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Abstract

Data-parallel memory systems must maintain a large
number of outstanding memory references to fully use in-
creasing DRAM bandwidth in the presence of rising la-
tencies. Additionally, throughput is increasingly sensitive to
the reference patterns due to the rising latency of issuing
DRAM commands, switching between reads and writes, and
precharging/activating internal DRAM banks. We study the
design space of data-parallel memory systems in light of
these trends of increasing concurrency, latency, and sensi-
tivity to access patterns. We perform a detailed performance
analysis of scientific and multimedia applications and micro-
benchmarks, varying DRAM parameters and the memory-
system configuration. We identify the interference between
concurrent read and write memory-access threads, and bank
conflicts, both within a single thread and across multiple
threads, as the most critical factors affecting performance.
We then develop hardware techniques to minimize throughput
degradation. We advocate either relying on multiple concur-
rent accesses from a single memory-reference thread only,
while sacrificing load-balance, or introducing new hardware
to maintain both locality of reference and load-balance
between multiple DRAM channels with multiple threads. We
show that a low-cost configuration with only16 channel-
buffer entries achieves over80% of peak throughput in most
cases.

1. Introduction

The performance demands of multimedia and scientific
applications continue to rise rapidly. While data-parallelpro-
cessors have been scaling to keep pace with the computation
demands, memory system performance has increased at a
slower rate and hence has become a bottleneck. In this paper
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we focus on the performance trends of DRAM and their
effect on memory system architecture.

The demand for aggregate memory bandwidth is met by
building memory systems using multiple address-interleaved
memory channelsand implementing each channel using high-
bandwidth DRAM components. Suchdata-parallel memory
systems(DPMSs), however, are very sensitive to access
patterns. This sensitivity is compounded by the fact that the
latency of modern DRAMs has been improving very slowly.
Therefore, to achieve high performance on a data-parallel
memory system, an access pattern must have sufficient par-
allelism to saturate the memory bandwidth while tolerating
memory latency – i.e., the number of outstanding memory
references must equal at least the product of bandwidth and
latency. Additionally, to reduce sensitivity and maintainnear-
peak throughput, the access pattern must also exhibit locality
to minimize activate/precharge cycles, avoid bank conflicts,
and minimize read-write turnaround penalties.

To achieve the required levels of concurrency, DPMS
designs have turned to the inherent parallelism of memory
references common to multimedia and scientific applications.
A characteristic of these application domains is multiple
streams or threads, each containing a large number of
memory accesses. For example, in a vector [?] or stream [?]
processor, each vector or stream load or store is athreadof
related memory references. Also, in a DSP with a software
managed local memory, each DMA transfer to or from local
memory is athreadof memory references. A DPMS exploits
this parallelism by generating multiple references per cycle
within a thread, by generating concurrent accesses across
threads, or both. Accesses from the same thread tend to
display locality, yet this locality may lead to load imbalance
between the different channels and lower the effective band-
width. Load balancing is achieved by interleaving accesses
from multiple threads at the expense of locality and poten-
tially reduced performance due to access-pattern sensitivity.
Based on current technology trends, our experiments show
that this loss of locality is particularly problematic whenbank
conflicts occur within a single DRAM, and when threads
performing reads and writes are interleaved. The reason is
the long delays associated with switching between read and
write accesses, and between rows within a single bank, on a
modern DRAM.

A second memory-system architecture trend is to rely
on long cache lines and long DRAM bursts. Long DRAM



bursts are used to maintain high bandwidth from a single
DRAM in face of rapidly increasing access latencies. Since
DRAM commands must be separated by several cycles,
long bursts are used to utilize internal DRAM bandwidth.
However, this large granularity introduced by the memory
system does not always match application access granularity.
For example, if an application performs random references,
only a fraction of each long burst contains useful data and
effective performance is significantly reduced.

In this paper, we explore, in detail, the design space of
data-parallel memory systems [?] in light of these new trends
in modern DRAM architectures and application characteris-
tics. We experiment with several scientific and multimedia
benchmarks as well as micro-benchmarks, and show that
the most critical performance factors are high read-write
turnaround penalties and internal DRAM bank conflicts.
A second important aspect is the detrimental effect of in-
creasing burst lengths on applications that display random-
access memory reference patterns. To better characterize
this trend, we develop an accurate analytical model for the
effective random-access bandwidth given DRAM technology
parameters and the burst-length. A sensitivity study of the
amount of hardware buffering shows that a reasonable16-
entry channel-buffer achieves near-maximal performance.We
also experiment with varying DRAM timing and measure a
significant bandwidth drop as latencies are increased when
multiple threads are accessed concurrently and when the
applications display random-access patterns.

Based on our experimental results, we develop techniques
for improving the effective bandwidth of modern DPMSs.
Our designs are based on the observation that locality and
interference are the most critical factors affecting modern
DRAM performance. We investigate using a single, wide
address generator, which sacrifices load-balancing in favor of
locality, and suggest a novelchannel-splitarchitecture that
regains load-balance through additional hardware.

The main contributions of the paper are summarized
below:

• We establish that the sensitivity of DRAM throughput
to application access patterns is increasing rapidly as a
result of the growing ratio between DRAM bandwidth
and latency.

• We detail the design space of DPMSs, and explore
performance behavior in light of DRAM technology
trends.

• We show the importance of maintaining locality due to
the high access-pattern sensitivity.

• We suggest a DPMS design that focuses on locality, and
introduce the novel channel-split DPMS configuration
that achieves locality without sacrificing channel load
balance.

• We identify the trends of large granularity DRAM
bursts, and long-latency DRAM commands, as a po-
tential problem affecting the throughput of applications

SDRAM DDR2 GDDR3 XDR
Pin bandwidth (Mbps) 133 667 1600 4000

tCK (ns) 7.5 3 1.25 2

tRCDW \tRCDR (tCK ) 3\3 4\4 8\12 3\7

tCWD\tCAC (tCK ) 0\3 3\4 6\11 3\7

tRC (tCK ) 9 17 35 20

tRR (tCK ) 2 3 8 4

tDWR\tDRW (tCK ) 1\4 8\4 14\9 10\9

tWRBUB\tRWBUB (tCK ) 0\1 0\1 2\2 3\3

Minimum burst (tCK ) 1 2 2 2

Table 1: DRAM timing parameters based on [?], [?], [?],
[?]

that perform random accesses, and develop an accurate
analytical model for the expected effective bandwidth.

The rest of the paper is organized as follows: Section 2
summarizes the characteristics of modern DRAM architec-
tures; Section 3 explores the design-space of data parallel
memory systems; Section 4 details the experimental setup;
Section 5 presents results for our application benchmarks;
Sections 6 and 7 discuss sensitivity studies and trends; and
Section 9 concludes the paper.

2. DRAM Architecture

In this section we briefly summarize the pertinent details
of modern DRAM architectures. More complete descriptions
can be found in related publications [?], [?], [?].

Modern DRAMs, such as SDR, DDR, DDR2, GDDR3,
RDRAM, and XDR, are composed of a number of memory
banks where each bank is a two-dimensional array. A loca-
tion in the DRAM is accessed by an address that consists
of bank, row, and column fields. For efficiency, row and
column addresses are delivered through a single set of chip
pins, and read and write data share a bi-directional data path
from the pins to the sense amplifiers. Additionally, all the
banks within a DRAM share the request and data paths.
As a result of this minimalistic hardware, accessing data
in a modern DRAM must adhere to the rules and timing
constraints detailed below.

Since all the row and column fields of a DRAM address
share the same data-path, multiple DRAM commands are
required for accessing a particular location. First, an entire
row within a specific DRAM bank isactivatedusing a row-
level command. Then, after the activation latency has passed,
any location within that row can be accessed by issuing
a column read or write command.Internal bank conflicts
occur when two successive requests hit different rows of the
same bank. In such an event, the current row must first be
prechargedbefore the new row can be activated. Hence, this
second access requires two row-level commands (precharge
and activate) followed by one column-level command (col-
umn read or write).

Table 1 shows key timing parameters of several DRAM
generations. The table shows that as DRAMs evolve, laten-
cies (in cycles) and access granularity are increasing. At the



Symbol Definition
AG address generator
CB channel-buffer
lB number of words in a DRAM burst
lR number of consecutive words requested by applica-

tion (record-length)
MAS memory access scheduler

MC memory channel
mC number of DRAM commands for accessing an in-

active row
nAG number of address generators

nB number of internal DRAM banks
nCB number of channel-buffer entries
nMC number of memory channels

RB memory reorder buffer
tCK minimum time between two DRAM commands

tdWR write to read turnaround cycle latency
tRC activate-to-activate cycle latency within a single in-

ternal DRAM bank
tRR activate-to-activate cycle latency across two internal

DRAM banks
W peak DRAM bandwidth (words per DRAM cycle)

Table 2: DPMS nomenclature

same time, DRAMs are becoming more sensitive to access
patterns as follows. Data pin bandwidth has been increasing
rapidly while command bandwidth, specified by the number
of cycles between two DRAM commands (tCK ), has been
increasing more slowly. This results in increasing access
granularity, since each command must refer to a growing
number of DRAM locations. Additionally we observe higher
timing sensitivity to the actual access pattern. The time to
read or write data on an idle bank (tRCDW + tCWD

for reads andtRCDR + tCAC for writes) rises, requiring
the memory system to be more deeply pipelined. Also, the
interval between successive row activations to the same bank
(tRC ) has been increasing rapidly, making internal bank
conflicts more costly. Even with no bank conflicts, the latency
of consecutive row activations to different banks (tRR) has
been growing, widening the gap between sequential-access
and random-access performance. Finally, because internal
data paths are shared between reads and writes, a write
command followed by a read must be separated by a penalty
of tDWR+tWRBUB cycles (tDRW +tRWBUB cycles for
a read followed by a write). This bus turnaround time has also
been growing over time, making DRAM performance more
sensitive to interleaved reads and writes. Taken together,
these trends show that DRAM performance is now very
sensitive to the access pattern applied, leading to varied
issues and tradeoffs in DPMS design, which we discuss in
the next section.

3. Data Parallel Memory Systems

Data-parallel memory systems extract maximum through-
put from modern DRAMs by exploiting parallelism and lo-
cality. Parallelism is utilized by pipelining memory requests
to high-bandwidth DRAM components and also by inter-
leaving accessing over multiple memory channels. DPMSs
use memory access scheduling[?] to enhance locality by
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Figure 1: Canonical data-parallel memory system

reordering memory accesses. This reordering improves per-
formance by reusing open rows and by minimizing internal
bank conflicts and read-write turnaround penalties.

Figure 1 shows a canonical DPMS that moves data be-
tween on-chip storage and one or more channels of off-
chip DRAM. Table 2 summarizes the nomenclature used
throughout the paper. Requests from the processor to perform
memory operations are expanded into individual memory
addresses by one or more address generators (AGs). To sup-
ply adequate parallelism, each AG is capable of generating
multiple addresses per cycle, and several AGs may operate in
parallel, with each generating accesses from different threads.
Each access is routed to the appropriate memory channel
(MC) via a crosspoint switch. The memory channel performs
the requested accesses and returns read data to a reorder
buffer (RB) associated with the originating AG. The optional
RB collects and reorders replies from the MCs so they can
be presented to the processor and on-chip storage in order.1

Within each MC, miss status holding registers
(MSHRs) [?] act as a small non-blocking cache, keeping
track of in-flight references and performing read and write
coalescing of the requested accesses. The width of each
MSHR entry is equal to the DRAM burst length. Accesses
that cannot be satisfied by the MSHRs are forwarded to
the channel-bufferto be scheduled. The memory controller
schedules pending accesses in the channel-buffer, selecting
one access during each DRAM command cycle, sending the
appropriate command to the external DRAM, and updating
the state of the pending access. Note that a single memory
access may require as many as three DRAM commands to
complete. The number of channel-buffer entries determines
the size of the scheduling window used by the memory
controller.

In the following paragraphs we examine the design options
for each DPMS component, and identify critical issues that

1If a RB is not used, the on-chip storage must be capable of handling
out of order replies from the memory system.



arise from DRAM technology trends.

3.1. Address Generators

The design space of AGs consists of the number of AGs,
the number of addresses each AG can generate each cycle
(AG width), and the expressiveness allowed in the request
streams.

Number of AGs: The number of AGs in a DPMS can
be varied to trade off inter-thread parallelism for intra-thread
parallelism. This tradeoff affects load balance across MCs
and the locality of the resulting merged access stream. Sev-
eral recently reported DPMSs [?], [?] use multiple AGs that
can each generate a small number of references per cycle.
This approach exploits parallelism mostly across memory
reference threads, and improves load balance across MCs
by combining references from multiple threads to even-out
an unbalanced pattern from a single thread. Such access
interleaving, however, reduces locality leading to decreased
throughput as evidenced by the results in Sections 5 and
Subsection 6.1. To avoid the loss of throughput due to
such inter-thread interference, we suggest using a single
wide AG, that generates many accesses per cycle, in place
of multiple narrow AGs. This approach uses intra-thread
parallelism in place of inter-thread parallelism to keep the
memory pipeline full without sacrificing locality. However,
it can suffer from MC load imbalance. In Subsection 3.4 we
introduce achannel-splitmemory system organization that
maintains both load balance and locality.

AG Width: The AG width (the number of accesses each
AG can generate per cycle) determines the aggregate address
bandwidth. When using multiple AGs, performance may be
increased by providing more total AG bandwidth than the
MCs are capable of handling. This allows the DPMS to main-
tain throughput even when the available thread parallelism
is low. Providing excess AG bandwidth allows the memory
system to adapt — exploiting intra-thread parallelism when
it is available and falling back on inter-thread parallelism at
other times.

AG Expressiveness: The simplest AGs handle only
unit-stride access streams. To handle a wider range of
applications, more sophisticated AGs handle bothstrided
and indexedstreams where each request is a sequence of
consecutive words (i.e., arecord). Strided access streams
have a constant distance between records, whereas indexed
(gather/scatter) streams make arbitrary record references.

3.2. Memory Access Scheduling

Memory access scheduling is used to reorder the DRAM
commands associated with pending memory accesses to
enhance locality and optimize throughput. We briefly ex-
plain MAS scheduling policies below and a more detailed
description is available in [?].

Theinorder policy makes no attempt to increase local-
ity, issuing both row and column commands as they arrive.

When the access pattern causes interference in DRAM, this
policy results in very poor performance.

The inorderla policy issues column commands in
order but looks ahead and issues row commands early, when
they do not interfere with active rows or earlier pending
column commands. This policy requires simple hardware
and noticeably improves performance as shown in Subsec-
tion 6.3.

With thefirstready policy, the oldest ready reference
that does not violate DRAM timing constraints is issued to
the DRAM. This reference may bypass older requests that
are not ready to issue due to interference.

The opcol, oprow, clcol, and clrow policies all
perform out-of-order scheduling to improve DRAM com-
mand locality.Open policies (op*) issue a row precharge
command when there are no pending accesses to the row
and there is at least one pending access to a different row
in the same bank.Closedpolicies (cl*), on the other hand,
precharge a row when the last available reference to that
row is performed even if no other row within the bank is
requested. Closed policies can take advantage of DRAM
auto-prechargecommands, which combine a precharge with
a column read or write. When all else is equal,*col policies
choose a column command, while*row give priority to row
commands.

In this paper we show that while reordering references can
lead to significantly improved DRAM throughput for indexed
accesses, the specific scheduling policy chosen for reordering
has only a second-order affect.

In addition to the scheduling policy, the channel-buffer size
also affects performance. The deeper the buffer the greater
the opportunity for the scheduler to discover and exploit
locality. This is particularly important in the case of indexed
reference patterns where successive references contain little
locality.

3.3. Memory Channels

The design space of the memory channels includes the
total number of MCs, the method of interleaving accesses
across MCs, the number of MSHRs, and the channel-buffer
depth.

Number of MCs: The number of MCs sets the peak
memory bandwidth. More MCs provide more throughput at
the expense of higher system cost. However, as mentioned
above, care must be taken to ensure that the memory requests
can be balanced among the MCs.

Address Interleaving Method: With multiple MCs,
an interleaving policy is used to perform a mapping from a
memory address to a MC. With direct interleaving, the MC
is selected based on the low bits of the memory address.
This simplistic distribution scheme can lead to transient
load imbalance between channels when record lengths are
large (Subsection 6.5). Pseudo-random interleaving, sug-
gested in [?], alleviates this problem by basing the mapping
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on a hash of multiple address bits. In either case, the
interleaving is done at the granularity of a DRAM burst.

Internal MC Buffers: The channel-buffers and MSHRs
must be deep enough to allow the scheduler to effectively
deal with indexed accesses that display little inherent locality.
We explore the performance sensitivity to this parameter in
Subsection 6.4.

3.4. Channel-Split Configuration
We introduce achannel-splitmemory channel organiza-

tion, shown in Figure 2, to exploit inter-thread parallelism to
load balance across multiple MCs without reducing locality
due to interference. In this organization, each AG has its
own set of MSHRs and channel buffer entries in each MC.
Dividing the resources by AG enables the scheduler to
issue references from a single AG to maintain locality as
long as the preferred AG has references to issue. If, due
to load imbalance, the preferred AG has no references for
the MC, the scheduler can select a reference from another
AG to balance load. The channel-split organization improves
performance, at the cost of increased channel-buffer entries
and MSHRs. We discuss this further and show sensitivity
results in Subsection 6.4.

This arrangement works particularly well to avoid read-
write turnaround penalty. If one thread is performing read
operations and a second thread is performing write opera-
tions, the scheduler will prefer scheduling reads from the first
thread as long as they are available. The scheduler will only
switch to performing writes when no further reads are avail-
able in the channel buffer. Note that with resources shared
by all AGs, the second thread would eventually occupy all
available buffers and the scheduler would be forced to issue
a write, even if many reads were still available.

4. Experimental setup

To evaluate the DPMS design space and quantify the
effects of DRAM technology trends, we measure the per-
formance of several multimedia and scientific applications
as well as targeted micro-benchmarks.

4.1. Test Applications
We use six applications from the multimedia and scientific

domains summarized in Table 3. The scientific applications

Name Description

DEPTH stereo depth extraction from two 320x240 images taken
from different horizontal angles [?]

MPEG encoding 3 frames of 360x288 video images according to
the MPEG-2 standard [?]

RTSL rendering the SPECviewperf 6.1.1 benchmark using the
Stanford Real-Time Shading language [?]

MOLE an n-body molecular dynamics solver [?]

FEM finite element method code solving systems of first-order
conservation laws on unstructured meshes [?]

QRD converting a 192x96 complex matrix into an upper trian-
gular and orthogonal matrices [?]

Table 3: Benchmark Programs - Applications

were slightly modified from their original implementation to
enable them to run on the simulated configurations.

Our micro-benchmarks are designed to stress particular
aspects of memory system performance. Benchmarks starting
with a AxB format have strided accesses where the record
length isA and the stride width isB. Benchmarks with arA
or crA prefix have indexed accesses where the index range
is either4M words (rA), or constrained to64K words (crA),
and A denotes the record length. Postfixes of the micro-
benchmarks stand for the type of memory accesses and if
consecutive streams can cause conflicts in DRAM when pro-
cessed concurrently. Benchmarks named withrd contain only
stream loads whilerw benchmarks have stream loads and
stores interleaved such that DRAM read-write turnaround
penalty can be observed.2 Benchmarks containingcf have
stream loads and stores interleaved and these consecutive
access threads hit different rows in the same DRAM bank
to expose internal bank conflicts. Each micro-benchmark
contains8 access threads, and each thread accesses4, 096

words, except for the48x48rd benchmark, which accesses
3, 840 words per thread.

4.2. Simulated Machine Parameters
Simulations were performed using a cycle-accurate sim-

ulator for the Imagine stream processor [?], which has8

SIMD clusters. Imagine uses a software managedstream
register file(SRF) to stage data to and from external DRAM
memory. The SRF is aligned with the clusters such that each
cluster contains a processing element (PE) and a single SRF
lane. The baseline configuration of the simulated Imagine
and memory system is detailed in Table 4, and is used for
all experiments unless noted otherwise.

In order to study DRAM trends and design space pa-
rameters in isolation of specific arithmetic execution char-
acteristics, we treated all execution kernels as single-cycle
operations. The memory access patterns and data depen-
dencies in software managed data-parallel architectures do
not depend on operation timing, which allowed us to obey
all dependencies and maintain memory ordering in our

2Note that stream, not record or word, loads and stores are interleaved.
Each stream still contains either all loads or all stores.



Parameter

Number of clusters 8

Operating frequency 1 GHz

Number of words in a DRAM burst (lB ) 4

Peak DRAM bandwidth 4 GW/s

Number of words per DRAM row 1, 024

Number of internal DRAM banks (nB ) 8

Number of memory channels (nMC ) 4

Number of addresses an AG can generate per cycle 4

Number of channel-buffer entries (nCB ) 16

nCB for channel-split configurations 16 per AG

Number of words an MC can process per cycle 1

Memory access scheduling policy opcol

DRAM timing parameters (Table 1) XDR

Peak DRAM bandwidth(W ) 2

Number of DRAM commands for accssing an inactive
row (mC )

3

Table 4: Baseline machine parameters

applications. We chose to minimize arithmetic execution
time in order to amplify the effect of memory system
performance trends. We demonstrate the amplification effect
on memory system trends and verify the validity of our zero-
cost computation evaluation methodology by also presenting
results with realistic arithmetic timing.

5. Application Results

Figure 3 shows the throughput of the six applications
on five simulated memory system configurations (bars, left
axis). With four MCs operating at1 GW/s each, peak
bandwidth is4 GW/s. The figure also shows the fraction
of memory references that result in read-write switches and
row commands (points, right axis). To explain the results of
Figure 3 we refer to Table 5 which summarizes the memory
access characteristics of the six applications.

Figure 3 shows that, except for the RTSL program, overall
bandwidth is quite high — between3.2 and 3.9 GW/s,
80% to 96% of the peak bandwidth. Table 5 shows that
35% of RTSL references are single-word indexed references
over a large (200K word) address range. These essentially
random references have little locality and hence result in
low bandwidth —1.2 GW/s. This lack of locality is also
reflected in the high percentage of row commands for RTSL.
The figure also shows that when the fraction of read-write
switches and row commands increases, performance drops.
Each read-write switch idles the DRAM during the turn-
around interval, and row commands often result in bank
conflicts as explained in Section 2.

The left-most bar in each graph shows the performance
of a memory system with a long (32-word) DRAM burst
length,2 AGs, and in-order scheduling. The largelB gives
poor performance on RTSL and MOLE because they make
many indexed accesses to short records over a wide range.
Hence, very little of the32-word burst is used to transfer

useful data. The next bar shows that reducinglB to 4

words, while improving performance on MOLE, reduces
performance on most of the other applications. The smaller
lB increases the number of row and column commands, since
each command transfers less data, increasing interferenceand
contention for command bandwidth. The center bar shows
that this interference can be greatly reduced by using memory
access scheduling (opcol policy) to enhance locality. This
reordering significantly reduces the number of read-write
switches and row commands, reducing idle time and bank
conflicts respectively.

Even withopcol scheduling, DRAM bandwidth is lim-
ited by interference between the interleaved accesses from
two AGs. The fourth bar shows how this interference can be
reduced by using a single, wide AG. This reduction in read-
write switches is most pronounced in QRD, which has a high
fraction of writes (30%) and a largelR. This combination
leads to competition over scarce buffering resources, limit-
ing scheduler effectiveness and forcing read-write switches.
Throughput can be improved by providing more buffering as
discussed in Subsection 6.4.

MOLE has a small amount of MC load imbalance in each
of its access threads, which results in a4.2% reduction in
performance when changing to a single AG. The right-most
bar shows how the channel-split organization overcomes
this load imbalance (bar 4) without sacrificing locality (bar
3) by dedicating MC resources to each AG. The channel-
split configuration has the highest throughput for all of the
applications except for RTSL for which it has2.0% less
throughput than the single-AG case. This anomaly is a result
of the large number of relatively short stream-level memory
operations of RTSL as discussed in Subsection 6.4.

Figure 4 presents memory system performance results with
realistic arithmetic timing using eight ALUs per PE and
shows the same basic trends as with zero-cost arithmetic,
although much less pronounced. When using the baseline
DRAM configuration with realistic arithmetic, as shown in
Figure 4a, only MOLE and FEM require a significant portion
of the 4 GW/s peak DRAM bandwidth. Therefore, there is
virtually no observable performance difference for the other
applications as the memory system configurations is varied.
With a peak DRAM bandwidth of0.4 GW/s (Figure 4b),
which better matches application requirements, the trends
demonstrated by DEPTH and RTSL also match the results
of zero-cost arithmetic.

6. Sensitivity to DPMS Design Parameters

In this section we explore the sensitivity of throughput to
DPMS design parameters, including the number of AGs, AG
bandwidth, MC buffer depth, and scheduling policy. For each
experiment, we take the baseline configuration described in
Section 4 and vary one parameter while holding the others
constant.



Average strided Average indexed (W)

Application record size (W) stream length (W) stride / record record size stream length index range Strided access Read access

DEPTH 1.96 1802 1.95 1 1107 1180 46.6 % 63.0 %

MPEG 1 1515 1 1 1280 2309 90.1 % 70.2 %

RTSL 4 1170 4 1 264 216494 65.1 % 83.5 %

MOLE 1 480 1 9 3252 7190 9.9 % 99.5 %

FEM 12.4 1896 12.4 24 3853 203342 48.8 % 74.0 %

QRD 115 1053 350 N/A N/A N/A 100 % 69.0 %

Table 5: Application characteristics
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6.1. Number of AGs and Access Interference

Figure 5a shows throughput of the micro-benchmarks as
the number of AGs is varied, for both conventional and
channel-split organizations, while the number of channel-
buffers is fixed to64 per MC.

The channel-split configurations consistently give the
highest throughput because they are able to achieve locality
without sacrificing load balance. For benchmarks where no

locality is present (cr1rd and r1rd), or when no interfer-
ence exists (1x1rd), the number of AGs does not affect
performance. Sequential access patterns with interference
(1x1rw, 1x1rdcf, and1x1rwcf) have poor performance with
multiple AGs without channel splitting due to excessive read-
write switches and row conflicts. Because of load imbalance,
multiple AG configurations outperform the single-AG con-
figuration on48x48rd and r4rw.

Figure 5b shows application throughput as the number of
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Figure 5: Throughput vs. AG configuration of micro-
benchmarks (a) and applications (b)

AGs is varied. The results in the figure can be explained
by matching the application characteristics (Table 5) with
the micro-benchmarks. DEPTH and MPEG are dominated
by sequential read and write accesses and therefore behave
similarly to 1x1rw, 1x1rdcf, and 1x1rwcf. RTSL contains
mostly reads with little locality and hence matches the
behavior of r1rd. MOLE and FEM display similarities to
r4rw as all three are dominated by indexed accesses to
multi-word records, yet the channel imbalance of the real
applications gives greater advantage to configurations with
multiple AGs. QRD appears as a combination of1x1rwcf
and48x48rd, since it has both large records and conflicting
reads and writes characteristics.

The 4agcs configuration has4% lower throughput than
the 2agcs configuration oncr1rd, MPEG, and RTSL partly
because of high channel-buffer pressure. We discuss this
issue in more detail in Subsection 6.4.

6.2. Aggregate AG Bandwidth
Figure 6 shows throughput for micro-benchmarks and

applications as the bandwidth of the AGs is varied and the
number of channel-buffers is fixed to64 per MC.

The figure shows that as the number of AGs is increased,
higher aggregate AG bandwidth is needed to get maximum
performance. A single AG achieves near-maximum perfor-
mance when the AG bandwidth matches MC bandwidth (4

W/cycle). Increasing single AG bandwidth beyond this point
provides at most a2% performance advantage. Similarly,
increasing the individual AG bandwidth beyond4 W/cycle
(e.g., aggregate bandwidth of8 W/cycle on2agcs) has no
effect on effective DRAM bandwidth. For the multiple AG
configurations, increasing aggregate bandwidth beyond the
4GW/s needed to saturate the MCs increases performance
because it enables the scheduler to enhance locality by
issuing all references from a single AG without causing a
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Figure 6: Throughput vs. total aggregate AG bandwidth of
micro-benchmarks (a) and applications (b)
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Figure 7: Throughput vs. memory access scheduling policy

bottleneck. In benchmarks with little locality, such ascr1rd
andr1rd, increasing aggregate AG bandwidth provides little
return.

6.3. Memory Access Scheduling
Figure 7 shows the sensitivity of throughput to scheduling

policy for the DEPTH and FEM applications and three AG
configurations. We present just two applications to avoid
replication of data. DEPTH is representative of all stridedap-
plications and FEM is typical of all indexed applications. For
strided applications, the single AG configuration performs
well regardless of scheduling policy. With multiple AGs or
indexed accesses, column reordering is needed to restore
locality and achieve good performance. The throughput is
largely insensitive to the exact column reordering policy
used.

6.4. Memory Channel Buffers
Figure 8 shows that the sensitivity of throughput to the

size of MC buffers rises as the number of AGs is increased.
The single AG configuration reaches near-peak performance
with only 16 channel-buffers, while even64 buffers are
not sufficient to achieve peak performance on the4agcs
configuration. Because the multiple AG configurations divide
buffers across multiple threads, a single AG, even though it
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Figure 8: Throughput vs. total MC buffer depth of micro-
benchmarks (a) and applications (b)

cannot load balance amongst MCs, gives higher performance
when the total number of channel-buffers is limited. Because
they can more flexibly allocate a scarce resource, non-split
configurations outperform the channel-split approach when
we limit channel-buffer depth to under16 entries per MC.

When enough buffering is provided, the locality-
preserving configurations perform well, and providing load
balancing through multiple AGs can improve throughput.
The largest performance improvements are seen for DEPTH,
FEM, and QRD where4agcs outperforms1ag by 4.2%,
15%, and6.8% respectively.1ag, however, has a2% higher
throughput than the channel-split configurations on RTSL.
This minor difference is the result of the large number of
stream-level memory operations of RTSL, combined with
the increased latency of each operation caused by the deeper
buffering required to support the channel-split mechanism.

Additionally, we observe diminishing returns from in-
creasing channel-buffer depth beyond16 entries per AG. In
2agcs, for example, increasingnCB from 32 to 64 entries
results in at most3.5% and9.4% gains in throughput for the
applications and micro-benchmarks respectively (RTSL and
cr1rd).

Due to the potential higher cost, in terms of area and/or
cycle-time pressure, of a large number of channel-buffer
entries and high AG width, we advocate the use of the
1ag configuration with16 channel-buffer entries. If higher
performance is desired,2agcs with a total buffer depth of
32 can reach throughput that is within6.3% of the maximum
throughput of any configuration across all six applications.

6.5. Address Interleaving Method
The method used to map addresses to MCs in an inter-

leaved DPMS can have a significant effect on the amount of
channel buffering required to achieve optimal performance.
When a direct method is used, transient load imbalance
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Figure 9: Throughput vs. address interleaving method —
(n)PRI = (no) Pseudo Random Interleaving

between MCs can occur, requiring deeper buffers to prevent
stalls. As shown in Figure 9, even withnCB = 16, the effect
is quite small (less than3.3%) for DEPTH, MPEG, RTSL,
and MOLE. FEM and QRD have a greater disparity unless
deep channel buffers are used (19.4% with nCB = 16 and
1.7% with nCB = 64 for QRD). The reason for this sharp
difference is the clustered access pattern resulting from the
very long records of QRD. The simulated stream processor
contains8 SIMD PEs and each PE processes an entire record.
When the records are large, the generated access pattern is
sets of8 words separated by multiples of the stride. When
the low-order address bits directly determine the MC, each
group of 8 accesses is mapped to the same MC, leading to
a transient imbalance. If the channel buffers are not deep
enough to tolerate such transients, the AGs must stall and
wait for buffers to be freed as accesses complete. A pseudo-
interleaved mapping decorrelates the mapping from the num-
ber of PEs and alleviates the temporary buffer pressure.

7. Sensitivity to DRAM Technology Trends

In this section we explore the effects of extending the
trends of increasing DRAM latencies and burst lengths. We
also examine the implications of limited DRAM command
issue bandwidth.

7.1. Read-Write Turnaround Latency
As DRAM latencies increase performance becomes even

more sensitive to access patterns and locality is even more
critical to maintain throughput. Figure 10 shows that the
locality-conserving1ag and2agcs configurations lose only
5.2% throughput astdWR is increased from5 to 40 tCK

(DEPTH). When locality is sacrificed in the2ag config-
uration, performance drops by up to46% (r4rw). With
some cases of MOLE, FEM and QRD, performance slightly
increases as latency is increased in the2ag configuration.
This anomalous behavior is a result of scheduling artifacts
when switching between read and write threads. Due to the
greedy nature of the scheduling algorithm, increasingtdWR

occasionally gives a better schedule.

7.2. DRAM Burst Length and Indexed Accesses
Figure 11a presents the results of increasing DRAM burst

length for several micro-benchmarks. ChanginglB has no
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Figure 10: Throughput vs. DRAMtdWR of micro-
benchmarks (a) and applications (b)

effect on1x1rd. The1x1rw benchmark shows that1ag and
2agcs, which maintain locality even when both reads and
writes exist, are also insensitive to the value oflB . The
throughput of2ag increases with burst length (from2.9

to 3.8 GW/s) because the number of read-write switches is
reduced (see also Section 5). The performance of1x40rd
drops rapidly with risinglB because the large stride of this
benchmark results in only a single usable word from each
burst. Thus, the throughput drops by a factor of2 each
time we increase the burst length by a factor of2. The
throughput of48x48rd also drops aslB grows. This behavior
is a result of timing sensitivities in channel buffer and
MSHR management. A detailed examination of the behavior
shows that MSHRs are being deallocated while there are still
matching accesses in the channel buffers, leading to excess
consumption of DRAM bandwidth and a total drop of15%
in throughput with the1ag and2ag configurations. Random
access patterns work best with a burst of4 or 8 words (r1rw
and r4rd).

Trends are less clear in the case of the multimedia and
scientific applications, which have more complicated access
patterns than the micro-benchmarks (Figure 11b). Different
access patterns work better with different values oflB , yet
we observe a sweet spot with a DRAM burst of4 words. Both
the 1ag and the2agcs configuration display near optimal
performance withlB = 4, with the exception of MOLE
where a burst of2 words achieves4.7% higher throughput
with the 2agcs configuration.

To better understand the effect of changing the DRAM
burst length, we develop an analytical model for the expected
throughput based on DRAM technology parameters. Please
refer to Table 2 in Section 3 for a description of the symbols
used below.

In order to keep the formula for effective random indexed
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Figure 11: Throughput vs. DRAM burst length of micro-
benchmarks (a) and applications (b)

bandwidth concise we make the following assumptions:

• All accesses are indexed, with the indices uniformly
distributed over the entire DRAM address space.

• All accesses are to a fixed record length (lR).
• A record can be accessed by issuing at most one column

command to each memory channel (lR ≤ lB · nMC ).

If the index space is sufficiently large, these assumptions
result in every record access requiring a new row command
to an inactive bank. This leads to the following formula for
the effective DRAM bandwidth3:

BWrand ≃ BWpeak

lR

⌈ lR
lB
⌉lBeffective

(1)

The effective burst length (lBeffective ) is given by:

lBeffective = W · max

(

lB

W
,mC , tRR,

tRC

nB

)

(2)

The four arguments of themax function in Equation
(2) correspond to four factors that may limit the rate of
record accesses. The first term is the actual burst length
and remaining arguments all relate to command bandwidth.
It takes mC commands to access each record, so at least
(W · mC ) words must be transferred on each access, or
command bandwidth is the bottleneck. The third term is due
to the maximum bandwidth of accesses to different banks.
Finally, when tRC is large compared tonB at most one
access can be made eachtRC

nB
cycles.

We can now write the full equation for random throughput:

BWrand ≃ BWpeak

lR

⌈ lR
lB
⌉ · W · max

(

lB
W

,mC , tRR, tRC
nB

)

(3)

3⌈ lR
lB

⌉ is the number of bursts required to access a record
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Figure 12: Analytical model and measured throughput of
random indexed access patterns

Figure 12 compares our analytical model to simulation
results for ther1rd and r4rd micro-benchmarks. We vary
nB and lB , holding all other parameters to the baseline
described in Section 4. In all cases the model matches well
with simulated performance and is within8.2% of the mea-
sured effective random bandwidth on average. The relatively
large 17% error in the modeled throughput forr4rd with 4

internal DRAM banks is a result of not accurately modeling
contention for DRAM command issue. With complex DRAM
timing constraints and memory access scheduling, the restric-
tion of issuing only one DRAM command per cycle to each
MC can become a temporary bottleneck.

We can see the detrimental effect of limited command
issue bandwidth when the number of internal banks is small.
With tRC = 20 and only2 or 4 banks, a new access can
be made at most once every10 or 5 cycles, which limits
performance. Additionally, whenlB = 2, two commands
are required for each access in the case ofr4rd, and again,
performance is sacrificed. The problem of long bursts is
evident whenlB = 16 and much of the DRAM bandwidth
is squandered transferring unused data.

8. Related Work
Traditional vector processors such as the CRAY-1 [?] and

the CRAY X-MP [?] have memory systems with parallel,
interleaved memories allowing concurrent memory accesses
between multiple vector streams [?]. Multiple accesses,
especially from multiple streams, often result in memory
bank conflicts. Prior work [?], [?], [?] analyzed these bank
conflicts and suggested techniques to alleviate performance
degradation in the context of strided accesses to SRAM. One
of the random interleaving schemes of [?] is implemented in
the memory systems evaluated in this paper. Kozyrakis [?]
studied memory system design space in embedded vector
processors concentrating on memory channel and internal
memory bank configurations for embedded DRAM technol-
ogy. Our work, in contrast, focuses on multi-word strided
and indexed accesses with both inter- and intra-thread access
reordering to modern DRAMs.

The Stream Memory Controller [?], the Command Vec-
tor Memory System [?], and more advanced Memory ac-
cess scheduling [?] studied hardware/software techniques

for streaming accesses by exploiting the three-dimensional
nature of DRAMs. However, these works did not cover the
interaction of concurrent streaming access threads and the
corresponding design choices in depth. Specifically, [?] was
limited in scope to evaluating a specific choice of DRAM
parameters (first generation SDRAM specification) and to a
single technique of reordering memory operations to increase
throughput — memory access scheduling. This technique is
just one of eight different design space parameters explored
in this paper. The more thorough exploration of DRAM
property trends, based on the analysis of multiple DRAM
families and future projection, lead us to significantly dif-
ferent conclusions than prior work. For example, contrary
to [?], we conclude that the exact column/row reordering
policy has only a second order effect on memory throughput.
Additionally, the recent increase in read-write turnaround
latencies affects performance as strongly as column/row
locality, leading us to recommend a different design point
than the one suggested in prior work.

9. Conclusion
In this paper we explored the design space of data-

parallel memory systems in light of the DRAM technology
trends of rapidly increasing DRAM bandwidth and a very
slow improvement in DRAM latency. We have shown that
these trends lead to growing DRAM access granularity and
high sensitivity of throughput to application access patterns.
Specifically, we identified the importance of maintaining
locality in the reference pattern applied to the DRAM in
achieving high performance. Locality is critical to reduce
the total number of DRAM commands and the amount of
time spent idling due to internal DRAM bank conflicts and
read-write turnaround penalties.

We presented a detailed taxonomy of the DPMS design
space, and examined two hardware configurations that are
able to exploit locality. The first is a single, wide address
generator architecture that operates on one access thread
or stream at a time. The single-AG configuration takes
advantage of locality, however, the reliance on only a single
thread can lead to load imbalance between memory channels,
and hence, to reduced performance. Our experimental results
indicate that the main advantages of the single-AG approach
are in allowing the memory access scheduler to process all
operations of a single type (reads or writes) before having to
sustain a read-write turnaround penalty, and in limiting the
number of internal DRAM bank conflicts.

Based on these observations, we designed the novel
channel-split hardware mechanism that is able to achieve
locality and balance load across multiple channels at the
same time. The channel-split configuration dedicates buffer-
ing resources within each memory channel to a specific
AG. In this way the scheduler is free to pursue locality
within a single thread without competition for buffers. When
one thread stalls, however, references from other threads
can proceed to balance the load. The hardware costs of



achieving both locality and load balance, are increasing the
buffering resources to account for the hard partition, and
providing excess address-generation bandwidth to maintain
performance at times of low thread parallelism.

We performed comprehensive sensitivity analysis and
showed that with a single, wide AG and only16 channel-
buffer entries we achieve over80% of peak performance on
most applications. Dedicating additional hardware resources
increases performance by up to7.4% with a 4-AG channel-
split configuration that generates an aggregate of16 ad-
dresses per cycle and relies on256 channel-buffer entries
in each MC. A less costly configuration with2 AGs and32

channel-buffer entries per MC improves performance by up
to 3.6% over using a single AG.

Finally, we explored the impact of increasing DRAM
latency and granularity. We show that conventional multiple-
AG configurations suffer when read-write turnaround delays
are increased. Locality-conserving single-AG and channel-
split configurations, however, maintain throughput even when
the latency is increased eightfold. We also quantified the
detrimental effects of coarser-grained DRAM commands and
reduced effective DRAM command issue rate on random-
access reference patterns and developed an accurate analyti-
cal model for the expected throughput.


