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Abstract

We present a compiler for machines with an explicitly mankage
memory hierarchy and suggest that a primary role of any clempi
for such architectures is to manipulate and schedule arbferaf
bulk operations at varying scales of the application andhefrha-
chine. We evaluate the performance of our compiler usingragv
benchmarks running on a Cell processor.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage§ Processors—Compilers, Optimization; C.1Prdcessor
Architecture Parallel Architectures—Distributed architectures

General Terms Performance, Design, Experimentation

Keywords Software-managed memory hierarchy, bulk operations

1. Introduction

The advances in semiconductor technology that have dreatigti
increased the performance possible on a single chip hagauals
dermined the classical random-access model of memorydte i
that a processor can access every memory address in a maistly u
form, and tolerable, amount of time. Instead, there is aelangd
still growing gap between the processing capacity of fuomzti
units and the available global on-chip and off-chip memapds
width needed to supply those functional units with data. ifcia-
ally, the latency to access off-chip memory and large op-aiem-
ory structures is growing when compared with arithmetiotigh-
put. For decades the standard solution to this problem hers toe
bridge the gap with hardware-managed caches.

An emerging class of high performance architectures, @ioly
the Sony/Toshiba/IBM Cell Broadband Engine Proce$50f32]
(Cell), the ClearSpeed CSX600 [11], and academic projaath s
as Stanford’s Imagine and Merrimac [12, 24], seek to achieweh
higher performance and efficiency by exposing a hierarchyisf
tinct memories managed explicitly in software. Machinethvein
explicitly managed memory hierarchy are distinguishednfieon-
ventional cache architectures by three key charactesiskast,
processing is highly parallel: multiple high-peak-penfiancepro-
cessing elemen{®Es) execute in isolation entirely out of a local
level of the memory hierarchy. Second, individual PE locahm
ories are not virtualized by hardware address translation-PE
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has direct access to all of memory and there are no data caches
Programs executing out of these local memories have a fixed, a
relatively small, space in which to work and it is the progiare-
sponsibility to manage the physical layout and movementabé d
and, on some architectures, even the layout and movemeheof t
program’s code. Third, there are multiple levels to the mgrheer-
archy, typically at least a conventional high-latency and band-
width external memory at the root and multiple simplified R
small, fast local storage at the leaves. The movement of atada
code between levels of the memory hierarchy is performetliexc
sively via asynchronous block transfers explicitly ordheted by
software. We believe that machines with such explicitly aged
memory hierarchies will become increasingly prevalenthia fu-
ture.

This paper presents the design and implementation of an opti
mizing compiler for architectures with software-manageshmory
hierarchies. We model programs laisrarchies of bulk operations
with explicit parallelism. Bulk operations are either bdita trans-
fers orkernels(bulk computations) on bulk data. Our focus here is
on the backend compiler phases; we begin with a relatively lo
level intermediate representation close to the targesatdisna-
chines. In this representation all parallelism is explieitery bulk
operation is assigned to a specific level of the memory heayar
and all sizes of data sets are known. We then illustrate itapor
optimizations that should be applied to such programs tdywe
efficient code for hierarchical memory machines. In thisgrape
do not consider the problem of mapping a source-level laggta
the intermediate representation (but see [16] for an examphy
performance-oriented compiler must address the issuesngider
regardless of programming model; a compiler for a programymi
model further removed from the target class of machines lgimp
faces a superset of the issues we address.

We make the following contributions:

e We present a general model for machines with explicitly man-
aged memory hierarchies (Section 2). This model illus¢rtte
level of abstraction at which our compiler works and proside
the conceptual framework in which we develop our optimiza-
tions.

¢ \We present amtermediate representatiaiiR) expressing pro-
grams as hierarchies of bulk operations. An IR that reptesen
operations at multiple scales enables optimizations tohe a
plied uniformly across different levels of the machine: saene
optimizations apply to coarse-grained computation neardbt
and finer-grained computation at the leaves. We also give an
operational semantics for IR programs executing on anadistr
machine, which both makes clear our notions of hierarchical
programs and bulk operations and provides the basis forunde
standing the correctness of our optimizations (Section 3).



¢ We describe a number of optimizations that are key to aahigvi
high performance on our target class of machines (Section 4)

¢ We discuss some important details of compiling for the Qell a
chitecture (Section 5) and give experimental results witlkeb:
based compiler showing the effectiveness of our optinorati
for utilizing execution and bandwidth resources (Sectipn 6

2. Abstract Machine Model

We represent a machine &tee of memoried’. A given level of
the memory hierarchy has a memaky and zero or more sub-

machinesr, ..., Ty:
T = (M,C)
C = [Ti,...,Tn] n>0

A level with no sub-machinegM, []) is aleaf of the hierarchy.
For simplicity, we model a memory/ as a function frormames

to values. (We could also use the conventional mapping frdm a
dresses to values, but with the exception of data layout ofamtr
optimizations do not depend on actual address values oizhes
memory.) Names can be scalar variable names or aggregate str
tures such as arrays. Values that are definitely scalar ateemvr
lower-caseq, j, k, . . .), and values that may be either scalar or ag-
gregate are written upper-casé, (B, C, . . .); we sometimes go be-
yond simple names and refer to array rangéd in examples. Note
that different memories at different levels of the hiergrbave dis-

with one or more memoriek! which show the level(s) of the mem-
ory hierarchy where that operation executes. For examplef &
is executed by the processor associated with menidryOnly
Copy (which moves data between two adjacent levels of the mem-
ory hierarchy) ancExec (which spawns a new computation at a
child of the current level) refer to more than one memory drier
chy level. Note the absence of a sequential compositionatqer
Programs are dependence graphs giving a partial order @u-exe
tion; the formGroup,,(H) assigns a dependence grafghto a
level M of the machine. We assume the reader is familiar with de-
pendence graphs and for brevity we do not formally define them
many examples of dependence graphs are given in Section 4. To
define the semantics of programs we use three operatiord: pre
cate Empty : H — Bool is true if its graph argument is empty,
Head : H — 2€ returns an arbitrary set of roots #f (i.e., state-
ments ready to execute) afist : H x 2¢ — H removes a set of
roots from the graph, returning the remaining graph.

To define what IR programs mean, we give an operational se-
mantics with rewrite rules of the form

T M+-G—T M

which is read: If the initial state of a computation is a hieta
cal memoryT with parent memond/, then if the progran@ ter-
minates normally, the result is a modified hierarchical memd
with modified parent memory/’. Intuitively, G is a computation
taking place at level” of the machine; the parent memoby of

tinct name spaces; the only way that data can be shared betwee T is needed for operations i moving data to or fromM/. For

memories is via explicit copies between adjacent hieralevsis.

uniformity we assume the root of the memory hierarchy als® ha

Each level of a machine hierarchy has storage and may algo hav a parent memory; the parent of the root holds the inputs to and

the ability to perform computation. Computation can takacplin
parallel among siblings in the tree, and, for some machithese

records the outputs from the entire program.
Representative operational rules are given in Table 1. \igdyor

is even some parallelism within a single node. In Section 3 we discuss each rule. Sopy copiesA; in memoryMM; to B; in mem-

formalize where and when computation can take place in the fo
of an operational semantics for programs.

ory M;1. Copy operations can copy multiple data objects in one
statement; because copies between different parts of aimeach

Finally, we chose to model machines as trees of memories asare often expensive it is usually better to copy multiplescls at

this is a simple, lowest-common-denominator model thatazgm
ture important features of a wide range of machines, in aer
the performance-critical inter-memory-level communimatthat
we focus on here. While a full discussion is beyond the scdpe o
this paper, we note in passing that we have previously ssaftdss
used the tree of memories abstraction to model machinesasedi

as a cluster of workstations and Cell blades by introducithdj-a
tional levels into the tree to represent communicationdip&tween
elements in the same hierarchy level [16].

3. Programs

In this section we first give the syntax of the low-level IR grams
that our optimizing compiler takes as input; to make the rhode
of computation concrete we also give an operational secwgfur
these programs. Programs for execution on the abstraetrbigcal
machine are also hierarchical:

G = CopyMi’Mj(<A1,...,An>,<B1,...,Bn>) n>1
Kernelpy (A = f(B1,...,Bn)) n>0
Scalary(a = f(bi,...,bn)) n>0

|
|
|  Ifm(pred,Gi,G2)

|  Forwm(k = start: end, Q)
| Forally(k = start: end,G)
|  Group,,(H)

| Exech(G)

Many of these operations are familiar from conventional- pro
gramming languages. Note, however, that every form is sigied

the same time rather than use multiple copies moving onecbbje
each. We adopt the common convention that smaller indides re
to memories closer to the leaves of the hierarchy; thus, itheng
statement copies data from a child; to the parent\/; 1. Revers-
ing the roles of\/; 1 and M, copies data from parent to child. Also
possible are intra-memory copies within memady. We use the
standard notatiod/[B — A] for a memoryM modified at point

B to return the valued.

A Kernel executes a bulk computation at memavy;, with
arguments being either scalars or array blocks aléd,inOur com-
piler is not concerned with the details of thernel’s computation—
it is just some function of the argumeni producingA, although
kernels are assumed to be coarse-grained computationso@ng
taining a loop or loop nest or other time-consuming comprigit
We rely on a standard optimizing compiler to generate goatco
for aKernel. The semantics of 8calar (not shown) is similar to
a kernel operation but only operates on scalarsIAis a conven-
tional if-then-else, evaluating one of the two branches based
on the value of its scalar predicate; the rule for #1&e branch
is shown and the rule for thehen branch is similar. ArLf is an
example of a rule with hypotheses; the interpretation is iftthe
executions above the line hold then the execution belowittee |
also holds. Note all parts of thef take place in the same memory.

A Group executes a dependence graph in a particular mem-
ory. The rewrite rule foiGroup selects a set of statemems of
graphG with no predecessors (i.e., all dependences are satisfied)
to execute. The rule in Table 1 allows asynchronous exatutio
statements inX; this feature is necessary to model coarse-grain
parallelism within a single processing unit (for exampleany
architectures provide the ability to overlap a DMA requegthw



<J\JZ‘7 C), M1 COpyA{i’Mi+1(<. . AJ‘7 .. 4>, < . Bj, . >) — <]\/fi7 C>, MZ‘+1[. cy Bj — J\JZ(AJ)7 .. ] [Copy]
<M7;, C), Mt - KernelMi(A = f( .., Bj,.. )) — <MZ[A — f( . MZ(BJ), .. )], C>, M1 [Kernel]
M;(pred) = false
(M;, C), Mi1 = G2 — (M}, C"), M1, (4]
<Mi7C>7 Mi+1 = IfMi(pTed7G17G2) - <Mi,7cl>7 M'L]+1
Empty(H) = false
Head(H) = X, Rest(H,X)=H' v
VG € X. (%;7g>>7Mi+1 =G — <Mf7cj>7hyf+1
(Mf,Cy =" ) =Y [Group]
J J
(M{,C"), My, &= Group,, (H') — (M]',C"), M\,
(M;,CY, Miy1 + Group,,. (H) — (MZ{/,C">, M;ﬁrl
. T . kcoik k
Vk :start < k < end (M;[j — k],C), Ms41 IzMGC—; (M7, C >7Mz+zlw. [Forall]
(M;,C), M1 F Forally, (j = start:end G) — " (M}, C%), D 7 M,
k
Vk € I. (MF \[myid — k],C*), M; + G — (MF |, C*"), MF
Vk & I (MF ., C*y = (MF,,C*) andMF = M;
[Exec]

T:<Mi7[<Mi171701>7‘“7< Z_n717 n>]>

M, ’ ’ n' n'
T7 Mi+1 "EXSC{VII(G) - < Z Mik7[<Milflvcl >7"'7< iflyc >]>7Mi+1

1<k<n

Table 1. IR execution rules

computation). The sub-executions, when executed in isolah

the same initial statéM;, C'), M;+1, produce different final states
(M],C7), M7 _,. We must take care to define what it means when
multiple computations execute simultaneously. If no cotafon
updates a value another reads, and both write different dirt
memory, then the final state is well-defined. The assumptianh t
neither updates a value the other reads is expressed bypheate
execution in the same initial state. To reconcile the finalest, we
say that memoried/’ and M" can bemerged with respect td/,
written M’ +a M”, if M’ andM"" modify disjoint portions of\/:

M'(A) if M(A) =M"(A)
M"(A) if M(A) = M'(A)
undefined otherwise

(M'+n M")(A) =

The extension to hierarchical memories is straightforwaret

T=(M,]..,T;..]) andT" = (M',[...,T{,...]) andT" =
(M",[...,T{,...]). Then
T 40T = (M 4 M",[..., T +2, T/,..])

Finally, we extend binary sums te-ary sums in the natural way:

M
Z M; =My +a ..o +0 Ma

1<i<n

An n-ary sum of memory hierarchies is defined similarly.

A For (resp.Forall) is a sequential (resp. parallel) loop. Ta-
ble 1 gives the semantics 8brall, as it is the more interesting
case. The intention of Borall is that all iterations of the loop can
be executed in any order or in parallel. Thus we define thdtrasu
the merge of all the final states produced by running eackiahdi
ual iteration separately in the initial state at the samelle¥ the
memory hierarchy. This semantics expresses the assuntptidn
all iterations of aForall are independent; our compiler uses this
assumption but does not check it.

An Exec is the mechanism by which a processor can spawn
new computations at lower levels of the memory hierarchg: th
operation executes in memoiy;, and its IR subgraph executes
SPMD-style in its children at level’;_,. EachExec starts a new
SPMD-style execution on the subset of the children givenhey t
indicesinI. As is standard in SPMD execution, timyidvariable in
each child is distinct, allowing operations to be seledtyiexecuted
on only some of the processors. The usd o restrict the set of
children on which an operation is launched allows programas t
start two or more distinct SPMD computations on differens s¢
child nodes. As with other rules above, in the rule faec, the
merge of stores in the conclusion simply says that the coatipat
is defined only if child computations write disjoint port®of the
parent’s memory.

We conclude this section with a discussion of what it means fo
an optimization to be correct in our model.



DEFINITION 3.1 (Correctness). Consider progragiandG’. We
sayG’ is acorrect transformatiorof GG if for every outputA of G
whenever

T M+G —T,M
then
T M+-G—T' M"

and M'(A) = M"(A). Thus, a correct transformation preserves
the outputs in the parent memory but not necessarily any ethte

of the memory hierarchy. Also, a correct transformation ringgrt
dependences into a program’s IR, yielding a program whidh wi
have fewer possible executions than the original prograen, (be
more deterministic).

4. Machine Independent Transformations

This section presents the machine independent transfromsahat
our compiler performs. Many of these are recognizable aslara
compiler optimizations recast for hierarchical memoryt imlike
traditional optimizations that may affect a few individymbgram
statements, a single transformation manipulating one orkwk
operations can result in a radical change in the amount opoem
tation performed.

4.1 Copy Elimination

The first three optimizations are referred to collectivetycapy
elimination each attempts to transform the IR to remove an un-
necessary copy operation. Copies may either arise frorfidiesf-
cies introduced in translating from source to an IR prograrheo
exposed by other optimizations.

Intra-memory copy eliminatignillustrated in Figure 1, elimi-
nates a copy within a single memory module. In presentingppur
timizations we depict programs as dataflow graphs, whiawall
us to visually highlight the flow of data and control, the difince
between data and operations, and the level of the memorgrber
where each operation/datum resides. We stress, howeséthth
graphical syntax is equivalent to the text syntax used ini@e8,
and that an equivalent (but less concise) operational strtearan
be given for the graphical representation. In Figure 1, asnde of
Alis copied tdB in the same memory module, and a subranggisf
subsequently used as an input for opera@@X The compiler per-
forms the following steps: (1) it removes both the copy opera
and the data obje®& from the IR, and (2) it adds a scalar operation
to compute the range @ that corresponds to the data that is input

B OpX
In: B [r2]

Figure 1. Intra-memory copy elimination

Figure 2. Spill copy elimination

Mi+1 Mi+1

Figure 3. Duplicate copy elimination

depend either directly or indirectly on the loop’s iteraticariable.

In the example IR in Figure HpXtakes as input a range of the data
objectB which is a function of the iteration variablk, and thus it
cannot be hoisted outside the lodppY, on the other hand, reads

to OpX This transformation saves both the time to execute the copy the same input and performs the same computation on every loop

and the space used to store it. Note that for correctness, ingst
be no other uses @& in the program.

The second copy optimizationsgill copy eliminationdepicted
in Figure 2. The objedC contains a subrange of the original object
Athat was “spilled” from memonj/; to its parent memory/; ;1
and then copied back. Spill copy elimination transforms tiie
copies up and down the memory hierarchy into a single irgvetl
copy, which may itself be eliminated by a subsequent aptticaf
the intra-memory copy elimination optimization. This aopization
greedily prioritizes the exploitation of producer-con®imocality
over the reduction of data object live ranges.

The third type of copy elimination, illustrated in FigureiSdu-
plicate copy eliminationThis optimization detects when an object
is copied twice from a parent to a child memory and elimingtes
second copy, transforming the IR so that the operationgjubia
data share the copy.

4.2 Operation Hoisting

Operation hoisting also known adoop-invariant code motian
moves operatio®p from inside to outside a loop Dp does not

Forall

Figure 4. Operation hoisting



iteration, and hence it can be hoisted outside the loopltiegun
a transformed program IR in whidBpYexecutes just once.

4.3 SPMD Distribution

If an Exec contains &orall the compiler can spread the iterations
over more or fewer child nodes of the hierarchy depending on
what resources are available. Figure 5 presents an exarhiie o
IR transformation that occurs when the compiler SPMD-izes a
Forall for a single node over eight processors at the same level
of the memory hierarchy. First, the compiler introduces\a myid
variable uniquely identifying each child memory to the pang.
Second, th&orall is given a new loop variable’ which iterates
over one-eighth of the original range. Third, a scalar ojena

is inserted into the IR to compute the value of the originalplo
variable as a function of the new loop variable; in this exEmihe
expression i% — myid - t/8 + k.

Mi+1 Mi+1

Exec

Figure 5. 8-way SPMD distribution of &orall operation

A singleExec operation expresses the SPMD execution of a set
of operations over a set of child processors, but note thitiere
the IR nor the compiler are restricted to only executing afiens
in a SPMD fashion. Rather, multiple distinttec operations may
execute concurrently, each over a different set of chile@ssors,
yielding an MPMD execution of a program.

4.4 Operation Scheduling

The semantics given in Section 3 allows an implementaticgeto
lect any execution order satisfying IR dependences.stheduling
transformation, depicted in Figure 6, chooses an operatidering

to optimize some metric, such as execution time. Our cuiirent
plementation uses a simple set of scheduling heuristics:

e asynchronous operations are scheduled as early as possible

OpZbegins. Our scheduling optimization also takesachine de-
scriptionspecifying for each IR operation whether it can be issued
asynchronously on the target machine and how many asynaison
operations may be simultaneously in flight. The compilesubés
information in determining operation ordering.

4.5 Copy Grouping

A property of the machines our compiler targets is that alsing
large copy, which translates into a DMA command or other hard
ware mechanism, is much more efficient than several smaiksop
While the compiler’s IR is designed to manipulate bulk ofierss,
there are always some number of small copy operations (eay-,

ing scalar control variables from one memory to anotherg cpy
groupingoptimization aggregates independent copy operations into
a single copy. Figure 7 illustrates the case where the capéfsom

a parentM;; to a child M;; the resultant bulk copy corresponds
to agatheroperation. Copies from child to parent correspond to a
scatteroperation.

4.6 Exec Grouping

An Exec operation invokes the execution of an IR subgraph on
one or more child processors. The best implementation @kan
depends on the details of the target machine, but typicaky t
means for a processor to start a computation on anothergsoce

is relatively expensive. Thexec groupingptimization, illustrated

in Figure 8, merges independeRkec operations into a single
Exec, resulting in a larger amount of work to do within a single
Exec and lowering the relative overhead. The IR subgraphs in the
transformedtxec are grouped and executed in their original order;
the compiler inserts dependences to ensure this.

One implementation subtlety arises from the possibiligt the
Exec may be parallel over a number of child processors. The se-
mantics of the original IR is that the firSixec runs to comple-
tion on all child processors before any child processorrzsegk-
ecuting the secongxec; there is an implicit barrier between the
Execs. The compiler inserts barriers between @reups in the
transformed IR during code generation (not illustratecher

A second issue arises if twBxec operations with differing
SPMD ranges are merged; that is, if dec is SPMD-ized over a
different set of child processors than the otAgec. The compiler
handles this case by giving the transfornmigekc the union of
the SPMD ranges of the two individuBikec operations, and then
enclosing each subgraph inside the transformwed by anIf that
is guarded by thenyidvariable (see Section 4.3), ensuring that each
IR subgraph is only executed by the same child processorsths i
original IR.

Finally, a third issue is that the target machine may onlyehav
small, fixed space to stage the program’s code binary. Bedhes
IR subgraph contained in a singieec effectively corresponds to
a block of code that will be issued as a single computationé| u

« operations dependent on asynchronous operations are-schedthe compiler should not always greedily groBpec operations

uled as late as possible, and

¢ similar operations are placed together to increase oppitigs
for subsequent grouping optimizations (see below).

Once the compiler has determined an operation orderings it i
serts dependences to enforce this ordering. In Figure 6;dhe
piler has decided th@pXshould execute befo@pY. Because the
IR is a hierarchical graph, the compiler must schedule therap
tions within each IR subgraph.

One property not expressed in our IR is any machine resource
constraints that affect asynchronous execution. For ebgnmd=ig-
ure 6, if OpX can execute asynchronously and there are sufficient
resources, then it should be overlapped with the execufi@py
since its resultB) isn't needed until afte©OpY completes, when

together. There is a tradeoff: “smaftkec operations have a higher
relative overhead due to the cost of making thread calls dostw

Figure 6. Operation scheduling



Copy Copy Copy (gather)
AtoB CtoD AtoB,CtoD

Figure 8. Exec grouping

processors, while “largetxec operations consume more code
space, potentially reducing the space available for thgrara’s
data. The compiler uses a simple heuristic to navigate tadet
off: it assumeXernel operations are heavyweight computational
units and does not group tvigxecs together if they each contain a
Kernel; otherwise, it greedily groupsxec operations to the extent
possible.

5. Implementation
5.1 Cell Hardware Background

In this paper we use the Cell processor as a case study fockin ar
tecture with an explicitly managed memory hierarchy. Thi e

8 processing elements (called SPEs in IBM’s terminologythea
with 4 single-precision SIMD floating point and integer arithroeti
units, a functional unit that executes branches and maatipsival-
ues in thel 28-entry, 128-bit wide local register file (permute, load
and store instructions), Z56KB local store (holding both data and
instructions), and &emory Flow ControlleMFC) DMA unit for
bulk requests to memory staged through the local store. TRE€ M
performsl6-byte aligned DMA-style accesses to sequential blocks
that are a multiple of6 bytes in length. Many such requests can be
combined into a single asynchronous bulk operation vialth&\

list mechanism ([22]-Subsection 7.4). DMA lists are traversed b
the MFC, which asynchronously issues a request for each-spec
fied memory address in order, and synchronizes with theragitic
units in the SPE once the entire list is processed. The MF&=sac
an XDR-DRAM based memory system. In addition to th8PEs
the Cell also contains a PowerPC processing core that cae anak
bitrary accesses to off-chip memory through a hardware geha
cache hierarchy. Cell's Element Interconnect Bus can bd fe
horizontal SPE to SPE communication though in this paperniie o
utilize this feature for inter-SPE synchronization sinca@ of our

benchmarks exhibit a speedup from such communication. ¥he e
ploitation of inter-PE communication paths within a maehimod-
eled as a tree of memories is a subject of ongoing research.

Ml

DRAM / PPH

512MB
Mgl MZ | M@ | M| MS| Mg M| M@
LS/SPH |LS/SPE |LS/SPH |LS/SPE |LS/SPH |LS/SPE |LS/SPH |LS/SPE

256KB 256KB 256KB 256KB 256KB 256KB 256KB 256KB

Figure 9. Cell processor’s abstract machine model

Figure 9 depicts the abstract machine model corresponding t
the Cell processor used in our compiler evaluation. It ise tr
in which the off-chip DRAM is the root and thg LSes are its
children.

5.2 Compiler Implementation

In this section we describe the implementation of a compitexed

on the IR execution model presented in Section 3 and which fea
tures the IR-to-IR transformations detailed in Sectionigufe 10
shows our compiler's various passes and their internalriomgle
with respect to each other. The three copy elimination aadth
eration hoisting optimizations are applied iterativelye tompiler
will continue to apply them until it has applied all four incaes-
sion without any of them resulting in the program'’s IR beirags-
formed, at which point it will move on to the SPMD distributio
pass.

Copy Data
Parser . ; N
copy elim. grouping padding
IR Duplicate SPMD Exec Space
generatiol copy elim. distributiol grouping allocation
Operation Operation Software Code
hoisting schedulini pipelining generatio

Figure 10. Phase ordering of compiler passes; white boxes are
passes that are required for correct operation, consigftlie min-
imum compilation infrastructure needed to just get a progte

run, and grey boxes are optimizations which aim to boostnarg
performance

5.2.1 Compiler Front-end

Our compiler accepts programs written in t8equoia[16] pro-
gramming language. Sequoia is a language which was designed
enable portable, high-performance programming of mashivith
explicitly managed memory hierarchies. It makes expliud hier-
archy of bulk computations and bulk data transfers that oaon-c
piler's IR is centered around. Syntactically, Sequoia Eeasally

C with some language extensions. Note that due to congtraimnt
posed by the Sequoia programming language, in particudiaitt
that programs are expressed as a hierarchy of isolatedafraie-
cution, our compiler does not need to worry about pointersitig,
memory consistence, or any of the other factors that makg-tra
tional C code difficult for compilers to target to parallestiibuted
machines such as Cell.



We modified the ELSA [29] C/C++ parser to accept Sequoia
programs and produce a standard AST data structure. ThiSAST
then converted to our compiler’s IR in a two-step processeéth
task (function) in the program is individually convertedit®own
IR comprising input and output data objects and a (hieraathi
graph of operations and local data objects, and then (2)otmpiter
statically coalesces the individual task IRs through taslsites to
produce specialized IR graphs which span multiple funetiarthe
task call graph. The IR-to-IR compiler transformationsaléed
in Section 4 are applied within a single IR graph.

5.2.2 Cell Machine Description Specification

The scheduling optimization (Section 4.4) utilizes a maehie-
scription file that each compiler target must provide. Thé @a-
chine description file expresses titatpy operations executed by

The compiler also emits the appropriate partial iteratimngrime
and drain the pipelined loop (not illustrated).

On Cell, the aim of software-pipelining is to overlap therasy
chronous DMA transfers that implement ti@®py,,, ,,, and
CopY s, 2z, OPErations wittkernelay, operations, and given that
there are only two resources (the SPE processor, that essthe
kernels, and the MFC unit, that issues DMAS), the maximum pos
sible performance improvement due to software-pipelimingCell
is 2x. Further, in the event that one of either kernel conmmna
or memory transfers dominates the runtime of the applinatize
gain from software-pipelining will be significantly lessati 2x.

Note that as with all other optimizations in this paper, safte-
pipelining operates at the granularity of bulk operatiomgerlap-
ping coarse-grained data transfers with large computaltiker-
nels. As such, it is distinct from any software-pipeliniogp trans-

the SPE between the Cell's LS and DRAM may be issued asyn- formations that may be applied by low-level compilers sush a

chronously with other operations, and in particular wiérnel
operations, as the Cell SPE hardware provides an asynaisono
DMA controller (theMFC unit).

5.2.3 Data Padding

Correct execution on Cell requires all arrays to be padded to
multiple of 16 bytes in length in their innermost (row) dimen
sion, ensuring that each row begins on a 16-byte boundarthétu
all data transfers (copies) must be padded to a 128-bytellgian
ity for increased DRAM throughput. Cell's memory systemés d
signed to achieve peak performance when transfers are dadge
aligned, with short and/or non-aligned transfers achigwignifi-
cantly lower DRAM bandwidth.

The compiler implements data padding as an IR-to-IR trans-
formation which comprises the following steps: (1) everyadab-
jectin the IR (containing an annotation detailing its sizg)added
by changing these annotations to reflect the above contstraind
(2) anyScalar expression that computes the range of a data ob-
ject that an operation uses will be updated such that theatipar
will use the same logical data range, despite the data obfaing
been physically increased in size. Data objects may be digadyn
sized, in which case their size-related IR annotations tef@ro-
gram variables rather than constants.

5.2.4 Software-Pipelining

Our compiler implements a simple software-pipelining sfanma-
tion taking aForall operation on the LS/SPE level of the ma-
chine and running multiple iterations in parallel, oveday oper-
ations from different iterations for increased hardwaiiézation.
The software-pipelining algorithm comprises the follog/steps:

¢ the dependence graph, now linearized by scheduling ($ectio
4.4), is split into stages such that any operation that waits
the completion of an asynchronous operati®nis in a later
pipeline stage thaX;

o for a resultingV-stage pipeline, all variables with scope inter-
nal to theForall are replicatedV times so thatV loop itera-
tions can be run in parallefr(odulo variable expansidi26]);

e theForall loop is transformed by enclosing its contained IR
nodes inGroup operations, one per pipeline stage; and

e theForall loop is emitted in the following manner:

for (k' = start : end— N +1) {
Group'[k — k' 4+ N —1];
Group’[k — k' + N — 2;

Group™ [k «— k' 4+ 0];

}

GCC, since these operate at the granularity of programuictibns.

5.2.5 Space Allocation

The allocation phase reserves the space where each data obje
resides for its lifetime in an explicitly managed memory mied
Unlike cache-based architectures, logically contiguoais anust
be stored physically contiguously in the local memory, and s
the problem of allocating space for data objects is bin-pack
a two-dimensional space-time grid. One grid axis reprastrg
contiguous range of addresses consumed by the data obgkittean
other axis represents the interval of time it is allocatezteh An
example is depicted in Figure 11, in which the IR snippetskoag
diagram (on the right) is interpreted as follows: an operatsuch
asOpX must have all of the data that it is using (its inputs, ougput
and local data) simultaneously resident in the memory tjinout
its executionOpXrequiresC andD to be resident, in this example.
If an operation refers to data objects in multiple memorelsy
then these data objects must similarly be resident in theoppipte
memories throughout the operation’s execution.

Max

0 Space in Nl (240KB)
| |
OpwW A: 100KB c
1B 60KB | |
g OPX | 5oka
= D
OpY 60KB E L
B 140KB
OPZ | 4oxe

Figure 11. Space allocation

Our packing heuristic is adapted from [28] and is described b
low. We first compute the live ranges of data objects using the
scheduled order, generate timerference graph(nodes are data
objects and edges imply overlapping live ranges), andaihitallo-
cate all objects to addresgfor the duration of their live range. We
then greedily modify the allocation such that no two objesttare
the same space at the same time. We select the next objewlto
izeusing the following priorities: the object has the lowestigss;
overlaps with the largest number of other objects; requivesnost
space. The object is finalized, shifting the allocation dbajects
it interferes with to higher addresses. This process isatepleuntil
all objects are finalized. Packing may fail if an object'sa#ition
exceeds the space of the memory module, at which point the com
piler provides feedback to the programmer, who must thenemak
the appropriate modifications to either their source pnogoa the
compiler’s command-line options.

For Cell, in addition to allocating and packing data objeats
location also ensures data objects Hebyte-aligned and reserves
space in the local stores for the compiled SPE code.



5.2.6 Code Generation

The final phase of our source-to-source compiler, code génar
comprises the emission of the C code that will be compiled by
the target's low-level compiler. The compiler emits twossef C
output files for Cell, one to be compiled using GCC 4.0.2 foif'€e
PowerPC control processor (PPE) core and the other to beileamp
by IBM’s XLC compiler for the SPEs.

Exec operations executing on the control processor make thread
calls to execute operations on the SPEs. The cost of laumehin
new Cell SPE thread for each SPE operation using the libspesSD
spe_thread_create proved prohibitively costly, and so to avoid
using system threads we implemented event loops on the SPE’s
The compiler creates a single system thread on each SPE-at pro
gram start, which idles until it receives a command from ietiol
processor to execute a block of SPE code. When such a callspccu
the SPE executes the specified code, synchronizes (if rmagess
with the other SPEs using Cell’s inter-SPE communicatiod, r&-
turns to idling when done, waiting for the next control conmzia
These control commands are issued using Ceibslbox mecha-
nism ([22]-Subsection 8.6).

This approach allows operations to be launched onto the SPEs,

SAXPY
SGEMV
FFT3D

BLAS L1 saxpy performed on 32 million word vectors.
BLAS L2 sgemv using 8192x4096 matrix.

Discrete Fourier transform of a comples6® dataset. Com-
plex data is stored in struct-of-arrays format.

BLAS L3 sgemm, multiplying matrices of siz€)96x4096.
Convolution of a5x5 filter with a4096x8192 input signal.

SGEMM
CONV2D

GRAVITY An O(N?) N-body stellar dynamics simulation on 8192 par-
ticles for 100 time steps. We are using Verlet update and the

force calculation is acceleration without jerk [19].

Fuzzy protein string matching using Hidden Markov Model
evaluation. The Sequoia implementation of this algoritism i

derived from the formulation of HMMER-search for graphics

processors given in [21] and is run on a large fraction of the
NCBI non-redundant database.

HMMER

Table 2. Benchmarks used for evaluation

SAXPY
SGEMV
FFT3D
SGEMM

2.8GFLOP/s
9.1GFLOP/s
45.3GFLOP/s
96.3GFLOP/s

CONV2D
GRAVITY
HMMER

57.8GFLOP/s
83.3GFLOP/s
9.9GFLOP/s

with modest overhead. However, compiling all operatiorts ia
single SPE binary often results in a code text region consgrai
large fraction of, or even exceeding, each SPEEKB local store.
To minimize code footprint while still allowing general aatb be
executed, we compile the IR subgraph within each 8k into a
separate SPE overlay. Overlays are loaded dynamically [8Pdnh
from off-chip memory when it receives a message from therobnt
processor (PPE) to execute a block of code. Local store dpace
reserved for the overlay code text in the space allocati@s@lof
the compiler (recall Section 5.2.5).

Overlay loading is not overlapped with SPE computationesinc
experiments showed that the tiny gain in SPE utilizatiomfuch
a strategy (for our benchmarks) was offset by a very largéoper
mance loss due to the reduction of local store (LS) spacéainei
for program data. Typically, Sequoia programs compiledGetl
yield a small number of large overlays, rather than numesoul|
overlays, due to the optimized kernel code taking a largeusninof
space.

6. Evaluation

Our evaluation focuses on the utility of the compiler and diie
fectiveness of its transformations. We implemented seethy
marks in Sequoia (described in Table 2), compiled them wiith d
ferent optimization combinations, and collected execusimtistics
on an IBM BladeCenter fitted with a blade containing a Cell-pro
cessor operating &4GHz accessing12MB of system memory
(see Section 5.1). Subsections 6.1 and 6.2 report the bperébr-
mance results for the benchmarks and Subsection 6.3 evslilet
effects of compiler optimization.

6.1 Raw Performance Measurements

Table 3 presents the raw performance numbers measuredctor ea
of our seven benchmarks on a single Cell proceddutting these
raw numbers into perspective via direct comparisons witfeiot
Cell compilers is difficult, as there are very few Cell corepsl
available. IBM’s Octopiler [15, 14] and the Barcelona Sugoen-
puting Center’s CellSs [3] compiler are both optimizing qolers
that automatically exploit application parallelism toger the Cell

1These raw performance results were also listed in [16], ghosmall

differences are present due to changes in the OS, kernelydircompiler,
and library versions installed on our Cell blades. Furtaamall amount of
additional hand-tuning of kernels was performed here.

Table 3. Measured raw performance of each benchmark (single
precision)

processor, however raw performance numbers have yet totbe pu
lished from either project, making a comparison impossiRbgpid-
Mind Inc. [33] is developing a commercial programming syste
for Cell in which the programmer expresses parallel openatover
collections of data, with a runtime system aggregatingetuser-
ations into bulk computations and distributing them over@ell's
SPEs, but we are not aware of any published Cell performasice r
sults using RapidMind’s tools for any of our benchmarks.

Given the lack of comparison data from other Cell optimizing
compilers, we use the best known hand-tuned implementatibn
our benchmarks as a basis for comparison. IBM’s large FFTamp
mentation runs at 46.8GFLOP/s on a 3.2GHz Cell processor [9]
a result comparable to the 45.3GFLOP/s that our implementat
of FFT3D achieves on a 2.4GHz Cell. Mercury Computer Systems
published a 116 GFLOP/s performance result [10] for a 1D FFT o
a 64K-element dataset on a 3.2GHz Cell, however this dasa=e=t
was chosen to perfectly fit the Cell's on-chip local stores #ius
avoids the cost of cycling data through off-chip DRAM; ourTFF
implementation operates on a 16M-element dataset, as BbEs.|

Computing at a rate of 3.5 billion interactions per second, o
GRAVITY implementation on Cell is 52% faster than the custom
hardware of GRAPE-6A [19]. Finally, our Cell implementatiof
HMMER is 5% faster than ClawHMMER [21], an implementa-
tion of the same program on an ATl 1900XT graphics processor.
ClawHMMER was demonstrated to outperform hand-tuned CPU
implementations.

6.2 Hardware Utilization Measurements

Our compiler is designed to optimize a hierarchy of bulk agiens
and attempts to maximize the utilization of hardware resesir
The compiler's ability to schedule the operations is appane
the results presented in Figure 12, in whBGEMM, CONV2D,
GRAVITY , andHMMER are compute limited and fully utilize
the SPEs’ arithmetic resources by running the program’sptem
tational kernels for close t800% of the execution time. The only
way to improve the performance of these benchmarks would be t
further fine-tune the kernels, which is outside the scopaiotom-
piler; we assume thatkernel is an externally-provided unit that
will be executed as-is. FEBGEMM, for example, we use IBM’s
liblarge matrix routine as the kernel.
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Figure 12. Measured utilization of Cell's compute and bandwidth
resources for each benchmark

In contrastSAXPY, SGEMV andFFT3D are bandwidth lim-
ited and our compiler schedules operations in a manner ¢hat i
within 10% of the optimal DRAM throughput of our Cell sys-
tem (17.5GB/s). As there are no duplicate or otherwise ugsiec
sary memory transfers being performed in any of these pnogra
(which we verified by inspecting the compiler’s output), tree
source utilization graph demonstrates that the compilexesuting
the bandwidth-limited benchmarks at or near the highedoper
mance possible on the target machine.

6.3 Evaluation of Optimizations

Table 4 details the number of times each optimization wasiexpp
on each benchmark, and Figure 13 illustrates the loss iroperf
mance when optimizations are progressively disabled: baobh-
mark’s left-most bar corresponds to its measured runtinig all
optimizations enabled, and the bars to its right depict éselting
execution times with optimizations successively disapfetmal-
ized to the all-optimizations-on runtime. The scale on thapg is
non-uniform to emphasize differences in the 1x to 2x rangéewh
providing a dynamic range of 1000x+.

We now discuss the results in Figure 13 in more detail. Thg cop
grouping optimization makes little difference for Cell grams
because the hardware DMA controller performs copy grouping
issuing the program’s copy operations as simultaneousfiight
DMAs. Exec grouping was clearly effective, however, increasing
the performance (measured in GFLOP/s) of four of the bendksna
by 13-175%.

Software-pipelining increased three benchmarks’ peréorce
by 30-47%. The software-pipelining implementation is boih
top of the scheduling transformation, which orders opensatito
maximize concurrency. With software-pipelining disabldg dif-
ference between a naive schedule and an efficient schedslatwa
most 4% in any benchmark’s performance.

Intra-memory copy elimination aiddeFT3D andGRAVITY ,
both of which exhibited intra-main-memory copies resgjtfrom
the “copy in, copy out” calling semantics of the source |aagg!
The results clearly demonstrate the necessity of sucdbsefti-
mizing away all of these copieBfT3D'’s runtime was three orders
of magnitude larger without this optimization being penfied, re-
sulting from its dataset exceeding the 512MB DRAM capaaity a
being paged to disk. The spill copy elimination and dupéazdpy
elimination optimizations were also effective for thes® twench-

marks, reducing the number of copies between the LS and main

memory. Finally, operation hoisting increased the perforoe of
five out of the seven benchmarks by 6-58%.

Figure 14 illustrates the effectiveness of the SPMD distitn
transformation, in which the compute-heavy benchmarkie dca
early with the number of SPEs and the bandwidth-limited henc
marks scale with the available off-chip bandwidth.

w|FFT3D
a| GRAVITY
2| HMMER

Total number of bulkopy ops

o |9 SAXPY

o |®|SGEMV
o |®|SGEMM
o |«@|CONV2D

Intra-mem. copy elim.: num-
ber of bulkCopy ops eliminated

Spill copy elim.: number of
bulk Copy ops eliminated

Duplicate copy elim.: number
of bulk Copy ops eliminated

Total number of ops

Operation hoisting: number of
ops hoisted out of loops

w
®
IN

86 | 154| 412| 186| 124| 731| 280

0 1 6 2 1 8 8

Copy grouping: number of

Copy grouping steps — 1) 13 | 25 59 34 21 120| 54
Operation scheduling: number

of dependences added to IR 39 | 62| 208) 84 | 55| 377| 118
Total number ofxec ops 5 18 | 59 | 6 8 18 | 16
Exec grouping: number of 3 16 | 55 5 7 11| 14

Exec grouping steps — 1)
Total number of loop nests 1 1 3 1 1 7 1
Software-pipelining:
of loops pipelined

number |, gl 3 11| 7] 1

Table 4. Measured counts of optimization usage

g “-<-- SAXPY
— - - SGEMV
— A— FFT3D
S 6] —— scEmm
3 —-+—- CONV2D
o 4- — e GRAVITY
2 e MMER T eesiIIIITTIICIUSTIILIIIIIITCICCIUIUg
0 T T T 1
1 2 4 8
Number of SPEs

Figure 14. Performance increase due to SPMD-ization over SPEs

6.4 Compilation Time

Compilation times of our compiler are negligible comparedtte
time that the Cell platform compilers take to generate maehi
code. For example, FFT3D (one of our slowest programs to com-
pile) takes 12s to compile on our desktop machine, 0.65s aftwh

is spent in our compiler, with the remainder spent in XLC af@33

by far the most time-consuming aspect of compiling a Seqou@a
gram for Cell is the compilation of kernels by these low-les@m-
pilers. Our compiler uses greedy heuristics to solve alickeprob-
lems, and iterates through the loop over the first group dfropa-
tions in Figure 10 less than 100 times for all of our benchmark

7. Related Work

Our machine model is similar to the Parallel Memory Hiergrch
Model (PMH) [2]: both models use trees of memories to model
parallel machines. While the PMH model was used to analyze
algorithm performance, we directly use a tree of memories as
an execution modebf a machine, with IR transformations being
defined with respect to this execution model.

The programming system for the Imagine processor [23, 28, 13
addresses the problems of scheduling bulk operations in-devel
hierarchy and allocation of local storage. Our compiler is@gen-
eral, in that it can operate on any number of levels in an eitjyli
managed memory hierarchy, can schedule and allocate oesoatr
multiple scales of the application and architecture, corabiboth
control and bulk operations in a single IR, represents argets
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Figure 13. Normalized benchmark execution times with optimizatioregpessively disabled

SPMD mappings and SPMD systems, performs necessary copy-what we believe to be the minimal set of issues any compiler fo
elimination transformations, and manipulates N-dimemzialata this class of machines must address and demonstrated atiossel
objects with N-dimensional bulk transfers and complex bldwk by compiling benchmarks for the Cell processor.

derivations.

Eichenberger et al. presents the current status of the 1Bkt co
piler for the Cell processor [15, 14], in particular disdagscode
generation for Cell's PEs, including automatic vectoiaatand
SIMD alignment. They also address some of the transformsitio
required to utilize local stores and manage code overlagisirT
implementation focuses on a two-level memory hierarchy,anid
they describe a dynamic software cache approach to cangrotie
local stores, as opposed to our static compilation solution

Previous work on SPMD languages has shown that optimiza-
tions for two-level hierarchies can have significant perfance
benefits [27]. Compilers for Titanium [36], Co-array Fortif@1],
UPC [6], and ZPL [7], target SPMD style parallelism across an
entire machine and focus on fine-grained “horizontal” (ingra-
memory-level) communication between processors. Theersy
recognize the importance of localization, but current ienpen-
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