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Abstract
We present a compiler for machines with an explicitly managed
memory hierarchy and suggest that a primary role of any compiler
for such architectures is to manipulate and schedule a hierarchy of
bulk operations at varying scales of the application and of the ma-
chine. We evaluate the performance of our compiler using several
benchmarks running on a Cell processor.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors–Compilers, Optimization; C.1.4 [Processor
Architectures]: Parallel Architectures–Distributed architectures

General Terms Performance, Design, Experimentation

Keywords Software-managed memory hierarchy, bulk operations

1. Introduction
The advances in semiconductor technology that have dramatically
increased the performance possible on a single chip have also un-
dermined the classical random-access model of memory: the idea
that a processor can access every memory address in a mostly uni-
form, and tolerable, amount of time. Instead, there is a large and
still growing gap between the processing capacity of functional
units and the available global on-chip and off-chip memory band-
width needed to supply those functional units with data. Addition-
ally, the latency to access off-chip memory and large on-chip mem-
ory structures is growing when compared with arithmetic through-
put. For decades the standard solution to this problem has been to
bridge the gap with hardware-managed caches.

An emerging class of high performance architectures, including
the Sony/Toshiba/IBM Cell Broadband Engine ProcessorTM [32]
(Cell), the ClearSpeed CSX600 [11], and academic projects such
as Stanford’s Imagine and Merrimac [12, 24], seek to achievemuch
higher performance and efficiency by exposing a hierarchy ofdis-
tinct memories managed explicitly in software. Machines with an
explicitly managed memory hierarchy are distinguished from con-
ventional cache architectures by three key characteristics. First,
processing is highly parallel: multiple high-peak-performancepro-
cessing elements(PEs) execute in isolation entirely out of a local
level of the memory hierarchy. Second, individual PE local mem-
ories are not virtualized by hardware address translation—no PE
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has direct access to all of memory and there are no data caches.
Programs executing out of these local memories have a fixed, and
relatively small, space in which to work and it is the program’s re-
sponsibility to manage the physical layout and movement of data
and, on some architectures, even the layout and movement of the
program’s code. Third, there are multiple levels to the memory hier-
archy, typically at least a conventional high-latency and low band-
width external memory at the root and multiple simplified PEswith
small, fast local storage at the leaves. The movement of dataand
code between levels of the memory hierarchy is performed exclu-
sively via asynchronous block transfers explicitly orchestrated by
software. We believe that machines with such explicitly managed
memory hierarchies will become increasingly prevalent in the fu-
ture.

This paper presents the design and implementation of an opti-
mizing compiler for architectures with software-managed memory
hierarchies. We model programs ashierarchies of bulk operations
with explicit parallelism. Bulk operations are either bulkdata trans-
fers orkernels(bulk computations) on bulk data. Our focus here is
on the backend compiler phases; we begin with a relatively low-
level intermediate representation close to the target class of ma-
chines. In this representation all parallelism is explicit, every bulk
operation is assigned to a specific level of the memory hierarchy,
and all sizes of data sets are known. We then illustrate important
optimizations that should be applied to such programs to produce
efficient code for hierarchical memory machines. In this paper we
do not consider the problem of mapping a source-level language to
the intermediate representation (but see [16] for an example). Any
performance-oriented compiler must address the issues we consider
regardless of programming model; a compiler for a programming
model further removed from the target class of machines simply
faces a superset of the issues we address.

We make the following contributions:

• We present a general model for machines with explicitly man-
aged memory hierarchies (Section 2). This model illustrates the
level of abstraction at which our compiler works and provides
the conceptual framework in which we develop our optimiza-
tions.

• We present anintermediate representation(IR) expressing pro-
grams as hierarchies of bulk operations. An IR that represents
operations at multiple scales enables optimizations to be ap-
plied uniformly across different levels of the machine: thesame
optimizations apply to coarse-grained computation near the root
and finer-grained computation at the leaves. We also give an
operational semantics for IR programs executing on an abstract
machine, which both makes clear our notions of hierarchical
programs and bulk operations and provides the basis for under-
standing the correctness of our optimizations (Section 3).



• We describe a number of optimizations that are key to achieving
high performance on our target class of machines (Section 4).

• We discuss some important details of compiling for the Cell ar-
chitecture (Section 5) and give experimental results with aCell-
based compiler showing the effectiveness of our optimizations
for utilizing execution and bandwidth resources (Section 6).

2. Abstract Machine Model
We represent a machine astree of memoriesT . A given level of
the memory hierarchy has a memoryM and zero or more sub-
machinesT1, . . . , Tn:

T := 〈M, C〉

C := [T1, . . . , Tn] n ≥ 0

A level with no sub-machines〈M, []〉 is a leaf of the hierarchy.
For simplicity, we model a memoryM as a function fromnames
to values. (We could also use the conventional mapping from ad-
dresses to values, but with the exception of data layout mostof our
optimizations do not depend on actual address values or the size of
memory.) Names can be scalar variable names or aggregate struc-
tures such as arrays. Values that are definitely scalar are written
lower-case (i, j, k, . . .), and values that may be either scalar or ag-
gregate are written upper-case (A,B, C, . . .); we sometimes go be-
yond simple names and refer to array rangesA[r] in examples. Note
that different memories at different levels of the hierarchy have dis-
tinct name spaces; the only way that data can be shared between
memories is via explicit copies between adjacent hierarchylevels.

Each level of a machine hierarchy has storage and may also have
the ability to perform computation. Computation can take place in
parallel among siblings in the tree, and, for some machines,there
is even some parallelism within a single node. In Section 3 we
formalize where and when computation can take place in the form
of an operational semantics for programs.

Finally, we chose to model machines as trees of memories as
this is a simple, lowest-common-denominator model that cancap-
ture important features of a wide range of machines, in particular
the performance-critical inter-memory-level communication that
we focus on here. While a full discussion is beyond the scope of
this paper, we note in passing that we have previously successfully
used the tree of memories abstraction to model machines as diverse
as a cluster of workstations and Cell blades by introducing addi-
tional levels into the tree to represent communication links between
elements in the same hierarchy level [16].

3. Programs
In this section we first give the syntax of the low-level IR programs
that our optimizing compiler takes as input; to make the model
of computation concrete we also give an operational semantics for
these programs. Programs for execution on the abstract hierarchical
machine are also hierarchical:

G := CopyMi,Mj
(〈A1, . . . , An〉, 〈B1, . . . , Bn〉) n ≥ 1

| KernelM (A = f(B1, . . . , Bn)) n ≥ 0

| ScalarM (a = f(b1, . . . , bn)) n ≥ 0

| IfM (pred,G1, G2)

| ForM (k = start : end, G)

| ForallM (k = start : end, G)

| GroupM (H)

| Exec
I
M (G)

Many of these operations are familiar from conventional pro-
gramming languages. Note, however, that every form is subscripted

with one or more memoriesM which show the level(s) of the mem-
ory hierarchy where that operation executes. For example, an IfM

is executed by the processor associated with memoryM . Only
Copy (which moves data between two adjacent levels of the mem-
ory hierarchy) andExec (which spawns a new computation at a
child of the current level) refer to more than one memory hierar-
chy level. Note the absence of a sequential composition operator.
Programs are dependence graphs giving a partial order on execu-
tion; the formGroupM (H) assigns a dependence graphH to a
levelM of the machine. We assume the reader is familiar with de-
pendence graphs and for brevity we do not formally define them;
many examples of dependence graphs are given in Section 4. To
define the semantics of programs we use three operations: predi-
cateEmpty : H → Bool is true if its graph argument is empty,
Head : H → 2G returns an arbitrary set of roots ofH (i.e., state-
ments ready to execute) andRest : H× 2G → H removes a set of
roots from the graph, returning the remaining graph.

To define what IR programs mean, we give an operational se-
mantics with rewrite rules of the form

T, M ⊢ G→ T ′, M ′

which is read: If the initial state of a computation is a hierarchi-
cal memoryT with parent memoryM , then if the programG ter-
minates normally, the result is a modified hierarchical memory T ′

with modified parent memoryM ′. Intuitively, G is a computation
taking place at levelT of the machine; the parent memoryM of
T is needed for operations inG moving data to or fromM . For
uniformity we assume the root of the memory hierarchy also has
a parent memory; the parent of the root holds the inputs to and
records the outputs from the entire program.

Representative operational rules are given in Table 1. We briefly
discuss each rule. ACopy copiesAj in memoryMi to Bj in mem-
ory Mi+1. Copy operations can copy multiple data objects in one
statement; because copies between different parts of a machine
are often expensive it is usually better to copy multiple objects at
the same time rather than use multiple copies moving one object
each. We adopt the common convention that smaller indices refer
to memories closer to the leaves of the hierarchy; thus, the given
statement copies data from a childMi to the parentMi+1. Revers-
ing the roles ofMi+1 andMi copies data from parent to child. Also
possible are intra-memory copies within memoryMi. We use the
standard notationM [B ← A] for a memoryM modified at point
B to return the valueA.

A Kernel executes a bulk computation at memoryMi, with
arguments being either scalars or array blocks also inMi. Our com-
piler is not concerned with the details of theKernel’s computation—
it is just some function of the argumentsBj producingA, although
kernels are assumed to be coarse-grained computations (e.g., con-
taining a loop or loop nest or other time-consuming computation).
We rely on a standard optimizing compiler to generate good code
for aKernel. The semantics of aScalar (not shown) is similar to
a kernel operation but only operates on scalars. AnIf is a conven-
tional if-then-else, evaluating one of the two branches based
on the value of its scalar predicate; the rule for theelse branch
is shown and the rule for thethen branch is similar. AnIf is an
example of a rule with hypotheses; the interpretation is that if the
executions above the line hold then the execution below the line
also holds. Note all parts of theIf take place in the same memory.

A Group executes a dependence graph in a particular mem-
ory. The rewrite rule forGroup selects a set of statementsX of
graphG with no predecessors (i.e., all dependences are satisfied)
to execute. The rule in Table 1 allows asynchronous execution of
statements inX; this feature is necessary to model coarse-grain
parallelism within a single processing unit (for example, many
architectures provide the ability to overlap a DMA request with



〈Mi, C〉, Mi+1 ⊢ CopyMi,Mi+1
(〈. . . , Aj , . . .〉, 〈. . . , Bj , . . .〉)→ 〈Mi, C〉, Mi+1[. . . , Bj ←Mi(Aj), . . .] [Copy]

〈Mi, C〉, Mi+1 ⊢ KernelMi
(A = f(. . . , Bj , . . .))→ 〈Mi[A← f(. . . , Mi(Bj), . . .)], C〉, Mi+1 [Kernel]

Mi(pred) = false

〈Mi, C〉, Mi+1 ⊢ G2 → 〈M
′
i , C

′〉, M ′
i+1

〈Mi, C〉, Mi+1 ⊢ IfMi
(pred , G1, G2)→ 〈M

′
i , C

′〉, M ′
i+1

[If]

Empty(H) = false
Head(H) = X, Rest(H,X) = H ′

∀Gj ∈ X. 〈Mi, C〉, Mi+1 ⊢ Gj → 〈M
j
i , Cj〉, M j

i+1

〈M ′
i , C

′〉 =
X

j

〈Mi,C〉
〈M j

i , Cj〉 M ′
i+1 =

X

j

Mi+1

M j
i+1

〈M ′
i , C

′〉, M ′
i+1 ⊢ GroupMi

(H ′)→ 〈M ′′
i , C′′〉, M ′′

i+1

〈Mi, C〉, Mi+1 ⊢ GroupMi
(H)→ 〈M ′′

i , C′′〉, M ′′
i+1

[Group]

∀k : start≤ k ≤ end. 〈Mi[j ← k], C〉, Mi+1 ⊢ G→ 〈Mk
i , Ck〉, Mk

i+1

〈Mi, C〉, Mi+1 ⊢ ForallMi
(j = start : end, G)→

X

k

〈Mi,C〉
〈Mk

i , Ck〉,
X

k

Mi+1

Mk
i+1

[Forall]

∀k ∈ I. 〈Mk
i−1[myid ← k], Ck〉, Mi ⊢ G→ 〈Mk′

i−1, C
k′

〉, Mk
i

∀k 6∈ I. 〈Mk′

i−1, C
k′

〉 = 〈Mk
i−1, C

k〉 andMk
i = Mi

T = 〈Mi, [〈M
1
i−1, C

1〉, . . . , 〈Mn
i−1, C

n〉]〉

T, Mi+1 ⊢ ExecI
Mi

(G)→ 〈
X

1≤k≤n

Mi

Mk
i , [〈M1

′

i−1, C
1
′

〉, . . . , 〈Mn′

i−1, C
n′

〉]〉, Mi+1

[Exec]

Table 1. IR execution rules

computation). The sub-executions, when executed in isolation in
the same initial state〈Mi, C〉, Mi+1, produce different final states
〈M j

i , Cj〉, M j
i+1. We must take care to define what it means when

multiple computations execute simultaneously. If no computation
updates a value another reads, and both write different parts of
memory, then the final state is well-defined. The assumption that
neither updates a value the other reads is expressed by the separate
execution in the same initial state. To reconcile the final states, we
say that memoriesM ′ andM ′′ can bemerged with respect toM ,
writtenM ′+M M ′′, if M ′ andM ′′ modify disjoint portions ofM :

M ′(A) if M(A) = M ′′(A)
(M ′ +M M ′′)(A) = M ′′(A) if M(A) = M ′(A)

undefined otherwise

The extension to hierarchical memories is straightforward. Let
T = 〈M, [. . . , Ti, . . .]〉 andT ′ = 〈M ′, [. . . , T ′

i , . . .]〉 andT ′′ =
〈M ′′, [. . . , T ′′

i , . . .]〉. Then

T ′ +T T ′′ = 〈M ′ +M M ′′, [. . . , T ′
i +Ti

T ′′
i , . . .]〉

Finally, we extend binary sums ton-ary sums in the natural way:

X

1≤i≤n

M

Mi = M1 +M . . . +M Mn

An n-ary sum of memory hierarchies is defined similarly.

A For (resp.Forall) is a sequential (resp. parallel) loop. Ta-
ble 1 gives the semantics ofForall, as it is the more interesting
case. The intention of aForall is that all iterations of the loop can
be executed in any order or in parallel. Thus we define the result as
the merge of all the final states produced by running each individ-
ual iteration separately in the initial state at the same level of the
memory hierarchy. This semantics expresses the assumptionthat
all iterations of aForall are independent; our compiler uses this
assumption but does not check it.

An Exec is the mechanism by which a processor can spawn
new computations at lower levels of the memory hierarchy: the
operation executes in memoryMi, and its IR subgraph executes
SPMD-style in its children at levelTi−1. EachExec starts a new
SPMD-style execution on the subset of the children given by the
indices inI . As is standard in SPMD execution, themyidvariable in
each child is distinct, allowing operations to be selectively executed
on only some of the processors. The use ofI to restrict the set of
children on which an operation is launched allows programs that
start two or more distinct SPMD computations on different sets of
child nodes. As with other rules above, in the rule forExec, the
merge of stores in the conclusion simply says that the computation
is defined only if child computations write disjoint portions of the
parent’s memory.

We conclude this section with a discussion of what it means for
an optimization to be correct in our model.



DEFINITION 3.1 (Correctness). Consider programsG andG′. We
sayG′ is acorrect transformationof G if for every outputA of G
whenever

T, M ⊢ G′ → T ′, M ′

then

T, M ⊢ G→ T ′′, M ′′

andM ′(A) = M ′′(A). Thus, a correct transformation preserves
the outputs in the parent memory but not necessarily any other state
of the memory hierarchy. Also, a correct transformation mayinsert
dependences into a program’s IR, yielding a program which will
have fewer possible executions than the original program (i.e., be
more deterministic).

4. Machine Independent Transformations
This section presents the machine independent transformations that
our compiler performs. Many of these are recognizable as standard
compiler optimizations recast for hierarchical memory, but unlike
traditional optimizations that may affect a few individualprogram
statements, a single transformation manipulating one or two bulk
operations can result in a radical change in the amount of compu-
tation performed.

4.1 Copy Elimination

The first three optimizations are referred to collectively as copy
elimination: each attempts to transform the IR to remove an un-
necessary copy operation. Copies may either arise from inefficien-
cies introduced in translating from source to an IR program or be
exposed by other optimizations.

Intra-memory copy elimination, illustrated in Figure 1, elimi-
nates a copy within a single memory module. In presenting ourop-
timizations we depict programs as dataflow graphs, which allows
us to visually highlight the flow of data and control, the difference
between data and operations, and the level of the memory hierarchy
where each operation/datum resides. We stress, however, that this
graphical syntax is equivalent to the text syntax used in Section 3,
and that an equivalent (but less concise) operational semantics can
be given for the graphical representation. In Figure 1, a subrange of
A is copied toB in the same memory module, and a subrange ofB is
subsequently used as an input for operationOpX. The compiler per-
forms the following steps: (1) it removes both the copy operation
and the data objectB from the IR, and (2) it adds a scalar operation
to compute the range ofA that corresponds to the data that is input
to OpX. This transformation saves both the time to execute the copy
and the space used to store it. Note that for correctness, there must
be no other uses ofB in the program.

The second copy optimization isspill copy elimination, depicted
in Figure 2. The objectC contains a subrange of the original object
A that was “spilled” from memoryMi to its parent memoryMi+1

and then copied back. Spill copy elimination transforms thetwo
copies up and down the memory hierarchy into a single intra-level
copy, which may itself be eliminated by a subsequent application of
the intra-memory copy elimination optimization. This optimization
greedily prioritizes the exploitation of producer-consumer locality
over the reduction of data object live ranges.

The third type of copy elimination, illustrated in Figure 3,is du-
plicate copy elimination. This optimization detects when an object
is copied twice from a parent to a child memory and eliminatesthe
second copy, transforming the IR so that the operations using the
data share the copy.

4.2 Operation Hoisting

Operation hoisting, also known asloop-invariant code motion,
moves operationOp from inside to outside a loop ifOp does not

Mi

A B
Copy
A [r1]
to B

r1

OpX
In: B [r2]

r2

Mi

A

r2

r1

OpX
In: A [r3]

r3

ScalarMi

A B
Copy
A [r1]
to B

r1

OpX
In: B [r2]

r2

Mi

A

r2

r1

OpX
In: A [r3]

r3

Scalar

Figure 1. Intra-memory copy elimination
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Figure 3. Duplicate copy elimination

depend either directly or indirectly on the loop’s iteration variable.
In the example IR in Figure 4,OpXtakes as input a range of the data
objectB which is a function of the iteration variable,k, and thus it
cannot be hoisted outside the loop.OpY, on the other hand, reads
the same inputA and performs the same computation on every loop

MiMi
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E
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Figure 4. Operation hoisting



iteration, and hence it can be hoisted outside the loop, resulting in
a transformed program IR in whichOpYexecutes just once.

4.3 SPMD Distribution

If an Exec contains aForall the compiler can spread the iterations
over more or fewer child nodes of the hierarchy depending on
what resources are available. Figure 5 presents an example of the
IR transformation that occurs when the compiler SPMD-izes a
Forall for a single node over eight processors at the same level
of the memory hierarchy. First, the compiler introduces a new myid
variable uniquely identifying each child memory to the program.
Second, theForall is given a new loop variablek′ which iterates
over one-eighth of the original range. Third, a scalar operation
is inserted into the IR to compute the value of the original loop
variable as a function of the new loop variable; in this example, the
expression isk← myid · t/8 + k′.

Mi

Mi+1Exec

[ M i ]

Forall ( k = 0 : t )

k

OpX

A

OpY

Mi

Mi+1Exec

[ M i ,…, M i ]

Forall ( k′′′′ = 0 : t / 8 )

k′′′′

OpX

A

OpY

Scalar

myid

k

1 1 8
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OpX

A

OpY

Scalar

myid

k

1 1 8

Figure 5. 8-way SPMD distribution of aForall operation

A singleExec operation expresses the SPMD execution of a set
of operations over a set of child processors, but note that neither
the IR nor the compiler are restricted to only executing operations
in a SPMD fashion. Rather, multiple distinctExec operations may
execute concurrently, each over a different set of child processors,
yielding an MPMD execution of a program.

4.4 Operation Scheduling

The semantics given in Section 3 allows an implementation tose-
lect any execution order satisfying IR dependences. Thescheduling
transformation, depicted in Figure 6, chooses an operationordering
to optimize some metric, such as execution time. Our currentim-
plementation uses a simple set of scheduling heuristics:

• asynchronous operations are scheduled as early as possible,

• operations dependent on asynchronous operations are sched-
uled as late as possible, and

• similar operations are placed together to increase opportunities
for subsequent grouping optimizations (see below).

Once the compiler has determined an operation ordering, it in-
serts dependences to enforce this ordering. In Figure 6, thecom-
piler has decided thatOpXshould execute beforeOpY. Because the
IR is a hierarchical graph, the compiler must schedule the opera-
tions within each IR subgraph.

One property not expressed in our IR is any machine resource
constraints that affect asynchronous execution. For example, in Fig-
ure 6, if OpX can execute asynchronously and there are sufficient
resources, then it should be overlapped with the execution of OpY
since its result (B) isn’t needed until afterOpY completes, when

OpZbegins. Our scheduling optimization also takes amachine de-
scriptionspecifying for each IR operation whether it can be issued
asynchronously on the target machine and how many asynchronous
operations may be simultaneously in flight. The compiler uses this
information in determining operation ordering.

4.5 Copy Grouping

A property of the machines our compiler targets is that a single
large copy, which translates into a DMA command or other hard-
ware mechanism, is much more efficient than several small copies.
While the compiler’s IR is designed to manipulate bulk operations,
there are always some number of small copy operations (e.g.,mov-
ing scalar control variables from one memory to another). Thecopy
groupingoptimization aggregates independent copy operations into
a single copy. Figure 7 illustrates the case where the copiesare from
a parentMi+1 to a childMi; the resultant bulk copy corresponds
to agatheroperation. Copies from child to parent correspond to a
scatteroperation.

4.6 Exec Grouping

An Exec operation invokes the execution of an IR subgraph on
one or more child processors. The best implementation of anExec
depends on the details of the target machine, but typically the
means for a processor to start a computation on another processor
is relatively expensive. Theexec groupingoptimization, illustrated
in Figure 8, merges independentExec operations into a single
Exec, resulting in a larger amount of work to do within a single
Exec and lowering the relative overhead. The IR subgraphs in the
transformedExec are grouped and executed in their original order;
the compiler inserts dependences to ensure this.

One implementation subtlety arises from the possibility that the
Exec may be parallel over a number of child processors. The se-
mantics of the original IR is that the firstExec runs to comple-
tion on all child processors before any child processor begins ex-
ecuting the secondExec; there is an implicit barrier between the
Execs. The compiler inserts barriers between theGroups in the
transformed IR during code generation (not illustrated here).

A second issue arises if twoExec operations with differing
SPMD ranges are merged; that is, if oneExec is SPMD-ized over a
different set of child processors than the otherExec. The compiler
handles this case by giving the transformedExec the union of
the SPMD ranges of the two individualExec operations, and then
enclosing each subgraph inside the transformedExec by anIf that
is guarded by themyidvariable (see Section 4.3), ensuring that each
IR subgraph is only executed by the same child processors as in the
original IR.

Finally, a third issue is that the target machine may only have a
small, fixed space to stage the program’s code binary. Because the
IR subgraph contained in a singleExec effectively corresponds to
a block of code that will be issued as a single computational unit,
the compiler should not always greedily groupExec operations
together. There is a tradeoff: “small”Exec operations have a higher
relative overhead due to the cost of making thread calls between
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processors, while “large”Exec operations consume more code
space, potentially reducing the space available for the program’s
data. The compiler uses a simple heuristic to navigate this trade-
off: it assumesKernel operations are heavyweight computational
units and does not group twoExecs together if they each contain a
Kernel; otherwise, it greedily groupsExec operations to the extent
possible.

5. Implementation
5.1 Cell Hardware Background

In this paper we use the Cell processor as a case study for an archi-
tecture with an explicitly managed memory hierarchy. The Cell has
8 processing elements (called SPEs in IBM’s terminology), each
with 4 single-precision SIMD floating point and integer arithmetic
units, a functional unit that executes branches and manipulates val-
ues in the128-entry,128-bit wide local register file (permute, load
and store instructions), a256KB local store (holding both data and
instructions), and aMemory Flow Controller(MFC) DMA unit for
bulk requests to memory staged through the local store. The MFC
performs16-byte aligned DMA-style accesses to sequential blocks
that are a multiple of16 bytes in length. Many such requests can be
combined into a single asynchronous bulk operation via theDMA
list mechanism ([22]–Subsection 7.4). DMA lists are traversed by
the MFC, which asynchronously issues a request for each speci-
fied memory address in order, and synchronizes with the arithmetic
units in the SPE once the entire list is processed. The MFCs access
an XDR-DRAM based memory system. In addition to the8 SPEs
the Cell also contains a PowerPC processing core that can make ar-
bitrary accesses to off-chip memory through a hardware managed
cache hierarchy. Cell’s Element Interconnect Bus can be used for
horizontal SPE to SPE communication though in this paper we only
utilize this feature for inter-SPE synchronization since none of our

benchmarks exhibit a speedup from such communication. The ex-
ploitation of inter-PE communication paths within a machine mod-
eled as a tree of memories is a subject of ongoing research.
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Figure 9. Cell processor’s abstract machine model

Figure 9 depicts the abstract machine model corresponding to
the Cell processor used in our compiler evaluation. It is a tree
in which the off-chip DRAM is the root and the8 LSes are its
children.

5.2 Compiler Implementation

In this section we describe the implementation of a compilerbased
on the IR execution model presented in Section 3 and which fea-
tures the IR-to-IR transformations detailed in Section 4. Figure 10
shows our compiler’s various passes and their internal ordering
with respect to each other. The three copy elimination and the op-
eration hoisting optimizations are applied iteratively; the compiler
will continue to apply them until it has applied all four in succes-
sion without any of them resulting in the program’s IR being trans-
formed, at which point it will move on to the SPMD distribution
pass.
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Figure 10. Phase ordering of compiler passes; white boxes are
passes that are required for correct operation, constituting the min-
imum compilation infrastructure needed to just get a program to
run, and grey boxes are optimizations which aim to boost program
performance

5.2.1 Compiler Front-end

Our compiler accepts programs written in theSequoia[16] pro-
gramming language. Sequoia is a language which was designedto
enable portable, high-performance programming of machines with
explicitly managed memory hierarchies. It makes explicit the hier-
archy of bulk computations and bulk data transfers that our com-
piler’s IR is centered around. Syntactically, Sequoia is essentially
C with some language extensions. Note that due to constraints im-
posed by the Sequoia programming language, in particular the fact
that programs are expressed as a hierarchy of isolated unitsof exe-
cution, our compiler does not need to worry about pointer aliasing,
memory consistence, or any of the other factors that make tradi-
tional C code difficult for compilers to target to parallel, distributed
machines such as Cell.



We modified the ELSA [29] C/C++ parser to accept Sequoia
programs and produce a standard AST data structure. This ASTis
then converted to our compiler’s IR in a two-step process: (1) each
task (function) in the program is individually converted toits own
IR comprising input and output data objects and a (hierarchical)
graph of operations and local data objects, and then (2) the compiler
statically coalesces the individual task IRs through task callsites to
produce specialized IR graphs which span multiple functions in the
task call graph. The IR-to-IR compiler transformations described
in Section 4 are applied within a single IR graph.

5.2.2 Cell Machine Description Specification

The scheduling optimization (Section 4.4) utilizes a machine de-
scription file that each compiler target must provide. The Cell ma-
chine description file expresses thatCopy operations executed by
the SPE between the Cell’s LS and DRAM may be issued asyn-
chronously with other operations, and in particular withKernel
operations, as the Cell SPE hardware provides an asynchronous
DMA controller (theMFC unit).

5.2.3 Data Padding

Correct execution on Cell requires all arrays to be padded toa
multiple of 16 bytes in length in their innermost (row) dimen-
sion, ensuring that each row begins on a 16-byte boundary. Further,
all data transfers (copies) must be padded to a 128-byte granular-
ity for increased DRAM throughput. Cell’s memory system is de-
signed to achieve peak performance when transfers are largeand
aligned, with short and/or non-aligned transfers achieving signifi-
cantly lower DRAM bandwidth.

The compiler implements data padding as an IR-to-IR trans-
formation which comprises the following steps: (1) every data ob-
ject in the IR (containing an annotation detailing its size)is padded
by changing these annotations to reflect the above constraints, and
(2) anyScalar expression that computes the range of a data ob-
ject that an operation uses will be updated such that the operation
will use the same logical data range, despite the data objecthaving
been physically increased in size. Data objects may be dynamically
sized, in which case their size-related IR annotations refer to pro-
gram variables rather than constants.

5.2.4 Software-Pipelining

Our compiler implements a simple software-pipelining transforma-
tion taking aForall operation on the LS/SPE level of the ma-
chine and running multiple iterations in parallel, overlapping oper-
ations from different iterations for increased hardware utilization.
The software-pipelining algorithm comprises the following steps:

• the dependence graph, now linearized by scheduling (Section
4.4), is split into stages such that any operation that waitson
the completion of an asynchronous operationX is in a later
pipeline stage thanX;

• for a resultingN -stage pipeline, all variables with scope inter-
nal to theForall are replicatedN times so thatN loop itera-
tions can be run in parallel (modulo variable expansion[26]);

• theForall loop is transformed by enclosing its contained IR
nodes inGroup operations, one per pipeline stage; and

• theForall loop is emitted in the following manner:

for (k′ = start : end−N + 1) {
Group1[k ← k′ + N − 1];
Group2[k ← k′ + N − 2];
...
GroupN [k ← k′ + 0];

}

The compiler also emits the appropriate partial iterationsto prime
and drain the pipelined loop (not illustrated).

On Cell, the aim of software-pipelining is to overlap the asyn-
chronous DMA transfers that implement theCopyM1,M0

and
CopyM0,M1

operations withKernelM0
operations, and given that

there are only two resources (the SPE processor, that executes the
kernels, and the MFC unit, that issues DMAs), the maximum pos-
sible performance improvement due to software-pipeliningon Cell
is 2x. Further, in the event that one of either kernel computation
or memory transfers dominates the runtime of the application, the
gain from software-pipelining will be significantly less than 2x.

Note that as with all other optimizations in this paper, software-
pipelining operates at the granularity of bulk operations,overlap-
ping coarse-grained data transfers with large computational ker-
nels. As such, it is distinct from any software-pipelining loop trans-
formations that may be applied by low-level compilers such as
GCC, since these operate at the granularity of program instructions.

5.2.5 Space Allocation

The allocation phase reserves the space where each data object
resides for its lifetime in an explicitly managed memory module.
Unlike cache-based architectures, logically contiguous data must
be stored physically contiguously in the local memory, and so
the problem of allocating space for data objects is bin-packing
a two-dimensional space-time grid. One grid axis represents the
contiguous range of addresses consumed by the data object and the
other axis represents the interval of time it is allocated there. An
example is depicted in Figure 11, in which the IR snippet’s packing
diagram (on the right) is interpreted as follows: an operation, such
asOpX, must have all of the data that it is using (its inputs, outputs,
and local data) simultaneously resident in the memory throughout
its execution.OpXrequiresC andD to be resident, in this example.
If an operation refers to data objects in multiple memory levels,
then these data objects must similarly be resident in the appropriate
memories throughout the operation’s execution.
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Figure 11. Space allocation

Our packing heuristic is adapted from [28] and is described be-
low. We first compute the live ranges of data objects using their
scheduled order, generate theinterference graph(nodes are data
objects and edges imply overlapping live ranges), and initially allo-
cate all objects to address0 for the duration of their live range. We
then greedily modify the allocation such that no two objectsshare
the same space at the same time. We select the next object tofinal-
izeusing the following priorities: the object has the lowest address;
overlaps with the largest number of other objects; requiresthe most
space. The object is finalized, shifting the allocation of all objects
it interferes with to higher addresses. This process is repeated until
all objects are finalized. Packing may fail if an object’s allocation
exceeds the space of the memory module, at which point the com-
piler provides feedback to the programmer, who must then make
the appropriate modifications to either their source program or the
compiler’s command-line options.

For Cell, in addition to allocating and packing data objects, al-
location also ensures data objects are16-byte-aligned and reserves
space in the local stores for the compiled SPE code.



5.2.6 Code Generation

The final phase of our source-to-source compiler, code generation,
comprises the emission of the C code that will be compiled by
the target’s low-level compiler. The compiler emits two sets of C
output files for Cell, one to be compiled using GCC 4.0.2 for Cell’s
PowerPC control processor (PPE) core and the other to be compiled
by IBM’s XLC compiler for the SPEs.

Exec operations executing on the control processor make thread
calls to execute operations on the SPEs. The cost of launching a
new Cell SPE thread for each SPE operation using the libspe SDK’s
spe thread create proved prohibitively costly, and so to avoid
using system threads we implemented event loops on the SPE’s.
The compiler creates a single system thread on each SPE at pro-
gram start, which idles until it receives a command from the control
processor to execute a block of SPE code. When such a call occurs,
the SPE executes the specified code, synchronizes (if necessary)
with the other SPEs using Cell’s inter-SPE communication, and re-
turns to idling when done, waiting for the next control command.
These control commands are issued using Cell’smailboxmecha-
nism ([22]–Subsection 8.6).

This approach allows operations to be launched onto the SPEs
with modest overhead. However, compiling all operations into a
single SPE binary often results in a code text region consuming a
large fraction of, or even exceeding, each SPE’s256KB local store.
To minimize code footprint while still allowing general code to be
executed, we compile the IR subgraph within each SPEExec into a
separate SPE overlay. Overlays are loaded dynamically by anSPE
from off-chip memory when it receives a message from the control
processor (PPE) to execute a block of code. Local store spaceis
reserved for the overlay code text in the space allocation phase of
the compiler (recall Section 5.2.5).

Overlay loading is not overlapped with SPE computation since
experiments showed that the tiny gain in SPE utilization from such
a strategy (for our benchmarks) was offset by a very large perfor-
mance loss due to the reduction of local store (LS) space available
for program data. Typically, Sequoia programs compiled forCell
yield a small number of large overlays, rather than numeroussmall
overlays, due to the optimized kernel code taking a large amount of
space.

6. Evaluation
Our evaluation focuses on the utility of the compiler and theef-
fectiveness of its transformations. We implemented seven bench-
marks in Sequoia (described in Table 2), compiled them with dif-
ferent optimization combinations, and collected execution statistics
on an IBM BladeCenter fitted with a blade containing a Cell pro-
cessor operating at2.4GHz accessing512MB of system memory
(see Section 5.1). Subsections 6.1 and 6.2 report the overall perfor-
mance results for the benchmarks and Subsection 6.3 evaluates the
effects of compiler optimization.

6.1 Raw Performance Measurements

Table 3 presents the raw performance numbers measured for each
of our seven benchmarks on a single Cell processor.1 Putting these
raw numbers into perspective via direct comparisons with other
Cell compilers is difficult, as there are very few Cell compilers
available. IBM’s Octopiler [15, 14] and the Barcelona Supercom-
puting Center’s CellSs [3] compiler are both optimizing compilers
that automatically exploit application parallelism to target the Cell

1 These raw performance results were also listed in [16], though small
differences are present due to changes in the OS, kernel, firmware, compiler,
and library versions installed on our Cell blades. Further,a small amount of
additional hand-tuning of kernels was performed here.

SAXPY BLAS L1 saxpy performed on 32 million word vectors.

SGEMV BLAS L2 sgemv using a8192x4096 matrix.

FFT3D Discrete Fourier transform of a complex2563 dataset. Com-
plex data is stored in struct-of-arrays format.

SGEMM BLAS L3 sgemm, multiplying matrices of size4096x4096.

CONV2D Convolution of a5x5 filter with a4096x8192 input signal.

GRAVITY An O(N2) N-body stellar dynamics simulation on 8192 par-
ticles for 100 time steps. We are using Verlet update and the
force calculation is acceleration without jerk [19].

HMMER Fuzzy protein string matching using Hidden Markov Model
evaluation. The Sequoia implementation of this algorithm is
derived from the formulation of HMMER-search for graphics
processors given in [21] and is run on a large fraction of the
NCBI non-redundant database.

Table 2. Benchmarks used for evaluation

SAXPY 2.8GFLOP/s CONV2D 57.8GFLOP/s
SGEMV 9.1GFLOP/s GRAVITY 83.3GFLOP/s
FFT3D 45.3GFLOP/s HMMER 9.9GFLOP/s
SGEMM 96.3GFLOP/s

Table 3. Measured raw performance of each benchmark (single
precision)

processor, however raw performance numbers have yet to be pub-
lished from either project, making a comparison impossible. Rapid-
Mind Inc. [33] is developing a commercial programming system
for Cell in which the programmer expresses parallel operations over
collections of data, with a runtime system aggregating these oper-
ations into bulk computations and distributing them over the Cell’s
SPEs, but we are not aware of any published Cell performance re-
sults using RapidMind’s tools for any of our benchmarks.

Given the lack of comparison data from other Cell optimizing
compilers, we use the best known hand-tuned implementations of
our benchmarks as a basis for comparison. IBM’s large FFT imple-
mentation runs at 46.8GFLOP/s on a 3.2GHz Cell processor [9],
a result comparable to the 45.3GFLOP/s that our implementation
of FFT3D achieves on a 2.4GHz Cell. Mercury Computer Systems
published a 116GFLOP/s performance result [10] for a 1D FFT of
a 64K-element dataset on a 3.2GHz Cell, however this datasetsize
was chosen to perfectly fit the Cell’s on-chip local stores and thus
avoids the cost of cycling data through off-chip DRAM; our FFT
implementation operates on a 16M-element dataset, as does IBM’s.

Computing at a rate of 3.5 billion interactions per second, our
GRAVITY implementation on Cell is 52% faster than the custom
hardware of GRAPE-6A [19]. Finally, our Cell implementation of
HMMER is 5% faster than ClawHMMER [21], an implementa-
tion of the same program on an ATI 1900XT graphics processor.
ClawHMMER was demonstrated to outperform hand-tuned CPU
implementations.

6.2 Hardware Utilization Measurements

Our compiler is designed to optimize a hierarchy of bulk operations
and attempts to maximize the utilization of hardware resources.
The compiler’s ability to schedule the operations is apparent in
the results presented in Figure 12, in whichSGEMM , CONV2D,
GRAVITY , andHMMER are compute limited and fully utilize
the SPEs’ arithmetic resources by running the program’s compu-
tational kernels for close to100% of the execution time. The only
way to improve the performance of these benchmarks would be to
further fine-tune the kernels, which is outside the scope of our com-
piler; we assume that aKernel is an externally-provided unit that
will be executed as-is. ForSGEMM , for example, we use IBM’s
liblarge matrix routine as the kernel.
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Figure 12. Measured utilization of Cell’s compute and bandwidth
resources for each benchmark

In contrast,SAXPY, SGEMV andFFT3D are bandwidth lim-
ited and our compiler schedules operations in a manner that is
within 10% of the optimal DRAM throughput of our Cell sys-
tem (17.5GB/s). As there are no duplicate or otherwise unneces-
sary memory transfers being performed in any of these programs
(which we verified by inspecting the compiler’s output), there-
source utilization graph demonstrates that the compiler isexecuting
the bandwidth-limited benchmarks at or near the highest perfor-
mance possible on the target machine.

6.3 Evaluation of Optimizations

Table 4 details the number of times each optimization was applied
on each benchmark, and Figure 13 illustrates the loss in perfor-
mance when optimizations are progressively disabled: eachbench-
mark’s left-most bar corresponds to its measured runtime with all
optimizations enabled, and the bars to its right depict the resulting
execution times with optimizations successively disabled, normal-
ized to the all-optimizations-on runtime. The scale on the graph is
non-uniform to emphasize differences in the 1x to 2x range while
providing a dynamic range of 1000x+.

We now discuss the results in Figure 13 in more detail. The copy
grouping optimization makes little difference for Cell programs
because the hardware DMA controller performs copy groupingby
issuing the program’s copy operations as simultaneously-in-flight
DMAs. Exec grouping was clearly effective, however, increasing
the performance (measured in GFLOP/s) of four of the benchmarks
by 13–175%.

Software-pipelining increased three benchmarks’ performance
by 30–47%. The software-pipelining implementation is built on
top of the scheduling transformation, which orders operations to
maximize concurrency. With software-pipelining disabled, the dif-
ference between a naive schedule and an efficient schedule was at
most 4% in any benchmark’s performance.

Intra-memory copy elimination aidedFFT3D andGRAVITY ,
both of which exhibited intra-main-memory copies resulting from
the “copy in, copy out” calling semantics of the source language.
The results clearly demonstrate the necessity of successfully opti-
mizing away all of these copies;FFT3D’s runtime was three orders
of magnitude larger without this optimization being performed, re-
sulting from its dataset exceeding the 512MB DRAM capacity and
being paged to disk. The spill copy elimination and duplicate copy
elimination optimizations were also effective for these two bench-
marks, reducing the number of copies between the LS and main
memory. Finally, operation hoisting increased the performance of
five out of the seven benchmarks by 6–58%.

Figure 14 illustrates the effectiveness of the SPMD distribution
transformation, in which the compute-heavy benchmarks scale lin-
early with the number of SPEs and the bandwidth-limited bench-
marks scale with the available off-chip bandwidth.
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Total number of bulkCopy ops 5 4 36 4 3 53 14

Intra-mem. copy elim.: num-
ber of bulkCopy ops eliminated 0 0 18 0 0 38 4

Spill copy elim.: number of
bulk Copy ops eliminated 0 0 0 0 0 4 0

Duplicate copy elim.: number
of bulk Copy ops eliminated 0 0 4 0 0 0 0

Total number of ops 86 154 412 186 124 731 280

Operation hoisting: number of
ops hoisted out of loops 0 1 6 2 1 8 8

Copy grouping: number of
Copy grouping steps (2 → 1) 13 25 59 34 21 120 54

Operation scheduling:number
of dependences added to IR 39 62 208 84 55 377 118

Total number ofExec ops 5 18 59 6 8 18 16

Exec grouping: number of
Exec grouping steps (2 → 1) 3 16 55 5 7 11 14

Total number of loop nests 1 1 3 1 1 7 1

Software-pipelining: number
of loops pipelined 1 1 3 1 1 7 1

Table 4. Measured counts of optimization usage
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Figure 14. Performance increase due to SPMD-ization over SPEs

6.4 Compilation Time

Compilation times of our compiler are negligible compared to the
time that the Cell platform compilers take to generate machine
code. For example, FFT3D (one of our slowest programs to com-
pile) takes 12s to compile on our desktop machine, 0.65s of which
is spent in our compiler, with the remainder spent in XLC and GCC;
by far the most time-consuming aspect of compiling a Sequoiapro-
gram for Cell is the compilation of kernels by these low-level com-
pilers. Our compiler uses greedy heuristics to solve all search prob-
lems, and iterates through the loop over the first group of optimiza-
tions in Figure 10 less than 100 times for all of our benchmarks.

7. Related Work
Our machine model is similar to the Parallel Memory Hierarchy
Model (PMH) [2]: both models use trees of memories to model
parallel machines. While the PMH model was used to analyze
algorithm performance, we directly use a tree of memories as
an execution modelof a machine, with IR transformations being
defined with respect to this execution model.

The programming system for the Imagine processor [23, 28, 13]
addresses the problems of scheduling bulk operations in a two-level
hierarchy and allocation of local storage. Our compiler is more gen-
eral, in that it can operate on any number of levels in an explicitly
managed memory hierarchy, can schedule and allocate resources at
multiple scales of the application and architecture, combines both
control and bulk operations in a single IR, represents and targets
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SPMD mappings and SPMD systems, performs necessary copy-
elimination transformations, and manipulates N-dimensional data
objects with N-dimensional bulk transfers and complex sub-block
derivations.

Eichenberger et al. presents the current status of the IBM com-
piler for the Cell processor [15, 14], in particular discussing code
generation for Cell’s PEs, including automatic vectorization and
SIMD alignment. They also address some of the transformations
required to utilize local stores and manage code overlays. Their
implementation focuses on a two-level memory hierarchy only, and
they describe a dynamic software cache approach to controlling the
local stores, as opposed to our static compilation solution.

Previous work on SPMD languages has shown that optimiza-
tions for two-level hierarchies can have significant performance
benefits [27]. Compilers for Titanium [36], Co-array Fortran [31],
UPC [6], and ZPL [7], target SPMD style parallelism across an
entire machine and focus on fine-grained “horizontal” (i.e.intra-
memory-level) communication between processors. These systems
recognize the importance of localization, but current implemen-
tations are for two-level hierarchies only. Optimizationsfor bulk
transfers under limited conditions are described. The recently sug-
gested X10 [8], Chapel [4], and Fortress [1] languages adoptsim-
ilar concepts of localization and allow nested parallelism. In com-
parison, our compiler is structured around nested localization and
parallelism, focuses on bulk operations, and inherently supports a
hierarchy of operations.

A different approach to controlling software exposed memory
hierarchies is to encapsulate the hierarchy in a library, asin the
Message Passing Interface [30] and self-tuning, potentially cache-
oblivious [18], libraries such as ATLAS [34] and FFTW [17].
An interesting hybrid compilation approach, discussed in [25] and
[20], exposes library semantics to the compiler allowing for opti-
mization and specialization across library calls.

Finally, our work manipulates bulk operations and data trans-
fers, and differs from fine-grained techniques that addresscache
optimizations. Software directed prefetching (e.g., [5])essentially
breaks up a bulk transfer into smaller granularity prefetches and
embeds them within arithmetic computations. Loop tiling (e.g.,
[35]) reorders fine-grained computation and memory accesses to
reduce the number of cache misses and partition work across PEs.

8. Conclusion
We have presented the design and implementation of a compiler
targeting the emerging class of compute-intensive architectures
with explicitly software-managed storage hierarchies. Our focus is
on the compiler’s intermediate representation, which is based on
the concept of a hierarchical graph of bulk operations and aggregate
bulk data objects connected by dependences. We have described

what we believe to be the minimal set of issues any compiler for
this class of machines must address and demonstrated our solutions
by compiling benchmarks for the Cell processor.
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