
ABSTRACT

The advent of variability management and generator technol-
ogy enables users to derive individual variants from a variable
code base based on a selection of desired configuration op-
tions. This approach gives rise to the generation of possibly
billions of variants that, however, cannot be efficiently ana-
lyzed for errors with classic analysis techniques. To address
this issue, researchers and practitioners usually apply sam-
pling heuristics. While sampling reduces the analysis effort
significantly, the information obtained is necessarily incom-
plete and it is unknown whether sampling heuristics scale
to billions of variants. Recently, researchers have begun to
develop variability-aware analyses that analyze the variable
code base directly exploiting the similarities among individ-
ual variants to reduce analysis effort. However, while being
promising, so far, variability-aware analyses have been ap-
plied mostly only to small academic systems. To learn about
the mutual strengths and weaknesses of variability-aware and
sampling-based analyses of software systems, we compared
the two strategies by means of two concrete analysis imple-
mentations (type checking and liveness analysis), applied
them to three subject systems: Busybox, the x86 Linux ker-
nel, and OpenSSL. Our key finding is that variability-aware
analysis outperforms most sampling heuristics with respect
to analysis time while preserving completeness.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.13 [Software Engineering]: Reusable Software;
D.3.4 [Programming Languages]: Processors—Preproces-
sors

General Terms

Experimentation

Keywords

Software Product Lines, C Preprocessor, Type Checking,
Liveness Analysis, Variability-aware Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

1. INTRODUCTION
Generator-based approaches have proved successful for the

implementation of variable software systems [1,15]. For ex-
ample, the Linux kernel can be configured by means of about
10 000 compile-time configuration options [39], giving rise to
possibly billions of variants that can be generated and com-
piled on demand. While advances in variability management
and generator technology facilitate the development of vari-
able software systems with myriads of variants, this high de-
gree of variability is not without cost. How could we analyze
all possible variants for errors? Unfortunately, classic analy-
ses look at individual variants and do not scale in the presence
of the exponential number of variants that can be typically
generated from a variable system. For systems such as the
Linux kernel, it is not even possible to generate all variants
to analyze them separately, because they are so many—more
than the estimated number of atoms in the universe [40].

The idea of sampling is to select a reasonable set of variants
to be analyzed using traditional analysis techniques. Many
different sampling techniques have been proposed [22,41], and
their application has proved useful in various scenarios [36,38].
Although analysis time can be reduced significantly, the in-
formation obtained is necessarily incomplete, since only a
subset of all variants is checked.
Recently, researchers have begun to develop a new class

of analyses that are variability-aware [43]. The key idea is
to not generate and analyze individual variants separately,
but to directly analyze the variable code base before variant
generation, with the help of configuration knowledge. In
the case of the Linux kernel, variable code is implemented
by means of conditional-inclusion directives (a.k.a. #ifdefs),
and variability-aware analyses analyze the variable code di-
rectly, instead of applying the generator (the C preprocessor)
to generate the plain C code of individual kernel variants.
Variability-aware analysis requires more effort than tradi-
tional analysis of a single system, because all local variations
need to be considered; however, and this is the key success
factor, variability-aware analysis takes advantage of the sim-
ilarities among variants and avoids analyzing common code
over and over again.
There are several proposals for variability-aware analyses

in the literature, including parsing [25], type checking [2, 24,
26,42], data-flow analysis [8, 9], model checking [3, 4, 14,30],
and deductive verification [44]. However, while this work is
promising, variability-aware analyses (beyond parsing) have
not been applied to large-scale, real-world systems so far;
previous work concentrated mostly either on formal foun-

 PAPER 1

dations or is limited with respect to practicality (evaluated
with academic case studies only), as we discuss in Section 6.

Despite the foundational previous work, it is unclear wheth-
er variability-aware analysis scales to large systems, as it con-
siders all code and all variations of a system simultaneously.
Since sampling is still a de-facto standard for analyzing vari-
able software systems in practice, we explore the feasibility
and scalability of both sample-based and variability-aware
analysis in practice empirically. To this end, we have de-
veloped two fully-fledged variability-aware analyses for C:
type checking and liveness analysis (a data-flow analysis).
We applied each of them to three real-world, large-scale vari-
able systems: the Busybox tool suite, the Linux kernel, and
the cryptographic library OpenSSL. In terms of scalability,
we compare the variability-aware analyses to state-of-the-art
sampling strategies used in practice (generating all variants is
not even possible in reasonable time in our case studies). We
found that variability-aware analyses scale well—even outper-
form some of the sampling strategies—while still providing
complete information on all system variants.
Beside quantitative results, we report on our experience

with making variability-aware analyses ready for the real
world, and we discuss insights into the development of var-
iability-aware analyses in general. These insights subsume
existing studies on variability-aware analysis techniques and
they can guide the development of further analyses.

Overall, we make the following contributions:
• An introduction to the problem of analyzing variable

software, including possible solutions such as sampling
and variability-aware analysis.

• An experience report of how to implement scalable
variability-aware analysis for preprocessor-based sys-
tems, based on an existing variability-aware parsing
framework [25].

• A discussion of general patterns of variability-aware
analyses that can guide the development of further
analyses.

• A series of experiments that compare the performance
of variability-aware analysis with the performance of
state-of-the-art sampling strategies based on three real-
world, large-scale subject systems.

• A reflection of our experience with applying variability-
aware and sampling-based analyses in practice, and of
challenges we encountered in our investigation.

The subject systems and all experimental data are available
on a supplementary website: http://fosd.net/vaa; the
analysis implementations are part of the TypeChef project:
http://ckaestne.github.com/TypeChef .

2. PREPROCESSOR-BASED VARIABILITY
Before we get to sampled-based and variability-aware anal-

yses and their comparison, we introduce the development
of variable software using the C preprocessor cpp. cpp is
a frequently applied tool for the development of variable
software [31]. It provides several features to implement
variable code fragments using conditional-inclusion macros
(a.k.a. #ifdefs). For instance, our running example in Fig-
ure 1 contains three variable pieces of code: an alternative
macro expression (Line 1-3), an optional function param-
eter (Line 6), and an optional statement (Line 13). The
in-/exclusion of such annotated code is controlled by the
values of configuration options (here: A and B) that can be
combined using logical operators.

1 #ifdef A #define EXPR (a<0)

2 #else #define EXPR 0

3 #endif

4
5 int r;

6 int foo(int a #ifdef B , int b #endif) {

7 if (EXPR) {

8 return -b;

9 }

10 int c = a;

11 if (c) {

12 c += a;

13 #ifdef B c += b; #endif

14 }

15 return c;

16 }

Figure 1: Running example in C with variability ex-
pressed in the form of preprocessor directives (Lines 1–3,
6, and 13); for brevity, we underlined and integrated
#ifdef directives inside single code lines.

In most cases not all combinations of configuration options
of a system are valid, so developers use variability models to
express relations between configuration options and define
which combinations of configurations options are valid. One
widely used tool in practice to express variability models is
Kconfig,1 which is used for example in the development of
Linux and Busybox. Variability models can be transformed
into boolean formulas, which enables efficient reasoning about
them using current SAT-solver technology [34].

3. SAMPLE-BASED ANALYSIS
Sample-based analysis has its origin in early approaches of

testing software [35]. Due to the sheer size and complexity of
real-world systems (the number of variants can grow exponen-
tially with the number of configuration options), a brute-force
approach of analyzing all variants in isolation is not feasible.
Hence, developers typically analyze only a subset of variants,
called the sample set, using off-the-shelf analysis tools. The
idea is that, even though we cannot analyze all variants in-
dividually, we can still strive for analyzing a representative
sample set to be able to draw informed conclusions about the
entire set of variants (e.g., in terms of defect probability).
The sample set is selected by a sampling heuristic, either

by a domain expert or by an algorithm. Researchers and
practitioners have proposed different sampling heuristics,
some of which require sophisticated upfront analyses. We se-
lected four that are common in practice: single configuration,
random, code coverage, and pair-wise coverage, as described
below. For an overview of other sampling strategies, see a
recent survey [35].

Single-conf heuristic. The simplest sampling heuristic (sin-
gle conf) is to analyze only a single representative variant
that enables most, if not all, of the configuration options
of the variable system. Typically, the variant is selected
manually by a domain expert. The strength of this heuristic
is that one needs to analyze only a single variant, hence it is
fast. By selecting many configuration options, the heuristic
tries to cover a large part of the system’s code, however,
it cannot cover mutually exclusive code pieces or intricate
interactions specific to individual combinations of configura-
tion options [19]. For the code snippet in Figure 2, we can
create a configuration that enables all configuration options:

1https://www.kernel.org/doc/Documentation/kbuild/

kconfig-language.txt

http://fosd.net/vaa
http://ckaestne.github.com/TypeChef
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt
https://www.kernel.org/doc/Documentation/kbuild/kconfig-language.txt

header.h

1 #ifdef A

2 int foo(int a) {...}

3 #else

4 int foo2(int a) {...}

5 #endif

6 #ifdef B

7 int bar(int i, int j) {

8 ...

9 }

10 #endif

main.c

11 #include "header.h"

12 int main() {

13 #ifdef A

14 bar(2,3);

15 foo2(3);

16 #endif

17 #ifdef C

18 print("done");

19 #endif

20 }

Figure 2: C code with preprocessor directives; the
header file (left) contains one alternative and one op-
tional definition; the C file (right) uses the definitions of
the header file.

{A,B ,C}. Since code fragments in Lines 2 and 4 are mutu-
ally exclusive, a single configuration will cover only one of
them, leaving Line 4 uncovered, in our case.

According to Dietrich et al. [17], in the Linux development
community, it is common to analyze only one predefined
variant with most configuration options selected, called al-
lyesconfig. Similarly, many software systems come with a
default configuration that satisfies most users and that usu-
ally includes many configuration options.

Random heuristic. A simple approach to select samples is
to generate them randomly. For example, in a project with
n features, we could make n random, independent decisions
whether to enable the corresponding configuration option. In
projects with constraints between options, we would discard
variants with invalid configurations and would keep the re-
maining variants as our sample. Random sampling is simple
and scales to an arbitrary sample size. Alternatively testing
can continue until time or money runs out. Random sampling
does not adhere to any specific coverage criterion, though.

Code-coverage heuristic. The code-coverage heuristic is
inspired by the statement-coverage criterion used in software
testing [47]. In contrast to software testing, the code-coverage
heuristic aims at variant generation not code execution [41].
The goal of this heuristic is to select a minimal sample
set of variants, such that every lexical code fragment of
the systems’ code base is included in, at least, one variant.
In contrast to the single-conf heuristic, the code-coverage
heuristic covers mutually exclusive code fragments. However,
note that including each code fragment at least once, does not
guarantee that all possible combinations of individual code
fragments are considered. For the code snippet in Figure 2,
two configurations {A,B , C} and {}—the first selecting
all options and the second deselecting them all—would be
sufficient to include every code fragment in at least one
variant. However, it would not help to detect the compilation
error, i.e., calling bar when A is selected but B is not.

Although there is an algorithm to compute an optimal so-
lution (a minimal set of variants) by reducing the problem to
calculating the chromatic number of a graph, this algorithm
is NP-complete and by far too slow for our case studies.2 In-
stead, we resort to the conservatively approximated solution
of Tartler et al. [41], which speeds up the computation of the
sample set significantly at the cost of producing a sample set
that is possibly larger than necessary.

2For more details on the optimal algorithm, see https://github.

com/ckaestne/OptimalCoverage.

A subtle problem of this heuristic arises from the issue
of how to treat header files. When computing the sample
set of two variants in our example, we have implicitly as-
sumed that we analyze coverage in the main file and the
included header file together. Due to the common practice
of including files that themselves include other files, a single
#include statement in the source code can bloat the code
base of a single file easily by an order of magnitude, some-
thing we frequently observed in Linux, in which on average
300 header files are included in each C file [25]. In addition,
header files often exhibit their own variability, not visible
in the C file without expanding macros. Furthermore, some
header files may be included only conditionally, depending
on other #ifdef directives, such that, for a precise analysis
of all header code, sophisticated analysis mechanisms become
necessary (e.g., using symbolic execution of the preprocessor
code) [20,25,29]. This explosion and cost can make precise
analyses that include header files unpractical or infeasible,
even with Tartler’s approximate solution. Therefore, we
distinguish two strategies for code coverage: (1) covering
variability only in C files and (2) covering variability in C
files and their header files. Analyzing only the main file
above, a single configuration {A,C} would be sufficient to
cover all code fragments of the main file.

Pair-wise heuristic. The pair-wise heuristic is motivated
by the hypothesis that many faults in software systems are
caused by interactions of, at most, two configuration op-
tions [10,28,37,38]. Using the pair-wise heuristic, the sample
set contains a minimal number of samples that cover all pairs
of configuration options, whereby each sample is likely to
cover multiple pairs. For the code in Figure 2, with three
optional and independent features, a pair-wise sample set
consist of 4 configurations: {A,B}, {A,C}, {B ,C}, and {}.
The computation of pair-wise sample sets is not trivial if

constraints, such as A implies B or C, exist in a variability
model; in fact it is NP-complete (similar to the minimum set
cover problem) [21]. Hence, existing tools apply different con-
servative approximations to make the computation possible
for large systems with many configuration options. For our
experiments, we use SPLCATool3 by Johansen et al., which
computes pair-wise samples using covering arrays [21]. The
computed sample covers all pair-wise interactions that occur
in a given system, but is not guaranteed to be minimal.

4. VARIABILITY-AWARE ANALYSIS
Variability-aware analysis (also known as family-based

analysis [43]) takes advantage of the similarities between the
variants of a system in order to speed up the analysis process.
Although individual variability-aware analyses differ in many
details [43], an idea that underlies all of them is to analyze
code that is shared by multiple variants only once. To this
end, variability-aware analyses do not operate on generated
variants, but on the raw code artifacts that still contain
variability and available configuration knowledge, prior to
the variant-generation step.

In our context, variability-aware analyses work directly on
C code that still contains preprocessor directives. As code
artifacts with preprocessor directives cannot be processed
directly by standard analyses, an analysis has to be prepared—
it has to be made variability-aware (plain preprocessing does

3
http://heim.ifi.uio.no/martifag/splcatool

https://github.com/ckaestne/OptimalCoverage
https://github.com/ckaestne/OptimalCoverage
http://heim.ifi.uio.no/martifag/splcatool

TranslationUnit

int r FunctionDef

int foo
int a

Choice B

int b ε

Stmt-Block

if

Condition

Choice A

a<0 0

Then-Block

return -b

. . .

10

11

12

1315

¬B B

B

Figure 3: Excerpt of the corresponding variable AST
(left) and CFG (right) for our running example of Fig-
ure 1.

not help, as it removes variability). Technically, one has
to adapt existing analyses to empower them to work with
variable code fragments. This approach has been pursued for
adapting existing type-checking, model-checking, and testing
techniques to variable systems [2, 14,24,26,27,30].
Although variability-aware analysis has been applied in

academic projects, showing promising performance improve-
ments by orders of magnitude, apart from parsing [25, 26], it
has never been applied to real-world software systems at the
scale of Linux. Since many industrial software systems are
implemented in C and use #define and #ifdef directives
(and a build system) to implement compile-time variabil-
ity, we set the goal of implementing two variability-aware
analyses for C and of applying them to large-scale projects.
For the purpose of presenting and discussing the results

of our empirical study, we explain in the remaining section
our design decisions in implementing variability-aware type
checking and liveness analysis. Note that we implemented
the liveness analysis for the purpose of our study. It is the
first variability-aware data-flow analysis for C. It scales to
real-world, large-scale systems such as Linux.

Variable abstract syntax trees. Many static analyses are
performed on abstract syntax trees (ASTs). Since we want
to analyze an entire variable software system, we have to
construct an abstract syntax tree that covers all variants of
a system and the corresponding configuration knowledge.
The desired variable AST is like a standard AST, but it

contains additional nodes to express compile-time variation.
A Choice node expresses the choice between two or more al-
ternative subtrees (similar to ambiguity nodes in GLR parse
forests [45]; explored formally in the choice calculus [18]).
For example, Choice(A,a<0,0) (Figure 3, left) expresses the
alternative of two expressions a<0 and 0 that is controlled by
configuration option A. The choice node is a direct represen-
tation of the variable expression in our running example (Fig-
ure 1; #ifdefs on Line 1 to 3 and their usage on Line 7). One
alternative of a choice may be empty (ε; see Figure 3), which
makes the other, in fact, optional. In principle, we could use
a single Choice node on top of the AST with one large branch
per variant; but a variable AST is more compact, because it
shares parts that are common across multiple variants (e.g.,
in Figure 3, we store only a single node for the declaration of r,
and a single node for the function name foo, which are shared
by all variants). It is this sharing and keeping variability local,
which makes variability-aware analysis faster than a brute-
force approach (see the discussion at the end of this section).
To reason about variability, we need to represent con-

figuration knowledge. To this end, we annotate subtrees
with presence conditions. Propositional formulas are suffi-

cient to describe presence conditions and can be efficiently
processed by SAT solvers and BDDs [34]. As an example,
in Figure 1, parameter b is included only if B is selected,
whereas the condition of the if statement has two alternative
subtrees depending on whether A is selected. In our example,
presence conditions are atomic and refer only to a single
configuration option, but more complex presence conditions,
such as A ∧ ¬(B ∨ C), are possible. By storing presence con-
ditions in Choice nodes, we can derive the code of every
variant of the variable system, given the configuration for
that variant. Compact representations of variable ASTs in
this or similar forms are commonly used in variability-aware
analyses [9, 18,24,25,46].
The construction of a variable AST from a real-world

software system such as Linux is not trivial. Whereas pars-
ing preprocessed C code of an individual variant is well
established, parsing a variable system with #ifdefs is chal-
lenging. To make matters worse, in the C preprocessor,
conditional-compilation directives (#ifdef) interact with the
build system, with macros (#define), and with file-inclusion
facilities (#include), across file boundaries, in intricate ways.
In previous work, we solved the parsing challenge and imple-
mented a sound and complete parser as part of the TypeChef
project [25], incorporating prior work on variability-model
extraction and build-system analysis [6, 7]. Variability-aware
parsing always considers a C file with all its header files. It is
this recent breakthrough in parsing that now finally enables
the analysis of real-world C code with #ifdef variability. For
details on the parser, see the corresponding publication [25].
In the remainder of this paper, we use this parser frame-

work as a black box and work on the resulting variable ASTs.

Variability-aware type checking. A standard type-check-
ing algorithm for C traverses the AST, collects declarations
in a symbol table, and attempts to assign proper types to all
expressions (getType: Map[Name,Type]→Expr→Type). In
principle, a variability-aware type checker works similar, but
covers all variants; hence it must be aware of variability in
each of the following three steps.
First, a symbol (variable, function, etc.) may only be

declared in some variants, or it may even have alternative
types in different variants. Therefore, we extend the sym-
bol table (similar to the proposal of Aversano et al. [5]),
such that a symbol is no longer mapped to a single type,
but to a conditional type (a choice of types or ε; VST =

Map[Name,Choice[Type]]). We illustrate a possible encod-
ing of a conditional symbol table for our example in Table 1.
If a symbol is declared in all variants, we do not need Choice

nodes; however, if a symbol is declared in a subtree of the
AST that is only reachable given a certain presence condition,
we include the symbol and type in the symbol table only
under that condition. Similarly, we may declare a symbol
with different types in different variants. In our running
example, function foo has two alternative types, depending
on whether B is selected. Similarly, we made the table for
structures and enumerations in C variability-aware.

Second, during expression typing, we assign a variable type
(choices of types) to each expression (getType: VST→Expr→

Choice[Type]), where already looking up a name in a symbol
table may return a variable type. For example, when checking
that the condition of an if statement has a scalar type, we
need to check that all alternative choices of the variable type
are scalar. If the check fails only for some alternative results,

Table 1: Conditional symbol table at Line 6 of our run-
ning example of Figure 1.

Symbol (Conditional) Type Scope

r int 0
foo Choice(B,int→int→int,int→int) 0
a int 1
b Choice(B,int,ε) 1

we report a type error and pinpoint it to a subset of variants,
as characterized by a corresponding presence condition. Sim-
ilarly, an assignment is only valid if the expected (variable)
type is compatible with the provided (variable) type in all
variants. Therein, an operation on two variable types can,
in the worst case, result in the Cartesian product of the
types in either case of the choice, resulting in a variable type
with many alternatives. All other type rules are essentially
implemented along the same lines. In our running example,
we would report a type error in Line 8, because symbol b
cannot be resolved in variants without B (see Table 1).
Third, we can use the variability model of a system (if

available) to filter all type errors that occur only in invalid
variants. To this end, we simply check whether the presence
condition of the type error is satisfiable when conjoined with
the variability model (checked with a standard SAT solver).

Variable control-flow graphs. For most data-flow analy-
ses, we need to construct a control-flow graph (CFG), which
represents all possible execution paths of a program. Nodes
of the CFG correspond to instructions in the AST, such as
assignments and function calls; edges correspond to possible
successor instructions according to the execution semantics
of the programming language. A CFG is a conservative static
approximation of the actual behavior of the program.
As with type checking, we need to make CFGs variable

to cover all variants of systems. To create a CFG for a
single program, we need to compute the successors of each
node (succ: Node→List[Node]). In the presence of variabil-
ity, the successors of a node may differ in different variants,
so we need a variability-aware successor function that may
return different successor sets for different variants (succ:
Node→Choice[List[Node]], or, equivalently, but with more
sharing, succ: Node→List[Choice[Node]]). Using the re-
sult of this successor function, we can determine for every
possible successor, a corresponding presence condition, which
we store as annotation of the edge in the variable CFG.

Let us illustrate variable CFGs by means of the optional
statement in Line 12 of our running example of Figure 1. In
Figure 3 (right), we show an excerpt of the corresponding
variability-aware CFG (node numbers refer to line numbers of
Figure 1). The successor of the instruction c += a in Line 12
depends on the configuration: if B is selected, statement
c += b in Line 13 is the direct successor; if B is not selected,
return c in Line 15 is the (only) successor. Technically, we
add further nodes to the result set of the successor function,
until the conditions of the outgoing edges cover all possible
variants, in which the source node is present (checked with a
SAT solver or BDDs). By evaluating the presence conditions
on edges, we can reproduce the CFG of each variant. 4

4Alternatively, we could have dropped the presence conditions on
edges and express variations of the control flow with if statements.
On an if statement, a normal CFG does not evaluate the expres-
sion, but conservatively approximates the control flow by reporting

Table 2: Result of liveness computation of our running
example of Figure 1; bB is shorthand for Choice(B,b,ε).

Line Uses Defines In Out

10 {a} {c} {a,bB} {a,bB ,c}
11 {c} {} {a,bB ,c} {a,bB ,c}
12 {a,c} {c} {a,bB ,c} {bB ,c}
13 {bB ,cB} {cB} {bB ,cB} {cB}
15 {c} {} {c} {}

Variability-aware liveness analysis. Liveness analysis is
a classic data-flow analysis for the computation of variables
that are live (that may be read before being written again)
for a given statement. Its result can be used, for example,
to conservatively detect dead code. In real-world systems,
warnings about dead code that occurs only in specific vari-
ants are interesting for maintainers; corresponding problems
are regularly reported as bugs.5 So, again, our goal is to
make liveness analysis variability-aware.

Liveness analysis is based on two functions: uses computes
all variables read, and defines computes all variables writ-
ten to. While, in traditional liveness analysis, both functions
return sets of variables, in variability-aware liveness analysis,
both return sets that may vary depending on the configu-
ration (a choice of sets or a set with optional entries). The
computation of liveness is a fixpoint algorithm that uses two
functions, in and out, which compute variables that are live
at respectively after the current statement. The result of in
and out is variable again, and the signatures of both change
from Node→Set[ID] to Node→Set[Choice[ID]], where ID

represents the identifier of a live variable.
In Table 2, we show the results of variability-aware live-

ness analysis for our running example. We show the result
of each equation as a set of variables together with their
presence condition as subscript. For example, only c is live
in the return statement on Line 15. Considering the control
flow from Line 10 to 13 (10 → 11 → 12 →B 13), in the
declaration statement on Line 10, variable a is live, whereas
b is only live if B is selected.

Principle: Keeping variability local. Although we have
introduced how variability-aware analyses work, we have not
explained why we expect that they can be executed efficiently
even for real-world systems with myriads of possible variants.
The key is keeping variability local. Parsing already preserves
sharing in the AST and keeps variability local (code without
#ifdef directives is represented only once, since it is common
to all variants; choices are introduced only locally where code
differs between variants). We preserve this sharing and local-
ity throughout our analyses, as far as possible. Specifically,
three patterns emerged that maximize sharing: late splitting,
local variability representation, and early joining.
First, late splitting means that we perform the analysis

without variability until we encounter it. For example, type

both alternative branches as possible successor statements (e.g., in
Figure 3, both nodes 12 and 15 may follow node 11). Such sound but
incomplete approximation is standard practice to make static analy-
sis tractable or decidable. However, we do not want to lose precision
for static variability. Furthermore, we have only propositional formu-
las to decide between execution branches, which makes computations
decidable and comparably cheap, so we decided in favor of presence
conditions on edges, which is in line with prior work on CFG in vari-
able Java programs [8, 9].
5e.g., https://bugzilla.kernel.org/show_bug.cgi?id=1664.

https://bugzilla.kernel.org/show_bug.cgi?id=1664

checking processes the declaration of symbol r in Line 5 only
once, and adds it to the symbol table only once, whereas a
brute-force strategy or a sampling-strategy would process
this declaration multiple times. Also, when we use symbol
r later, it has only one type. Variability-aware analyses
only split and consider smaller parts of the variant space
when they actually encounter variability, for example, in the
declaration of parameter b. Late splitting is similar to path
splitting in on-the-fly model checking, where splitting is also
performed only on demand [13].
Second, local variability representation aims at keeping

variability local in intermediate results. For example, instead
of copying the entire symbol table for a single variable entry,
we have only a single symbol table with conditional entries
(technically, we use Map[String,Choice[Type]] instead of
Choice[Map[String,Type]] to achieve this locality). There-
fore, even after the conditional declaration of parameter b,
we only store a single type for a or r, independently of B.

Third, early joining attempts to join intermediate results
as early as possible. For example, if we have a choice of two
identical types Choice(A,int,int), we can simply join them
to int for further processing. So, even if we need to compute
the Cartesian product on some operations with two variable
types, the result can often be joined again to a more compact
representation. This way, variability from parts of the AST
leaks into other parts, if and only if variability actually makes
a difference in the internal representations of types, names, or
other structures. Also, we need to consider only combinations
of configuration options that occur in different parts of the
AST if they actually produce different (intermediate) results
when combined, otherwise the results remain orthogonal.

Note that the three patterns of late splitting, local vari-
ability representation, and early joining apply to any kind of
variability-aware analysis; although not always made explicit,
these patterns can also be observed in other variability-aware
analyses [4, 9, 25,27].

5. EMPIRICAL STUDY
To evaluate feasibility and scalability of different analy-

sis strategies, we attempt to analyze three real-world, and
large-scale systems—a fact that substantially increases exter-
nal validity, compared to previous work, which concentrated
mostly on formal foundations, made limiting assumptions, or
relied on comparatively small and academic case studies (see
Section 6). We use both state-of-the-art sampling heuristics
(single conf, code coverage with and without headers, and
pair-wise), as introduced in Section 3. We apply both type
checking and liveness analysis. We report our experience and
perform rigorous performance measurements.

5.1 Hypotheses and Research Questions
Based on the goals and properties of variability-aware and

sampling-based analyses, we formulate two hypotheses and
two research questions.

1. Variability-aware vs. single conf: Analyzing all variants
simultaneously using variability-aware analysis is likely
slower than analyzing a single variant that covers most
configuration options. The reason is that the variable
program representation covering all variants is larger
than the program representation of any single variant,
including the largest possible variant.

H1 The execution times of variability-aware type check-
ing and liveness analysis are larger than the corre-
sponding times of analyzing the variants derived
by single-conf sampling.

2. Variability-aware vs. pair-wise: While previous work
has shown that pair-wise sampling is a reasonable ap-
proximation of the analysis of all variants [33], our
previous experience is that it can still generate quite
large sample sets. Hence, we expect a variability-aware
analysis to outperform pair-wise sampling:

H2 The execution times of the variability-aware type
checking and liveness analysis are smaller than
the corresponding times of analyzing the variants
derived by pair-wise sampling.

3. Variability-aware vs. code coverage: With respect to
the comparison of variability-aware analysis and code-
coverage sampling, we cannot make any informed guess-
es with respect to analysis time. Code-coverage sam-
pling generates sample sets depending on the usage of
configuration options in the analyzed C files. Since we
do not know details about the code, we cannot predict
how many variants will be generated and how large
these will be. Therefore, we pose a research question
instead. Specifically, the influence of variability that
occurs in header files is unknown and therefore we look
at two different variants of code coverage: one including
header files and one without.

RQ1 How do the execution times of variability-aware
type checking and liveness analysis compare to the
times for analysis of the variants derived by code-
coverage sampling (with and without header files)?

4. Scalability: Finally, we pose the general question of the
scalability of variability-aware analysis.

RQ2 Does variability-aware analysis scale to systems
with thousands of configuration options?

The background for questioning scalability is that vari-
ability-aware analysis reasons about variability by solv-
ing SAT problems or by using BDDs during analysis,
and so depends on the degree of sharing that is pos-
sible in practice (see Section 4). Generally, SAT is
NP-complete, but previous work suggests that the prob-
lems that arise in variability-aware analysis are typically
tractable for state-of-the-art SAT solvers [34] and BDDs,
and that caching can be an effective optimization [2].

5.2 Subject Systems
To test our hypotheses and to answer our research ques-

tions, we selected three subject systems. We looked for pub-
licly available systems (for replicability), that are of substan-
tial size, actively maintained by a community of developers,
used in real-world scenarios, and that implement substan-
tial compile-time variability with the C preprocessor. The
systems must provide at least an informal variability model
that describes configuration options and their valid combi-
nations [31]. In this context, we would like to acknowledge
the pioneering work on variability-model extraction [7, 40]
and build-system analysis [6], which enabled us, for the first
time, to conduct variability-aware analysis on substantial,
real-world systems that are an order of magnitude larger
then previous work on Java-based subjects [4, 9, 24].

• The Busybox tool suite reimplements most standard
Unix tools for resource-constrained systems. With 792
configuration options it is highly configurable; most of
the options refer to independent and optional subsys-
tems; the variability model in conjunctive normal form
has 993 clauses. We use Busybox version 1.18.5 (522
files and 191 615 lines of source code).

• The Linux kernel (x86 architecture, version 2.6.33.3) is
an operating-system kernel with millions of installations
worldwide, from high-end servers to mobile phones.
With 6 918 configuration options it is highly config-
urable. In a previous study, we identified the Linux ker-
nel as one of the largest and most complex (w.r.t. vari-
ability) publicly available variable software systems [31].
It has 7 691 source code files with 6.5 million lines of
code. Note that already the variability model of Linux
is of substantial size: the corresponding extracted for-
mula in conjunctive normal form has over 60 000 vari-
ables and nearly 300 000 clauses; a typical satisfiability
check requires half a second on a standard computer.

• The cryptographic library OpenSSL implements dif-
ferent protocols for secure Internet communication.
OpenSSL can be tailored to many different platforms,
and it provides a rich set of 589 configuration options.
We analyze OpenSSL version 1.0.1c with 733 files and
233 450 lines of code. Since OpenSSL does not come
with a formal variability model like Busybox or Linux,
we extracted a variability model based on manual anal-
ysis. The resulting variability model has 15 clauses.

5.3 Experience with Sampling
Before we discuss the performance measurements, we would

like to share our experience with sampling approaches, which
were surprising to us. We expected that contemporary sam-
pling tools can quickly compute representative sample sets.
However, we found that deriving samples at this scale is far
from trivial, and that we even failed to compute sample sets
for some sampling heuristics (code coverage with headers for
Linux), and that the computation time already takes up to
several hours (e.g., pair-wise: >20 h for Linux).
The single-conf heuristic worked well. Linux has a com-

monly used configuration allyesconfig, which is maintained by
the community and frequently used for analysis purposes.6

For Busybox and OpenSSL, we created large configurations
by selecting as many configuration options as possible.

Random sampling already proved problematic. Both Busy-
box and Linux have variability models with many constraints.
In 1 000 000 random configurations, there was not even a
single configuration that fulfilled all variability-model con-
straints. Random sampling was only a possibility for OpenSSL,
which has a comparably sparse variability model (∼ 3% of
randomly generated configurations were valid). Busybox de-
velopers actually uses a skewed form of random sampling, in
which, one by one, a random value is selected for every config-
uration option that is not yet decided by constraints of other
options. This approach depends strongly on variable ordering
and violates the developer intuition about random selection.
Due to these sampling problems in the presence of constraints,
we did not consider random sampling any further.

For the coverage-based and the pair-wise heuristics, we ob-
served that the generation of samples took considerable time
(times for sample generation are not part of our reported

6
http://kernel.org/doc/Documentation/kbuild/kconfig.txt

Figure 4: Experimental setup.

analysis times below) and was not possible in all cases (in
particular for Linux).

In contrast to all other heuristics, heuristics based on code
coverage need to investigate every file separately (and option-
ally all their header files). We reimplemented the conservative
algorithm of Tartler et al. for this task [41] in two variants:
one including header files (code coverage) and one without
(code coverage NH). When headers are included and macros
are considered, the coverage analysis easily needs to process
several megabytes of source code per C file [25]. Surprisingly,
already the times needed for code-coverage sample compu-
tation exceeded the times for performing variability-aware
type checking and liveness analysis.
To compute the pair-wise sample set we only found one

research tool (SPLCATool), which is able to compute a com-
plete set of pair-wise configurations for a given feature model
(see Section 3). SPLCATool did reasonably well for Busybox
and OpenSSL, but the larger configuration space of Linux
made the computation of the sample set very expensive. Also
in this case, the computation time exceeded the times for
performing variability-aware liveness analysis.

5.4 Experimental Setup
We use TypeChef as underlying parsing framework. As

explained in Section 4, TypeChef generates a variable AST
per file, in which Choice nodes represent optional and alter-
native code. Our implementations of variability-aware type
checking and liveness analysis are based on these variable
ASTs, and they are integrated into and deployed as part of
the TypeChef project.
To avoid bias due to different analysis implementations,

we use our infrastructure for variability-aware analysis also
for the sample-based analyses. To this end, we generate
individual variants (ASTs without variability) based on the
sampling heuristics. We create an AST for a given configura-
tion by pruning all irrelevant branches of the variable AST,
so that no Choice nodes remain. As there is no variability
in the remaining AST, the analysis never splits and there is
no overhead due to SAT solving, because the only possible
presence condition is true.

As liveness analysis is intraprocedural, it would have been
possible and more efficient to apply sampling to individual
functions and not to files, as done by Brabrand et al. for
Java product lines [9]. Unfortunately, preprocessor macros
in C rule out this strategy, as we cannot even parse functions
individually without running the preprocessor first or with-
out performing full variability-aware parsing. In our running
example of Figure 1, we would not even have noticed that
function foo is affected by A, because variability comes from
variable macros defined outside the function. Variable macros
defined in header files are very common in C code [25].

http://kernel.org/doc/Documentation/kbuild/kconfig.txt

Furthermore, we implemented only an imprecise liveness
analysis, since the analysis is performed without a real anal-
ysis question (e.g., which code is dead). The strategy of
abstraction is a common approach in model checking [12], to
handle the complexity of a system and to make the analy-
sis feasible in the first place. In particular, during liveness
computation, our algorithms perform SAT checks without
taking the variability model of the analyzed system into
account. This way, the computation is faster and still com-
plete, though, false positives may occur. False positives can
be eliminated easily after a refinement step (i.e., using the
variability model in SAT checks), so that only valid execution
paths are taken into account [12].

In Figure 4, we illustrate the experimental setup. Depend-
ing on the sampling heuristics, one or multiple configurations
are checked. For each file of the three subject systems,
we measured the time spent in type checking and liveness
analysis, each using the variability-aware approach and the
three sampling heuristics (the latter consisting of multiple
internal runs)—in total, four analyses per subject system:
one variability-aware + three respectively four sampling (with
and without header files for code coverage).
We ran all measurements on Linux machines (Ubuntu

12.04) with Intel Core i7-2600, 3.4GHz, and 16/32GB RAM.
We configured the Java JVM with upto 8GB RAM for mem-
ory allocation. To reduce measurement bias, we minimized
disk access by using a ramdisk and warmed up the JVM
by running an example task before the actual measurement
run. However, due to just-in-time compilation and automatic
garbage collection inside the Java JVM, measurements of
analysis times might slightly differ for similar inputs. We
could not mitigate this problem with repetitive analysis runs,
since the setup already takes weeks to finish, but we believe
that the large number of files produces still a reliable result.

Analysis procedure and reporting. We report performance
measurements as total times for the entire analysis and addi-
tionally graphically as the distribution of analysis times for
individual files in the project, using notched boxplots on a
logarithmic scale. We highlight the median (over all files) of
the variability-aware analyses with a vertical line, to simplify
comparison with the medians of the sample-based analyses.

Furthermore, we provide the number of analyzed configura-
tions for each of the sample-based analyses (below the name
of the analysis, ‘configs per file’ or short ‘c.p.f.’). Single conf
requires the same number of variants for each file (because
they are based on global knowledge of the variability model
only), whereas code coverage and pair-wise7 require different
numbers of variants in different files, which we provide in
terms of mean±standard deviation. We evaluate all research
hypotheses with paired t-tests at a confidence level of 95%.

5.5 Results
In Table 3, we show the measurement results for each

analysis and subject system. We report sequential times,
though parallelization would be possible in all cases, because
all files are analyzed in isolation. In Figures 5, 6, and 7, we

7In addition to the given variability model, the build system of Linux
defines presence conditions for individual files. So, as for Linux, each
file has its own variability model. Nevertheless, we use the global
variability model for the computation of pair-wise sample sets. Since,
the sample may contain configurations that are not valid for a file,
the overall number of analyzed configurations for a file decreases.

Table 3: Total times for analyzing the subjects with each
approach (time in seconds, with three significant digits).

Type checking Liveness analysis

B
u
sy

b
o
x Single conf 40.3 19.4

Code coverage NH 107 67.1
Code coverage 2 030 985
Pair-wise 1 110 544
Variability-aware 223 97.3

L
in
u
x

Single conf 5 060 2 560
Code coverage NH 33 000 22 500
Pair-wise 569 000 380 000
Variability-aware 73 500 13 900

O
p
e
n
S
S
L Single conf 64.1 24.5

Code coverage NH 86.9 37.6
Code coverage 388 145
Pair-wise 1 110 455
Variability-aware 228 44.7

L
iv
en

es
s
a
n
a
ly
si
s

variability−aware

pair−wise

(30.6±2.52 c. p. f.)

code coverage

(43.9±6.55 c. p. f.)

code coverage NH

(2.53±3.59 c. p. f.)

single conf

 (1 config per file)

20 50 100 200 500 1000 2000

T
y
p
e
ch
ec
k
in
g

variability−aware

pair−wise

(30.6±2.52 c. p. f.)

code coverage

(43.9±6.55 c. p. f.)

code coverage NH

(2.53±3.59 c. p. f.)

single conf

 (1 config per file)

2 5 10 20 50 100 200 500 1000 5000

Figure 5: Distribution of analysis times for Busybox
(times in milliseconds; logarithmic scale).

plot the distributions of analysis times for Busybox, Linux,
and OpenSSL, as described in Section 5.4.
In all subject systems and for both type checking and

liveness analysis, the variability-aware approach is slower
than single-conf sampling (H1; statistically significant), and
it is faster than pair-wise sampling (H2; statistically signif-
icant). The results regarding code-coverage sampling (H3)
are mixed: variability-aware analysis is faster for liveness
analysis in Linux, slower for liveness analysis in Busybox
and OpenSSL and for type checking of Linux and OpenSSL
(statistically significant). We observe that code coverage
without header files (NH) is often faster than with header
files and sometimes it even outperforms single-conf sampling.
The reason for this is that many #ifdefs occur in header
files, something that is neglected in code-coverage sampling
NH. Single-conf sampling considers variability in header files
such that it may select a larger configuration with addi-
tional header code, which is potentially unnecessary, and is,
therefore, slower than code-coverage sampling NH. Table 4
summarizes the actual speedups of all comparisons.

It is worth noting that we did not find any confirmed defects
during our experiments. For Linux, we found a defect already
fixed in subsequent releases; for Busybox, we found and re-
ported several defects in earlier versions that have been fixed
in the current version, which we used for our experiments.8

8Bug reports: https://bugs.busybox.net/show_bug.cgi?id=4994 ;
http://lists.busybox.net/pipermail/busybox/2012-April/

077683.html

https://bugs.busybox.net/show_bug.cgi?id=4994
http://lists.busybox.net/pipermail/busybox/2012-April/077683.html
http://lists.busybox.net/pipermail/busybox/2012-April/077683.html

L
iv
en

es
s
a
n
a
ly
si
s

variability−aware

pair−wise

(178±73.2 c. p. f.)

code coverage NH

(10.9±11.2 c. p. f.)

single conf

 (1 config per file)

1 100 10000

T
y
p
e
ch
ec
k
in
g

variability−aware

pair−wise

(178±73.2 c. p. f.)

code coverage NH

(10.9±11.2 c. p. f.)

single conf

 (1 config per file)

1 100 10000

Figure 6: Distribution of analysis times for Linux (times
in milliseconds; logarithmic scale).

L
iv
en

es
s
a
n
a
ly
si
s

variability−aware

pair−wise

(19±0 c. p. f.)

code coverage

(3.69±1.73 c. p. f.)

code coverage NH

(1.21±0.728 c. p. f.)

single conf

 (1 config per file)

1 5 10 50 100 500 1000

T
y
p
e
ch
ec
k
in
g

variability−aware

pair−wise

(19±0 c. p. f.)

code coverage

(3.69±1.73 c. p. f.)

code coverage NH

(1.21±0.728 c. p. f.)

single conf

 (1 config per file)

1 5 10 50 100 500 5000

Figure 7: Distribution of analysis times for OpenSSL
(times in milliseconds; logarithmic scale).

5.6 Discussion
Our experiments confirm hypotheses H1 and H2: in all

three subject systems, variability-aware analysis is faster
than sampling-based analysis using the pair-wise heuristics,
but slower than using the single-conf heuristics. With re-
spect to research question RQ1, there is no clear picture. The
performance of code-coverage sampling depends on the vari-
ability implementations in the respective files; the number
of sampled variants and performance results differ consider-
ably between files inside each subject system (see Figure 5, 6,
and 7). So, performance of the code-coverage heuristic is hard
to predict and depends strongly on implementation patterns.
A further observation is that the speedup of variability-

aware liveness analysis in relation to sampling is higher than
the speedup of variability-aware type checking. This can be
explained by the fact that liveness analysis is intra-procedural,
whereas type checking considers entire compilation units. Ex-
ploring the performance of variability-aware inter-procedural
analyses of large scale systems is an interesting avenue of
further work.

The experimental results for Busybox, Linux, and OpenSSL
demonstrate that variability-aware analysis is in the range
of the execution times of sampling with multiple samples
(code coverage and pair-wise). So, with regard to question
RQ2, we conclude that variability-aware analysis is practical
for large-scale systems. An important finding is that the
overhead induced by solving SAT problems during analy-

Table 4: Speedup of variability-aware analysis; a speedup
< 1.0 means that sampling is faster and a speedup
> 1.0 means that variability-aware analysis is faster (non-
significant result in parentheses).

Variability-aware vs. Type checking Liveness analysis

B
u
sy

b
o
x Single conf 0.18 0.20

Code coverage NH 0.48 (0.69)
Code coverage 9.10 10.12

Pair-wise 5.01 5.59

L
in
u
x Single conf 0.07 0.18

Code coverage NH 0.45 1.61
Pair-wise 7.74 27.24

O
p
e
n
S
S
L Single conf 0.28 0.54

Code coverage NH 0.38 0.84
Code coverage 1.70 3.24

Pair-wise 4.88 10.17

sis is not a bottleneck, not even for large systems such as
the Linux kernel. Overall, variability-aware type checking
(compared to single conf) in Busybox takes as much time as
checking 6 variants (15 variants in Linux and 4 variants in
OpenSSL). For liveness analysis, the break-even point is after
5 (Busybox), 6 (Linux), and 2 (OpenSSL) variants. That
is, if a sampling heuristic produces a sampling set larger
than that (or if continuing random sampling for more than
this number of samples), variability-aware analysis is faster
and also complete. All values are very low compared with
the number of the possible variants of the respective system,
showing that a complete analysis is already possible at the
costs of an incomplete sampling heuristic.

Threats to validity. A threat to internal validity is that
our implementations of variability-aware type checking and
liveness analysis support ISO/IEC C, but not all GNU C
extensions used in the subject systems (especially Linux).
Our analyses simply ignore corresponding code constructs.
Also due to the textual and verbose nature of the C standard,
the implementation does not align entirely with the behavior
of the GNU C compiler. Due to these technical problems,
we excluded 4 files of Busybox, and 470 files of Linux from
our study. All numbers presented in this paper have been
obtained after excluding the problematic files. Still, the com-
paratively large numbers of 518 files for Busybox, 7 221 files
for Linux, and 733 files for OpenSSL deem the approach
practical and our evaluation representative.

Second, the variants generated by the sampling heuristics
represent only a small subset of possible variants (which is
the idea of sampling). But, for pair-wise sampling, it may
happen that some variants of a file are very similar, as the
difference in the respective variant configurations affect the
content of a file only to a minor or no extent. However, we
argue that our conclusions are still valid, as this lies in the
nature of the sampling heuristics, and all heuristics we have
used are common in practice.

Finally, a (standard) threat to external validity is that we
considered only three subject systems. We argue that this
threat is largely compensated by their size and the fact that
many different developers and companies contributed to the
development of these systems.

6. RELATED WORK
Our implementations of variability-aware type checking

and liveness analysis are inspired by earlier work in two fields.

First, we and others have developed variability-aware type
systems for academic languages such as Featherweight Java [2,
24], Lightweight Java [16], the lambda calculus [11], and other
dialects of Java [24,42]. First conceptual sketches even reach
back 10 years [5]. Although a prior version of our C type
checker has been used to study a variability-aware module
systems and has been applied to Busybox, it has not been
evaluated in an empirical assessment and comparison to
sample-based type checking [26].

Second, researchers proposed variability-aware approaches
for data-flow analysis. Closest to our work, Brabrand et
al. compared three different algorithms for variability-aware,
intra-procedural data-flow analysis for Java against a brute-
force approach [9]. Similarly, Bodden proposed an approach
to extend an existing inter-procedural, data-flow analysis
framework to make it variability-aware [8]. Both approaches
are limited to an academic environment in which the input
Java programs contain #ifdef-like variability annotations
managed by a research tool; there are no substantial variable
real-world systems that use this technique. Furthermore,
both variability-aware analysis approaches make frequently
limiting assumptions on the form of variability (in particular,
type uniformity [24] and annotation discipline [23,32]), which
do not hold in real-world software systems [25,32].

7. CONCLUSION
In this paper, we reported on our experience with the imple-

mentation and performance of practical, scalable, variability-
aware and sampling-based analyses for real-world, large-scale
systems written in C, including preprocessor directives. In a
series of experiments on three real-world, large-scale subject
systems, including the Linux kernel, we compared the perfor-
mance of variability-aware type checking and liveness analysis
with the performance of corresponding state-of-the-art sam-
pling heuristics (single conf, pair-wise, and code coverage).
In our experiments, we found that the performance of

variability-aware analysis scales to large software systems,
such as the Linux kernel, and even outperforms some of the
sampling heuristics, while still being complete. In contrast
to previous work on sampling, we faced many problems and
found several limiting factors that render state-of-the-art
sampling heuristics, such as pair-wise, infeasible.

In future work, we aim at the development of further anal-
yses, at experimenting with other sampling heuristics and
with more case studies, and at setting up an automated and
incremental checking system for producing bug reports.

8. ACKNOWLEDGMENTS
We thank Tillmann Rendel for fruitful discussions on pat-

terns in variability-aware analysis, and Klaus Ostermann for
pushing us to generalize the underlying concepts of variability-
aware analysis. This work has been supported in part by
the German Research Foundation (AP 206/2, AP 206/4, AP
206/5, and LE 912/13) and ERC grant #203099.

9. REFERENCES
[1] S. Apel and C. Kästner. An Overview of

Feature-Oriented Software Development. J. Object
Technology, 8(5):49–84, 2009.

[2] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer.
Type Safety for Feature-Oriented Product Lines.
Automated Software Engineering, 17(3):251–300, 2010.

[3] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and
D. Beyer. Detection of Feature Interactions using
Feature-Aware Verification. In Proc. Int. Conf.
Automated Software Engineering (ASE), pages 372–375.
IEEE, 2011.

[4] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and
D. Beyer. Strategies for Product-Line Verification: Case
Studies and Experiments. In Proc. Int. Conf. Software
Engineering (ICSE), pages 482–491. IEEE, 2013.

[5] L. Aversano, L. Di Penta, and I. Baxter. Handling
Preprocessor-Conditioned Declarations. In Proc.
Working Conf. Source Code Management and
Manipulation (SCAM), pages 83–92. IEEE, 2002.

[6] T. Berger, S. She, K. Czarnecki, and A. Wasowski.
Feature-to-Code Mapping in Two Large Product Lines.
In Proc. Int. Software Product Line Conference
(SPLC), pages 498–499. Springer, 2010.

[7] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki. Variability Modelling in the Real: A
Perspective from the Operating Systems Domain. In
Proc. Int. Conf. Automated Software Engineering
(ASE), pages 73–82. ACM, 2010.

[8] E. Bodden, M. Mezini, C. Brabrand, T. Tolêdo,
M. Ribeiro, and P. Borba. SPLLIFT — Statically
Analyzing Software Product Lines in Minutes Instead
of Years. In Proc. Int. Conf. Programming Language
Design and Implementation (PLDI), pages 355–364.
ACM, 2013.

[9] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba.
Intraprocedural Dataflow Analysis for Software Product
Lines. In Proc. Int. Conf. Aspect-Oriented Software
Development (AOSD), pages 13–24. ACM, 2012.

[10] M. Calder and A. Miller. Feature Interaction Detection
by Pairwise Analysis of LTL Properties: A Case Study.
Formal Methods in System Design, 28(3):213–261, 2006.

[11] S. Chen, M. Erwig, and E. Walkingshaw. An
Error-Tolerant Type System for Variational Lambda
Calculus. In Proc. Int. Conf. Functional Programming
(ICFP), pages 29–40. ACM, 2012.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided Abstraction Refinement for
Symbolic Model Checking. Journal of the ACM,
50(5):752–794, 2003.

[13] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
The MIT Press, 1999.

[14] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model Checking Lots of Systems:
Efficient Verification of Temporal Properties in
Software Product Lines. In Proc. Int. Conf. Software
Engineering (ICSE), pages 335–344. ACM, 2010.

[15] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[16] B. Delaware, W. Cook, and D. Batory. Fitting the
Pieces Together: A Machine-Checked Model of Safe
Composition. In Proc. Int. Symp. Foundations of
Software Engineering (FSE), pages 243–252. ACM,
2009.

[17] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and
D. Lohmann. Understanding Linux Feature
Distribution. In Proc. AOSD Workshop Modularity in
Systems Software (MISS), pages 15–20. ACM, 2012.

[18] M. Erwig and E. Walkingshaw. The Choice Calculus: A
Representation for Software Variation. ACM Trans.
Software Engineering and Methodology, 21(1):6:1–6:27,
2011.

[19] B. Garvin and M. Cohen. Feature Interaction Faults
Revisited: An Exploratory Study. In Proc. Int. Symp.
Software Reliability Engineering (ISSRE), pages 90–99.
IEEE, 2011.

[20] Y. Hu, E. Merlo, M. Dagenais, and B. Lagüe. C/C++
Conditional Compilation Analysis using Symbolic
Execution. In Proc. Int. Conf. Software Maintenance
(ICSM), pages 196–206. IEEE, 2000.

[21] M. Johansen, Ø. Haugen, and F. Fleurey. Properties of
Realistic Feature Models Make Combinatorial Testing
of Product Lines Feasible. In Proc. Int. Conf. Model
Driven Engineering Languages and Systems
(MODELS), pages 638–652. Springer, 2011.

[22] M. Johansen, O. Haugen, and F. Fleurey. An
Algorithm for Generating t-Wise Covering Arrays from
Large Feature Models. In Proc. Int. Software Product
Line Conference (SPLC), pages 46–55. ACM, 2012.

[23] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proc. Int. Conf. Software
Engineering (ICSE), pages 311–320. ACM, 2008.

[24] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type
Checking Annotation-Based Product Lines. ACM
Trans. Software Engineering and Methodology,
21(3):1–39, 2012.

[25] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg,
K. Ostermann, and T. Berger. Variability-Aware
Parsing in the Presence of Lexical Macros and
Conditional Compilation. In Proc. Conf.
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 805–824. ACM, 2011.

[26] C. Kästner, K. Ostermann, and S. Erdweg. A
Variability-Aware Module System. In Proc. Conf.
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), pages 773–792. ACM, 2012.

[27] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch,
S. Apel, T. Rendel, and K. Ostermann. Toward
Variability-Aware Testing. In Proc. Int. Workshop
Feature-Oriented Software Development (FOSD), pages
1–8. ACM, 2012.

[28] D. Kuhn, D. Wallace, and A. Gallo. Software Fault
Interactions and Implications for Software Testing.
IEEE Trans. Software Engineering, 30(6):418–421,
2004.

[29] M. Latendresse. Fast Symbolic Evaluation of C/C++
Preprocessing using Conditional Values. In Proc.
European Conf. Software Maintenance and
Reengineering (CSMR), pages 170–179. IEEE, 2003.

[30] K. Lauenroth, S. Toehning, and K. Pohl. Model
Checking of Domain Artifacts in Product Line
Engineering. In Proc. Int. Conf. Automated Software
Engineering (ASE), pages 269–280. IEEE, 2009.

[31] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze. An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines. In Proc.
Int. Conf. Software Engineering (ICSE), pages 105–114.
ACM, 2010.

[32] J. Liebig, C. Kästner, and S. Apel. Analyzing the
Discipline of Preprocessor Annotations in 30 Million

Lines of C Code. In Proc. Int. Conf. Aspect-Oriented
Software Development (AOSD), pages 191–202. ACM,
2011.

[33] M. Lochau, S. Oster, U. Goltz, and A. Schürr.
Model-based Pairwise Testing for Feature Interaction
Coverage in Software Product Line Engineering.
Software Quality Journal, 20(3-4):567–604, 2012.

[34] M. Mendonça, A. Wasowski, and K. Czarnecki.
SAT-based Analysis of Feature Models is Easy. In Proc.
Int. Software Product Line Conference (SPLC), pages
231–240. ACM, 2009.

[35] C. Nie and H. Leung. A Survey of Combinatorial
Testing. ACM Comput. Surv., 43(2):1–29, 2011.

[36] S. Oster, F. Markert, and P. Ritter. Automated
Incremental Pairwise Testing of Software Product
Lines. In Proc. Int. Software Product Line Conference
(SPLC), pages 196–2010. Springer, 2010.

[37] G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, and
Y. Traon. Pairwise Testing for Software Product Lines:
Comparison of Two Approaches. Software Quality
Journal, 20(3-4):605–643, 2012.

[38] N. Siegmund, S. Kolesnikov, C. Kästner, S. Apel,
D. Batory, M. Rosenmüller, and G. Saake. Predicting
Performance via Automated Feature-Interaction
Detection. In Proc. Int. Conf. Software Engineering
(ICSE), pages 167–177. IEEE, 2012.

[39] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and
O. Spinczyk. Is the Linux Kernel a Software Product
Line? In Proc. Int. Workshop Opens Source Software
and Product Lines (OSSPL), 2007.

[40] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and
J. Sincero. Feature Consistency in Compile-Time
Configurable System Software. In Proc. EuroSys Conf.,
pages 47–60. ACM, 2011.

[41] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and
J. Sincero. Configuration Coverage in the Analysis of
Large-scale System Software. SIGOPS Oper. Syst. Rev.,
45(3):10–14, 2012.

[42] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
Composition of Product Lines. In Proc. Int. Conf.
Generative Programming and Component Engineering
(GPCE), pages 95–104. ACM, 2007.

[43] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann,
I. Schaefer, and G. Saake. Analysis Strategies for
Software Product Lines. Technical Report
FIN-004-2012, University of Magdeburg, 2012.

[44] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel.
Family-Based Theorem Proving for Deductive
Verification of Software Product Lines. In Proc. Int.
Conf. Generative Programming and Component
Engineering (GPCE), pages 11–20. ACM, 2012.

[45] M. Tomita. LR Parsers for Natural Languages. In Proc.
Int. Conf. Computational Linguistics (ACL), pages
354–357. ACL, 1984.

[46] A. von Rhein, S. Apel, and F. Raimondi. Introducing
Binary Decision Diagrams in the Explicit-State
Verification of Java Code. In Java Pathfinder
Workshop, 2011. co-located with ASE’11.

[47] H. Zhu, P. Hall, and J. May. Software Unit Test
Coverage and Adequacy. ACM Comput. Surv.,
29(4):366–427, 1997.

