
PAPER 2

ABSTRACT
Modern database applications are among the most widely used and
complex software systems. They constantly evolve, responding to
changes to data, database schemas, and code. It is challenging to
manage these changes and ensure that everything co-evolves con-
sistently. For example, when a database schema is modified, all the
code that interacts with the database must be changed accordingly.
Although database evolution and software evolution have been ex-
tensively studied in isolation, the co-evolution of schema and code
has largely been unexplored.

This paper presents the first comprehensive empirical analysis of
the co-evolution of database schemas and code in ten popular large
open-source database applications, totaling over 160K revisions.
Our major findings include: 1) Database schemas evolve frequently
during the application lifecycle, exhibiting a variety of change types
with similar distributions across the studied applications; 2) Overall,
schema changes induce significant code-level modifications, while
certain change types have more impact on code than others; and
3) Co-change analyses can be viable to automate or assist with
database application evolution. We have also observed that: 1) 80%
of the schema changes happened in 20-30% of the tables, while
nearly 40% of the tables did not change; and 2) Referential integrity
constraints and stored procedures are rarely used in our studied
subjects. We believe that our study reveals new insights into how
database applications evolve and useful guidelines for designing
assistive tools to aid their evolution.

Categories and Subject Descriptors
H.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement; H.2.1 [Database Management]: Logical Design—
Schema and subschema

General Terms
Language, Measurement

Keywords
Co-evolution, database application, empirical analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

1. INTRODUCTION
A database application is a software system that collects, manages,

and retrieves data, which are typically stored in a database managed
by a database management system (DBMS) and organized w.r.t.
database schemas. For example, most online services are powered
by database applications. Wikis, social networking systems (SNS),
Web-based content management systems (CMS), mailing systems,
enterprise resource planning systems (ERP) are all database applica-
tions. As Figure 1 illustrates, a program needs to obey the structure
of the data organization defined by a schema when it accesses the
data. Namely, a schema is a mediator that manages the interactions
between code and data, bridging their gap.

Software systems are subject to continuous evolution due to mod-
ified system requirements; database applications are no exception.
Cleve et al. [5] observe that little work exists on understanding the
evolution of database applications considering both data and code.
Different from traditional applications, the evolution of database
applications is more complex. For example, consider a system that
uses a table USER to store both user authentication information and
other personal data. Now the system requirements change, and the
system needs to store user authentication information and personal
data separately. Thus, the original table USER must be split into two
new tables, say USER_LOGIN and USER_DETAILS. Data and
application code must be synchronized to be consistent with the new
schemas. First, the original data organization should be migrated
to the new one defined by USER_LOGIN and USER_DETAILS.
Second, the original application code that accesses data in USER
must be modified to correctly access the newly organized data in
USER_LOGIN and USER_DETAILS.

Figure 1 illustrates these two types of co-evolution in database ap-
plications: 1) data co-evolve with schemas, and 2) code co-evolves
with schemas. The first type of co-evolution involves three main
tasks: i) predicting and estimating the effects before the proposed
schema changes are performed; ii) rewriting the existing DBMS-
level queries to work on the new schemas; and iii) migrating data
to the new schemas. The second type involves two main tasks: i)
evaluating the cost of reconciling the existing code w.r.t. the new
schemas before any schema changes; and ii) locating and modifying
all impacted code regions after applying the schema changes.

The database community has addressed the first co-evolution
problem gracefully to support automatic data migration and DBMS-
level query rewriting to operate on the new schemas [6,7]. However,
little work has considered the second co-evolution problem. Its
difficulties are twofold. First, query updates and data migration
for the first problem are done by DB Administrators (DBA), who
have the domain knowledge. In contrast, the application developers,
who have different level of database knowledge, may not precisely
capture the whole evolution process of the database structure. In

Figure 1: The evolution of database applications.

particular, they may not fully grasp what the DBA intends through a
schema change. When the schema is modified, if application devel-
opers do not understand why and how the schema changes, they can
have difficulties in correctly evolving the application code. Second,
schema changes, query updates, and data migration are straightfor-
ward as they are done at the same language level, typically using
Data Definition Language (DDL) and Data Manipulation Language
(DML). In contrast, database schema changes and application code
changes are at different levels. This is a much more challenging
problem because how schema changes impact code is not as direct.

In this paper, we focus on the second problem and perform a
large-scale empirical study on ten popular database applications to
gain insights into how schemas and application code co-evolve. In
particular, we study the applications’ long-time evolution histories
from their respective repositories to understand whether database
schemas evolve frequently and significantly, how schemas evolve
and how they impact application code. Furthermore, we present
guidelines for developing automated tool to aid schema and code
co-evolution based on our observations from the study. To the best
of our knowledge, this is the first work that attempts to empirically
understand how application programs co-evolve with the schemas
in large, popular database applications.

The remainder of this paper is organized as follows. Section 2
describes our methodology for the study, including its context, re-
search questions and the process for extracting information needed
for the study. Section 3 presents our detailed results, followed by
Section 4 that further discusses the results. Next, we discuss possible
threats to validity (Section 5) and survey related work (Section 6).
Finally, Section 7 concludes with a discussion of future work.

2. METHODOLOGY
This section presents basic information on the ten database appli-

cations used in our study, the three research questions we consider,
and the process we use to perform the study.

2.1 Context Description
We selected 10 open-source database applications from various

domains, including gallery management, project management, CMS,
Wiki, shopping cart, webmail system and ERP. They are popular
both among developers and users. For example, both Joomla! and
PrestaShop won the Open Source Award1 in 2011. Table 1’s first 3
columns report each application’s basic description and popularity.

For all ten applications, Subversion (SVN) [16] was selected
as their default version control system because SVN is one of the
most popular version control systems in the open-source commu-

1http://www.packtpub.com/open-source-awards-home

nity. Table 1 also summarizes the applications’ evolution histories
extracted from their respective SVN repositories. The 4th, 5th and
6th columns list, for each project, its development cycle, the number
of stable releases and revision range in the selected lifecycle that we
consider. Most projects (9/10) are still active and have frequent up-
dates. Only Dotproject is no longer updated. For e107 and TYPO3,
we only selected one of their finished development trunks. The 7th
column shows each project’s total number of revisions. Mediawiki’s
revisions form only a part of its revision range since its repository
also hosts other projects, thus we kept only those revisions for Me-
diawiki. The 8th and 9th columns show two ranges for each project
respectively: one for schema size (the least and greatest) and the
other for application code size (the smallest and largest). The ranges
were computed based on information from the 5th column. We use
the number of tables to measure schema size and lines of code (LoC)
to measure code size.

2.2 Research Questions
At a high-level, our study aims to answer how database schemas

and program co-evolve in database applications. To this end, we
designed three specific research questions for investigation:
RQ1: How frequently and extensively do database schemas evolve?

This RQ helps answer how often and how much schemas
change across different versions to understand whether they
intensively evolve during an application’s development and
maintenance process.

RQ2: How do database schema evolve? This RQ helps analyze
all possible schema changes in database applications to un-
derstand what schema change types usually occur in prac-
tice. Furthermore, we are interested in the distribution of
schema changes w.r.t. schema change type to see whether
some change types appear more frequently than others.

RQ3: How much application code has co-changed with a schema
change? This RQ helps quantify schema changes’ real impact
on application code. Using change history from the repository,
we associate changes in source lines with schema changes
to estimate their impact on code. We are also interested
in whether certain schema change types tend to have more
impact on code than others.

In addition, based on the answers to the three above RQs, if indeed
schemas evolve frequently and extensively and schema changes can
significantly impact code, it should be important to develop tools to
aid developers in evolving database applications. From our results
of empirical analysis, can we provide some evidences or guidelines
on helping people efficiently evolve database applications?

2.3 Analysis Process
We now describe the steps we use to extract the necessary infor-

mation from project repositories.

Locate schema files The first step extracts the schema files. We
observe that most schema files have the .sql suffix although some
projects (e.g. e107) specify schema information using embedded
SQL statements in PHP source files. To ascertain that we do not omit
any schema files, we manually trace the schema files even if their
locations or names have been modified.

Extract DB revisions The second step identifies DB revisions,
which are revisions (commits) that contain modifications to schema
files. In SVN, we can easily retrieve the paths of all changed files
in any revision — if a schema file is among the changed files of
revision i, we say i is a DB revision.

Extract valid DB revisions Once we have extracted the DB re-
visions in each project, we need to filter those containing only

Table 1: The ten studied database applications and their evolution history.

Project Description D/L(M) Life Cycle # Releases Revision
Range # Revisions # Tables LoC(K) Changed

LoC(M)

Coppermine Web Gallery 6.8 09/03 ∼ 01/12 4 4 ∼ 8,307 8,304 8 ∼ 22 27 ∼ 300 1.86
Dotproject Project Mgmt. 1.4 10/01 ∼ 05/07 7 2 ∼ 4,960 4,959 15 ∼ 63 8 ∼ 150 0.46
e107 Enterprise CMS 1.9 04/04 ∼ 01/11 2 4 ∼ 12,063 12,060 33 ∼ 30 36 ∼ 150 0.96
Joomla! CMS 30.0 09/05 ∼ 03/12 5 3 ∼ 22,934 22,932 35 ∼ 61 10 ∼ 250 3.57
Mediawiki Wiki 1.5 01/02 ∼ 01/12 18 48 ∼ 107,887 41,792 3 ∼ 51 3 ∼ 880 5.91
PrestaShop Online Store 2.2 12/08 ∼ 01/12 10 1 ∼ 13,863 13,863 113 ∼ 157 11 ∼ 230 1.21
RoundCube Webmail 2.0 10/05 ∼ 03/12 7 13 ∼ 5,755 5,743 5 ∼ 12 20 ∼ 120 0.76
Tikiwiki Wiki/CMS 1.0 10/02 ∼ 03/12 19 3 ∼ 40,195 40,193 20 ∼ 242 10 ∼ 1,240 10.79
TYPO3 Enterprise CMS 7.2 10/03 ∼ 01/11 14 20 ∼ 10,200 10,181 10 ∼ 18 78 ∼ 440 3.75
webERP Business Mgmt. 0.4 02/04 ∼ 02/12 10 2 ∼ 4,888 4,887 63 ∼ 122 36 ∼ 210 1.25

unrelated schema changes we are not interested in, i.e., we need to
select only the valid DB revisions for further analysis. We define a
valid DB revision as a DB revision that does not only include the
following types of schema changes:

(1) Syntax change. There are two main kinds of syntax changes:
optional syntactic structure conversion and syntax error fix.
Most syntax descriptions in different implementations of DDL
have several options, which leads to the first kind of syntax
changes. This situation often occurs when multiple developers
work on the same code, but favor different syntax. For syntax
errors, we have observed that redundant commas and quotation
marks are most common syntax errors in DDLs examining the
revision histories of the ten projects. Figures 2a and 2b show
concrete examples for the two cases.

(2) Comment change. A comment change refers to a modification
of a schema file’s comments.

(3) Format change. Format changes have three main types: i) ad-
justing the position of a table in a schema file (e.g., ordering
the tables alphabetically w.r.t. table names); ii) adjusting the
position of columns in a table (e.g., moving a newly-added col-
umn from the very end to a different position, perhaps for better
understanding); and iii) traditional formatting (e.g., indentation,
adding or deleting blank lines and whitespace). Although a for-
mat change has no effect on the content of a schema file, it can
be detected by text differencing algorithms from the repository,
and the corresponding revision is considered a DB revision.

(4) Data-sensitive change. A data-sensitive change refers to a mod-
ification of the data stored in the database. Mostly, DML is used
for inserting, deleting and updating data in a database. Some
projects, such as Joomla!, put DML and DDL in the same file,
which leads to some DB revisions contain only data-sensitive
changes. Since this work focuses on schema/code co-evolution,
we do not consider data-sensitive changes.

(5) DBMS-related change. DBMS-related changes are mainly
caused by version migration of DBMS used in database ap-
plications. Figure 2c shows an example where the change was
made to satisfy the upgrade of the MySQL version.

(6) System-related change. System-related changes refer to modifi-
cations that are irrelevant for schema changes, but caused by the
implementation of database applications. Figure 2d shows an
example where newly added comment /*$wgDBprefix*/ was
for runtime replacement by system programs to avoid name
conflicts if multiple versions of database coexisted.

(7) Rollback. Suppose a schema file evolves from revision i-1 to
i, and later is recovered to revision i-1 in revision j. If revision
j is judged as a rollback of revision i, we filter both i and j as
unrelated DB revisions. Identifying rollbacks needs both the
schema change history and log information in the repository.

Extract atomic changes After having identified the valid DB re-
visions for each project, we extract all schema changes by manually

cf_name
cf_value ,

Revision 88295 -> 88296

remove

user_id PRIMARY KEY
user_name

Revision 45745 -> 45746

tables.sql (mediawiki)

/*$wgDBprefix*/
user_id
user_name

Revision 6444 -> 6445

user_id
user_name

ENGINE=InnoDB

Revision 13916 -> 13917

(a) alternative syntactic structure conversion

(b) syntax error fix

(c) DBMS-related change

(d) system-related change

Figure 2: Examples of invalid DB revisions.

comparing schema files of contiguous valid DB versions. That is,
we try to understand how schemas evolve semantically by examin-
ing the textual differences between two revisions and the relevant
log messages. Although many tools, such as mysqldiff [15] used
in [11], support difference extraction between two schema versions,
they have the following disadvantages. First, only syntax-level
schema changes can be obtained; semantic-level information that
how schema actually evolve is omitted in the automatic analysis pro-
cess. Consider the example in Figure 3. mysqldiff, running on revi-
sions 4924 and 4925 of Mediawiki, outputs that column user_right
is deleted from table user, and a new table user_rights has been
created. The tool does not recognize the relationship between the
deleted column user_rights and the added table user_rights. A
better interpretation of this evolution is that table user is split into
two sub-tables user and user_right. This precise semantic infor-
mation is quite important since it can guide us better understand
the code-level changes. Second, these tools are incapable of ex-
tracting the differences if any schema file contains syntax errors
or system-related code (also see our earlier discussions on syntax
change and system-related change) since they need to execute the
schema scripts in a database engine to create concrete tables and
relations. We noticed many syntax and system-related changes in
the ten projects, making it impossible to generate precise schema
changes for all revisions.

Before extracting schema changes, we need to provide a cate-
gory of schema change types. Ambler et al. [1] summarized all
possible schema changes during evolutionary database development.
They included six high-level categories: transformation, structure
refactoring, referential integrity refactoring, architecture refactor-

Table 2: Low-level categories of atomic change types for database schema evolution.

Ref. Atomic Change Category DDL (MySQL Implementation)

A1 Add Table Transformation CREATE TABLE t_name
A2 Add Column Transformation ALTER TABLE t_name ADD c_name
A3 Add View Transformation CREATE VIEW v_name AS ...
A4 Drop Table Structure Refactoring DROP TABLE t_name
A5 Rename Table Structure Refactoring ALTER TABLE o_t_name RENAME n_t_name
A6 Drop Column Structure Refactoring ALTER TABLE t_name DROP COLUMN c_name
A7 Rename Column Structure Refactoring ALTER TABLE t_name CHANGE COLUMN o_c_name n_c_name
A8 Change Column Datatype Structure Refactoring ALTER TABLE t_name MODIFY COLUMN c_namec_def
A9 Drop View Structure Refactoring DROP VIEW v_name
A10 Add Key Structure Refactoring ALTER TABLE t_name ADD KEY k_name
A11 Drop Key Structure Refactoring ALTER TABLE t_name DROP KEY k_name
A12 Add Foreign Key Referential Integrity Refactoring ALTER TABLE t_name ADD FOREIGN KEY fk_name ...
A13 Drop Foreign Key Referential Integrity Refactoring ALTER TABLE t_name DROP FOREIGN KEY fk_name
A14 Add Trigger Referential Integrity Refactoring CREATE TRIGGER trig_name ... ON TABLE t_name ...
A15 Drop Trigger Referential Integrity Refactoring DROP TRIGGER trig_name
A16 Add Index Architectural Refactoring ALTER TABLE t_name ADD INDEX idx_name
A17 Drop Index Architectural Refactoring ALTER TABLE t_name DROP INDEX idx_name
A18 Add Column Default Value Data Quality Refactoring ALTER TABLE t_name MODIFY COLUMN c_name SET DEFAULT value
A19 Drop Column Default Value Data Quality Refactoring ALTER TABLE t_name MODIFY COLUMN c_name DROP DEFAULT
A20 Change Column Default Value Data Quality Refactoring ALTER TABLE t_name MODIFY COLUMN c_name SET DEFAULT value
A21 Make Column Not NULL Data Quality Refactoring ALTER TABLE t_name MODIFY COLUMN c_name NOT NULL
A22 Drop Column Not NULL Data Quality Refactoring ALTER TABLE t_name MODIFY COLUMN c_name NULL
A23 Add Stored Procedure Method Refactoring CREATE PROCEDURE pro_name ...
A24 Drop Stored Procedure Method Refactoring DROP PROCEDURE pro_name

user_id
user_name

user_rights
user_password

CREATE TABLE user_rights (
user_id int(5) unsigned NOT NULL,
user_rights tinyblob NOT NULL default '',
UNIQUE KEY user_id (user_id)
) PACK_KEYS=1;

Revision 4924 -> 4925

tables.sql (mediawiki)

Figure 3: An example to illustrate the weaknesses of automatic schema
difference extraction tools.

ing, data quality refactoring and method refactoring. The first is
a non-refactoring transformation that changes the semantics of the
schema, while the other five are refactoring transformations. To
extract schema changes as accurately as possible, we further divide
the six high-level categories into a more fine-grained classification
that contains 24 atomic schema change types. They are listed in
Table 2. Most of our atomic change types are adopted from Ambler
et al. [1]. To be more complete, we have also introduced additional
ones, such as A8 (change column datatype), A10 (add key), A11
(drop key), A14 (add trigger), A15 (drop trigger), A17 (drop index),
A20 (change column default value), A23 (add stored procedure) and
A24 (drop stored procedure). All possible composite schema change
types (such as split a table or move a column) proposed by Ambler
et al. [1] can be represented as a sequence of atomic changes using
the 24 atomic ones. Another reason we selected these 24 atomic
change types is that each can be simply translated into DDL, thus
can be applied on schema files directly. In the 4th column of Table 2,
we show an example how atomic changes are represented by DDL
based on the implementation of MySQL.

Co-change analysis After having identified all possible atomic
changes, we analyze the real impact caused by these atomic schema
changes by mining a project’s version control history. Different
from traditional change impact analysis, which tries to identify
the potential consequences of a change or estimate what needs to
be modified to accomplish a change [2], we want to calculate the
impact that has been triggered by schema changes. Co-change analy-
sis [19] has been effectively applied on traditional software artifacts

Table 3: Results of DB revision and schema change extraction.

Project # Total
DB Rev.

Valid
DB Rev.

% Valid
/Total

Atomic
Changes

Atomic
/Valid

Coppermine 116 69 59.5% 118 1.7
Dotproject 163 88 54.0% 279 3.2
e107 76 63 82.3% 114 1.8
Joomla! 532 133 25.0% 888 6.7
Mediawiki 377 221 58.6% 892 4.0
PrestaShop 221 203 91.9% 928 4.6
RoundCube 56 45 80.4% 101 2.3
Tikiwiki 941 493 52.4% 2,208 4.5
TYPO3 73 58 79.5% 249 4.3
webERP 189 91 48.1% 640 7.0

Total 2,744 1,464 53.4% 6,417 4.4

to estimate a change’s impact area from co-change histories of sim-
ilar previous changes. Adopting the same methodology, we use a
database application’s co-change history to estimate the application
code area affected by a schema change. Thus, we approximate the
set of schema-driven changes with source code co-changed with
schema files in the same valid DB revision. SVN can tell which files
changed together in one revision, so when a schema file changes,
we can easily get all files co-changed with the schema file. For
every pair of adjacent revisions i and i+1 where i+1 is a valid DB
revision, we compare them to identify addition/deletion/change of
co-changed source code. This analysis is automatic; we designed
a simple difference extractor to calculate changed source lines (ex-
cluding comments) using static analysis. We have also performed a
manual, in-depth examination of 10% randomly selected samples to
guarantee the validation of our design choice.

3. DETAILED STUDY RESULTS
We first present results obtained from the first two steps of the

analysis. Table 3 reports the summary statistics of the extracted
information. The 2nd column lists the number of each application’s
DB revisions, while the 3rd column lists the number of valid DB
revisions for each project. The 4th column shows that the ratio of
valid over total revisions falls mostly in the 50-90% range. Joomla!
has a much lower ratio because DMLs are involved in the same
schema file with DDLs, making data-sensitive changes cover a large
fraction of invalid revisions. The 5th column lists the total number of

Figure 4: The evolution trend of tables/columns in the studied projects. The x-axis of each sub-figure shows the progression of the corresponding
project’s schema evolution, and the y-axis displays the accumulative percentages of the numbers of tables/columns w.r.t. the maximum numbers of
tables/columns in the schema files.

Table 4: Frequency of schema evolution w.r.t. release and year.

Project # Valid
/Release

Atomic
/Release

#Valid
/Year

Atomic
/Year

Coppermine 17.3 29.5 8.3 14.2
DotProject 12.6 39.6 13.3 42.2
e107 31.5 57.0 8.6 15.6
Joomla 26.6 177.6 20.5 136.6
Mediawiki 12.3 49.6 22.1 89.2
Prestashop 20.3 92.8 65.5 299.3
Roundcube 6.42 14.4 7.0 15.8
Tikiwiki 25.9 116.2 52.4 234.9
TYPO3 4.1 17.8 7.9 34.1
WebERP 9.1 64 11.4 80.0

Total 15.3 66.8 20.5 90.0

atomic changes; the 6th column lists the average number of atomic
changes per valid revision, which falls mostly in the 2-7 range.

Next we use our study results to address the three research ques-
tions (Section 2.2).

3.1 RQ1: How frequently and extensively do
schemas evolve?

First, we measure how frequently schemas evolve by examining
the occurrences of schema changes w.r.t. each project’s lifecycle.
In particular, for each stable release/year, we calculate the average
number of valid DB revisions/atomic schema changes. Table 4
reports this information. For each release, there are around 5∼25
valid DB revisions and 15∼180 atomic schema changes. For each
year, there are around 10∼65 valid DB revisions and 15∼300 atomic
schema changes. Although the numbers in each column differ
due to the projects’ varying levels of development activities and
different definitions of stable releases, they provide solid evidence
that schemas evolve frequently.

Second, we measure how extensively schemas change, by exam-
ining the trend on schema size changes. To this end, we collect the
number of tables/columns in each valid revision to see how much
schemas evolve. Figure 4 shows this trend information. The results
clearly show that schemas increase in size in most projects over

Table 5: Growth and change rates of schema size.

Project Tables Columns

IE AE DE GR CR IE AE DE GR CR

Coppermine 8 15 1 175% 200% 85 102 16 101% 139%
Dotproject 15 54 6 320% 400% 182 316 64 159% 188%
e107 33 10 13 -9% 70% 249 99 106 -3% 82%
Joomla! 35 86 60 74% 417% 292 651 420 79% 367%
Mediawiki 3 59 11 1600% 2300% 27 377 58 1181% 1611%
Prestashop 113 55 11 39% 58% 547 376 53 59% 78%
Roundcube 5 8 1 140% 180% 35 58 22 103% 229%
Tikiwiki 20 279 57 1110% 1680% 111 2341 438 1714% 2504%
Typo3 10 13 5 80% 180% 122 166 50 95% 177%
WebERP 63 67 8 94% 119% 537 544 81 86% 116%

time. Two projects, e107 and joomla!, exhibit frequent fluctuations.
To facilitate a more precise evaluation, we use two metrics, Growth
Rate (GR) and Change Rate (CR):

GR =
Added Elements(AE) − # Deleted Elements(DE)

Initial Elements(IE)
(1)

CR =
Added Elements(AE) + # Deleted Elements(DE)

Initial Elements(IE)
(2)

The different elements in equations (1) and (2) should be replaced
respectively with tables and columns when calculating the GR and
CR for tables and columns separately. The GR and CR of schema
size in each project are shown in Table 5.
Results 1) Schemas evolve frequently: on average 65 atomic
schema changes occurred per release, and 90 atomic schema changes
occurred per year across the ten projects. 2) The size of schemas in
most projects grew significantly: The GR of tables in 60% of the
projects exceeded 100%; the CR of tables in 90% projects exceeded
100%. Although the number of tables in some projects increased
slowly or even decreased (such as e107), they show frequent fluc-
tuations. 3) We have observed very similar trend for columns (as
compared to tables). 4) Seven projects’ schema sizes reached 60% of
their maximum values in about 20% of the selected project lifecycle,
which indicates that more database related features were imported
in the projects’ early development phases.

Figure 5: Distribution of atomic changes w.r.t. the high-level schema
change categories.

In summary, database schemas evolve significantly during the
development lifecycle of database applications. Next, we examine
the co-evolution of application code caused by schema changes.

3.2 RQ2: How do database schemas evolve?
To answer RQ2, we analyze which schema change category each

atomic change belongs to. Figure 5 shows the percentages for the
six schema change categories: Transformations (Trans), Structure
Refactoring (SR), Referential Integrity Refactoring (RIR), Archi-
tectural Refactoring (AR), Data Quality Refactoring (DQR) and
Method Refactoring (MR). Trans, SR and DQR occurred the most
frequently. These three categories cover more than 80% of schema
changes across all 10 projects and over 95% across 7 projects. AR
occurred in 8 projects, and RIR in only three, which covered only a
very small part. AR and RIR were not often used, and MR did not
occur in any of the 10 projects. It is interesting to note that Tikiwiki
and Roundcube have much higher percentages of DQR compared
to the other applications. This was due to substantial changes hap-
pened in certain versions of these two applications. For example,
revision 966 of Tikiwiki removed the default values for most of the
columns, affecting 550 (77.5% of all DQR) schema changes.

To understand the concrete type of each atomic change, we clas-
sified all collected schema changes w.r.t. their low-level change
categories (Section 2). Table 6 shows the distributions for all atomic
changes. We have highlighted (in boldface) the five most frequent
low-level categories in each project. A1 (add table), A2 (add col-
umn) and A8 (change column datatype) were the most active atomic
schema change types across the 10 projects. A4 (drop table), A6
(drop column), A7 (rename column), A18 (Add column default
value) and A19 (drop column default value) occurred in all projects,
but relatively infrequently in several projects. Although A10 (add
key), A11 (drop key), A16 (add index), A17 (drop index), A20
(change column default value) and A22 (make column not null)
appeared in all 10 projects, they were infrequent in many projects.
A5 (rename table) and A21 (make column not null) happened only
occasionally in most of the projects. In particular, A12 (add for-
eign key) and A13 (drop foreign key) rarely appeared and only
showed up in 3 projects. This is because foreign key constraints
were rarely used in schema definitions for performance concerns.
The remaining six atomic change types, A3 (add view), A9 (drop
view), A14 (add trigger), A15 (drop trigger), A23 (add stored pro-
cedure) and A24 (drop stored procedure), never occurred in any of
the 10 projects — there were no view-related, trigger-related and
procedure-related definitions in the schema files. It is interesting to

Figure 6: Distribution of addition/deletion/change on schema.

observe that Prestashop has much higher percentage of A8 (change
column datatype). This was because revision 476 changed the col-
umn datatype from INTEGER to INT(10) (to save storage space),
covering 26.2% of all schema changes.

We are also interested in the frequencies of addition, deletion
and change operations on schema content. Figure 6 depicts the
distribution. It shows that addition was the most frequent schema
operation in 9 of the 10 projects. It accounted for about 40% of
the operations in all 10 projects and over 50% in five projects.
Moreover, addition and change accounted for around 80% of the
operations, while deletion operations occurred less frequently across
most projects.
Results 1) Three high-level schema change categories, Trans, SR
and DQR, covered most schema changes; AR occurred relatively
infrequently in some of the projects. 2) At the low-level, add table,
add column and change column datatype were the most frequent
atomic change types. 3) The data also confirms that referential
integrity constraints (such as foreign key and trigger) and procedures
(such as stored procedure) are indeed rarely used in practice. 4)
Addition and change accounted for most of the schema evolution.

3.3 RQ3: How much application code has co-
changed with a schema change?

Without a careful and laborious manual analysis, it is difficult to
calculate the precise impact caused by a schema change. Neither is it
feasible to perform the manual analysis at scale. Thus, we designed
our study to estimate impact using the related information from
project repositories. Co-change analysis has been effectively used
on traditional software artifacts through large-scale experiments [19].
To confirm the validity of this approach for our setting, we examined
two questions via a careful, non-trivial manual study: 1) How many
valid DB revisions contain the co-change information of schema
and code? and 2) How much code-level change is truly caused
by schema changes? The first question is to understand whether
and how often schema and code changes are committed together,
and whether co-change history information is useful. The second
question helps further explore the accuracy of co-change information
as a means for estimating the code-level impact of a schema change.
To answer the questions, we selected uniformly at random 10% (146)
of the valid DB revisions from the total 1,464 valid DB revisions
and manually analyzed the co-changed information. Here we use
lines of changed source code to represent the application change.

First, we need to analyze and understand how co-change infor-
mation is present in the evolution history. Suppose R is the set of
all valid DB revisions; r is the current one under analysis and Cr

represents all changes committed in this revision. Schema changes

Table 6: Distribution of atomic schema changes w.r.t. the low-level categories of schema change types.

Category Ref. coppermine dotproject e107 joomla! mediawiki prestashop roundcube tikiwiki typo3 weberp

Trans
A1 33.1% 22.2% 27.2% 19.8% 13.8% 13.3% 8.9% 20.6% 28.5% 25.2%
A2 12.7% 19.4% 8.8% 9.8% 6.2% 5.8% 7.9% 12.7% 5.2% 8.4%
A3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SR

A4 0.8% 2.2% 11.4% 5.4% 1.3% 1.1% 1.0% 2.6% 2.0% 0.5%
A5 0.0% 0.0% 0.9% 2.1% 0.4% 0.2% 0.0% 0.4% 0.4% 0.2%
A6 11.0% 9.3% 7.0% 4.5% 4.3% 1.6% 6.9% 4.5% 0.8% 5.9%
A7 5.1% 2.2% 3.5% 4.3% 3.1% 1.3% 2.0% 1.4% 1.6% 2.7%
A8 7.6% 18.3% 16.7% 27.5% 27.1% 40.2% 14.9% 11.6% 34.9% 23.6%
A9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A10 10.2% 6.8% 8.8% 9.6% 5.2% 21.0% 0.0% 7.1% 6.0% 7.2%
A11 3.4% 2.9% 0.9% 4.6% 4.4% 5.2% 0.0% 4.9% 2.8% 4.7%

RIR
A12 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 1.0% 0.0% 0.0% 3.6%
A13 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 1.0% 0.0% 0.0% 1.4%
A14 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A15 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

AR A16 0.0% 1.1% 0.0% 2.5% 12.0% 0.5% 11.9% 0.6% 0.0% 0.2%
A17 0.8% 0.0% 0.0% 0.6% 9.6% 6.9% 5.9% 1.2% 0.0% 0.2%

DQR

A18 3.4% 0.7% 10.5% 1.7% 3.3% 1.3% 9.9% 25.2% 7.2% 9.8%
A19 4.2% 0.7% 0.9% 3.6% 0.3% 0.2% 13.9% 0.5% 0.8% 1.3%
A20 5.1% 12.2% 1.8% 0.9% 4.5% 0.9% 9.9% 2.8% 0.0% 4.7%
A21 0.8% 1.4% 1.8% 2.8% 3.7% 0.3% 0.0% 1.9% 0.0% 0.2%
A22 1.7% 0.7% 0.0% 0.3% 0.6% 0.2% 5.0% 1.7% 9.6% 0.5%

MR A23 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
A24 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

SCr and code changes CCr correspond to co-change information
in revision r where SCr ⊆ Cr and CCr ⊆ Cr . The actual code
change RCr is the evolved code completely caused by SCr . We
have SCr 6= ∅ where both CCr and RCr can be empty. There are
four possible co-change situations:
(S1) CCr = ∅ and RCr 6= ∅. That is, RCr occurs before/after

revision r, i.e., they were not committed in the same revision.
(S2) CCr = ∅ and RCr = ∅. This shows that schema changes

do not impact code. In this case, the co-change information is
still effective although no co-changed code is provided.

(S3) CCr 6= ∅ and CCr ∩RCr 6= ∅. In this case, the co-changed
code was committed together in revision r and contained the ac-
tual code change. If CCr = RCr , all of the co-changed code
was caused by schema changes. Otherwise, the co-change
history included other changes and may lead to inaccurate
information.

(S4) CCr 6= ∅ and CCr ∩ RCr = ∅. In this case, although the
code changes were committed together, they were not related
to the schema changes. That is, all information provided by
the co-change analysis is incorrect.

Figure 7a shows the distributions of four possible co-change
situations. Regarding the first question, S2 and S3 provide effective
co-change information. Figure 7a shows that around 72% of all valid
DB revisions provided useful co-change information. In addition,
the data for S2 showed that about 22% of valid DB revisions did not
need any code changes as they had no impact on code.

For the 2nd question, we use precision (defined below) to estimate
how much of the co-change history contains useful information:

Precision(r) =
|RCr ∩ CCr|
|CCr|

(3)

It is obvious that, for any revision r that belongs to S1 and S4,
the precision is 0%. That is, about 27% valid DB revisions did
not provide useful co-change information. For the other valid DB
revisions, Figure 7b shows their precision data. Our manual study
shows that over 80% of valid DB revisions belonging to S2 and S3
have precisions over 60%, and over 70% have precisions over 80%.
In particular, about 56% have 100% precision.

Figure 7: Results on the two manual-study questions.

Our results confirm that, as for traditional software artifacts, using
co-change analysis to understand the impact of schema changes is
indeed practical and effective. Hence, we study this question through
co-changed source code lines within the same valid DB revision. We
have designed and implemented a tool that automatically extracts
the co-changed source code lines w.r.t. schema changes. Table 7
lists, respectively, the minimal, maximum, average and median
number of source code lines co-changed with each atomic change
and valid DB revision. For each atomic change, around 10∼100
lines were changed on average when it was performed. For each
valid DB revision, which typically contains 2∼5 atomic changes,
around 100∼1000 source lines were changed, which were quite
significant changes.

We observed earlier that a valid DB revision usually involves
multiple categories of schema changes. The summary statistics may
not be informative enough since the impact on applications caused
by different categories of schema changes can be quite different.
To better understand the impact caused by schema changes, we
calculate the source code lines co-changed with each category of
schema changes separately. However, it is difficult to extract the
amount of impact triggered by each category of schema changes
without a manual analysis. As a practical alternative, we adopt
Multivariate Linear Models to estimate the co-changed code lines

Table 7: Changed code size w.r.t. valid revisions and atomic changes.

Project Per Valid DB Revision Per Atomic Change

min max(K) x̄ x̃ min max(K) x̄ x̃

Coppermine 0 0.97 89 5 0 0.32 18 1
Dotproject 0 6.27 169 8 0 0.32 15 1
e107 1 4.35 169 17 0 1.45 40 6
Joomla! 0 52.6 890 27 0 0.98 47 9
Mediawiki 0 3.41 158 26 0 0.92 21 8
PrestaShop 0 5.50 174 20 0 1.11 20 8
RoundCube 0 1.71 136 10 0 0.55 23 2
Tikiwiki 0 154 716 18 0 20.2 53 5
TYPO3 0 52.5 1352 20 0 3.72 120 5
webERP 0 1.70 156 13 0 0.28 7 2

Table 8: Estimated changed code size w.r.t. high-level schema changes.

Project ˆβTrans
ˆβSR

ˆβRIR
ˆβAR

ˆβDQR
ˆβMR R̄2

Coppermine 157 10 0 0 18 NA 0.50
Dotproject 105 27 0 1 0 NA 0.80
e107 35 13 0 0 17 NA 0.32
Joomla! 243 54 0 0 41 NA 0.64
Mediawiki 112 16 0 4 0 NA 0.38
PrestaShop 103 29 0 0 17 NA 0.34
RoundCube 323 45 0 35 0 NA 0.64
Tikiwiki 232 36 0 50 13 NA 0.51
TYPO3 85 200 0 0 0 NA 0.32
webERP 35 33 0 8 0 NA 0.32

with each schema change category. Suppose y represents the total
number of co-changed code lines in one valid DB revision; xi
represents the number of schema changes of high-level category
i (i can be Trans, SR, RIR, AR, DQR or MR); βi represents the
corresponding co-changed code lines driven by schema change
category i, we have

y =
∑
i

βixi (4)

where βi > 0. To guarantee all coefficients are positive, we use
Non-Negative Least Squares to compute the coefficients. We also
provide the adjusted R-squared to describe how well the calculated
regression line fits the data set. Table 8 shows the results. Clearly
the estimated impact (co-changed source code lines) caused by
Trans and SR significantly exceeds the average in most cases. Trans
exhibits the greatest impact. SR also has quite significant impact
than the other four categories. DQR and AR have some effects on
application code in certain situations. RIR has little or no impact on
application code. Since MR did not appear in the revision history of
any of the 10 projects, we cannot estimate its impact.
Results 1) Our detailed manual study on schema and code co-
change history shows that more than 70% of all valid DB revisions
contained effective co-change information, and among these, over
70% have precisions over 80%. Thus, our manual study confirms
the validity and effectiveness of the co-change analysis. 2) Schema
changes impact code greatly. For an atomic schema change, devel-
opers need to change about 10∼100 LoC on average; for a valid
DB revision, developers need to change about 100∼1000 LoC. 3)
Among the six high-level schema change categories, Trans and SR
show more significant impact on application code that the others.

4. DISCUSSIONS
Our results for RQ1 and RQ2 show that schemas evolve fre-

quently and extensively, and involve many change types. After
deciding on a schema change, developers need to evolve the code
consistently with the schema change. Our results for RQ3 further
show that, with respect to a valid DB revision, developers typically
need to change around 100∼1,000 source lines, a significant burden.

Figure 8: Coverage of schema changes by tables. The x-axis represents
the percentage of total tables in schema, and the y-axis the percentage
of total schema changes.

In addition, no tool currently exists that helps developers evolve
database applications, which may explain why schema changes are
often avoided [12]. However, when system requirements change,
schema changes can become inevitable. To reduce manual efforts,
it is desirable to develop assistive tools to aid database applica-
tion evolution. We believe such tools should have the following
functionalities:

(1) Before any potential schema change c, they can help find c’s
impacted code regions. This information can guide developers
toward schema changes that minimize impact.

(2) After choosing an evolution strategy and schema change, they
can help effectively locate all impacted code regions.

(3) Finally, they should also be able to guide developers how to
evolve the code, such as recommending possible code changes.
In certain restricted situations, they may even support automated
program rewriting if the tools can capture sufficiently precise
contextual information (although infeasible in general).

To satisfy the above requirements, we discuss two possible ap-
proaches. The first is to use program analysis to perform change
impact analysis. For example, using structural code information, we
may calculate dependencies (also called logic coupling [19]) of the
program. Maule et al. [12] have addressed this problem for object-
oriented programs that use relational databases. The technique may
be adapted to realize the first two functionalities.

The second approach is to apply co-change analysis by mining
association rules from evolutionary version histories. That is, the
information recorded during the development and maintenance of
the applications may be used to calculate the evolutionary coupling,
which cannot be detected by program analysis [19]. The mined
association rules can be used to suggest and predict likely further
changes based on the already applied changes. Co-change analysis
may be more useful for the evolution of database applications. First,
the co-change history on schema and application code evolution in
valid DB revisions is informative. We have observed that 1) over
70% of valid DB revisions provide useful co-changed source code
lines that are related to the corresponding schema changes, and 2)
over 70% valid DB revisions exhibit over 80% precision.

Second, the predictive power of a co-change analysis is closely
related to the length of a project’s revision history [18, 19]. Al-
though valid DB revisions are relatively few over complete project
revisions, they may be sufficient for evolving database applications.
Schema changes are also centralized. That is, although schemas

Figure 9: Distribution on the number of atomic schema changes across
different tables. The x-axis lists the 10 database applications, and the
y-axis the number of atomic changes for each different table.

evolve significantly, most schema changes concentrate in small parts
of schemas — most components in schema definitions are stable.
Figure 8 shows the coverage of schema changes by tables. We see
that around 60%∼90% of the schema changes happened in 20% of
the tables — most tables (around 40%) are rarely changed during
the development lifecycle. The evolution histories of frequently
changed tables are sufficient. The most frequently modified tables
in total have covered over 80% of all the schema changes (i.e., the
total number of atomic schema changes occurred). Figure 9 shows
the distribution. For each frequently changed table, its number of
atomic schema changes is around 20. For Joomla! and Mediawiki,
the two most mature projects with long evolutionary histories, their
numbers are around 50. This provides evidence that the co-change
analysis information can be useful in guiding code evolution.

Third, schemas and code in database applications correspond
closely, meaning that, for each table defined in a schema, it exists
code for manipulating the table. Thus, similar changes to the same
table will likely have quite similar impact on the application code.
As an example, consider Figure 10, which shows two similar schema-
level changes and their corresponding code-level changes. Revision
1640 added the column ip_auto to table ipblocks (Figure 10a),
and Figure 10b shows some selected corresponding changes to the
affected PHP file Block.php from the column addition. A similar
revision 2473 added another column ip_expiry to table ipblocks
(Figure 10c), and Figure 10d illustrates the code-level changes.

As we can see, the code-level modifications for the two schema
changes are quite analogous and match closely. This provides evi-
dence that we may guide application code evolution by capturing
and leveraging how schema and code co-evolve from revision histo-
ries.

In summary, it is desirable to build effective tool support to help
evolve database applications, and the combination of program anal-
ysis and co-change analysis can be fruitfully exploited.

5. THREATS TO VALIDITY
Construct validity The construct validity of our study rests on the
measurements performed, in particular related to the selection of
valid DB revisions from the project evolutionary histories, identifi-
cation of all atomic schema changes from the collected valid DB
revisions, the co-change analysis to estimate the impact on applica-
tions caused by schema changes, and the calculation for code impact
of different schema change categories.

Regarding selecting valid DB revisions, there are three poten-
tial threats. First, for each repository of the studied projects, we
selected trunk, the mainline of the development process, to study.
However, in some projects (such as e107), truck contains multiple

branches of ongoing development lines (e.g., e107 versions 0.6 and
0.7 are developed simultaneously), whose evolution histories are not
consistent. To reduce such noise, we selected only one branch that
contains the longest evolution history of schemas. Second, based on
our definition of a DB revision, we may omit tiny revisions where
developers wrote external scripts to evolve the database and did not
simultaneously update the schema files. Finally, since we manually
filtered meaningless DB revisions based on our understanding, this
may have introduced certain unavoidable bias.

Regarding identifying atomic schema changes, to better under-
stand how schemas evolve, we attempted to recover the actual
change trace of a schema using log information and our knowl-
edge of database evolution to keep consistent with the original one.
Unfortunately, some incomplete logs and our limited understanding
of some projects may lead to misunderstandings. Similarly, the
identification process may also involve our own human bias.

Regarding the co-change analysis between schema changes and
application changes, we used source code lines co-changed with
schema files in the same valid DB revision to estimate the impact
caused by schema changes. From our manual validation, there are
still about 27% of all valid DB revisions that did not provide ef-
fective co-change information, and about 20% of the cases with
relatively low precisions based on our co-change strategy. However,
our approach is likely the best compromise since if more adjacent
revisions were regarded as impact caused by schema changes, ad-
ditional noise, namely, irrelevant application changes, would be
included in the co-change analysis, which may greatly reduce preci-
sion. More sophisticated impact analyses for database applications
are available (such as [12]). In addition, we designed a difference ex-
traction tool to automatically calculate the source lines co-changed
with schemas. The implementation of our tool may contain errors.
We utilized end-to-end regression testing throughout our tool’s de-
velopment to mitigate such a threat as much as possible. We thus
are confident about our measurements.

Regarding calculating code impact by different categories of
schema changes, we use multivariate analysis to estimate them
based on the results of our co-change analysis. Although it may not
indicate the precise code changes triggered by some schema change
type, it provides high-level evidence that some schema change types
exhibit more impact than others.

External validity Threats to external validity are concerned with
whether the results are applicable in general. We selected 10 open-
source database applications with different characteristics, such as
schema and application size, and application domain. We obtained
general findings for all projects and specific findings for individual
projects. However, most projects are web-based applications, and
many are implemented in PHP. It would be desirable to analyze
more varieties of database applications (such as scientific database
applications), developed in different programming languages to
confirm our general conclusions.

6. RELATED WORK
The basic tasks in database application evolution, as shown in

Figure 1, involve 1) schema evolution, 2) co-evolution of schema
and data, and 3) co-evolution of schema and programs. We structure
the discussion of related work accordingly.

Schema evolution There are several previous studies [8, 11, 14,
17] on schema evolution. Our work is different in several ways:
1) Previous studies mainly focus on how schemas evolve, while
we not only include this aspect in our study, but also, and more
importantly, how code co-evolves with schema changes; 2) We
studied 10 popular open-source database applications from different

Revision 1639 -> 1640

Block()

initFromRow($row)

insert()

Block.php (mediawiki)

Revision 2472->2473

Block()

initFromRow($row)

insert()

Block.php (mediawiki)

tables.sql (mediawiki) tables.sql (mediawiki)

(a)

(b)

(c)

(d)

Figure 10: Example to illustrate similar code-level changes from similar schema changes.

domains with varying sizes, while previous work studied only a
small number of projects; and 3) We studied the complete schema
evolution history from their initial version to the current version,
while previous work mainly focused on a period of the evolution.

Lin and Neamtiu [11] conducted a study of collateral evolution
on two database applications, Firefox and Monotone. They consid-
ered the synchronization problem: when the definition of a database
schema changes, how the schema migration code embedded in the
application evolves to keep consistent with the new schema. In ad-
dition, they also studied the incompatibility problem of file formats
between database and application code, caused by modifications of
the DBMS specification on internal file formats.

Curino et al. [8] presented an empirical study of schema evolution
on Wikipedia from April 2003 to November 2007. They analyzed
basic information of schema evolution, such as schema size growth,
and lifetime of tables and columns. They also provided both the
macro and micro classifications of schema change types and the
distribution of schema changes based on the SMO (Schema Mod-
ification Operator). In addition, they studied the effect of schema
evolution on the front-end application by calculating the success
rate of queries used in the previous version. The authors concluded
that schema evolution may cause inconsistencies to the complete
application. In contrast, our work tries to estimate the impact driven
by schema changes at the code level from revision history and find
possible solutions to assist code evolution.

Wu and Neamtiu [17] studied the schema evolution history of ap-
plications that use embedded databases. They designed a tool called
SCVD (Schema extraCtion and eVolution analysis for embedded
Databases) that can automatically extract the schemas embedded
in source code and help people understand schema evolution. They
used the tool to analyze the schema evolution history of embedded
databases on four C++ open source projects. In our work, we manu-
ally extracted all possible schema changes from schema evolution
history to make the result more accurate.

Sjøberg [14] also performed a schema evolution study on a health
management system over 1.5 years. They found that most frequent
changes are column additions/deletions and table additions/deletions.
In our work, we also found additional interesting results, for exam-
ple, 80% schema change happened in around 20% tables, etc.

Schema and data co-evolution There is much work in the database
community on this topic [4,6,7,9,13]. Curino et al. [7] is a represen-
tative one. The authors designed a schema evolution tool, PRISM,
to assist DB administrators in evaluating a schema change’s effect at
the schema level, optimized translation of old queries to work on new

schemas version and automatic data migration. An updated version
of PRISM, PRISM++, was implemented to support integrity con-
straint evolution and automatic query and update rewriting through
structural schema changes and integrity constraint [6].

Schema and program co-evolution Little work exists that stud-
ied this topic. Change impact analysis is a good approach to sup-
port such kind of co-evolution. Maule et al. [12] proposed a pro-
gram analysis-based approach to perform change impact analysis
on object-oriented applications caused by schema changes in rela-
tional databases. They used a combination of program slicing and
k-CFA data flow analysis to extract all possible insertions, updates,
queries and stored procedure executions in database applications
and implemented a tool called SUITE. Karahasanovic [10] mainly
focused on object-oriented databases. In our work, we discuss the
possibility of using the information of co-change analysis to guide
developers to rewrite programs, which might be another solution
for this direction. More importantly, our focus in this work is on a
large-scale empirical analysis of such co-evolutions to gain insights,
possibly for developing future assistive tools.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented the first large-scale study of how

code co-evolves with schema changes in database applications using
10 popular projects. Our study has exposed new, interesting quan-
titatively information, which can be used as guidelines to develop
assistive tools to help programmers evolve database applications.
There are a number of interesting directions for future work. First,
we plan to conduct a more comprehensive study with more appli-
cations and more varieties to increase the external validity of our
findings. Second, we are interested in investigating techniques to
increase the accuracy of estimating the code-level impact of schema
changes, e.g. co-change analysis with Granger causality [3]. Finally,
using our study results, we plan to develop tools to help developers
evolve database applications.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for useful feedback on an

earlier version of this paper. This work was supported in part by
the National Natural Science Foundation of China under Grant No.
60973149, the College Industrialization Project of Jiangsu Province
under Grant No. JHB2011-3, Scientific Research Foundation of
Graduation School of Southeast University Grant No. YBJJ1313,
and United States NSF grants 0917392 and 1117603.

9. REFERENCES
[1] S. W. Ambler and P. J. Sadalage. Refactoring Databases:

Evolutionary Database Design. Addison-Wesley, 2006.
[2] R. S. Arnold. Software Change Impact Analysis. IEEE

Computer Society Press, 1996.
[3] G. Canfora, M. Ceccarelli, L. Cerulo, and M. Di Penta. Using

multivariate time series and association rules to detect logical
change coupling: An empirical study. In IEEE International
Conference on Software Maintenance, pages 1–10, 2010.

[4] A. Cleve. Program analysis and transformation for
data-intensive system evolution. In IEEE International
Conference on Software Maintenance, pages 1–6, 2010.

[5] A. Cleve, T. Mens, and J.-L. Hainaut. Data-Intensive System
Evolution. Computer, 43(8):110–112, 2010.

[6] C. Curino, H. Moon, and A. Deutsch. Update rewriting and
integrity constraint maintenance in a schema evolution support
system: PRISM++. VLDB Endowment, 4(2):117–128, 2010.

[7] C. Curino, H. Moon, and C. Zaniolo. Graceful database
schema evolution: the PRISM workbench. VLDB Endowment,
1(1):761–772, 2008.

[8] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo. Schema
evolution in Wikipedia – toward a Web information system
benchmark. In International Conference on Enterprise
Information Systems, 2008.

[9] J. Hick and J. Hainaut. Database application evolution: A
transformational approach. Data & Knowledge Engineering,
59(3):534–558, 2006.

[10] A. Karahasanovic. Supporting Application Consistency in
Evolving Object-Oriented Systems by Impact Analysis and
Visualisation. PhD Dissertation, Department of Informatics,
University of Oslo, 2002.

[11] D.-Y. Lin and I. Neamtiu. Collateral evolution of applications
and databases. In Joint ERCIM Workshops on Principles of
Software Evolution (IWPSE) and Software Evolution (Evol),
pages 31–40, 2009.

[12] A. Maule, W. Emmerich, and D. S. Rosenblum. Impact
analysis of database schema changes. In International
Conference on Software Engineering, pages 451–460, 2008.

[13] Y.-G. Ra. Relational schema evolution for program
independency. In International Conference on Intelligent
Information Technology, pages 273–281, 2004.

[14] D. Sjøberg. Quantifying schema evolution. Information and
Software Technology, 35(1):35–44, 1993.

[15] A. Spiers.
http://adamspiers.org/computing/mysqldiff/.

[16] Subversion. http://subversion.apache.org/.
[17] S. Wu and I. Neamtiu. Schema evolution analysis for

embedded databases. In Workshop on Hot Topics in Software
Upgrades, pages 151–156, 2011.

[18] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting
source code changes by mining change history. IEEE
Transactions on Software Engineering, 30(9):574–586, 2004.

[19] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl.
Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445, 2005.

