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ABSTRACT
Requirements engineering is concerned with the elicitatio
of high-level goals to be achieved by the envisioned syste
the refinement of such goals and their operationalizatio
into specifications of services and constraints, and th
assignment of responsibilities for the resulting requiremen
to agents such as humans, devices, and software.
Requirements engineering processes often result in goa
requirements and assumptions about agent behavior that
too ideal; some of them are likely to be not satisfied from
time to time in the running system due to unexpected age
behavior. The lack of anticipation of exceptional behavior
results in unrealistic, unachievable and/or incomple
requirements. As a consequence, the software develop
from those requirements will not be robust enough and w
inevitably result in poor performance or failures, sometime
with critical consequences on the environment.
The paper presents formal techniques for reasoning abo
obstacles to the satisfaction of goals, requirements, a
assumptions elaborated in the requirements engineer
process. A first set of techniques allow obstacles to be ge
erated systematically from goal formulations and doma
properties. A second set of techniques allow resolutions
be generated once the obstacles have been identifi
thereby.
Our techniques are based on a temporal logic formalizatio
of goals and domain properties; they are integrated into
existing method for goal-oriented requirements elaboratio
with the aim of deriving more realistic, complete and robus
requirements specifications.
A key principle in this paper is to handle exceptions a
requirements engineering time and at the goal level, so th
more freedom is left for resolving them in a satisfactor
way. The various techniques proposed are illustrated a
assessed in the context of a real safety-critical system.

KEYWORDS

Goal-oriented requirements engineering, high-level exce
tion handling, obstacle-based requirements transformatio
defensive requirements specification, specification refin
ment, lightweight formal methods.

1. INTRODUCTION

Requirements engineering (RE) is the branch of softwa
engineering concerned with the real-world goals for, fun
tions of, and constraints on software systems. It is also co
y to
x-
are
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cerned with the relationship of these factors to preci
specifications of software behavior, and to their evolutio
over time and across software families. This general defi
tion, borrowed from [Zav97a], stresses the leading pa
played by goals during requirements elaboration. Goals dr
the elaboration of requirements to support them [Ros7
Dar91, Rub92]; they provide a completeness criterion for t
requirements specification --the specification is complete
all stated goals are met by the specification [Yue87]; th
provide a rationale for requirements --a requirement exi
because of some underlying goal which provides a base fo
[Dar91, Som97]; goals represent the roots for detecting co
flicts among requirements and for resolving them eventua
[Rob89, Lam98b]; goals are generally more stable than t
requirements to achieve them [Ant94]. In short, requiremen
"implement" goals much the same way as programs imp
ment design specifications.

Goals are to be achieved by the various agents opera
together in thecompositesystem; such agents include soft
ware components that exist or are to be developed, exter
devices, and humans in the environment [Fea87, Fic92]. T
elicitation of functional and non-functional goals, their orga
nization into a coherent structure, and their operationaliz
tion into requirements to be assigned to the various agent
thus a central aspect of requirements engineering [Dar
Myl99]. Various techniques have been proposed to supp
this process.Qualitative reasoningtechniques may be used
to determine the degree to which high-level goals are sa
ficed/denied by lower-level goals and requirements [Myl92
When goals can be formalized,formal reasoningtechniques
are expected to do more. For example, the correctness
goal refinements/operationalizations may be verifie
[Dar96]; more constructively, such refinements/operation
izations may be derived formally [Dar93, Fea95, Dar96
Formal goal models may be used to detect and resolve c
flicts among goals [Lam98b]. Planning techniques may
used to generate admissible scenarios showing that so
desirable goal is not achieved by the system specified, a
propose resolution actions [And89, Fic92]. Converse
declarative goal specifications may be inferred inductive
from operational specifications of scenarios [Lam98c].

One major problem requirements engineers are faced with
that first-sketch specifications of goals, requirements a
assumptions tend to be too ideal; such assertions are likel
be occasionally violated in the running system due to une
pected behavior of agents like humans, devices, or softw
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components [Lam95, Pot95, Fea98]. This general problem is
not really handled by current requirements elaboration meth-
ods.

Consider an ambulance dispatching system, for example; a
first-sketch goal such asAchieve[MobilizedAmbulancePromptlyAt-
Incident] is overideal and likely to be violated from time to
time --because of, e.g., allocation of a vehicle not close
enough to the incident location; or too long allocation time;
or imprecise or confused location; etc. In an electronic
reviewing system for a scientific journal, a first-sketch goal
such asAchieve[ReviewReturnedInFourWeeks] or an assumption
such asReviewerReliable are straightforward examples of
overideal statements that are likely to be violated on occa-
sion; the same might be true for a security goal such asMain-
tain[ReviewerAnonymity]. In a resource management system, a
goal such asAchieve[RequestedResourceUsed] or an assump-
tion such asRequestPendingUntilUse are also overideal as
requesting agents may change their mind and no longer wish
to use the requested resource even if the latter becomes avail-
able. In a meeting scheduler system, a goal such as
Achieve[ParticipantsTimeConstraintsProvided] is likely to be vio-
lated, e.g., for participants that do not check their email regu-
larly thereby missing invitations to meetings and requests for
providing their time constraints. In a control system, a goal
such asMaintain[AlarmIssuedWhenAbnormalCondition] might be
violated sometimes due to unavailable data, device failure or
deactivation by malicious agents.

Overidealization of goals, requirements and assumptions
results in run-time inconsistencies between the specification
of the system and its actual behavior. The lack of anticipa-
tion of exceptional circumstances may thus lead to unrealis-
tic, unachievable and/or incomplete requirements. As a
consequence, the software developed from those require-
ments will inevitably result in failures, sometimes with criti-
cal consequences on the environment.

The purpose of this paper is to introduce systematic tech-
niques for deidealizing goals, assumptions and requirements,
and to integrate such techniques in a goal-oriented require-
ments elaboration method in order to derive more complete
and realistic requirements, from which more robust systems
can be built.

Our approach is based on the concept ofobstaclefirst intro-
duced in [Pot95]. Obstacles are a dual notion to goals; while
goals capture desired conditions, obstacles capture undesir-
able (but nevertheless possible) ones. An obstacle obstructs
some goal, that is, when the obstacle gets true the goal may
not be achieved. The term “obstacle” is thus introduced here
to denote agoal-orientedabstraction, at the requirements
engineering level, of various notions that have been studied
extensively in specific areas - such ashazards that may
obstruct safety goals [Lev95] orthreats that may obstruct
security goals [Amo94] -, or in later phases of the software
lifecycle - such asfaults that may prevent a program from
achieving its specification [Cri95, Gar99].

The paper presents a formalization of this notion of obstacle;
a set of techniques for systematic generation of obstacles
from goal specifications and domain properties; and a set of
alternative operators that transform goal specifications so as
to resolve the obstacles generated.

Back to the example of the ideal goal namedAchieve[Revie-
wReturnedInFourWeeks], our aim is to derive obstacle specifi
cations from a precise specification of this goal and fro
properties of the domain; one would thereby expect to obta
obstacles such as, e.g.,WrongBeliefAboutDeadline or ReviewRe-
questLost (under responsibility ofReviewer agents);Unprocess-
ablePostscriptFile (under responsibility ofAuthor agents); and
so on. From there one would like to resolve those obstacl
e.g., by weakening the original goal formulation and prop
gating the weakened version in the goal refinement graph;
introducing new goals and operationalizations to overcom
or mitigate the obstacles; by changing agent assignments
that the obstacle may no longer occur; and so on.

A key principle here is to handle abnormal agent behavior
requirements engineering time andat the goal level.This
principle is consistent with recommendations from analys
of software requirements errors [Lut93]. Exception handlin
techniques are usually introduced at later stages of the s
ware lifecycle, such as architectural design or programmin
where the boundary between the software and its enviro
ment has been decided and cannot be reconsidered,
where the requirements specifications are postulated cor
and complete [And81, Bor85, Per89, Cri91, Ros92, Jal9
Cri95, Aro98, Gar99]. In contrast, we perform systemat
obstacle analysis at the much earlier stage of requireme
engineering, from goal formulations, so that more freedom
left on adequate ways of handling obstacles to goals --lik
e.g., considering alternative requirements or alternat
agent assignments that result in different system propos
in which more or less functionality is automated and
which the interaction between the software and its enviro
ment may be quite different.

The integration of obstacle analysis into the requiremen
engineering process is detailed in the paper in the contex
the KAOS methodology for goal-oriented requirements ela
oration [Dar93, Lam95, Dar96]. In [Lam98b], we hav
shown that obstacle analysis can be seen as a degenerate
of conflict analysis; an obstacle amounts to a condition f
conflict between N goals within the domain under conside
ation, where N=1. As a consequence, there are generic s
larities between the respective identification/resolutio
techniques. However, handling exceptions to the achie
ment of a single goal and handling conflicts between mul
ple stakeholders’ goals correspond to different problems a
foci of concern for the requirements engineer. As will b
seen in the paper, the generic identification/resolution me
anisms yield different instantiations and specializations f
obstacle analysis and for conflict analysis.

The rest of the paper is organized as follows. Section 2 su
marizes some background material on KAOS that will b
used in the sequel. Section 3 introduces obstacles to go
and provides a formal characterization of this concep
including the notion of completeness of a set of obstacle
Section 4 discusses a modified goal-oriented requireme
elaboration process that integrates obstacle analysis. Sec
5 presents techniques for generating obstacles from goal
mulations. Section 6 then presents techniques for transfo
ing goals, requirements and/or assumptions so as to res
the obstacles generated. The various techniques presente
2
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the paper are illustrated and assessed in Section 7 by an
obstacle analysis of a real safety-critical system for which
failure stories have been published [LAS93, Fin96]. Some
related work is discussed in Section 8 before concluding in
Section 9.

2. GOAL -ORIENTED RE WITH KAOS

The KAOS methodology is aimed at supporting the whole
process of requirements elaboration - from the high-level
goals to be achieved to the requirements, objects and opera-
tions to be assigned to the various agents in the composite
system. The methodology provides a specification language,
an elaboration method, and tool support. To make the paper
self-contained, we recall some of the features that will be
used later in the paper; see [Dar93, Lam95, Dar96, Dar98]
for details.

2.1 Concepts and terminology

An object is a thing of interest in the composite system
whose instances may evolve from state to state. Objects are
characterized by attributes and invariant assertions. They
may be organized in inheritance hierarchies. Anentity is an
autonomous object. Arelationship is an object dependent on
other objects it links. Anevent is an instantaneous object.

An operation is an input-output relation over objects; opera-
tion applications define state transitions. Operations are
characterized by pre-, post-, and trigger conditions. A dis-
tinction is made betweendomainpre/postconditions, which
capture the elementary state transitions defined by operation
applications in the domain, andrequiredpre/postconditions,
which capture additional strengthenings to ensure that the
requirements are met.

An agent is an active object which acts as processor for
some operations. An agentperforms an operation if it is allo-
cated to it; the agentmonitors/controls an object if the states
of the object are observable/controllable by it. Agents may
be humans, devices, programs, etc.

A goal is an objective the composite system should meet; it
captures a set of desired behaviors of the composite system.
AND-refinement links relate a goal to a set of subgoals
(called refinement); this means that satisfying all subgoals in
the refinement is a sufficient condition for satisfying the
goal. OR-refinement links relate a goal to an alternative set
of refinements; this means that satisfying one of the refine-
ments is a sufficient condition for satisfying the goal. The
goal refinement structure for a given system can be repre-
sented by anAND/OR directed acyclic graph [Nil71]. Goals
concern the objects they refer to. A goal may additionally be
characterized by apriority attribute whose values specify the
extent to which the goal is mandatory or optional.

Goals are classified according to the category of require-
ments they will drive about the agents concerned. Functional
goals result in functional requirements. For example,Satis-
factionGoals are functional goals concerned with satisfying
agent requests;InformationGoals are goals concerned with
keeping agents informed about object states. Likewise, non-
functional goals result in non-functional requirements. For
example,AccuracyGoals are non-functional goals concerned
with maintaining the consistency between the state of

objects in the environment and the state of their represen
tion in the software; other sub-categories includeSafety-
Goals, SecurityGoals, PerformanceGoals, and so on.

Goal refinement ends up when terminal goals are reach
these are goals assignable to individual agents. A termi
goal can thus be formulated in terms of states controllable
some individual agent. Arequirement is a terminal goal
assigned to an agent in the software-to-be. Anassumption is
a terminal goal assigned to an agent in the environme
Unlike requirements, assumptions cannot be enforced
general. Terminal goals are in turnAND/OR operationalized
by operations and objects through strengthenings of th
domain pre/postconditions and invariants, respectively, a
through obligations expressed by trigger conditions. Altern
tive ways of assigning responsible agents to a terminal g
are captured throughOR responsibility links. The actual
assignment of an agent to the operations that operationa
the terminal goal is captured in correspondingperforms
links.

A domain property is a property about objects or operation
in the environment which holds independently of the so
ware-to-be. Domain properties include physical law
[Par95], regulations, constraints imposed by environmen
agents [Lev95] --in short, indicative statements of doma
knowledge [Jac93, Zav97b]. In KAOS, domain propertie
are captured by domain invariants attached to objects and
domain pre-/postconditions attached to operations.

A scenario is a domain-consistent sequence of state tran
tions controlled by corresponding agent instances; doma
consistency means that the operation associated with a s
transition is applied in a state satisfying its domain precon
tion together with the various domain invariants attached
the corresponding objects, with a resulting state satisfying
domain postcondition.

2.2 The specification language

Each construct in the KAOS language has a two-lev
generic structure: an outer semantic net layer [Bra85] f
declaring a concept, its attributes and its various links t
other concepts; an inner formal assertion layer forformally
definingthe concept. The declaration level is used for co
ceptual modeling (through a concrete graphical synta
requirements traceability (through semantic net navigatio
and specification reuse (through queries) [Dar98]. The ass
tion level is optional and used for formal reasoning [Dar9
Dar96, Mas97, Fea98, Lam98b, Lam98c].

The generic structure of a KAOS construct is instantiated
specific types of links and assertion languages according
the specific type of the concept being specified. For examp
consider the following goal specification for an ambulanc
dispatching system:

Goal Achieve [AmbulanceMobilization]
Concerns  Call, Ambulance, Incident
Refines  AmbulanceIntervention
RefinedTo IncidentFiled, AmbulanceAllocated,

AllocatedAmbulanceMobilized

InformalDef For every responded call about an incident, an
ambulance able to arrive at the incident scene within 11 minutes
should be mobilized. The ambulance mobilization time should
be less than 3 minutes [ORCON standard, 3005].
3
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FormalDef ∀ cl: Call, inc: Incident
Responded (cl) ∧ About (cl, inc)
⇒ ◊≤3m ∃ a: Ambulance

Mobilized (a, inc)
∧ •[Available (a) ∧ TimeDist (a.Loc, inc.Loc)  11]

The declaration part of this specification introduces a con-
cept of type “goal”, namedAmbulanceMobilization, stating a
target property that should eventually hold (“Achieve” verb),
refering to objects such asCall or Ambulance, refining the par-
ent goalAmbulanceIntervention, refined into subgoalsIncident-
Filed, AmbulanceAllocated andAllocatedAmbulanceMobilized, and
defined by some informal statement. (The semantic net layer
is represented in textual form in this paper for reasons of
space limitations; the reader may refer to [Dar98] to see
what the alternative graphical concrete syntax looks like.)

The optional assertion part in the specification above defines
the goalAchieve[AmbulanceMobilization] in formal terms using a
real-time temporal logic inspired from [Koy92]. In this paper
we will use the following classical operators for temporal
referencing [Man92]:

o (in the next state) • (in the previous state)

◊ (some time in the future) ♦ (some time in the past)

❏ (always in the future) ■ (always in the past)

W (always in the future unless) U (always in the future until)

Formal assertions are interpreted over historical sequences
of states. Each assertion is in general satisfied by some
sequences and falsified by some other sequences. The nota-
tion

(H, i) |= P

is used to express that assertionP is satisfied by historyH at
time position i (i ∈ T), where T denotes a linear temporal
structure assumed to be discrete for sake of simplicity. We
will also use the notationH |= P for (H, 0) |= P.

States are global; thestateof the composite system at some
time positioni is the aggregation of the local states of all its
objects at that time position. The state of an individual object
instanceob at some time position is defined as a mapping
from ob to the set of values of allob’s attributes and links at
that time position. In the context of KAOS requirements, an
historical sequence of states defines a behavior produced by
a scenario.

The semantics of the above temporal operators is then
defined as usual [Man92], e.g.,

(H, i) |= o P iff (H, next(i)) |= P

(H, i) |= ◊ P iff (H, j) |= P for some j  i

(H, i) |= ❑ P iff (H, j) |= P for all j  i

(H, i) |= PUQ iff there exists a j  i such that (H, j)|= Q
and for every k, i  k < j, (H, k)|= P

(H, i) |= PWQ iff (H, i) |= PUQ or (H, i) |= ❑ P

Note that❑ P amounts toPW false . We will also use the
standard logical connectives∧ (and), ∨ (or), ¬ (not), →
(implies), ↔ (equivalent), ⇒ (strongly implies), ⇔ (strongly
equivalent),with

P ⇒ Q iff ❑ (P → Q)
P ⇔ Q iff ❑ (P ↔ Q)

Note thus that there is an implicit outer❑-operator in every

strong implication.

Beside the agent-related classification of goals introduced
Section 2.1, goals in KAOS are also classified according
the pattern of temporal behavior they capture:

Achieve: C ⇒ ◊ T
Cease: C ⇒ ◊ ¬ T

Maintain: C ⇒ TW N, C ⇒ T
Avoid: C ⇒ ¬ TW N, C ⇒ ¬ T

In these patterns,C, T, and N denote some current, target
and new condition, respectively. (We avoid the classic
safety/liveness terminology here to avoid confusions wi
SafetyGoals.)

In requirements engineering we often need to introduce re
time restrictions. Bounded versions of the above tempo
operators are therefore introduced, in the style advocated
[Koy92], such as

◊≤d (some time in the future within deadline d)

❑≤d (always in the future up to deadline d)

To define such operators, the temporal structureT is
enriched with a metric domainD and a temporal distance
function dist: T×T → D which has all desired properties of a
metrics [Koy92]. We will take

T: the set of naturals
D: { d | there exists a natural n such that d = n × u},

where u denotes some chosen time unit
dist(i, j): | j - i | × u

Multiple units can be used --e.g.,s (second),m (minute, see
the AmbulanceMobilization goal above),d (day), etc; these are
implicitly converted into some smallest unit. Theo-operator
then yields the nearest subsequent time position accordin
this smallest unit.

The semantics of the real-time operators is then defin
accordingly, e.g.,

(H, i) |= ◊≤d P iff (H, j) |= P for some j  i with dist(i, j)  d

(H, i) |= ❑<d P iff (H, j) |= P for all j  i such that dist(i, j) < d

In the above goal declaration ofAmbulanceMobilization, the
conjunction of the assertions formalizing the subgoalsInci-
dentFiled, AmbulanceAllocated and AllocatedAmbulanceMobilized
must entail the formal assertion of the parent goalAmbulance-
Mobilization they refine together. Every formal goal refinemen
thus generates a corresponding proof obligation [Dar96].

In the formal assertion of the goalAmbulanceMobilization, the
predicateMobilized(a,inc) means that, in the current state, a
instance of theMobilized relationship links variablesa andinc
of sort Ambulance and Incident, respectively. TheMobilized
relationship andAmbulance entity are defined in other sec-
tions of the specification, e.g.,

Entity Ambulance
Has Loc: Location, Dest: Location, ...

Relationship  Mobilized
Links  Ambulance {card 0:1}, Incident {card 0:N}
InformalDef An ambulance is mobilized for some incident iff a

crew is assigned to it and its destination is the incident’s loca-
tion.

DomInvar ∀a: Ambulance, inc: Incident
Mobilized (a, inc) ⇔ (∃ cr: Crew) Assigned (cr, a)

∧ a.Dest = inc.Loc

The Crew type might in turn be declared by
4
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Agent  Crew
Has Free: Boolean, Paramedics: Boolean
 ...

In the declarations above,Loc is declared as an attribute of
the entity Ambulance (this attribute was used in the formal
definition of the goalAmbulanceMobilization); Free is declared
as an attribute of the agentCrew.

As mentioned earlier, operations are specified formally by
pre- and postconditions in the state-based style [Pot91], e.g.,

Operation  Mobilize
Input  Incident {arg  inc}
Outpu t Ambulance {res amb}, Mobilized
DomPre  ¬ (∃ a: Ambulance) Mobilized (a, inc)
DomPost Mobilized (amb, inc)

Note that the invariant defining theMobilized relationship is
not a requirement, but a domain property; it specifies what
being mobilized does precisely mean in the domain. The pre-
and postcondition of the operationMobilize above are domain
properties as well; they capture corresponding elementary
state transitions in the domain, namely, from a state where
no ambulance is mobilized to a state where some ambulance
is mobilized. The software requirements are found in the ter-
minal goals assigned to agents in the software-to-be, and in
the additional pre-, post-, and trigger conditions that need to
strengthen the corresponding domain conditions in order to
ensure all such goals [Dar93, Dar95]. Assuming theAmbu-
lanceMobilization goal is assigned to the dispatching software
one would derive from the above formal assertion for that
goal:

Operation  Mobilize
...
RequiredPre for AmbulanceMobilization:

Available (amb) ∧ TimeDist (amb.Loc, inc.Loc)  11
RequiredTrig for AmbulanceMobilization:

■≤3m (∃ cl: Call) Responded (cl) ∧ About (cl, inc)

The trigger condition captures an obligation to trigger the
operation as soon as the condition gets true and provided the
domain precondition is true. The specification will be consis-
tent provided the trigger condition and required precondi-
tions are together true in the operation’s initial state.

2.3 The elaboration method

Figure 1 outlines the major steps that may be followed to
elaborate KAOS specifications from high-level goals. (Sec-
tion 4 will discuss how obstacle analysis enter into this pro-
cess model.)

• Goal elaboration:elaborate the goalAND/OR structure by
defining goals and their refinement links until assignable
goals are reached. The process of identifying goals, defin-
ing them precisely, and relating them through refinement
links is in general a combination of top-down and bottom-
up subprocesses [Lam95]; offspring goals are identified by
asking HOW questions about goals already identified
whereas parent goals are identified by askingWHY ques-
tions about goals and operational requirements already
identified.

• Object capture:identify the objects involved in goal for-
mulations, define their conceptual links, and describe their
domain properties by invariants.

• Operation capture:identify object state transitions that are

meaningful to the goals. Goal formulations refer to desire
or forbidden states that are reachable through state tra
tions; the latter correspond to applications of operation
The principle is to specify such state transitions as doma
pre- and postconditions of operations thereby identifie
and to identify the agents that could perform these ope
tions.

• Operationalization: derive strengthened pre-, post, an
trigger conditions on operations, and strengthened inva
ants on objects, in order to ensure that all terminal goa
are met. A number of formal derivation rules are availab
to support the operationalization process [Dar93].

• Responsibility assignment:(a) identify alternative respon-
sibilities for terminal goals; (b) make decisions amon
refinement, operationalization, and responsibility altern
tives, so as to reinforce non-functional goals [Myl92] -
e.g., goals related to reliability, performance, cost redu
tion, load reduction, and so on; (c) assign the operations
agents that can commit to guarantee the terminal goals
the alternatives selected. The boundary between the s
tem and its environment is obtained as a result of this p
cess, and the various terminal goals become requireme
or assumptions depending on the assignment made.

The steps above are ordered by data dependencies; they
be running concurrently, with possible backtracking at eve
step.

3. GOAL OBSTRUCTION BY OBSTACLES

This section formally defines obstacles, their relationship
goals, and their refinement links; a criterion is provided for
set of obstacles to be complete; a general taxonomy of ob
cles is then suggested. In the sequel, the general term “go
will be used indifferently for a high-level goal, a requiremen
assigned to an agent in the software-to-be, or an assump
assigned to an agent in the environment.

3.1 Obstacles to goals

Semantically speaking, a goal defines a set of desired beh
iors, where a behavior is a temporal sequence of states (
Section 2.2). A positive scenario is a sequence of state tra
tions, controlled by corresponding agent instances, that p
duces such a desired behavior (see Section 2.1). G
refinement yields sufficient subgoals for the goal to b
achieved.

Likewise, an obstacle defines a set of undesirable behavio

goal elaboration

object/operation capture

goal operationalization

responsibility assignment

data dependency

Figure 1 - Goal-oriented requirements elaboration
5
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a negative scenario produces a behavior in this set. Goal
obstruction yields sufficient obstacles for the goal to be vio-
lated; the negation of such obstacles yields necessary pre-
conditions for the goal to be achieved.

Let G be a goal andDom a set of domain properties. An
assertionO is said to be anobstacleto G in Dom iff the fol-
lowing conditions hold:

1. {O, Dom} |= ¬ G (obstruction)

2. {O, Dom} | false (domain-consistency)

Condition(1) states that the negation of the goal is a logical
consequence of the theory comprising the obstacle specifica-
tion and the set of domain properties available; condition(2)
states that the obstacle may not be logically inconsistent with
the domain theory. Clearly, it makes no sense to reason about
obstacles that are inconsistent with the domain. In terms of
behaviors, the consistency condition is semantically equiva-
lent to

2’. There exists a scenarioS producing a behaviorH
such that H|= O (feasibility)

This condition now states that the obstacle specification is
satisfiable through one behavior at least, produced by a
(domain-consistent) scenario of agent cooperation.

As a first simple example, consider a library system and the
following high-level goal stating that every book request
should eventually be satisfied:

Goal Achieve [BookRequestSatisfied]
RefinedTo  SatisfiedWhenAvailable, CopyEventuallyAvailable,

RequestPending

FormalDef ∀ bor: Borrower, b: Book
Requesting (bor, b)
⇒ ◊ (∃ bc: BookCpy) [Copy (bc, b) ∧ Gets (bor, bc)]

An obstructing obstacle to that goal might be specified by
the following assertion:

∃ bor: Borrower, b: Book
◊ { Requesting (bor, b)

 ∧ ❑ (∀ bc: BookCpy) [Copy (bc, b) ⇒ ¬ Gets (bor, bc)] }

Condition(1) trivially holds as the assertion amounts to the
negation of the goal (remember thatP ⇒ Q iff ❑ (P → Q), and
¬ ❑ (P → Q) iff ◊ (P ∧ ¬ Q)). This obstructing assertion is satis-
fiable, e.g., through the classical starvation scenario [Dij71]
in which, each time a copy of a requested book becomes
available, this copy gets borrowed in the next state by a bor-
rower different from the requesting agent.

To further illustrate the need for condition(2), consider the
following goal for some device control system (expressed in
propositional terms for simplicity):

Running ∧ PressureTooLow ⇒ AlarmRaised

It is easy to see that condition(1) would be satisfied by the
candidate obstacle

PressureTooLow ∧ Startup ⇒ ¬ AlarmRaised
∧ ◊ [ Running ∧ PressureTooLow ∧ Startup]

which logically entails the negation of the goal above; how-
ever this candidate is inconsistent with the domain property
stating that the device cannot be both in startup and running
modes:

Running ⇒ ¬ Startup

Note that the above definition of an obstructing obstacle

allows for the same obstacle to obstruct several differe
goals; examples of this will be seen later on in the paper.

It is also worth noticing that, sinceAchieve/Cease andMain-
tain/Avoid goals all have the general form❑ GC, an obstacle
to such goals will always have the general form◊ OC; in the
sequel,GC andOC will be called goal and obstacle condi
tion, respectively.

3.2 Completeness of a set of obstacles

Given some goal formulation, defensive requirements spe
fication would require as many meaningful obstacles as p
sible to be identified for that goal; completeness is desira
-at least for high-priority goals such as, e.g.,Safety goals.

A set of obstacles O1, ..., On to goal G in Dom isdomain-
complete with respect to G iff the following condition holds

{¬ O1, ..., ¬ On, Dom} |= G (domain-completeness)

This condition intuitively means that if none of the obstacle
in the set may occur then the goal is satisfied.

It is most important to note that completeness is a notion r
ative to what is known about the domain. To make this cle
let us consider the following example introduced in [Jac9
after a real plane incident. The goal

MovingOnRunway ⇒ ReverseThrustEnabled

can be AND-refined, using the milestone refinement patte
[Dar96], into two subgoals:

MovingOnRunway ⇒ WheelsTurning (Ass)

WheelsTurning ⇒ ReverseThrustEnabled (Rq)

The second subgoal is a requirement assigned to a softw
agent; the first subgoal is an assumption assigned to an e
ronment agent. AssumptionAss will be violated iff

◊ (MovingOnRunway ∧ ¬ WheelsTurning) (N-Ass)

Assume now that the following necessary conditions f
wheels to be turning are known in the domain:

WheelsTurning ⇒ WheelsOut (D1)

WheelsTurning ⇒ ¬ WheelsBlocked (D2)

WheelsTurning ⇒ ¬ Aquaplaning (D3)

The following obstacles can then be seen to obstructAssin
that domain since each of them then entailsN-Ass:

◊ (MovingOnRunway ∧ ¬ WheelsOut) (O1)

◊ (MovingOnRunway ∧ WheelsBlocked) (O2)

◊ (MovingOnRunway ∧ Aquaplaning) (O3)

In order to check the domain completeness of these obsta
we take their negation:

MovingOnRunway ⇒ WheelsOut (N-O1)
MovingOnRunway ⇒ ¬ WheelsBlocked (N-O2)

MovingOnRunway ⇒ ¬ Aquaplaning (N-O3)

Back to the definition of domain-completeness one can s
that the set of obstacles {O1, O2, O3} will be complete o
not dependent on whether or not the following property
known in the domain:

MovingOnRunway
∧ WheelsOut ∧ ¬ WheelsBlocked ∧ ¬ Aquaplaning (D4)
⇒ WheelsTurning

Obstacle completeness thus really depends on what v
properties are known in the domain.
6



ub-

e

-

ch
ry.
in
ro-

as

s,
t

n-
ve

tion
here
s-
r,
nd
r-
e
of

for
eu-
l-
on
c
or
ed
to

ent
tion

nd
a-

ed
le
to
nd

del
e
er-

y
ns.

cir-
or
3.3 Obstacle refinement

Like goals, obstacles may be refined.AND-refinement links
may relate an obstacle to a set of subobstacles (called refine-
ment); this means that satisfying the subobstacles in combi-
nation is a sufficient condition in the domain for satisfying
the obstacle.OR-refinement links may relate an obstacle to
an alternative set of refinements; this means that satisfying
one of the refinements is a sufficient condition in the domain
for satisfying the obstacle. The obstacle refinement structure
for a given goal may thus be represented by anAND/OR
directed acyclic graph.

A set of obstacles O1, ..., On is an AND-refinementof an
obstacle O iff the following conditions hold:

1. {O1 ∧ O2 ∧... ∧ On, Dom} |= O (entailment)

2. {O1 ∧ O2 ∧... ∧ On, Dom} | false (consistency)

In general one is interested in minimal AND-refinements, in
which case the following condition has to be added:

3. for all i: {∧j iOj, Dom} | O (minimality)

A set of obstacles O1, ..., On is anOR-refinementof an obsta-
cle O iff the following conditions hold:

1. for all i: {Oi , Dom} |= O (entailment)

2. for all i: {Oi , Dom} | false (consistency)

In general one is interested in complete OR-refinements in
which case the domain-completeness condition has to be
added:

3. {¬ O1 ∧ .. ∧ ¬ On, Dom} |= ¬ O (completeness)

In the plane landing example above, the set{O1, O2, O3)is a
complete OR-refinement of the higher-level obstacleN-Ass
with respect to a domain comprising all properties listed.

One may sometimes wish to consider all disjoint alternative
subobstacles of an obstacle; the following additional condi-
tion has to be added in such cases:

4. for all i  j: { Oi, Oj, Dom} |= false (disjointness)

Section 5.3 will present a rich set of complete and disjoint
obstacle refinement patterns.

Chaining the definitions in Sections 3.1 and 3.3 leads to the
following straightforward proposition:

If O’ is a subobstacle within an OR-refinement of an obstacle
O that obstructs some goal G, then O’ obstructs G as well.

3.4 Classifying obstacles

As mentioned in Section 2.1, goals are classified by type of
requirements they will drive about the agents concerned. For
each goal category, corresponding obstacle categories may
be defined. For example,

• Non-satisfaction obstacles are obstacles that obstruct the sat-
isfaction of agent requests (that is,Satisfaction goals);

• Non-information obstacles are obstacles that obstruct the
generic goal of making agents informed about object states
(that is,Information goals);

• Inaccuracy obstacles are obstacles that obstruct the consis-
tency between the state of objects in the environment and
the state of their representation in the software (that is,
Accuracy goals);

• Hazard obstacles are obstacles that obstructSafety goals;

• Threat obstacles are obstacles that obstructSecurity goals.

Such obstacle categories may be further specialized into s
categories --e.g.,Indiscretion andCorruption obstacles are sub-
categories ofThreat obstacles that obstruct goals in th
Confidentiality and Integrity subcategories ofSecurity goals,
respectively [Amo94];WrongBelief obstacles form a subcate
gory of Inaccuracy obstacles; and so on.

Knowing the (sub)category of a goal may prompt a sear
for obstructing obstacles in the corresponding catego
More specific goal subcategories will of course result
more focussed search for corresponding obstacles. This p
vides the basis for heuristic identification of obstacles,
discussed in Section 5.4.

3.5 Goal obstruction vs. goals divergence

In the context of handling conflicts between multiple goal
we have introduced in [Lam98b] the notion of divergen
goals. Goals G1, G2, ..., Gn are said to bedivergentiff there
exists a boundary condition that makes them logically inco
sistent with each other in the domain considered. We ha
shown that an obstacle corresponds to a boundary condi
for the degenerate case where n=1. As a consequence, t
are generic principles common to obstacle identification/re
olution and divergence identification/resolution. Howeve
handling exceptions to the achievement of a single goal a
handling conflicts between multiple stakeholders’ goals co
respond to different problems and foci of concern for th
requirements engineer. For example, the above notions
completeness and refinement are specifically introduced
obstacle analysis. The classification of obstacles and the h
ristic rules for their identification is specific to obstacle ana
ysis (see Section 5.4). As will be seen below, the comm
generic principles for identification/resolution yield specifi
instantiations and specializations for obstacle analysis. F
example, the goal regression procedure can be simplifi
(see Section 5.1); the completion procedure is specific
obstacle analysis (see Section 5.2); obstruction refinem
patterns are different from divergence patterns (see Sec
5.3).

4. INTEGRATING OBSTACLES IN THE RE PROCESS

First-sketch specifications of goals, requirements a
assumptions tend to be too ideal; they are likely to be occ
sionally violated in the running system due to unexpect
agent behavior [Lam95, Pot95]. The objective of obstac
analysis is to anticipate exceptional behaviors in order
derive more complete and realistic goals, requirements a
assumptions.

A defensive extension of the goal-oriented process mo
outlined in Section 2.3 is depicted in Figure 2. (As in Figur
1, the arrows indicate data dependencies.) The main diff
ence is theobstacle analysis loopintroduced in the upper
right part.

During elaboration of the goal graph by elicitation and b
refinement, obstacles are generated from goal specificatio
Such obstacles may be recursively refined --see the right
cle arrow in Figure 2. (Section 5 will discuss techniques f
7
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supporting the obstacle identification/refinement process.)

The generated obstacles are resolved which results in a goal
structure updated with new goals and/or transformed ver-
sions of existing ones. The resolution of an obstacle may be
subdivided into two steps [Eas94]: the generation of alterna-
tive resolutions, and the selection of one among the alterna-
tives considered. (Section 6 will discuss different operators
for resolution generation.)

The new goal specifications obtained by resolution may in
turn trigger a new iteration of goal elaboration and obstacle
analysis. Goals obtained from obstacle resolution may also
refer to new objects/operations and require specific opera-
tionalizations.

A number of questions arise from this process model.

• Obstacle identification:From which goals in the goal
graph should obstacles be generated? For some given goal,
how extensive should obstacle generation be?

– The more specific the goal is, the more specific its
obstructing obstacles will be. A high-level goal will
produce high-level obstacles which will need to be
refined significantly into sub-obstacles in order to iden-
tify precise circumstances whose feasibility might be
assessed through negative scenarios of agent behavior.
It is much easier and preferable to elicit/refine what is
wanted than what isnot wanted. We therefore recom-
mend that obstacles be identified fromterminal goals
assignable to individual agents.

– The extensiveness of obstacle identification will
depend on the category and priority of the goal being
obstructed. For example, obstacle identification should
be exhaustive forSafety or Security goals; higher-pri-
ority goals deserve more extensive identification than
lower-priority ones. Domain-specific cost-benefit anal-
ysis needs to be carried out to decide when the obstacle
identification process should terminate.

• Obstacle resolution:For some given obstacle, how exten-
sive should the generation of alternative resolutions be?
For some set of alternative resolutions, how and when
should a specific resolution be selected?

As will be seen in Section 6, the generation of alternative
resolutions correspond to the application of different strat-
egies for resolving obstacles. The strategies include obsta-
cle elimination, with substrategies such as obstacle

prevention, goal substitution, agent substitution, go
deidealization, or object transformation; obstacle redu
tion; and obstacle tolerance, with substrategies such
obstacle mitigation or goal restoration. (Some of the
strategies have been studied in other contexts of handl
problematic situations --e.g., deadlocks in parallel syste
[Cof71]; exceptions and faults in fault-tolerant system
[And81, Cri91, Jal94, Gar99]; feature interaction in tele
communication systems [Kec98]; inconsistencies in so
ware development [Nus96]; or conflicts betwee
requirements [Rob97, Lam98b]).
– The range of strategies to consider and the selection

a specific strategy to apply will depend on the likel
hood of occurrence of the obstacle, on the impact
such occurrence (in number of goals being obstruct
by the obstacle), and on the severity of the cons
quences of such occurrence (in terms of priority of th
goals being obstructed). Risk analysis and domain-sp
cific cost-benefit analysis need to be deployed in ord
to provide a definite answer. Such analysis is outsi
the scope of this paper.

– The selection of a specific resolution should not b
done too early in the goal/obstacle analysis process.
obstacle identified at some point may turn out to b
more severe later on (e.g., because it then appear
also obstruct new important goals being elicited). Pr
mature decisions may stifle the consideration of alte
natives that may appear to be more appropriate later
in the process [Eas94].

• Goal-obstacle analysis iteration:When should the inter-
twined processes of goal elaboration and obstacle analy
stop?

The goal-obstacle analysis loop in Figure 2 may termina
as soon as the obstacles that remain are considered acc
able without any resolution. Risk analysis needs again
be carried out together with cost-benefit analysis in ord
to determine acceptability tresholds.

Some of the issues above will be addressed in a more s
cific way for the obstacle analysis of the London Ambulanc
System in Section 7.

5. GENERATING OBSTACLES

According to the definition in Section 3.1, the identificatio
of obstacles obstructing some given goal in the conside
domain proceeds by iteration of two steps:

(1) Given the goal specification, find some assertion that m
obstruct it;

(2) Check that the candidate obstacle thereby obtained is c
sistent with the domain theory available.

Step (2) corresponds to a classical consistency checki
problem in logic; it can be carried out using deductive verifi
cation techniques (e.g., [Man96], [Owr95]). Alternatively
one may check the satisfiability of the candidate obstacle
the domain by finding out some negative scenario (see
feasibility condition in Section 3.1). This can be done man
ally [Pot95], with some formal support as shown below, o
using automated techniques based on planning [Fic92]
model checking [Hol97, McM93, Jac96]; in the latter cas

goal elaboration

object/operation capture

goal operationalization

responsibility assignment

obstacle identification

obstacle resolution

Fig. 2 - Obstacle analysis in goal-oriented requirements elaboration
8
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some operational model of the system needs to be available.

We therefore concentrate on step(1) and present techniques
for deriving candidate obstacles whose domain consistency/
feasibility needs to be subsequently checked. We succes-
sively discuss:

• a formal calculus of preconditions for obstruction,

• the use of formal obstruction patterns to shortcut formal
derivations,

• the use of identification heuristics based on obstacle clas-
sifications as a cheap, informal alternative to formal tech-
niques.

5.1 Regressing goal negations

The first technique is based on the obstruction condition
defining an obstacle in Section 3.1. Given the goal assertion
G, it consists of calculating preconditions for obtaining the
negation¬ G from the domain theory. Every precondition
obtained defines a candidate obstacle. This may be achieved
using a regression procedure which can be seen as a counter-
part of Dijkstra’s precondition calculus [Gri81] for declara-
tive representations. Variants of this procedure have been
used in AI planning [Wal77], in explanation-based learning
[Lam91], and in requirements engineering to identify diver-
gent goals [Lam98b]. We first explain the general procedure
before showing how it can be specialized and simplified for
obstacle generation.

Consider a meeting scheduler system and the goal stating
that intended people should participate to meetings they are
aware of and which fit their constraints:

Goal Achieve [InformedParticipantsAttendance]

FormalDef ∀ m: Meeting, p: Participant

Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)

⇒ ◊ Participates(p, m)

The initialization step of the regression procedure consists of
taking the negation of that goal which yields

(NG) ◊ ∃ m: Meeting, p: Participant
Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
∧ ❑ ¬ Participates(p, m)

(Such initialization may already produce precise, feasible
obstacles in some cases, see other examples below.)

Suppose now that the domain theory contains the following
property:

∀ m: Meeting, p: Participant

Participates(p, m) ⇒ Holds (m) ∧ Convenient (p, m)

This domain property states that a necessary condition for a
person to participate in a meeting is that the meeting is being
held and its date/location is convenient to her. A logically
equivalent formulation is obtained by contraposition:

(D) ∀ m: Meeting, p: Participant

¬ [ Holds (m) ∧ Convenient (p, m) ] ⇒ ¬ Participates(p, m)

The consequent in(D) unifies with a litteral in(NG); regress-
ing (NG) through(D) then amounts to replacing in(NG) the
matching consequent in(D) by the corresponding antecedent.
We have thereby formally derived the following potential
obstacle:

(O1) ◊ ∃m: Meeting, p: Participant
Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
∧ ❑ [ ¬ Holds (m) ∨ ¬ Convenient (p, m) ]

This obstacle covers two situations, namely, one where so
meeting never takes place and the other where a particip
invited to a meeting whose date/location was first convenie
to her is no longer convenient when the meeting takes pla
Using the OR-refinement techniques decribed in Section
we will thereby obtain two subobstacles that could be nam
MeetingPostponedIndefinitely andLastMinuteImpediment , respec-
tively. Scenarios satisfying their respective assertion a
straightforward in this case.

Assuming the domain theory takes the form of a set of rul
A ⇒ C, a temporal logic variant of the regression procedu
found in [Lam91] can be described as follows.

Initial step:
take O := ¬ G

Inductive step:
let A ⇒ C be the domain rule selected,

with C matching some somesubformula L in O whose
 occurrences in O are all positive;

then µ := mgu (L, C);
O := O [L / A.µ]

This procedure relies on the following definitions and not
tions:
– for a formula schemeϕ(u) with one or more occurrences

of the sentence symbolu, an occurrence ofu is said to be
positive inϕ if it does not occur in a subformula of the
form p ↔ q and it is embedded in an even (explicit o
implicit) number of negations;

– mgu (F1, F2) denotes the most general unifier of F1 and F2;
– F.µ denotes the result of applying the substitutions fro

unifierµ to F;
– F [F1 / F2] denotes the result of replacing every occurren

of F1 in formula F by F2.

The soundness of the regression procedure follows from
monotonicity property of temporal logic [Man92, p.203]:

If all occurrences ofu in ϕ(u) are positive, then
(p ⇒ q) → (ϕ(p) ⇒ ϕ(q) )

is valid.

Every iteration in the regression procedure produces pot
tially finer obstacles to the goal under consideration; it is u
to the specifier to decide when to stop, dependent on whet
the obstacles obtained are meaningful and precise enoug
to easily identify scenarios satisfying them, and (ii) to se
appropriate ways of resolving them through strategies d
cussed in Section 6.

In the example above only one iteration was performe
Regressing obstacle(O1) above further through a domain
property like

Convenient (p, m) ⇒ m.Date in  p.Constraints
∧ m.Location in  p.Constraints

would have produced finer sub-obstacles to the goalAchieve
[InformedParticipantsAttendance], namely, the date being no
longer convenient or the location being no longer convenie
when the meeting takes place.

Exploring the space of potential obstacles derivable from t
9
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domain theory is achieved bybacktrackingon each domain
rule applied to select another applicable one. After having
selected rule(D) in the example above, one could select the
following other domain rule stating that another necessary
condition for participation is that the meeting date the partic-
ipant has in mind corresponds to the actual date of the meet-
ing:

(D’) ∀ m: Meeting, p: Participant
Participates(p, m) ⇒ ∃ M: Beliefp(m.Date = M) ∧ m.Date = M

The deonticBeliefag construct in this formalization is often
used to captureAccuracy goals andInaccuracy obstacles; it is
linked to theKnowsag construct by the following property:

Knowsag(P) ≡ Beliefag(P) ∧ P

whereag denotes an agent instance,P a fact, and the KAOS
built-in predicateKnowsag(P) means that the truth value ofP

in ag’s local memory coincides with the actual truth value of
P.

Regressing the goal negation(NG) above through property
(D’)  now yields the following new obstacle:

(O2) ◊ ∃m: Meeting, p: Participant
Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
∧ ❑ ∀M: ¬ [ Beliefp(m.Date = M) ∧ m.Date = M ]

This obstacle, in theInaccuracy category, could be namedPar-
ticipantBelievesWrongDate.

Further backtracking on other applicable rules would gener-
ate other obstacles obstructing the goalAchieve[InformedPartic-
ipantsAttendance] such as, e.g.,ParticipantNotInformedInTime,
InvitationNotKnown, etc.

The examples above exhibit asimplified procedure for gen-
erating obstacles toAchieve goals of the form C⇒ ◊ T:

1. Negate the goal, which yields a pattern ◊ ( C ∧ ❑ ¬ T);

2. Find necessary conditions for the target condition T in the
domain theory;

3. Replace the negated target condition in the pattern resulting
from step 1 by the negated necessary conditions found; each
such replacement yields a potential obstacle. If needed, apply
steps 2, 3 recursively.

A dual version of this simplified procedure can be used for
goals having theMaintain patterns C⇒ T, C ⇒ ❑ T, or C ⇒

TW N. For the plane landing example in Section 3.2, it ge
erates the obstacles O1, O2, and O3 to the assumptionAssin
a straightforward way.

In practice, the domain theory does not necessarily need
be very rich at the beginning. Given a target conditionT in a
goal such as C⇒ ◊ T, the requirements engineer mayincre-
mentally elicit necessary conditionsfor T by interaction with
domain experts and clients.

To give a more extensive idea of the space of obstacles t
can be generated systematically using this technique, Fig
3 shows a goalAND-refinement tree, derived by instantiation
of a frequent refinement pattern from [Dar96], together wi
corresponding obstacles that were generated by regres
(universal quantifiers have been left implicit).

5.2 Completing a set of obstacles

The domain-completeness condition in Section 3.2 sugge
a procedure for completing a set of obstacles O1, ..., Ok
already identified for some goal G.

As noted in Section 3.1, G has the general form❑ GC
whereas Oi has the general form◊ OCi. The completion pro-
cedure can be described as follows.

1. Form the complementary assertion
O* = ◊ (¬ GC ∧ ¬ OC1 ∧ ... ∧ ¬ OCk);

2. Check the consistency of O* with Dom;

3. If O* is domain-consistent and too unspecific, regress it through
Dom or generate subobstacles using refinement patterns, to
yield finer obstacles SO* ;

4. If needed, apply steps 1-3 recursively to the SO*’s.

It is easy to check that the the set {O*, O1, ..., Ok} obtained
by Step 1 satisfies the domain-completeness condition
Section 3.2 in which the domain is temporarily not consid
ered. Considering the domain in the next steps allows O*
be checked for consistency and refined if necessary. A f
quent simplification arises from Step 3 when O* has th
form P ∧ P1 and a domain property is found having the form
P ⇒ P1. A one-step regression then yieldsO = P.

Back to the plane landing example in Section 3.2, Step 1
the completion procedure applied to the assumption

MovingOnRunway ⇒ WheelsTurning (Ass)

and the obstructing obstacles
◊ (MovingOnRunway ∧ ¬ WheelsOut) (O1)
◊ (MovingOnRunway ∧ WheelsBlocked) (O2)

◊ (MovingOnRunway ∧ Aquaplaning) (O3)

yields
O∗ = ◊ (MovingOnRunway ∧ ¬ WheelsTurning

∧ WheelsOut ∧ ¬ WheelsBlocked ∧ ¬ Aquaplaning)

This candidate obstacle is inconsistent with the domain
property(D4) is found inDom (see Section 3.2). If not, fur-
ther regression/refinement throughDom should be under-
taken to find out more specific causes/subobstacles of O*
order to complete the set(O1)-(O3). Such refinement may be
driven by patterns as we discuss now.

5.3 Using obstruction refinement patterns

As introduced in Section 3.3, obstacles may beAND/OR-
refined into subobstacles.AND-refinements yield more

Intended (p, m) ⇒ ◊ Participates(p, m)

Intended(p,m)

⇒ ◊ Participates(p,m)

∧ Informed(p,m)
∧ Convenient(p,m)

Intended(p,m)
⇒ ◊ [ Informed(p,m)

∧ Convenient(p,m)]

Intended(p,m)
⇒ ❑ Intended(p,m)

LastMinuteImpediment
ParticipantBelievesWrongDate
ParticipantNotInformedInTime
InvitationNotKnown

◊ ∃m, p:
Intended(p,m)

∧ ❑ ¬ Informed(p,m)

◊ ∃m, p:
Intended(p,m)

∧ ❑ ¬ Convenient(p,m)

◊ ∃m, p:
Intended(p,m)

∧ ◊ ¬ Intended(p,m)

Fig. 3 - Goal refinement and obstacles derived by regression

MeetingPostponedIndefinitely
10
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“primitive” obstacles, that is, obstacles for which (i) negative
scenarios can be found more easily to show their feasibility,
and (ii) effective ways of resolving them can be envisioned
more easily. On another hand, domain-completeOR-refine-
ments are in general desirable for critical goals; they yield a
domain-complete set of alternative subobstacles that can be
made disjoint if necessary.

Section 5.1 already contained examples of obstacle refine-
ments. The obstacleLastMinuteImpediment was in fact OR-
refined into two alternative subobstacles using the domain
theory, namely, the date being no longer convenientor the
location being no longer convenient. Figure 3 also shows an
example ofOR-refinement of the obstacle obstructing the
goal in the middle of the goal tree; this obstacle, not explic-
itly represented there, has been formallyOR-refined into the
two subobstacles in the middle (which could be namedMeet-

ingNeverNotified and MeetingNeverConvenient, respectively).
The latter subobstacles may be refined in turn. Similarly, the
obstacleParticipantBelievesWrongDate that was derived in Sec-
tion 5.1 could beOR-refined into alternative subobstacles
like WrongDateCommunicated, ParticipantConfusesDates, etc.

The AND/OR refinement of obstacles may be seen as a for-
mal, goal-oriented form of fault-tree analysis [Lev95] or
threat-tree analysis [Amo94]. Such analysis is usually done
in an informal way through interaction with domain experts
and clients; our aim here is to derive complete fault/threat-
trees formally.

The regression procedure in Section 5.1 is a first technique to
achieve this; alternatively, one may use obstacle refinement
patterns to shortcut the formal derivations involved in the
regression procedure.

The general principle is similar to goal refinement patterns
[Dar96] and divergence detection patterns [Lam98b]. A
library of generic refinement patterns is built; each pattern is
a refinement tree where the root is a generic assertion to be
refined and the leaves are generic refining assertions. The
correctness of each pattern is proved formallyonce and for
all.

The patterns for goal obstruction are specific in that the roots
of refinement trees are negated goals. The generation of
(sub)obstacles to some goal then proceeds by selecting pat-
terns whose root matches the negation of that goal, and by
instantiating the leaves accordingly. The requirements engi-
neer is thus relieved of the technical task of doing the formal
derivations required in Section 5.1. The patterns can be seen
as high-level inference rules for deriving finer obstacles.

All obstruction patterns in this paper were proved formally
correct using the STeP verification tool [Man96]. As we will
see, the notion of correctness is different forAND- andOR-
refinement patterns. We discuss them successively.

5.3.1AND-refinement patterns

Figures 4-6 show a sample of frequentAND-refinement pat-
terns for obstacles that obstructAchieve andMaintain goals,

respectively.

Theroot assertion in eachAND-tree corresponds to the nega
tion of the goal being obstructed. (Remember that there is
implicit outer ❑-operator in every strong implication; this
causes the outer◊-operator to appear there.) Theleft child
assertion may correspond to a domain property, to anot
requirement/assumption, or to a companion subobstacle
the1-step regression andstarvation patterns, it will typically
correspond to a domain rule T⇒ P. In themilestone pattern,
it defines a necessary milstoneM for reaching the target
predicateT. The left child assertion often guides the identifi
cation of the subobstacle captured by theright child asser-
tion.

Obstacle refinement patterns may thus help identifying bo
subobstaclesand domain properties. Also note that the1-
step regression pattern in Figures 4 and 6 correspond to th
regression procedure in Section 5.1 where only one iterat
is performed.

As an example of using thestarvation pattern in Figure 4,
consider a general resource management system and the

∀ u: User, r: Resource
Requesting (u, r) ⇒ ◊ Allocated (r, u)

The domain property
Allocated (r, u) ⇒ ¬ ∃ u’ u: Allocated (r, u’)

suggests reusing thestarvation pattern with instantiations

C: Requesting (u, r)
T: Allocated (r, u) , P: ¬ ∃ u’ u: Allocated (r, u’)

The following starvation obstacle has been thereby derive

Fig.4 - AND-refinement patterns for obstacles to the goal C ⇒ ◊ T

◊ (C ∧ ❑ ¬ T)

T ⇒ P ◊ (C ∧ ❑ ¬ P)

(1-step regression)

◊ (C ∧ ❑ [¬ T U ¬ P] )

◊ (C ∧ ❑ ¬ T)

◊ (C ∧ ❑ ¬ M)

(milestone)

C ∧ ◊ T ⇒ (¬ T W M)

◊ (C ∧ ❑ ¬ T)

T ⇒ P

(starvation)

Fig.5 - AND-refinement patterns for obstacles to the goal C ⇒ ❑ T

◊ (C ∧ ◊ ¬ T)

B ⇒ ◊ ¬ T ◊ (C ∧ ◊ B)

(backward chain)

B ⇒ o ¬ T

(1-state back)

◊ (C ∧ ◊ ¬ T)

◊ (C ∧ ◊ B)

Fig. 6 - AND-refinement pattern for obstacles to the goal C ⇒ T W N

(1-step regression)

◊ (C ∧ ( ¬ N U (¬ N ∧ ¬ T)))

B ⇒ ¬ T ◊ (C ∧ ( ¬ N U (¬ N ∧ B)))
11
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◊ ∃ u: User, r: Resource
Requesting (u, r) ∧ ❑ [ ¬ Allocated (r, u)U ∃u’ u: Allocated (r, u’) ]

As an example of using the 1-step regression pattern in Fig-
ure 6, consider the LAS ambulance dispatching system
[LAS93] and the goal stating that an ambulance allocated to
an incident should remain allocated to that incident until it
has arrived at the incident scene. This goal may be formal-
ized by

∀ a: Ambulance, inc: Incident
Allocation (a, inc) ⇒ Allocation (a, inc) W Intervention (a, inc)

We know from the domain that an ambulance can be allo-
cated to at most one incident at a time:

Allocation (a, inc) ⇒ ¬ ∃ inc’  inc: Allocation (a, inc’)

This property suggests using the 1-step regression pattern
with the following instantiations

C: Allocation (a, inc) , T: Allocation (a, inc)

N: Intervention (a, inc) , B: ∃ inc’  inc: Allocation (a, inc’)

The following subobstacle is thereby derived:
◊ ∃ a: Ambulance, inc: Incident

Allocation (a, inc)

∧ ¬ Intervention (a, inc) U
¬ Intervention (a, inc) ∧ ∃ inc’  inc: Allocation (a, inc’)

This obstacle captures a situation in which an ambulance
allocated to an incident becomes allocated to another inci-
dent before its intervention at the first one.

A more extensive set of obstacleAND-refinement patterns is
given in Tables 1-4. Each table corresponds to a specific k
of goal. Each row in a table represents anAND-refinement of
the negation of the goal associated with the table. The low
a row is in a table, the more specific the corresponding ass
tion and subobstacle are. The assertions in the first colu
may represent a domain property, a requirement or a co
panion subobstacle. Table 4 may be seen to correspond to
backward construction of a fault-tree from a state machi
[Rat96];p andq are intended to be state predicates there.

All AND-refinement patterns in Tables 1-4 were proved co
rect using STeP [Man96] --by this we mean that the enta
ment and consistency conditions in Section 3.3 we
formally verified.

Section 7 will illustrate the use of various patterns from
Tables 1-4.

5.3.2 CompleteOR-refinement patterns

Figures 7 shows a pattern for refining the obstruction of
Achieve goalR ⇒ ◊ S into a complete set of disjoint alterna
tive subobstacles (see Section 3.3 for the definition of co
pleteness and disjointness). The goal negation◊ (R ∧ ❑ ¬ S) is
AND-refined into two child nodes; the left child assertio
may be a domain property, an assumption or a requirem
(in this case it defines what a milestone is); the right chi
node is anOR-node refined into two alternative subobstacle

As an example of using this pattern, consider the meeti
scheduler system again and the goal stating that participa
time/location constraints should be provided if request
[Lam95]:

assertion subobstacle

1-step regress S ⇒ P ◊ [ R ∧ ❑ ¬ P ]

S ⇒ P ◊ [ R ∧ ( ¬ SU ❑ ¬ P ) ]

starvation S ⇒ P ◊ [ R ∧ ❑ ( ¬ SU ¬ P ) ]

missing source R ∧ ◊ S ⇒ P ◊ [ R ∧ ¬ P ]

non-
persistence

R ∧ ◊ S ⇒ PW S ◊ [ R ∧
¬ S U (¬ P∧ ¬ S ) ]

non-
persistence

R ∧ ◊ S ⇒
PW (P ∧ S)

◊ [ R ∧ ( ¬ SU ¬ P ) ]

milestone R ∧ ◊ S ⇒ ¬ SW M ◊ [ R ∧ ❑ ¬ M ]

blocking B ⇒ ❑ ¬S ◊ [ R ∧ ( ¬ SUl B) ]

substitution S’ ⇒ ❑ ¬ S ∧ ■ ¬ S ◊ [ R ∧ ◊ S’ ]

strengthening R ∧ ◊ S ⇒
◊ [P ∧ (PW S)]

◊ [ R ∧ ❑ ¬ P ]

starvation R ∧ ◊ S ⇒
◊ [P ∧ (PW S)]

◊ [ R ∧ ( ¬ SU ❑ ¬ P ] ) ]

R ∧ ◊ S ⇒
◊ [P ∧ (PW S)]

◊ [ R ∧
(¬ SU (¬ S ∧ ❑ ¬ P)) ]

TABLE 1. Patterns of obstacles to the goalR ⇒ ◊ S

assertion subobstacle

1-step regress Q ⇒ C ◊ [ P ∧ ◊ ¬ C ]

backward C ⇒ ◊ ¬ Q ◊ [ P ∧ ◊ C ]

1-state back C ⇒ o ¬ Q ◊ [ P ∧ ◊ C ]

TABLE 2. Patterns of obstacles to the goalP ⇒ ❑ Q

assertions subobstacle

Q ∧ C ⇒ o ¬ Q ,

P ∧ C ⇒ o P
◊ [ P ∧ Q ∧ C ]

Q ∧ C ⇒ o ¬ Q ,

¬ P ∧ C ⇒ o P
◊ [ ¬ P ∧ Q ∧ C ]

¬ P ∧ C ⇒ o P ,
¬ Q ∧ C ⇒ o ¬ Q

◊ [ ¬ P ∧ ¬ Q ∧ C ]

TABLE 3. Patterns of obstacles to the goal❑ (P → Q)

assertion subobstacle

back state p ⇒ o ¬ q ◊ p

TABLE 4. Patterns of obstacles to the goal❑ q

Fig. 7 - OR-refinement pattern for obstacles to the goal C ⇒ ◊ T

◊ (C ∧ ❑ ¬ T)

◊ (C ∧ ❑ ¬ M)

(milestone)

C ∧ ◊ T ⇒ (¬ T W M)

◊ [C ∧ (¬ MUl(M ∧ ❑ ¬ T) ) ]
12



ce-

o a
e-
le;

for

ct
nt,
ndi-
e,
ric

es
es
ill
ally

is
-
e

see
ti-
ral
ls;
ific

m-

e

e

ler
g

∀ m: Meeting, p: Participant

ConstraintsRequested (p, m) ⇒ ◊ ConstraintsProvided (p, m)

An obvious milestone condition for a participant to provide
her constraints is that a request for constraints is reaching
her. This suggests using themilestone pattern in Figure 7
with the following instantiations:

C: ConstraintsRequested (p, m) T: ConstraintsProvided (p, m)

M: RequestReaches (p, m)

The milestone pattern then generates the formalized domain
property

∀ m: Meeting, p: Participant

ConstraintsRequested (p, m) ∧ ◊ ConstraintsProvided (p, m)

⇒ [ ¬ ConstraintsProvided (p, m) W RequestReaches (p, m) ]

together with a complete set of alternative subobstacles to
the goal above:

◊ ∃ m: Meeting, p: Participant

ConstraintsRequested (p, m) ∧ ❑ ¬ RequestReaches (p, m)

or

◊ ∃ m: Meeting, p: Participant

ConstraintsRequested (p, m) ∧

¬ RequestReaches (p, m)Ul

RequestReaches (p, m) ∧ ❑ ¬ ConstraintsProvided (p, m)

The refinement may then proceed further to find out finer
subobstacles in each alternative; this will yield causes for a
request not reaching an invited participant and causes for a
participant not providing her constraints in spite of the
request having reached her, respectively.

These examples suggest thatthe more an obstacle is refined
the closer one gets to an explicit scenario. Obstacle refine-
ment patterns may thus be used for suggesting feasible s
narios as well.

A more extensive set of complete and disjointOR-refinement
patterns is given in Tables 5-6. Each table corresponds t
specific kind of goal. Each row in a table represents a refin
ment of the negation of the goal associated with the tab
the thick vertical line separator represents anAND whereas
the double line separators represent anOR. Some of the pat-
terns in these tables will be used in the obstacle analysis
the London Ambulance System in Section 7.

All OR-refinement patterns in Tables 5-6 were proved corre
using STeP [Man96] --by this we mean that the entailme
consistency, disjointness, and domain-completeness co
tions in Section 3.3 were formally verified. In the latter cas
the formulas in the assertion column were taken as gene
domain property forming Dom.

5.4 Informal obstacle identification

Informal heuristics may be used to help identify obstacl
without necessarily having to go through formal techniqu
every time. Although they are easier to deploy, the result w
be much less accurate, and not guaranteed to be form
correct and complete.

Such heuristics are rules of thumb taking the form: “if the
specification has such or such characteristicsthen consider
such or such type of obstacle to it”. The general principle
somewhat similar in spirit to the use of HAZOP-like guide
words for eliciting hazards [Lev95] or, more generally, to th
use of safety checklists [Jaf91, Som97].

Our heuristics are based on goal/obstacle classifications (
Section 3.4), on formal obstruction patterns we have iden
fied, and on past experience in identifying obstacles. Gene
heuristics are independent of any particular class of goa
more specific heuristics are associated with some spec
class.

General heuristicsrefer to the KAOS meta-model only (see
the concepts defined in Section 2.1). Here are a few exa
ples to illustrate the approach.

• If an agent has tomonitor/control someobject in order to
guarantee thegoal it is assigned to then consider the fol-
lowing types of obstacles:
– InfoUnavailable: the necessary information about th

object state is not available to theagent;
– InfoNotInTime: the necessary information about th

object state is available too late;
– WrongBelief: the necessary information about theobject

state as recorded in theagent’s memory is different from
the actual state of this object. (In the meeting schedu
example, this heuristics might have helped identifyin
obstacles likeParticipantBelievesWrongDate --see Section

assertion obstacle obstacle obstacle

S ⇔ P ∧ Q ◊ [ R ∧ ❑ ¬ P ] ◊ [ R ∧ ❑ ¬ Q] ◊ [ R
∧ ◊ P ∧ ◊ Q
∧ ❑ ¬ (P ∧ Q) ]

S ⇒ P ◊ [ R ∧ ❑ ¬ P ] ◊ [ R ∧ ◊ P
∧ ❑ ¬ S ]

S ⇒ P ◊ [ R ∧
¬ SU ❑ ¬ P ]

◊ [ R ∧ ◊ P
∧ ❑ ¬ S ]

S ⇒ P ◊ [ R ∧
❑ (¬ SU ¬ P)]

◊ [ R ∧
◊ (PW(P ∧ S))
∧ ❑ ¬ S ]

R ∧ ◊ S
⇒ P

◊ [ R ∧ ¬ P ] ◊ [ R ∧ P
∧ ❑ ¬ S ]

R ∧ ◊ S
⇒ PW S

◊ [ R ∧ ¬ SU
(¬ P ∧ ¬ S)]

◊ [ R ∧ PW S
∧ ❑ ¬ S ]

R ∧ ◊ S ⇒
PW (P∧S)

◊ [ R ∧ ¬ SU
¬ P ]

◊ [ R ∧ ❑ ¬ S
∧ PW (P∧S) ]

R ∧ ◊ S
⇒ ¬ SWM

◊ [ R ∧ ❑ ¬ M ] ◊ [ R ∧ ¬ MU
(M ∧ ❑ ¬ S) ]

B ⇒ ❑ ¬ S ◊ [R ∧ ¬ SUB] ◊ [ R ∧ ❑ ¬ S
∧ ¬ BW S]

P ⇒ ❑ ¬ S
∧ ■ ¬ S

◊ [ R ∧ ◊ P ] ◊ [ R ∧ ❑ ¬ S
∧ ❑ ¬ P ]

TABLE 5. Obstacle OR-refinement for the goalR ⇒ ◊ S

assertion obstacle obstacle

Q ⇔ Q1 ∧ Q2 ◊ [ R ∧ ¬ Q1 ] ◊ [ R ∧ ¬ Q2 ]

TABLE 6. Obstacle OR-refinement for the goal❑ (P → Q)
13
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5.1; for an electronic reviewing process an obstacle like
ReviewerBelievesWrongDeadline could be identified in a
similar way.)

TheWrongBelief obstacle class can be further refined into
subclasses such as:
– WrongInfoProvided: the necessary information pro-

vided by anotheragent about theobject state is incor-
rect (possible refinements for this obstacle are, e.g., too
high or too low values for anobject attribute);

– InfoCorrupted: the information from the provider has
been corrupted by anotheragent;

– InfoOutDated: the information provided to theagent is
no longer correct at the time of use;

– InfoForgotten: the information provided to theagent is
no longer available at the time of use;

– WrongInference: theagent has made a wrong inference
from the information available;

– InfoConfusion: the agent confuses the necessary infor-
mation about theobject state with some other informa-
tion.

InfoConfusion obstacles can be refined in turn, e.g.,
– InstanceConfusion: the agent confuses the necessary

information about theobject state with information
aboutanotherinstance of object within the same class
[Pot95];

– ValueConfusion: the agent confuses different values
for an attribute of the sameobject;

– UnitConfusion: the agent confuses different units in
terms of which values of anobject attribute are
expressed.

In the meeting scheduler example, these heuristics might
have helped identify several obstacles among those derived
formally, e.g., participants confusing meetings or dates,
meeting initiators confusing participants which results in
wrong people being invited, confusion in constraints, etc. In
an ambulance dispatching system, an obstacle like an ambu-
lance going to a wrong place could be identified thereby.

An important specialization ofInfoConfusion obstacles in the
aviation domain is ModeConfusion where pilot agents
become confused about what the cockpit software agent is
doing; obstacles in this category receive increasing attention
as they have been recognized to be responsible for a signifi-
cant number of critical incidents [But98].

• If an agent requires someresource in order to guarantee
thegoal it is assigned to then consider obstacles in the fol-
lowing categories:ResourceUnavailable, ResourceTooL-
ate, ResourceOutOfOrder, WrongResource,
ResourceConfusion, and so on.

• If a persistent condition is necessary to reach thetarget
condition from thesource condition in anAchieve goal,
then consider an obstacle in which the persistent condition
becomes false before reaching the target condition.

The latter heuristic rule corresponds to a natural language
rephrasing of themissing persistence pattern in Table 1; it
suggests how similar heuristics can be formulated from the
other patterns.

Morespecific heuristicsrefer to goal classifications. Here are
a few examples.

• If a MessageDeliveredgoal in the Informationgoal category
is considered,then consider obstacles likeMessageUndeliv-
ered, MessageDeliveredAtWrongPlace, MessageDeliveredAt-
WrongTime, MessageCorrupted, and so on.

• If agoal being considered is in theStimulusResponse cate-
gory, then consider the following types of obstacles:
– StimulusIgnored, TooLatePickUp, IncorrectValue, or

StimuliConfused obstacles to the abstract goalStimulus-
PickedUp;

– NoResponse, ResponseTooLate, ResponseIgnored, or
WrongResponse obstacles to the abstract companio
goalResponseProvided.

Obstacles can also be identified by analogy with obstacles
similar systems, using analogical reuse techniques [Mas9

6. RESOLVING OBSTACLES

The generated obstacles need to be resolved in some wa
another. As discussed in Section 4, the resolution proc
covers two aspects: thegenerationof alternative resolutions
and theselectionof one resolution among those identified
Which resolution to apply and when to apply it will depen
on risk/cost-benefit analysis based on the likelihood
occurrence of the obstacle and on the severity of its con
quences. We will not discuss selection tactics here; we co
centrate on the generation of alternative resolutions.

Such resolutions correspond to differentstrategiesthat may
be applied. They can be classified into three broad clas
dependent on whether the obstacle is eliminated (Sect
6.1), reduced (Section 6.2), or tolerated (Section 6.3). So
of these strategies have been studied in other contexts
handling problematic situations --e.g., deadlocks in paral
systems [Cof71]; exceptions and faults in fault-tolerant sy
tems [And81, Cri91, Jal94, Gar99]; feature interaction
telecommunication systems [Kec98]; inconsistencies in so
ware development [Nus96]; or conflicts between requir
ments [Rob97, Lam98b]. The objective here is to speciali
such strategies to the resolution of obstacles to goals dur
requirements engineering, and to make them explicit
terms of specification transformation rules in the form
framework of temporal logic.

The obstacle resolution process will result in a transform
goal structure, transformed requirements specifications, a
transformed domain properties in some cases.

6.1 Obstacle Elimination

Eliminating an obstacle requires one among the conditio
defining an obstructing obstacle in Section 3.1 to be inhi
ited; the obstruction should be avoided or the obstacle sho
be made inconsistent/unfeasible within the domain. T
strategies below address one of the conditions or the othe

6.1.1 Goal substitution

A most effective way of resolving an obstacle is to identif
analternative goal refinementfor some higher-level goal, in
which the obstructed goal and obstructing obstacle are
longer present . In the meeting scheduler example, one m
14
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eliminate the obstacleElectronicAgendaNotMaintained that
obstructs the goalElectronicAgendaUpToDate by choosing an
alternative refinement for the father goalParticipantsCon-
straintsKnown (see Figure 8); the alternative goal refinement
consists in introducing the two companion goalsCon-
straintsRequested (under responsibility of the meeting sched-
uling software) andConstraintsProvided (still under joint
responsibility of participants and the email system).

Choosing an alternative goal refinement will in general result
in a different design for the composite system.

6.1.2 Agent substitution

Another way of overcoming the obstacle is to consideralter-
native agent assignmentsso that the obstacle scenario may
no longer occur. This will in general result in different sys-
tem proposals, in which more or less functionality is auto-
mated and in which the interaction between the software and
its environment may be quite different.

Back to our meeting scheduler example, one might over-
come the obstacleParticipantNotResponsive to the goalCon-
straintsProvided by assigning the responsibility for that goal to
the participant’sSecretary instead (to overcome subobstacles
such asEmailNotCheckedRegularly or ParticipantTooBusy), or by
assigning the responsibility for the goalParticipantsCon-
straintsRequested to the meeting initiator (rather than the
meeting scheduling software) --through email, phone calls,
etc.

In the electronic reviewing example, one could introduce a
software agent for checking that no occurrences of the
reviewer’s name are found in the review (to overcome the
obstacleNonAnonymousReview); a software agent for check-
ing destination tables (to overcome the obstacleMessageSent-
ToWrongPerson); and so on.

Agent substitution may entail goal substitution and vice-
versa.

6.1.3 Obstacle prevention

This strategy resolves the obstruction byadding a new goal
requiring that the obstacle be avoided.

Remember that a goal G has the general form❑ GC whereas
an obstacle O to G has the general form◊ OC. To prevent O
from being ever satisfied, the followingAvoid goal is thus
introduced:

G*: ❑ ¬ OC

AND/OR refinement and obstacle analysis may then
applied to the new goal in turn.

Back to our meeting scheduler example, consider the obs
cle MeetingForgotten that obstructs the goalAchieve [Informed-
ParticipantsAttendance] in Figure 3. The prevention strategy
yields the new goalAvoid [MeetingForgotten]. The latter may
then be refined into a requirementAchieve [MeetingReminded]
under responsibility of the meeting scheduling softwar
Another example of obstacle prevention in a train contr
system is the introduction of an automatic brake facili
(with corresponding goals and agents) to prevent trains fro
exceeding their speed limit.

It may turn out, after checking with domain experts, that th
assertion❑ ¬ OC introduced for obstacle prevention is not
goal/requirement but a domain property that was missi
from the domain theoryDom, making it possible to infer the
obstacleO by regression. In such cases the domain theo
will be updated instead of the goal structure.

Obstacle anticipationis a substrategy for refining obstacle
prevention goals. It is applicable when some persistent co
dition P can be found such thatP must persist during some
time interval for the obstacle condition OC to become true

OC ⇒ ■≤d P

In such a case, the obstacle prevention goal may be refi
by introducing the subgoal

G* : P ⇒ ◊≤d ¬ P

For obstacles toSecurity goals, for example, one might have
the following instantiations:

OC: InformationCorruptedByAgent

P: IntrusionUndetected

Obstacle anticipation patterns may be used when an ev
can be identified that necessarily precedes the truth of
obstacle condition.

6.1.4 Goal Deidealization

It is often the case that obstacles are found to obstruct fir
sketch goal formulations because the latter are too ide
Such goal formulations should then be deidealized so t
they cover the behaviors captured by the obstacle. The p
ciple is to transform the goalbeing obstructed in order to
make the obstruction disappear.

Let us suggest the technique on an example first.

Consider the obstacleParticipantNotInformedInTime in Figure 3
which obstructs the goal

Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
⇒ ◊ Participates(p, m)

The idea is to make the obstructed goal more liberal, that
to weaken it so that it covers the obstacle. In this case
goal weakening is achieved by strengthening its antecede

Intended (p, m) ∧ InformedInTime  (p, m) ∧ Convenient (p, m)
⇒ ◊ Participates(p, m)

The predicateInformedInTime (p, m) is derived from the corre-
sponding obstacle; it requires participants to be ke
informed during a time period starting at leastN days before
the meeting date:

ParticipantsConstraintsKnown

ConstraintsKnownElectronicAgenda Constraints Constraints

ElectronicAgenda
NotMaintained

obstructs

Requested ProvidedUpToDate FromAgenda

Fig. 8 - Goal substitution
15
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InformedInTime (p, m) ≡ ■≤ (m.Date - Nd) Informed (p, m)

Once this more liberal goal is obtained, the predicates that
were transformed to weaken the goal are to be propagated in
the goal tree to replace their older version everywhere; this
generally results in strengthened brother goals and weakened
higher-level goals. The result of the change propagation in
the tree shown in Figure 3 will produce a strengthened goal
in the middle of the tree, namely,

Intended(p, m) ⇒ ◊ [ InformedInTime (p, m) ∧ Convenient(p, m) ]

The deidealization procedure is similar to the one used for
weakening divergent goals [Lam98b]. It is simpler here as
only one goal assertion has to be considered for weakening.
The procedure has two steps:

(1) Weaken the goal specification to obtain a more liberal version
that covers the obstacle. Syntactic generalization operators can
be used here such as adding a disjunct, removing a conjunct,
or adding a conjunct in the antecedent of an implication.

(2) Propagate the predicate changes in the goal AND-tree in which
the weakened goal is involved, by replacing every occurrence
of the old predicates by the new ones.

The cardinality transformations in [Fea93] may be seen as a
particular form of syntactic generalization in step 1 of this
simplified procedure. Step 2 can be done simply by updating
the instantiations of the goal refinement patterns used to
build the goal graph, when such patterns have been used
[Dar96].

Goal deidealization patternsmay also be used as formal
support to the deidealization process. Given the obstructed
goal and the obstructing obstacle, they yield deidealized ver-
sions of the goal. To illustrate the approach, Table 7 gives
some patterns for some of the obstacles from Table 1.

At the end of Section 5.3.1 we considered the resource man-
agementAchieve goal

∀ u: User, r: Resource
Requesting (u, r) ⇒ ◊ Allocated (r, u),

and generated the starvation obstacle
◊ ∃ u: User, r: Resource
Requesting (u, r) ∧ ❑ [ ¬ Allocated (r, u)U ∃u’ u: Allocated (r, u’) ]

The goal and starvation obstacle match the last row of Table
7; we thereby generate the deidealized goal specification

∀ u: User, r: Resource
Requesting (u, r) ∧ (¬ ∃u’ u: Allocated(r,u’))W Allocated(r,u)
⇒ ◊ Allocated (r, u)

The new goal version states thatif the user requests the
resource and the resource is subsequently kept unallocated
unless allocated to her/it,then the resource is eventually allo-

cated to her/it. The new conditionPW S that strengthens the
antecedent has to be propagated into the goalAND-tree. The
goals that refer to this new predicate as target conditi
might be operationalized through a reservation procedure

6.1.5 Domain transformation

This strategy consists in transforming the domain with
which the software-to-be operates so as to make the obst
tion disappear. The set of domain properties is modified so
to make the obstacle either inconsistent with the domain (s
the domain-consistency condition in Section 3.1) or n
longer obstructing the goal (see the obstruction condition
Section 3.1).

As an illustration of the first case, consider the go
Achieve[AllocatedAmbulanceMobilized] in an ambulance dis-
patching system. One obstacle to this goal corresponds to
situation where an ambulance crew decides to mobili
another ambulance than the one allocated by the system.
domain property making this possible is that mobilizatio
orders received by crews at ambulance stations mention
incident location. The obstacle can then be eliminated
transforming the mobilization order so that it does no long
mention the incident location; the latter information woul
then be provided by a mobile data terminal inside the amb
lance.

As an illustration of the second case, we can prevent t
obstacle InconvenientLocation from obstructing the goal
InformedParticipantsAttendance in the meeting scheduler sys
tem by transforming the domain so that videoconferencing
made possible; the conjunctm.Location in p.Constraints would
then be dropped from the domain property stating necess
conditions for meetings to be convenient (see Section 5.1

6.2 Obstacle Reduction

The difference between this class of strategies and the pre
ous one is that here one tries toreduce the occurrences of the
obstacle instead of eliminating them completely.

Strategies that act on the motivation of human agents
instances of this class. The principle is to reduce the situ
tions in which an agent acts abnormally or irresponsib
either by dissuasion or by providing rewards. For instanc
many library systems issue fines to dissuade borrowers fr
late returns; insurance systems provide premium reduct
for good customers; some transportation companies is
rewards for crews arriving on time; and so on.

6.3 Obstacle Tolerance

In cases where the obstacle cannot be thoroughly avoided
where avoiding it is simply too costly or not worthy, one ma
specify which behaviors will be admissible or tolerated
the presence of the obstacle.

6.3.1 Goal restoration

A first strategy consists ofadding a new goalstating that if
the obstacle conditionOC becomes true then the obstructe
goal assertionG should be satisfied again in some reasonab
near future. This new goal thus takes theAchieve form

G*: OC ⇒ ◊ G

This strategy could be followed for the obstaclePaperLost

goal obstacle deidealized goal

R ⇒ ◊ S ◊ [ R ∧ ¬ P ] R ∧ P ⇒ ◊ S

R ⇒ ◊ S ◊ [ R ∧ ❑ ¬ P ] R ∧ (PW S) ⇒ ◊ S

R ⇒ ◊ S ◊ [ R ∧ ( ¬ SU ¬ P ) ] R ∧ (PW S) ⇒ ◊ S

R ⇒ ◊ S ◊ [ R ∧ ( ¬ SU ❑ ¬ P ) ] R ∧ ❑ ◊ P ⇒ ◊ S

R ⇒ ◊ S ◊ [ R ∧ ❑ ( ¬ SU ¬ P ) ] R ∧ ◊ (P W (P∧S))
⇒ ◊ S

TABLE 7. Deidealization patterns for Achieve  goals
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that obstructs the goalAchieve[ReviewReturned]. A subgoal
refining the restoration goal will beAchieve[LostPaperResent].

6.3.2 Obstacle mitigation

Another alternative strategy to obstacle elimination is to seek
effective ways of mitigating the consequences of the obsta-
cle. The principle is toadd a new goalto attenuate the
effects of obstacle occurrences. Two forms of mitigation can
be distinguished.

Weak mitigationconsists in ensuring some weakened version
G’ of the obstructed goal G whenever the obstacle condition
OC becomes true. A weak mitigation goal thus has the form

G*: OC ⇒ G’

where G’ is a deidealized version of G obtained using the
specification transformations described in Section 6.1.4.

To illustrate this, consider the obstacleLastMinuteImpediment
generated in Section 5.1. The introduction of the weak miti-
gation goal

Achieve [ImpedimentNotified]

will ensure a weaker version of the goalInformedParticipantsAt-
tendance in Section 5.1, namely,

Intended (p, m) ∧ Informed (p, m) ∧ Convenient (p, m)
⇒ ◊ [ Participates(p, m) ∨ Excused (p, m) ]

(Note that in this case an obstacle prevention alternative to
such weak mitigation would yield a goal likeAchieve [Meet-
ingReplanned].)

Strong mitigationconsists in ensuring some parent goal G’
of G whenever the obstacle condition OC becomes true, in
spite of G being obstructed. A strong mitigation goal thus
has the form

G*: OC ⇒ G’

where the obstructed goal G is a subgoal of G’.

Figure 9 illustrates this on a mine pump system example
[Jos95]. The goalAvoid[MinerInOverfloodedMine] strongly miti-
gates the obstacleExcessiveWaterFlow that obstructs the goal
WaterFlowLimited by guaranteeing that the parent goal
Avoid[MinerDrowning] will be satisfied.

The distinction between strong and weak mitigation some-
what corresponds, at the requirements engineering level, to
two different, sometimes confused notions of fault tolerance
[Cri91]: one where the program meets its specification in
spite of faults, and the other where the program meets a
weaker version of the specification.

6.3.3 Do-nothing

For non-critical obstacles whose consequences have no
nificant impact on the performance of the system a last str
egy is of course to tolerate its occurrences without a
resolution action.

7. OBSTACLE ANALYSIS FOR A REAL SAFETY-CRITI-

CAL SYSTEM

The purpose of this section is to illustrate and assess the v
ious techniques presented in this paper through obsta
analysis of a real safety-critical system for which failure st
ries have been published [LAS93, Fin96].

From the documentation available in the Inquiry Report o
the London Ambulance System [LAS93], we reverse eng
neered the goal graph for this system. We started from
commonsense, high-level goalIncidentResolved and refined it
progressively. In addition, a number of goals were elicite
from explicit or implicit formulations in the Inquiry Report.
Formalizing goal specifications and domain properties, a
applying formal refinement patterns [Dar96] led us to fin
out missing goals. Objects and their relationships, ope
tions, and domain properties emerged gradually as go
were refined. Agents were identified as active objects amo
them --the Computer-Aided Despatch software (CAD), the
Automatic Vehicle Location System (AVLS), the resource
allocator (RA), the control assistant who handles emergen
calls (CA), the radio operator, the communication infrastru
ture, the station printer, the mobile data terminal (MDT), and
the ambulance crew. Goal refinement terminated wh
requirements assigned to theCAD and assumptions assigne
to the agents in the environment were obtained as termi
goals. Figures 10-12 in Appendix 1 provide excerpts fro
the goal structure. Note the importance ofAccuracy goals
(bottom of Figure 10 and Figure 12).

Obstacles were then derived systematically for each termi
goal. Many of them were formalized; a mix of regressio
obstruction patterns and informal heuristics from Section
were used. We then compared the list of potential obstac
thereby obtained with the scenarios which actually occurr
during the two system failures in October-November 199
While our obstacles cover the various problems that occu
during those failures (notably,Inaccuracy problems), they
also cover many other problems that could (but did no
occur --see the comparison tables below. Finally we explor
the space of possible resolutions by application of the stra
gies discussed in Section 6.

7.1 Obstacle generation

Let us illustrate some of the formal derivations first. Con
sider the terminal goalIncidentResolvedByIntervention appear-
ing at level 2 of the goal tree in Figure 9:

Goal Achieve [IncidentResolvedByIntervention]
UnderResponsibility  AmbulanceCrew
Refines  IncidentResolved
FormalDef ∀ a: Ambulance, inc: Incident

Intervention (a, inc) ⇒ ◊ Resolved (inc)

Applying the regression procedure, we negate this goal
produce the high-level obstacleIncidentNotResolvedByInterven-
tion:

Avoid[MinerDrowning]

Avoid[MineOverflooded]

Avoid[MinerInOverfloodedMine]
WaterExtracted WaterFlowLimited

ExcessiveWaterFlow
AlarmIssued MinerOutAfterAlarmobstructs

mitigates

Fig. 9 - Obstacle mitigation
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◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc) ∧ ❑ ¬ Resolved (inc)

We regress this obstacle through domain properties that pro-
vides necessary conditions for incident resolution:

Resolved (inc) ⇒
(∀ p: Patient) Injured (p, inc) →

(∀ r: Resource) CriticallyNeeds (p, r) →
(∃ ru: ResourceUnit) Unit (ru, r) ∧ UsedOn (ru, p)

Resolved (inc) ⇒
(∀ p: Patient) Injured (p, inc) →

(∃ h: Hospital) AdmittedAt (p, h)

Regressing the high-level obstacle above through these two
domain properties yields the following two subobstacles:

Obstacle  CriticalCareNotGivenToPatient
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc)
∧ ❑ (∃ p: Patient, r: Resource)

Injured (p, inc) ∧ CriticallyNeeds (p, r)
∧ ¬ (∃ ru: ResourceUnit) Unit (ru, r) ∧ UsedOn (ru, p)

and
Obstacle  PatientNotAdmittedToHospital

FormalDef ◊ ∃ a: Ambulance, inc: Incident
Intervention (a, inc)
∧ ❑ ∃ p: Patient

Injured (p, inc) ∧ (¬ ∃ h: Hospital) AdmittedAt (p, h)

Regressing the first subobstacleCriticalCareNotGivenToPatient
through the domain property

Intervention (a, inc)
∧ Injured (p, inc) ∧ UsedOn (ru, p)

⇒ InAmbulance (ru, a)
∧ ¬ ( ∃ p’: Patient) p’  p∧ UsedOn (ru, p’)

yields the new subobstacle:
Obstacle  InsufficientResourceInAmbulance

FormalDef ◊ ∃ a: Ambulance, inc: Incident
Intervention (a, inc)
∧ ❑ ∃ p: Patient, r: Resource

Injured (p, inc) ∧ CriticallyNeeds (p, r)
∧ Intervention (a, inc)
∧ (∀ ru: ResourceUnit) Unit (ru, r) →

InAmbulance (ru, a) →
(∃ p’: Patient) p’  p∧ UsedOn (ru, p’)

By completing this refinement we obtain a new subobstacle
to produce a domain-complete set of subobstacles toCritical-
CareNotGivenToPatient:

Obstacle  AvailableResourceNotUsedOnPatient
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Intervention (a, inc)
∧ ❑ ∃ p: Patient, r: Resource

Injured (p, inc) ∧ CriticallyNeeds (p, r)
∧ Intervention (a, inc)
∧ (∃ ru: ResourceUnit) Unit (ru, r) ∧ InAmbulance (ru, a)
 ∧ ¬ (∃ p’: Patient) p’  p∧ UsedOn (ru, p’)

Further refinement of the latter subobstacle by, e.g., use of
the heuristics in Section 5.3, yields new subobstacles such as
WrongInfoAboutPatient and ResourceOutOfOrder. In the former
case, one might find out that the incident form produced by
theCAD has inaccurate or missing information.

The complete obstacle refinement tree derived is as follows:

IncidentNotResolvedByIntervention
← CriticalCareNotGivenToPatient

← InsufficientResourceInAmbulance
← WrongInfoAboutIncident
← ResourceUnavailable
← ResourceConfusion

← AvailableResourceNotUsedOnPatient
← WrongInfoAboutPatient
← ResourceOutOfOrder

← PatientNotAdmittedToHospital
← PatientNotTransportedToHospital

← PatientNotPutInAmbulance
← InsufficientAmbulanceCapacity
← PatientNotInAvailableAmbulance

←  ...
← PatientInAmbulanceNotPortedToHospital

← PatientAtHospitalNotAdmitted
← NoBedAvailableAtHospital
← AvailableBedNotAssigned

This tree amounts to agoal-based fault tree.

Consider now the terminal goalMobilizedAmbulanceIntervention
appearing at level 3 of the goal tree in Figure 9:

Goal Achieve [MobilizedAmbulanceIntervention]
UnderResponsibility  AmbulanceCrew
Refines  AmbulanceIntervention
FormalDef ∀ a: Ambulance, inc: Incident

Mobilized (a, inc) ∧ TimeDist (a.Loc, inc.Loc) 11
⇒ ◊≤11m Intervention (a, inc)

This Achieve goal suggests instantiations
R: Mobilized (a, inc)  ∧ TimeDist (a.Loc, inc.Loc)  11

S: Intervention (a, inc)

Negating the goal yields a high-level obstacle:
Obstacle  MobilizedAmbulanceNotInTimeAtDestination

FormalDef ◊ ∃ a: Ambulance, inc: Incident
Mobilized (a, inc) ∧ TimeDist (a.Loc, inc.Loc)  11
∧ ❑≤11m ¬ Intervention (a, inc)

The non-persistence obstruction patterns in Table 1 sugges
looking for domain properties taking the form

R ∧ ◊ S ⇒ PW (P ∧ S)

which involves a persistent conditionP that must continu-
ously hold, from the time ofR to the time ofS, for R to lead
to S. Given the instantiations forR andS, two candidatesP
are suggested fromR to satisfy the above persistence cond
tion:

P1: Mobilized (a, inc)

P2: TimeDist (a.Loc, inc.Loc) < TimeDist (a.Loc, inc.Loc)

(The overline notation is used to denote the previous sta
These candidates produce two persistence conditions tha
domain properties indeed: the former says that if a suf
ciently close ambulance is mobilized and intervenes at t
location within 11 minutes, then it remains mobilized fo
that location unless it intervenes at the location; the lat
says that the time distance between the mobilized ambula
and the destination keeps decreasing unless the ambula
intervenes at the location. We may therefore apply the s
ond non-persistence pattern in Table 1 to generate the tw
following obstacles (one for each persistent condition):

Obstacle  AmbulanceMobilizationRetracted
FormalDef ◊ ∃ a: Ambulance, inc: Incident

Mobilized (a, inc) ∧ TimeDist (a.Loc, inc.Loc)  11
∧ (¬ Intervention(a, inc) U≤11m ¬ Mobilized (a, inc))
18
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Obstacle  MobilizedAmbulanceStoppedOrInWrongDirection

FormalDef ◊ ∃ a: Ambulance, inc: Incident
Mobilized (a, inc) ∧ TimeDist (a.Loc, inc.loc)  11
∧ ( ¬ Intervention(a, inc) U≤11m

TimeDist (a.Loc, inc.Loc) TimeDist (a.Loc, inc.Loc))

(In the above assertions,PU≤dQ stands for forPU Q ∧ ◊≤dP.)

Further refinement of these formal obstacles based on regres-
sion, patterns, and heuristics from Section 5 yield the follow-
ing obstacleOR-refinement tree:

MobilizedAmbulanceNotInTimeAtDestination
← AmbulanceMobilization Retracted

← MobilizedAmbulanceDestinationChanged
← LocationConfusedByCrew

← MobilizedAmbulanceDestinationForgotten
← AmbulanceMobilizationCancelled

← MobilizedAmbulanceStoppedOrInWrongDirection
← AmbulanceStopped
← AmbulanceBreakdownOrAccident
← AmbulanceStoppedInTraffic

← AmbulanceInWrongDirection
← AmbulanceLost

← CrewInUnfamiliarTerritorry
← TrafficDeviation

For the terminal goalAmbulanceMobilizedFromPrintedMobOrder
appearing as subgoal of the root goalAmbulanceMobilized in
Figure 10, the obstacleOR-refinement tree generated using
our techniques is

MobOrderNotTakenByAmbulance
← MobOrderIntendedForUnavailableAmbulance
← MobOrderIgnored
← MobOrderTakenByOtherAmbulance

Many reported failures were in fact caused by inappropriate
resolution of the latter subobstacle [LAS93].

We have compared the set of obstacles generated systemati-
cally using our techniques, for the goal structure in Figures
10-12, with the scenarios which actually occurred during the
two major system failures in October-November 1992 as
reported in [LAS93]. While our obstacles cover the various
problems that occured during those failures, they also cover
many other potential problems that could (but did not) occur.
Tables 8-9 in Appendix 2 summarize the obstacles generated
for the various terminal goals in Figure 10. The tables pro-
vide, for each requirement/assumption, the responsible agent
assigned to it, the (sub)obstacles derived, and features of the
satisfying scenarios that occurred during the reported system
failures. Handling those obstacles during goal-oriented
requirements elaboration would have forced requirements
engineers to raise issues whose resolution hopefully would
have resulted in making such scenarios (and others) unfeasi-
ble.

7.2 Obstacle resolution

We now discuss various resolution strategies from Section 6
for some of the obstacles generated.

Let us first consider the obstacleMobOrderTakenByOtherAmbu-
lance seen at the end of Section 7.1 to obstruct the goalAmbu-
lanceMobilizedFromPrintedMobOrder.

The obstacle mitigationstrategy would result in letting the
system know that the mobilization order has been taken by
the other ambulance. A mitigation goal is thus introduced to

resolve this obstacle, say,
MobilizationByOtherAmbulanceKnown.

This new goal may be refined into two subgoals, namely,
MobilizationByOtherAmbulanceSignalledToRadioOperator ,

assigned toAmbulanceCrew, and
MobilizationStatusUpdated,

assigned toRadioOperator. (An alternative refinement/assign
ment would consist in letting the change be signalled to t
MDT instead).

The obstacle preventionstrategy would result here in the
introduction of the new goal

Avoid [AmbulanceMobilizedWithoutOrder]

A benefit of applying this strategy here is that the latter su
goal would also contribute to the other goal

Avoid [DuplicateAmbulanceMobilization]

The new prevention goal might be under responsibility of
human agent at the station or might be operationaliz
through an automatic system preventing ambulance dep
ture from station if the MDT is not mobilized. Such alterna
tives have of course to be evaluated by the stakehold
involved.

As suggested in Section 6.1.5, thedomain transformation
strategy to resolve the same obstacle would result here
transforming theMobOrder object so that it does not mention
the incident location anymore; the latter information wou
only be given by theMDT inside the ambulance. (Such reso
lution would however be quite risky ifMDT‘s are likely to
break down.)

The goal substitutionstrategy would result in an alternative
operationalization in which mobilization orders sent to st
tions do not prescribe which particular ambulance to mob
lize but instead leave that decision to ambulance crews.
this case, this goes together with an agent substitution an
domain transformation (asMobOrder objects no longer have
an attribute indicating the target ambulance).

Finally, theobstacle reductionstrategy might consist here in
trying to change ambulance crew practice by a reward/d
suasion system.

Another interesting example of obstacle reduction conce
the obstacleCrewInUnfamiliarTerritorry refining AmbulanceLost
(see Section 7.1). The obstacle reduction consists in divid
the city into geographic divisions and allocating ambulanc
to incidents within the same division. This policy was foun
in the original system, abandoned in the “PanLondon” sy
tem that failed, and restored in the newly designed syste
This corresponds to goal substitution as well; the goalDivi-
sionalAmbulanceAllocated is chosen as an alternative to the go
(PanLondon)AmbulanceAllocated in Figure 9.

We now illustrate thegoal restorationstrategy. Consider the
obstacle

MDTMobOrderIgnored

that appears at the bottom of Table 8 in Appendix 2. A low
level restoration goal would be to generate an audible sig
to make crews aware of the mobilization order. An altern
tive, higher-level resolution would consist in introducing
higher-level restoration goal
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FailedMobilizationRecovered

to resolve the higher-level obstacle
AllocatedAmbulanceNotMobilized

This goal would restore the higher-level goalAllocatedAmbu-
lanceMobilized through the following goal refinement tree:

FailedMobilizationRecovered
← AmbulanceMobilizationKnown

← ...
← UnrespondedAllocationRestored

← UnrespondedAllocationSignalled
← SignalledUnrespondedAllocReallocated

For theCrewPushWrongButton subobstacle in Table 9, a resto-
ration goal under responsibility ofMDT might be to signal an
error if the pushed button is not the one expected.

Finally, we illustrate thegoal deidealizationstrategy on the
overideal goal

∀ a: Ambulance, inc: Incident
Mobilized (a, inc) ⇒ ◊ Intervention (a, inc)

The following obstacle was generated by a non-persistence
pattern from Table 1:

◊ ∃ a: Ambulance, inc: Incident
Mobilized (a, inc)
∧ ( ¬ Intervention (a, inc) U Breakdown (a) )

Using the third deidealization pattern in Table 7 we obtain
the weakened version for that goal:

∀ a: Ambulance, inc: Incident
Mobilized (a, inc)

∧ ( ¬ Breakdown(a) W Intervention (a, inc) )
⇒ ◊ Intervention (a, inc)

The propagation will result in strengthened companion goals
like

∀ inc: Incident, p: Person
Reported (inc, p) ⇒

◊ ∃ a: Ambulance, inc: Incident
Mobilized (a, inc)
∧ ( ¬ Breakdown(a) W Intervention (a, inc) )

to be refined and deidealized in turn.

7.3 Discussion

Many of the technical problems with the LAS were caused
by incomplete identification and resolution of obstacles.
These problems have to be identified and resolved at require-
ments engineering time, not at programming time when it is
too late. The techniques presented in this paper provide for-
mal and heuristic support for generating high-level excep-
tions and their resolutions in a systematic way. Requirements
engineers can then concentrate their efforts on assessing with
stakeholders which resolution is the most appropriate for
their domain.

Regression and formal patterns were seen to help identifying
not only obstacles, but also the companion domain proper-
ties that are necessary to derive them.

Our experience in using these techniques for the LAS and
other systems revealed a number of issues that are worth
pointing out.

• For a number of goals, obstacle identification only
involved a small number of regression steps --sometimes it
did not go further than just negating the goal. For example,

the obstacle to the goalAccurateAmbulanceLocationInfo under
responsibility of theAVLS agent was obtained just by nega
tion; regressing this negation further would have requir
detailed knowledge about properties of this agent whi
were unavailable to us. In this case, further regression w
anyway not necessary for obstacle resolution since it is n
necessary to know why theAVLS might fail to locate
ambulances accurately.

• Finer agent granularity requires goals to be refined furth
and thus allows more detailed obstacles to be derive
There is a trade-off here between the level of abstracti
of the specification and the level of detail of obstacle ana
ysis; the finer-grained the agents are, the more RE work
required, but the more detailed obstacle analysis will be

• Deciding when to stop obstacle refinement is not alwa
easy. The refinement process may be stopped when
adequate resolution can be selected among those ge
ated; the risk and impact of the obstacle should beco
acceptable with respect to the cost for resolving it. Mo
knowledge about the causes of the obstacle, that is, its s
obstacles, may result in the generation of better reso
tions.

• Domain-completeOR-refinement of obstacles as dis
cussed in this paper allows one to stop looking for altern
tive obstacles.

• It is often the case that a new goal is introduced to reso
severalobstacles simultaneously; the new goal actua
resolves an obstacle to some higher-level goal whi
might be obstructed by the many obstacles to its subgoa
For example, the new goalAvoid[InaccurateAmbAvailability-
Info] may resolve both obstaclesInaccurateAmbAvailabilityOn-
MDT andEncodedMDTAvailabilityNotTransmitted.

This suggests an heuristics for resolution selection: fav
resolutionR1 over R2 if at similar costR1 resolves more
obstacles thanR2.

• It is often the case that an obstacle is resolved by the int
duction of several new goals --e.g., a combination o
reduction, mitigation, and restoration goals.

• Identifying all the goals obstructed by the same obstacle
necessary for assessing the impact of this obstacle
thereby for deciding on an appropriate resolution. To su
port this, a cause-effect graph could be built from the go
refinement graph, the obstaclerefinement graph, and the
obstruction relation.

• A specific combination of multiple obstacles may som
times increase their individual effects. This was clearly th
case during the two LAS failures. In such cases one sho
clearly favor resolutions that address such combination

• Identifying the implications of an obstacle resolution is
serious issue. A new goal introduced for resolution ma
resolve critical obstacle combinations; but it may als
interfere with other goals in the goal graph. A new cycle o
conflict analysis [Myl92, Lam98b] may therefore be
required.

8. RELATED WORK

In order to get high-quality software, it is of upmost impor
20



--
te
or
but

an-
nts
-
the
ent
on-
ed
ta-

cy
m

is-
ol-
cle
d
c-
e
a-
ure
On
te-
are
om

ed
of

are
ts
n
of

s-
rs

g
ed;
of
are
he
ng
ed
the
or
is

he
ici-
ues
-

an
ken
es,
a-
the
w-
nd
nd
tance to reason about exceptions and faults during software
development. There has been a lot of software engineering
research to address this for the later stages of architectural
design or implementation.

Rigorous definitions of various concepts underlying excep-
tion handling can be found in [Cri95, Gar99] --such as speci-
fication, program correctness, exception, robustness, failure,
error, fault, fault tolerance, and redundancy. Exception han-
dling for modular programs structured as hierarchies of data
abstractions is also discussed in [Cri95], including the issues
of exception detection and propagation, consistent state
recovery, and masking. A failure is defined as a deviation
between the actual behavior of the system and that required
by its specification [And81, Gar99]. An error is a part of the
system state which leads to failure. The cause of an error is a
fault. The objective of fault-tolerance is to avoid system fail-
ures, even in the presence of faults [Jal94], or to precisely
define the acceptable level of system behavior degradation
when faults occur, if the former objective is not realizable
[Cri91].

The notion of ideal fault-tolerant component provides a basis
for structuring software systems [And81, Ran95]. A system
is viewed as a set of interacting components that receive
requests for services and produce responses. An idealized
fault-tolerant component should in general provide both nor-
mal and exceptional responses. Three classes of exceptional
situations are identified: interface exception, local exception
and failure exception. Different parts of the system are
responsible for handling each class of exception.

The concepts involved in fault tolerance are put on more for-
mal grounds in [Aro93, Gar99]. What is meant for a program
to tolerate a certain class of fault is formally defined in
[Aro93]. This paper also illustrates how fault-tolerant pro-
grams can be systematically verified and designed. A com-
positional method for designing programs that tolerate
multiple fault classes is described in [Aro98]. The method is
based on the principle of adding detector and corrector com-
ponents to intolerant programs in a stepwise and non-inter-
fering manner. Various forms of fault-tolerance are discussed
in [Gar99]; they are based on whether a program still satis-
fies its safety properties, liveness properties, or both. Detec-
tion and correction are also discussed there as the two main
phases in achieving fault-tolerance.

In the database area, [Bor85] describes language mecha-
nisms for handling violations of assumptions in a database.
Using such mechanisms, programs can be designed to detect
and handle exeptional facts, or the database can adjust its
constraints to tolerate the violation.

All the work reviewed above addresses the later phases of
architectural design or programming. At those stages, the
boundary between the software and its environment has been
decided and cannot be reconsidered; the requirements speci-
fications are postulated realistic, correct and complete --
which is rarely the case in practice. Empirical studies have
suggested that the problem should be tackled much earlier in
the software lifecycle [Lut93]. Our work follows that recom-
mendation by addressing the problem of handling abnormal
behaviors at requirements engineering time. Reasoning at
this stage, in a goal-oriented way, provides much more free-

dom on adequate ways of handling abnormal behaviors
like, e.g., producing more realistic and more comple
requirements, and/or considering alternative requirements
alternative agent assignments that achieve the same goals
result in different system proposals.

There are however clear analogies between exception h
dling at program level and obstacle analysis at requireme
level. The objective of fault-tolerance is to satisfy the pro
gram specification despite the presence of faults whereas
objective of obstacle analysis is to satisfy goals despite ag
failures. Some of the obstacle resolution strategies are c
ceptually close to fault-tolerant techniques lifted and adapt
to the earlier phase of requirements engineering. The obs
cle prevention strategy introduces a form of redundan
where a new goal is introduced to prevent an obstacle fro
occurring. The obstacle anticipation substrategy is remin
cent of the fault detection and resolution phases for fault-t
erance. (Note, however, that one should not confuse obsta
identification, which is performed at specification time an
takes an “external” view on the system, with obstacle dete
tion which is performed at run-time by agents “inside” th
system [Fea98].) The goal restoration and obstacle mitig
tion strategies also introduce new redundant goals to ens
higher-level goals in spite of the occurrence of obstacles.
the other hand, there are important obstacle resolution stra
gies, such as goal substitution and agent substitution, that
specific to requirements engineering because of the freed
still left.

In their work, de Lemos et al have alsorecognized the ne
for moving towards the requirement analysis phase many
the concerns that may arise during later phases of softw
development --particularly, the possibility of system faul
and human errors [Lem95, And95]. They propose a
approach based on an incremental and iterative analysis
requirements for safety-critical systems in the context of sy
tem faults and human errors. Their scheme is similar to ou
in that it consists of incrementally and iteratively identifyin
the defects of a requirement specification being elaborat
they use the identified defects to guide the modification
the specification. However, no systematic techniques
provided there for generating the possible faults from t
elaborated requirement specification, and for transformi
the requirement specification so as to resolve the identifi
faults. Another difference is that their scheme is based on
progressive decomposition of system entities while we fav
goal refinement. (See also [Ber98] for a comparison of th
work with ours.)

Some work has also been done at specification level. T
JSD method [Jack83] already recognized the need to ant
pate and handle errors at that level. JSD provides techniq
for handling inputs which are not valid for a given specifica
tion (such as meaningless inputs or inputs arriving in
unexpected order). Jackson also recognized that mista
valid inputs cannot be handled by the proposed techniqu
as they may require transformation of the whole specific
tion, and that such errors should be taken into account in
earlier steps of the specification elaboration process. Ho
ever, no techniques are provided there to anticipate a
resolve such errors. Our techniques for generating a
21
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resolving obstacles at the goal level are intended to fill that
void.

Many specification languages provide constructs for specify-
ing software functionalities separately for normal and abnor-
mal cases, and then in combination. The Z logical schema
combination constructs are typical examples of this [Pot96].

Throughout this paper we have tried to convince the reader
about the importance of exception handling at the require-
ments engineering level and, more specifically, at the goal
level. Although there are no other formal techniques at the
goal level that we are aware of, there has been a lot of work
addressing the later stages of RE where a detailed opera-
tional model of the software is already available (typically
under the form of state machine specifications).

For example, the completeness techniques in [Heim96,
Heit96] are aimed at checking whether the set of conditions
guarding transitions in a state machine covers all possible
cases.

Model checking techniques generate counterexamples show-
ing that a temporal logic specification is violated by a finite
state machine specification [Hol97, McM93]. In the same
vein, planning techniques can be used to exhibit scenarios
showing the inconsistency between an abstract property and
an operational model [And89, Fic92, Hal98]. One might
expect such techniques to be able to generate the scenarios
satisfying our obstacles as traces that refute a goal assertion
conjoined with the domain theory. However, we currently
envision two problems in applying these techniques directly
for our purpose. On one hand, we want to conduct the analy-
sis at the goal level for reasons explained throughout the
paper; model checking requires the availability of an opera-
tional description of the target system, or of relational speci-
fications [Jac96] that do not fit our higher-level formulation
of goals in terms of temporal patterns of behaviour. On the
other hand, for the purpose of resolution we need to obtain a
formal specification of the obstacle rather than an instance-
level scenario satisfying it. A derivation calculus on more
abstract specifications seems therefore more appropriate,
even though instance scenarios generated by a tool like Nit-
pick [Jac96] could provide concrete insights for identifying
obstacles to relational specifications.

Another important stream of work at the operational specifi-
cation level concerns the generation of fault trees from a
detailed operational model of the system. The technique in
[Lev87] generates fault trees from a Petri-net model. This
technique has been adapted to generate fault trees from a
state machine model expressed in RSML [Rat96, Mod98].
Several other techniques have also been proposed to generate
other standard hazard analysis models from RSML specifi-
cations [Rat96, Mod98]. Those techniques can however be
applied only once a complete operational specification of the
system has been obtained. Furthermore, a very detailed oper-
ational specification of the environment of the system would
be needed to identify faults caused in the environment (e.g.,
a detailed model of the behavior of human operators). In
contrast, our techniques are intended to be used earlier in the
requirements engineering process when a complete specifi-
cation of the system is not yet available and alternative sys-
tem boundaries are still being explored. It allows obstacles to

be generated from partial declarative specifications that m
be gradually elicited during the obstacle identification pr
cess. (Note that the generation of fault trees from a st
machine model is similar to a recursive application of our1-
state-back obstacle refinement pattern.) Furthermore, goa
provide a precise entry point for starting hazard analysis.

The heuristics proposed in this paper for identifying obst
cles are somewhat related in spirit to safety requireme
checklists [Lev95], in that they embed experience abo
known forms of obstruction. General criteria correpondin
to such checklists have been identified in [Jaf91]. These c
teria cover exceptional circumstances such as unexpec
inputs, computer error, environmental disturbances, e
Good RE practices also consider checklists that cover un
pected inputs, operators errors, and other faults or exc
tional circunstances [Som97]. Our heuristics are in fa
closer to HAZOP-like guidewords that can be used to elic
hazards [Lev95]; such guidewords are made more spec
here thanks to our requirements meta-model and spec
goal classifications. More formal HAZOP-based techniqu
have been proposed for forward propagation of perturbatio
from input variables to output variables in operational spe
fications [Ree97].

Our work builds on Potts’ paper which was the first to intro
duce the notion of obstacle as a dual notion to goals [Pot9
Obstacles are identified there by exploration of scenarios
interaction between software and human agents. This exp
ration is informal and based on heuristics (some of the
have been transposed to this paper, see Section 5.4). Ob
cle resolution is not studied there.

[Sut98] also builds on Potts’ work by proposing additiona
heuristics for identifying possible exceptions and errors
such interaction scenarios --e.g., scenarios in which eve
happens in the wrong order, or in which incorrect informa
tion is transmitted. Influencing factors such as agent motiv
tion and workload are also used to help anticipate wh
exceptions may occur and assign probabilities to abnorm
events. Generic requirements are attached to exception
suggest possible ways of dealing with the problem encou
tered. The heuristics proposed in [Sut98] are close in spirit
ours; their generic exception handling requirements share
same general objective as our obstacle resolution strateg
Their work is largely informal and centered around the co
cept of scenario. This provides little systematic guidan
compared with the range of obstacle generation/resolut
techniques that can be precisely defined through rigoro
reasoning on declarative specifications of goals.

Deontic logics are formalisms that allow one to specify an
reason about normal and abnormal situations by means
modal operators such as permission and obligation [Mey9
Such logics have been proposed for system specificati
allowing one to specify what should happen if an abnorm
situation occurs [Mai93, Ken93]. However such approach
do not provide any guidance for elaborating the requir
ments, in particular the requirements dealing with the abn
mal situations. In contrast, our approach for resolvin
obstacles is based on goals which serve as a rationale
introducing new requirements to deal with the abnormal sit
ations.
22
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The principle of pattern-directed specification and reasoning,
as we applied it in [Dar96] for formal goal refinement and in
this paper for obstacle refinement, has gained recent interest
in the research community. For example, Dwyer et al discuss
their experience in building and reusing a rich library of tem-
poral patterns that codify in high-level terms property speci-
fications to be input to analysis tools such as model checkers
[Dwy99].

Our initial ideas were presented in [Lam98a] which this
paper significantly expands on --notably, by a full treatment
of obstacle completeness and AND/OR refinement, a much
more extensive set of patterns, many more heuristics, more
resolution strategies, and the application to a real safet-criti-
cal system. We are also investigating an alternative, dynamic
approach in which system deviations from requirements/
assumptions are monitored and reconciled at runtime
[Fea98].

9. CONCLUSION

In order to get high-quality software, it is of upmost impor-
tance to reason about agent behavior during requirements
elaboration --not only software agents, but also the agents in
the environment like devices, operators, users, etc. This point
has been recently reempahsized in the context of require-
ments engineering [Rya96].

The key principle underlying this paper is that obstacle anal-
ysis needs to be done as early as possible in the requirements
engineering process, that is, at thegoal level. The earlier
such analysis is started, the more freedom is left for resolv-
ing the obstacles. Moreover, goals provide a precise entry
point for starting analysis in a more focussed way like, e.g.,
the construction of fault-trees or threat-trees from negated
goals.

Another important message is our preference for a construc-
tive approach to requirements elaboration, over a posteriori
analysis of possibly poor requirements. It is better to con-
struct hopefully complete, realistic and achievable require-
ments than to correct poor ones. In the process discussed in
this paper, goal-oriented elaboration of requirements and
systematic obstacle analysis proceed hand-in-hand.

Various formal and heuristic techniques were presented for
obstacle generation and refinement from goal specifications
and domain properties; the generation of obstacle resolutions
is achieved through various strategies to eliminate, reduce, or
tolerate the obstacle. Domain knowledge was seen to play an
important role in some of these techniques; however, as we
pointed out, such knowledge can be elicited gradually during
obstacle analysis.

The techniques were applied to a significant safety-critical
system for which failures have been reported; this provided
some basis for assessing them and raising important ques-
tions and open issues. Our techniques also allowed us to for-
mally generate the 17 obstacles informally identified in
[Pot95] for the meeting scheduler benchmark [Fea97], plus a
dozen more. The space of resolutions was even broader.
Within a potentially large space of obstacles and resolutions,
the requirements engineer has to decide which ones are
meaningful to the system considered and need to receive

careful attention.

When to apply such or such identification/resolution tec
nique may depend on the domain, on the application in th
domain, on the kind of obstacle, on the severity of its cons
quences, on the likelihood of its occurrence, and on the c
of its resolution. Much exciting work remains to be don
with those respects.

We hope to have convinced the reader through the variety
examples given that the techniques proposed are gene
systematic, and effective in generating and resolving sub
obstacles. Our plan is to integrate these techniques in
KAOS/GRAIL environment [Dar98] in the near future so
that large-scale experimentation on industrial projects fro
our tech transfer institute can take place.
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APPENDIX 1: GOAL STRUCTURE FOR THE LAS SYSTEM

......

IncidentFiled AmbulanceAllocated AllocatedAmbulanceMobilized

IncidentResolved

IncidentRe- AmbulanceIntervention IncidentResolvedByIntervention

NearestAvailable
AmbulanceAllocated

NearAmbulanceAvailability

KnownNearestAvailable
AmbulanceAllocated

AccurateAmbulanceAvailability
AndLocationInfo

AccurateAmbulanceLocationInfo AccurateAmbulanceAvailabilityInfo

see fig. 10

......

......

......

......

...... see fig. 11

AmbulanceMobilized MobiliezAmbulanceIntervention

Figure 10: Refinement of the LAS root goal

MobilizationOrder
IssuedAtStation

AllocatedAmbulance
MobilizedOnMDT

AmbulanceMobilized
FromOrderOnMDT

AmbulanceMobilized
FromPrintedMobOrder

AccurateAmbulance
AtStationInfo

AllocatedAmbulance
MobilizedAtKnownStation

MobOrderSentTo
KnownStation

MobOrderTransmitted
ToStation

ReceivedMobOrder
PrintedAtStation

AmbAllocation
SentToMDT

AmbAllocation
TransmittedToMDT

ReceivedAllocation
DisplayedOnMDT

AllocatedAmbulanceMobilized

....

Figure 11: Refinement of the goal AllocatedAmbulanceMobilized

AccurateAmbulanceAvailabilityInfo

AccurateAmbulanceMobilizationInfoAccurateAmbulanceAllocationInfo

AmbulanceMobilizationKnown AmbulanceDeMobilizationKnown

Avoid[UnallocatedAmbulanceMobilized] AllocatedAmbulance
MobilizationAcknowledged

AllocatedAmbMobilzation
AcknowledgedOnMDT

MDTMobAck
Delivered

ReceivedMobAck
Recorded

......

MDTMobAck
Sent

Figure 12: Refinement of the goal AccurateAmbulanceAvailabilityInfo
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Table 8: Obstacles to subgoals of the goal Achieve [AllocatedAmbulanceMobilized]

agent goal obstacle Oct/Nov’92 scenario

CAD MobOrderSentTo
KnownStation

MobOrderNotSent no PSTN line free

MobOrderSentToWrongStation

MobOrderSentToWrongAmbulance

MobOrderSentWith
WrongDestination

InvalidMobOrderSent

AmbAllocationSentTo
MDT

AmbAllocationNotSentToMDT

AmbAllocationSentToWrongMDT

AmbAllocatioSentWith
WrongDestination

InvalidAmbAllocationSentToMDT

Communic.
Infrastructure

MobOrderTransmitted
ToStation

MobOrderNotTransmitted radio congestion,
radio blackspot

MobOrderDeliveredAtWrongStation

MobOrderCorruptedDuring
Transmission
→ WrongDestination
→ WrongAmbulance
→ InvalidMobOrder

AmbAllocation
TransmittedToMDT

AmbAllocationNotTransittedToMDT

AmbAllocationTransmittedAt
WrongMDT

AmbAllocationCorruptedDuring
Transmission
→ WrongDestination
→ OtherValidMsgDelivered
→ InvalidMsgDelivered

Station
Printer

ReceivedMobOrder
PrintedAtStation

ReceivedMobOrderNotPrinted

PrintedMobOrderUnreadable

MDT ReceivedAllocation
DisplayedOnMDT

ReceivedAllocationNotDisplayed
OnMDT

IncorrectDestinationDisplayed

Ambulance
Crew

AmbulaceMobilized
FromPrintedMobOrder

AmbNotMobilizedFromMobOrder
AtStation
← MobOrderIgnored
← AmbNotAt Station
← AmbNotAvailable

MobOrderTakenByOtherAmbulance
← MobOrderConfuision
← AllocatedAmbNotAvailable
← AllocatedAmbNotAtStation
← established work practice

crews take different
vehicle from those
allocated by CAD

LocationConfusedByCrew

APPENDIX 2: DERIVED OBSTACLES AND ACTUAL FAILURE SCENARIOS
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AmbulanceMobilized
FromMobOrderOnMDT

AmbulanceNotMobilizedFrom
MobOrderonMDT
← MDTMobOrderIgnored
← CrewNotInAmbulance
← AmbulanceNotAvailable

AmbulanceMobilizedWithDifferent
DestinationThanMDTDestination
← LocationConfusedByCrew
← OtherMobilizationDestination

Pending
← MDTDestDifferentFrom

DestOnMobOrderAtStation

agent goal obstacle Oct/Nov’92 scenario

Ambulance
Crew

Avoid
Unallocated Ambulance
Mobilized

MobOrderTakenBy
OtherAmbulance

crews use different
vehicle

Allocated AmbMobilization
AcknowledgedOnMDT

AmbulanceCrewForgetTo
AcknowledgeMobilization

crews don’t press
status buttons

AmbCrewPushWrongButton
ToAcknowledgeMobilization

crews press buttons
in wrong order

MDT MDTMobAckSent MDTMobAckNotSent

MDTSendsOtherMsg

SentMobAckErroneous

Communic.
Infrastructure

MDTMobAckDelivered  MDTMobAckNotDelivered communication
bottelneck,
radio blackspot

MDTMobAckCorrupted

CAD ReceivedMobAckRecorded ReceivedMobAckIgnored failure of system to
catch all data

ReceivedMobAckConfusedWith
OtherMsg

ReceivedMobAckRecordedFor
WrongAmbulance

agent goal obstacle Oct/Nov’92 scenario

Table 9: Obstacles to subgoals of the goal Achieve [AmbulanceMobilizationKnown]
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