-input 
converters.

ConclusionsConclusions
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