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Abstract. Alloy is a declarative modeling language based on first-order
logic with sets and relations. Alloy problems are analyzed fully auto-
matically by the Alloy Analyzer. The analyzer translates a problem for
given bounds to a propositional formula for which it searches a satisfying
assignment via an off-the-shelf propositional satisfiability (SAT) solver.
Hence, the performed analysis is a bounded exhaustive search and in-
creasing the bounds leads to a combinatorial explosion.
We increase the efficiency of the Alloy Analyzer by performing incremen-
tal analysis via domain specific solvers. We introduce annotations that
define data types, operations on these data types, and bindings from
data types to domain specific solvers. This meta-data is utilized to au-
tomatically partition a problem into sub-problems and opportunistically
solve independent sub-problems in parallel using dedicated constraint
solvers. We integrate dedicated Integer and String constraint solvers into
Alloy’s SAT based backend. Experimental results show that using ded-
icated solvers and exploiting independent sub-problems provide better
efficiency and scalability; for the chosen subjects, our technique enables
up to an order of magnitude speed-up.

1 Introduction

Alloy [1] is a declarative modeling language based on first-order logic with sets
and relations. It has been successfully used for identifying problems in semantic
models and algorithms [11], detecting anomalous scenarios in security-critical
systems [19], automated test generation [14], modeling software architecture [5],
etc. Alloy problems are analyzed fully automatically by the Alloy Analyzer. The
analyzer translates a problem for given bounds to a propositional formula for
which it searches a satisfying assignment via an off-the-shelf propositional sat-
isfiability (SAT) solver. Hence, the performed analysis is a bounded exhaustive
search and increasing the bounds leads to a combinatorial explosion.

However, performing analysis within given bounds only guarantees that the
obtained results are valid within these bounds. Therefore, increasing the bounds
of the analysis would strengthen the confidence in the obtained results. To enable
reasoning for increased bounds we focus on improving the speed of Alloy’s SAT
based backend by exploiting two key ideas: (1) a problem can be decomposed
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into sub-problems which can be solved incrementally and potentially in parallel;
and (2) domain specific solvers enable faster evaluation of problems in their
target domain.

The first key idea is that when an Alloy model is translated to SAT, an
opportunity to perform a more efficient incremental analysis is not exploited.
Incremental reasoning enables reducing the space searched by the solver [17]
and enables tackling independent sub-problems in parallel, thus improving per-
formance due to better utilization of contemporary multi-core architectures. For
example, generating a binary tree may be performed by generating the structure
and using this partial solution to solve in parallel the independent sub-problems
of generating the keys, the size, and the parent relationship. To address this we
employ an incremental technique for solving Alloy formulas [17], where one solu-
tion to a formula provides a partial solution to another formula, which can then
be solved more efficiently. We improve this technique by recursively decomposing
the problem into the sub-problems, as opposed to decomposing it into only two
sub-problems, and opportunistically solve independent sub-problems in parallel.

The second key idea is that when an Alloy formula is translated for the SAT
solver, domain specific knowledge is lost, thus an opportunity to take advantage
of the problem domain is not exploited. Domain specific solvers are designed for
tackling special classes of problems using special representations, and algorithms
[6][12]. For example, finding whether two String variables can be equal is faster by
getting the intersection of two automatons than by exploring the cross product of
all possible values for the two variables. To address this we introduce annotations,
an easy-to-use and unobtrusive facility to embed meta-data for mapping Alloy
signatures to data types, Alloy predicates to operations on these data types, and
bind data types to domain specific solvers. This enables us to opportunistically
solve a predicate that depends only on variables of a single data type via the
dedicated constraint solver mapped to this data type.

The benefit of our approach is three-fold: (1) incremental analysis limits the
search space explored by the solver; (2) opportunistically solving independent
sub-problems in parallel improves utilization of system resources; and (3) domain
specific solvers are more efficient for problems in their target domain. Experi-
ments show our technique enables better performance and scalability than a
SAT-based approach.

This paper makes the following contributions:

– Incremental analysis with parallel reasoning about independent
sub-problems. We perform incremental analysis of an Alloy problem by
recursively decomposing it into sub-problems. We identify likely independent
sub-problems and solve them in parallel if they are indeed independent.

– Domain specific solver integration via annotations. We introduce an-
notations that define data types, operations on these data types, and bind-
ings from data types to domain specific solvers. This enables reasoning about
when to use a domain specific solver and how to translate Alloy formulas to
the language of that solver.
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– Dedicated solvers for Alloy. We support a dedicated Integer and a ded-
icated String constraint solver integrated into Alloy’s SAT based backend.

– Implementation. We implement our approach into a custom build of the
Alloy Analyzer.

– Evaluation. We evaluate our approach using small but complex Alloy mod-
els, including a model from the standard Alloy distribution. Empirical results
show our approach provides up to an order of magnitude speed-up over Al-
loy’s purely SAT-based analysis.

2 Background

In this section we provide background knowledge about Alloy [1] and declarative
slicing [17] for incrementally analyzing Alloy models in the context of a binary
search tree example.

2.1 Alloy

An Alloy model s can be represented as a triple < r, s, b >, where r is the set of
relations in s, and b is the bound on the universe of discourse. An instance, i.e.
a solution, i satisfying an Alloy model is a function from the set of relations r
to a power set of tuples 2T where each tuple consists of indivisible atoms, i.e.,
i : r → 2T . Hence, an instance gives the set of tuples that valuate every relation.
The canonical form of an Alloy model is ∧pi, for i = 1, ..., n, where each pi is an
arbitrary formula.

2.2 Alloy model - binary search tree example

A binary search tree is a node-based data structure where: (1) each node has
at most two children–left and right–whose parent is the given node; (2) the left
sub-tree rooted at a given node contains keys less than the key of that node; (3)
the right sub-tree rooted at a given node contains keys greater than the key of
that node; and (4) the left and right sub-trees are also binary search trees; In
Fig. 1 is depicted the Alloy model for a binary search tree.

First, we declare the entities contained in the model. A node (line 3) has: (1)
at most one left child (line 4); (2) at most one right child (line 5); (3) at most
one parent (line 6); and (4) a key (line 7); A binary tree (line 9) has: (1) at most
one node as its root (line 10); and (2) a size (line 11);

Next, we specify the relationships between the model entities to reflect the
properties of the data structure. A binary search tree is Acyclic (line 13), which
is for every node reachable from the root performing zero or more traversals
(line 14): (1) at most one node is visited following the left and right relations
in reverse direction (line 15); (2) a node cannot be reached by following one or
more times the left and right relations beginning from that node (line 16); and
(3) the left and right nodes are disjoint (line 17);
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1 module BinarySearchTree
2
3 sig Node {
4 left:lone Node,
5 right:lone Node,
6 parent:lone Node,
7 key:Int
8 }
9 sig BinarySearchTree {
10 root:lone Node,
11 size:Int
12 }
13 pred Acyclic(t:BinarySearchTree) {
14 all n:t.root.*(left+right) {
15 lone n.~(left+right)
16 n !in n.^(left+right)
17 no n.left & n.right
18 }
19 }
20 pred Parent(t:BinarySearchTree) {
21 all n,n’:t.root.*(left+right) | n in n’.(left+right) => n’ = n.parent
22 no t.root.parent
23 }
24 pred Search(t:BinarySearchTree) {
25 all n:t.root.*(left+right) {
26 all n’:n.left.*(left+right) | int n’.key < int n.key
27 all n’:n.right.*(left+right) | int n.key < int n’.key
28 }
29 }
30 pred Size(t:BinarySearchTree) {
31 int t.size = #(t.root.*(left+right))
32 }
33 pred BinarySearchTree(t:BinarySearchTree) {
34 Acyclic[t] && Parent[t] && Search[t] && Size[t]
35 }
36 run BinarySearchTree exactly 1 BinarySearchTree, exactly 3 Node

Fig. 1. Alloy model of a binary search tree.

The nodes in the binary search tree have a Parent property (line 20), which
is: (1) every node reachable from the root performing zero or more traversals
is the parent of its left and right children (line 21); and (2) the root has no
parent (line 22);

A binary search tree contains data satisfying the Search (line 24) property,
which is for every node reachable from the root performing zero or more traver-
sals (line 25): (1) every descendant reached by following the left and right rela-
tions of its left child zero or more times has a lesser key (line 26); and (2) every
descendant reached by following the left and right relations of its right child zero
or more times has a greater key (line 27);

A binary search tree has a Size property (line 30), which is the cardinality
of the nodes reached from its root by performing zero or more traversals of the
left and right relations (line 31).

In order for a data structure to be a BinarySearchTree (line 33) it has to
satisfy the Acyclic, Parent, Search, and Size predicates (line 34).

Finally, we request from the analyzer to find an instance by specifying bounds
on the cardinality of atoms (line 36). Upon running this command the analyzer



5

1 // free variables: {root, left, right}
2 all n:t.root.*(left+right) | lone n.~(left+right)
3 // free variables: {root, left, right}
4 all n:t.root.*(left+right) | n !in n.^(left+right)
5 // free variables: {root, left, right}
6 all n:t.root.*(left+right) | no n.left & n.right
7 // free variables: {root, left, right, parent}
8 all n,n’:t.root.*(left+right) | n in n’.(left+right) => n’ = n.parent
9 // free variables: {root, parent}
10 no t.root.parent
11 // free variables: {root, left, right, key}
12 all n:t.root.*(left+right) {
13 all n’:n.left.*(left+right) | int n’.key < int n.key }
14 // free variables: {root, left, right, key}
15 all n:t.root.*(left+right) {
16 all n’:n.right.*(left+right) | int n.key < int n’.key }
17 // free variables: {root, left, right, size}
18 int t.size = #(t.root.*(left+right))

Fig. 2. Normalized form of the constraints in the binary search tree model.

tries to find valuations to the relations such that the predicate declaring a binary
search tree evaluates to true, which is an instance that satisfies the model exists.

2.3 Declarative slicing - binary search tree example

Declarative slicing [17] in the context of an Alloy model in a canonical form - ∧pi,
for i = 1, ..., n, where each pi is an arbitrary formula - is to partition an Alloy
model s into a base slice sb and a derived slice sd. The base and the derived slices
consist of disjoint subsets of the model constraints. The base slice is derived via a
slicing criterion c which is a subset of the model relations r, i.e. c ⊆ r. The base
slice contains the constraints that involve only relations in the slicing criterion,
i.e., sb : ∧qi for i = 1, . . . ,m, where each qi ∈ {p1, . . . , pn} and free variables ∩
predicate variables(qi) ⊆ c. The rest of the model constraints belong to the
derived slice, i.e. sd : ∧di for i = 1, . . . , t, where each di ∈ {p1, . . . , pn} and
free variables∩predicate variables(di) 6⊆ c. Once the model is partitioned into
a base and a derived slice, a solution for the base slice is extended into a solution
for the entire model.

The first step in the declarative slicing technique is model normalization
during which composite constraints (e.g. nested quantified formulas) are parti-
tioned, i.e. the model is translated to a canonical form. The normalized form of
the binary search tree model from Section 2.2 is presented in Fig. 2.

The second step is choosing an optimal slicing criterion, since more than one
such may exist, by using each possible slicing criterion to analyze the model for
a smaller bounds and based on some metrics selecting the one that is likely to
provide the most significant speed up. The possible slicing criteria are ordered
under set containment where each slicing criterion represents a free variable
combination from some model constraints. The possible slicing criteria for the
binary search tree are presented in Fig. 3.

The third step is solving the problem for the desired bounds using the optimal
slicing criterion from the previous step. It is possible that a solution for the base
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Fig. 3. Partially ordered set of slicing criteria.

slice cannot be extended to a solution for the entire problem since the derived
slice may additionally constrain the relations in the slicing criterion. Therefore,
all possible solutions for the base slice are attempted to be extended to a complete
solution. If a solution for the entire problem is found, the problem is reported
consistent, otherwise the problem is declared inconsistent for the given bounds.

3 Our approach

In this section we present our approach for incremental analysis of Alloy problems
via domain specific solvers. We exploit two key observations: (1) a problem can be
decomposed into sub-problems which can be solved incrementally and potentially
in parallel; and (2) domain specific solvers enable faster evaluation of problems
in their target domain.

3.1 Incremental analysis with parallel reasoning

When an Alloy model is translated to SAT, an opportunity for a more efficient
incremental analysis is not exploited. Previous work [17] introduced an approach
to decompose the problem into a base and a derived slice, and extend a solution
for the base to one for the entire problem. This approach improves traditional
analysis but there are two areas for enhancement: (1) the problem is partitioned
only into two sub-problems; and (2) the two sub-problems are solved sequentially.

Instead of partitioning the problem into two sub-problems, as the declarative
slicing technique presented in Section 2.3, we partition the problem into multi-
ple sub-problems. We apply the partitioning procedure for declarative slicing
recursively. We select the smallest slicing criterion, i.e. the criterion with the
minimum number of free variables, and partition the problem into a base and a
derived slice. Then we select the next smallest slicing criterion and partition the
derived slice from the previous step into a base and a derived slice. We repeat
the procedure until the slicing criterion includes all free variables.

Recall that the possible slicing criteria for declarative slicing can be envi-
sioned as a partially ordered set under set containment which is represented as a
join-semi-lattice. We use that partially ordered set of slicing criteria to construct
a dependency graph G = (V,E) with a set of vertices V and a set of edges E as
follows: (1) add a vertex vi ∈ V for every slicing criterion ci where i ∈ (1, . . . , n);
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c1 c2

c3 c4 c5

c6

c1 = {root, left, right}
c2 = {root, parent}
c3 = {root, left, right, size}

c4 = {root, left, right, key}
c5 = {root, left, right, parent}
c6 = {root, left, right, size, parent, key}

Fig. 4. Slicing criteria dependency graph.

and (2) add a directed edge eij ∈ E from the vertex representing criterion ci
to the vertex representing criterion cj if the slicing criterion cj is the smallest
slicing criterion that contains ci, i.e. ci < cj ∧ @ck : ci < ck < cj → eij = (vi, vj)
where i 6= j 6= k and i, j, k ∈ (1, . . . , n). The dependency graph for the binary
search tree from Section 2.2 is shown in Fig. 4.

Once we have constructed the dependency graph, we perform a topological
sort of the nodes in that graph to obtain an ordering of the slicing criteria used
for incremental analysis. For example, a topological ordering of the nodes in
the dependency graph from Fig. 4 is the sequence < c1, c2, c3, c4, c5, c6 >. This
slicing criteria sequence is used to incrementally analyze the model.

We slice the model based on the first slicing criterion from the sequence, i.e.
select constraints that involve only relations from the slicing criterion. Then we
solve the constraints in the slicing criterion. If a solution is found, we slice the
model based on the second slicing criterion. Before solving the constraints for
current base we set the relations in these constraints to valuations we found in
the previous step (e.g. we set a partial solution). We now solve the constraints.
This procedure is repeated until a solution for the entire problem is found or we
determine that the problem is inconsistent.

Since the constraints in the current iteration may constrain relations whose
valuations were found in a previous one (e.g. such relations were under con-
strained in the previous iteration), it is possible that a solution for these con-
straints cannot be found. In such a case we backtrack to the sub-problem we
solved in the previous iteration for which we try to find another solution which
is then propagated to the current sub-problem and a new attempt to solve the
current sub-problem is made. In case no solution for the previous sub-problem
can be extended to a solution for the current one, we declare the previous sub-
problem inconsistent and try to backtrack to the sub-problem preceding it. If no
solution for the first sub-problem can be extended to a solution for the entire
problem, we declare the problem inconsistent.

Note that a subsequence of slicing criteria in the topologically sorted sequence
may share no common relations. In such a case we solve the sub-problems for
each slicing criterion in parallel. It is also possible that a subsequence of slicing
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1 Solution solve (Problem problem) {
2 // Try solving potentially parallel problems.
3 List bases = getParallelBases (problem);
4 Solution solution = solveParallel (bases);
5 if (solution.isValid()) {
6 Problem slice = problem - bases;
7 if (slice == null) {
8 return solution;
9 }
10 slice.setPartialSolution(solution);
11 solution = solve (slice);
12 if (solution.isValid()) {
13 return solution;
14 }
15 }
16 // Try extending a base solution to a full one.
17 Problem base = getBase (problem);
18 Problem slice = problem - base;
19 for (Solution solution in solveAll (base)) {
20 if (slice == null) {
21 return solution;
22 }
23 slice.setPartialSolution(solution);
24 solution = solve (slice);
25 if (solution.isValid()) {
26 return solution;
27 }
28 }
29 return Solution.INVALID;
30 }

Fig. 5. Incremental analysis with par-
allel reasoning algorithm.

1 module Integer
2
3 . . .
4
5 @datatype(solver="IntegerSolver")
6 sig integer {
7 value: int
8 }
9
10 @operation(name="lessThan")
11 pred integerLessThan(lhs, rhs: int) {
12 lhs.value < rhs.value
13 }
14
15 . . .
16

Fig. 6. Sample of the Annotated Inte-
ger module.

1 for (BinaryTree t:eval(BinaryTree)) {
2 for (Node n:eval(t.root.*(left+right))) {
3 for (Node n’:eval(n.root.*(left+right))) {
4 IntVar lhs = Solver.newVar(
5 t.name() + n’.name());
6 IntVar rhs = Solver.newVar(
7 t.name() + n.name());
8 Solver.lessThan(lhs, rhs);
9 }
10 }
11 }

Fig. 7. Constraint translation for a
dedicated Integer solver.

criteria share common relations but none of the predicates that belong to their
corresponding slices imposes constraints on the common relations. Hence, sub-
problems resulting from slicing the model based on a subsequence of independent,
i.e. with no edge in the dependency graph, slicing criteria may be independent.
In such a case we try to solve such sub-problems in parallel for small bounds
and, in case we succeed, we solve the sub-problems in parallel for the current
bounds. The described algorithm is presented in Fig. 5.

In particular, for the binary search tree model our algorithm performs an
incremental analysis based on the following slicing criteria
c1 → c2 → parallel(c3, c4, c5)→ c6, where the predicates corresponding to slic-
ing criteria c3, c4, and c5 are solved in parallel. Note that our algorithm on Fig. 5
is doing a best effort for solving as many sub-problems as possible in parallel. In
case the solutions for the parallel sub-problems are conflicting (due to additional
constraints on the common relations), we perform systematic exploration of each
slicing criterion one at a time.
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3.2 Dedicated solver integration via annotations

When an Alloy problem is translated to propositional logic, domain specific
knowledge is lost. However, knowledge about the problem domain creates an
opportunity of using domain specific solvers–solvers designed for tackling special
classes of problems via special representations and algorithms. Performing an
incremental analysis of an Alloy model creates an opportunity for employing
domain specific solvers for relevant sub-problems, i.e. slices. This opportunity has
been recognized by previous work on declarative slicing [17]. However, there are
three limitation of this work that we address: (1) there is no generic mechanism
for integrating domain specific solvers into the Alloy engine; (2) a mechanism
for determining when a domain specific solver can be used is lacking; and (3)
analysis only with an Integer domain specific solver has been presented.

We introduce annotations that define data types, operations on these data
types, and bindings from data types to domain specific solvers. These annota-
tions allow us to determine when to use a given domain specific solver as well as
facilitates the translation from Alloy to the language of the specialized solver.

The @datatype annotation can be placed only on a signature definition and
specifies a mapping from an Alloy signature to a domain specific data type.
This annotation has one attribute, solver, that specifies which solver to use
for reasoning about constraints over the annotated signature (the data type is
inferred by the solver). We also define an annotation @operation that can be
placed only on a predicate and specifies to which domain specific operation to
map the predicate (the solver is inferred from the type of the arguments). An
annotated model for an Integer type which serves as a wrapper around the built-
in int to enable annotation is presented in Fig. 6.

We use the meta-data from the annotations and evaluation of an expression
against a given instance (solution) supported by Alloy’s backend Kodkod [16]
to determine whether a domain specific solver may be used for solving the con-
straints in the currently analyzed slice and how to translate these constraints to
the language of the dedicated solver. We illustrate this with an example.

Assume we already have a solution of a binary search tree with three nodes for
the previous slicing criterion {root, left, right} and the current slicing criterion
is {root, left, right, key} for which we have set the partial solution from the
previous slice. We traverse the constraints in the current slice, and for each of
them: first check via an evaluation whether it is already satisfied and, if not, what
free variables it constrains. If all unsatisfied constraints constrain free variables
of the same type, we can use the dedicated solver specified in the @datatype
annotation, otherwise we fall back to SAT. In the example, all constraints for
slicing criterion {root, left, right, key} constrain only the free variable key which
is of type Integer annotated to use the IntegerSolver. Hence, we can use the
dedicated Integer constraint solver.

Now we have to translate the constraints in the slice to the language of the
solver. Without loss of generality consider the constraint one t : BinaryTree &&
all n : t.root. ∗ (left + right){all n′ : n.left. ∗ (left + right) |
integerLessThan(n′.key, n.key)} (added declaration of t for clarity and changed
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key to our custom Integer type). We evaluate the variable t from declaration
one t : BinaryTree which returns {BinaryTree$0}. Hence, for some binary
tree in this set the constraint must hold. We next evaluate the variable n
from the next declaration n : t.root. ∗ (left + right) for every t which re-
turns {Node$0, Node$1, Node$2}. Follows evaluation of the variable n′ from
the next declaration n′ : n.left. ∗ (left + right) for every n which returns
{Node$1, Node$2}, {Node$2}, {}. Now we have identified all nodes whose keys
are constrained and we can use them to construct a problem in the domain of the
Integer solver. We add a variable for the key of each node and a constraint for
every pair on nodes constrained by integerLessThan(n′.key, n.key). Note that
the predicate integerLessThan is mapped to the lessThan domain specific op-
eration. A translation of the constraint to the language of the Integer constraint
solver is presented in Fig. 7. For solving integer constraints we use Choco [4].

In addition to the dedicated Integer constraint solver we provide a special-
ized solver for String constraints. Similarly, we define a custom module for the
String data type to which we apply the corresponding annotations. Since ex-
isting off-the-shelf String solvers [6][12] do not support multi-variable problems,
we have implemented a String constraint solver that supports multi-variable
problems with binary constraints. We use recursive backtracking search with
constraint propagation, via the AC-3 [13] algorithm, applying the minimal re-
maining values and degree heuristics to guide the search. We use finite state
automata [3] to represent variable domains and performing operations on them.

Adding other solvers can be done similarly to the Integer and String ones.
An Alloy module, i.e. a model file, with operation mappings has to be written
and a JAR file with the solver implementation has to be deployed. No changes
to the Alloy source are required. Hence, we provide a general mechanism for
adding domain specific solvers to the Alloy’s SAT based backend.

4 Evaluation

We have evaluated our approach on several data structure models with Integer
and String data and a P2P protocol model. Each model was analyzed with
the conventional Alloy Analyzer (4.1.10) and a version that incorporates our
technique. We report analysis results in terms of solving time for given bounds
and maximal bounds reached within reasonable time.

The evaluation system was a laptop with an Intel i7 M620 2.67GHz processor,
4GB of RAM running Ubuntu 10.04 Lucid. For all experiments the analyzer was
set to use 4096MB of memory and 65536K maximal stack size. All tests were
run on a cold VM to avoid just-in-time compilation or cache skewing the results.

An analysis command takes as arguments a bund for each signature, recall
the command for the binary search tree model in Fig 1 (line 46). We have set
these parameters as follows: (1) the bound for the signature representing the
modeled data structure or state for the protocol was always one; and (2) the
bound for the signature representing nodes of the data structure or the protocol
was incrementally increased.
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Table 1. Sorted linked list with Integer data

Node count 2 4 6 8 10 12 14 16 20 30

Standard Analyzer (ms) 111 335 896 2401 15695 58307 124335 N/A N/A N/A

Incr. SAT solver (ms) 202 372 822 1251 1743 2460 4197 4131 52256 252572

Incr. multi-solver (ms) 327 412 781 1244 1251 1760 3179 2971 46817 234658

Table 2. Sorted linked list with String data

Node count 2 4 6 8 10 12 14 16 20 24

Standard Analyzer (ms) 1763 3276 7293 69851 147406 294445 N/A N/A N/A N/A

Incr. SAT solver (ms) 2158 2702 6168 4688 4738 19822 81546 58312 160286 N/A

Incr. multi-solver (ms) 673 984 1358 1515 2280 2516 3841 6602 92722 183440

Table 3. Binary search tree with Integer data

Node count 2 4 6 8 10 20 30 40

Standard Analyzer (ms) 116 322 1174 8724 N/A N/A N/A N/A

Incr. SAT solver (ms) 260 414 1076 1522 2546 9400 59527 N/A

Incr. multi-solver (ms) 368 422 990 1317 1534 4935 29297 166369

Table 4. Binary search tree with String data

Node count 2 4 6 8 10 20 30 40

Standard Analyzer (ms) 2307 5571 14206 127185 1241175 N/A N/A N/A

Incr. SAT solver (ms) 2464 3422 5181 6422 24150 94048 N/A N/A

Incr. multi-solver (ms) 1069 1424 1752 2090 2815 13389 40847 1020314

Table 5. Chord P2P protocol

Node count 2 4 6 8 10

Standard Analyzer (ms) 15 89 792 7739 127987

Incr.SAT solver (ms) 52 122 708 5736 60139
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Fig. 8. Sorted linked list with Integer data

In Table 1 are presented the results for a sorted linked list with Integer data.
The first row is the number of nodes, the second row is solving time via the
standard Alloy Analyzer, the third row is solving time via incremental analysis
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Fig. 10. Binary search tree with Integer data
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Fig. 11. Binary search tree with String data

using a SAT solver, and the fourth row is solving time via incremental analysis
using multiple solvers. Note that for certain scopes no results are reported be-
cause either the analysis took more than thirty minutes or the solver ran out of
memory. In Fig. 8(a) is presented the improvement in terms of solving time for
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Fig. 12. Chord P2P protocol model - standard vs incremental SAT.

incremental multi-solver analysis as opposed to the standard Alloy Analyzer and
in Fig. 8(b) is depicted the improvement in terms of solving time for incremental
multi-solver as opposed to incremental SAT analysis. We are using Bezier curves
in all figures to depict smoothened trends rather than local fluctuations.

We present results for a sorted linked list with String data (Table 2, Fig. 9(a),
Fig. 9(b)), a binary search tree with Integer data (Table 3, Fig. 10(a), Fig. 10(b)),
and a binary search tree with String data (Table 4, Fig. 11(a), and Fig. 11(b))
similarly to the ones for a sorted linked list with Integer data.

We have also evaluated our technique on a model of the Chord P2P protocol [2]
which is one of the sample models posted on the Alloy home page. Note that
the model does not incorporate Integer or String constraints which precludes the
use of multiple solvers. However, the model can be analyzed incrementally. The
results of our analysis are presented in Table 5 and Fig. 12. The data in the ta-
ble and the figure are arranged similarly to the ones for already presented data
structures. Note that our technique is twice as fast for ten nodes as opposed
to the standard analysis. This example demonstrates that, even if employing
multiple solvers is not feasible due to the model nature, performing incremental
reasoning leads to an improvement in terms of analysis speed.

Our results indicate that for small bounds our incremental multi-solver anal-
ysis is as fast as the standard Alloy Analyzer but, as the bounds grow, the gains
of using our technique become significant. This can be explained with the lin-
early growing costs of problem translation and multi-solver initialization which
is amortized over an exponentially growing search space. Our approach is almost
two orders of magnitude faster (except for the binary search tree with Integer
data and the Chord P2P model) for the bounds reachable by the standard ana-
lyzer. Further, even if a model is not suitable for employing multiple solvers, it
can be solved incrementally, increasing analysis speed.

5 Related work

This paper introduces annotations for Alloy models that define data types, op-
erations on these data types, and bindings from data types to domain specific
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solvers. We utilize this information to automatically partition the problem into
multiple sub-problems. We also employ this meta-data to determine when to use
a dedicated solver as well as to facilitate translation of the solved sub-problem
into the language of the domain specific solver. Additionally, we integrate an
Integer constraint solver and a String constraint solver into Alloy’s backend.

In a recent publication [8] we have proposed the idea of using annotations
in Alloy for guiding problem partitioning. In particular, explicitly specifying the
priority of a predicate as well as the solver to be used for its analysis. In the
current work we present an approach to automatically partition the problem into
multiple sub-problems some of which are solved opportunistically with domain
specific solvers. In this paper we introduce annotations that define data types,
mapping operations on such types to their domain specific counterparts, and
mappings from data types to dedicated constraint solvers.

Incremental solving for Alloy models, where a solution to one formula is fed
as a partial solution to solve another formula, was introduced by Uzuncaova et
al. [17, 18] in the context of test input generation for software product lines. This
work partitioned the problem into two sub-problems while our technique aims
to maximize the number of partitions. Further, this work does not specify an
algorithm for determining when it is possible to use a dedicated solver and we
provide such a technique. This work solves the two sub-problems in sequence but
we try to opportunistically parallelize analysis of independent sub-problems. We
also have introduced a dedicated String constraint solver for Alloy.

The second author co-authored a recent paper [10] that introduces mixed con-
straints, which are written using a combination of a declarative language (Alloy),
and an imperative language (Java). It supports annotating def-use sets of vari-
ables to facilitate solving of mixed constraints using different solvers, where each
solver is designed for constraints written using one particular paradigm. Mixed
constraints offer a complementary approach to this paper. They facilitate writ-
ing of constraints using a combination of declarative and imperative paradigms,
whereas this paper focuses on efficient solving of models written purely in Alloy,
hence does not require learning a new notation.

Parallel analysis of Alloy models was first proposed in [15]. This work explores
providing a parallel SAT solver with Alloy specific enhancements by partitioning
the propositional formula among parallel SAT solvers. In contrast, we partition
the problem into sub-problems before it has been translated to propositional
logic enabling the use of domain specific solvers. We also identify sub-problems
that may be solved in parallel, some via a SAT solver.

An example of extending Alloy’s syntax to describe dynamic properties of
systems via actions is presented in [7]. The actions enable specifying dynamic
properties of execution traces as dynamic logic specifications. Our technique is
similar with respect to extending the Alloy syntax with new semantic features
and implementing automated analysis of the latter. While this work focuses on
adding constructs for specifying dynamic behavior, we embed meta-data in a
standard Alloy model to achieve scalable and efficient analysis.
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An approach of using SAT Modulo Theories solver (SMT) for analyzing Alloy
specifications is presented in [9]. The SMT solver does not replace the Alloy SAT-
based back-end, rather complements it by potentially detecting if a formula is
a tautology, a capability the Alloy Analyzer is lacking. This does not require
finitizing the values for each relation. Similarly, we introduce a set of dedicated
solvers for augmenting Alloy’s analysis backend. However, we are using domain
specific solvers and perform an incremental analysis. Our technique is to partition
the problem and solve it in finitized bounds with specialized solvers.

6 Conclusion

We increase the efficiency of the Alloy Analyzer by performing an incremen-
tal analysis via domain specific solvers. We introduce annotations that define
data types, operations on these data types, and bindings from data types to
domain specific solvers. This meta-data is utilized to opportunistically solve a
sub-problem using a dedicated constraint solver. Our technique automatically
partitions the problem into sub-problems and opportunistically solves indepen-
dent sub-problems in parallel. We integrate a dedicated Integer constraint solver
and a String constraint solver in Alloy’s SAT based backend.

We have evaluated our approach on selected data structure models with both
Integer and String data and one P2P protocol. Our technique achieves a sub-
stantial increase in analysis speed, thus enabling us to reach greater bounds. We
believe that annotations have an important role to play in analysis of declarative
programs as well as in the context of other analyzers such as model checkers and
theorem provers.
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