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ABSTRACT

An essential characteristic of large scale software devel-

opment is parallel development by teams of developers.

How this parallel development is structured and sup-

ported has a profound e�ect on both the quality and

timeliness of the product. We conduct an observational

case study in which we collect and analyze the change

and con�guration management history of a legacy sys-

tem to delineate the boundaries of, and to understand

the nature of, the problems encountered in parallel de-

velopment. The results of our studies are 1) that the

degree of parallelism is very high{higher than consid-

ered by tool builders; 2) there are multiple levels of par-

allelism and the data for some important aspects are

uniform and consistent for all levels; and 3) the tails

of the distributions are long, indicating the tail, rather

than the mean, must receive serious attention in pro-

viding solutions for these problems.
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1 INTRODUCTION

Large scale software development presents a number of

signi�cant problems and challenges to software engi-

neering and software engineering research. In our pur-

suit of a deep understanding of how complex large scale

software systems are built and evolved, we must under-

stand how developers work in parallel. Indeed, in any

software project with more than one developer, paral-

lel changes are a basic fact of life. This basic fact is

compounded by four essential [1] problems in software

development: evolution, scale, multiple dimensions of
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system organization, and distribution of knowledge.

� Evolution compounds the problems of parallel de-

velopment because we not only have parallel devel-

opment within each release, but among releases as

well.

� Scale compounds the problems by increasing the

degree of parallel development and hence increasing

both the interactions and interdependencies among

developers.

� Multiple dimensions of system organization1 [14]

compounds the problems by preventing tidy sep-

arations of development into independent work

units.

� Distribution of knowledge compounds the problem

by decreasing the degree of awareness in that di-

mension of knowledge that is distributed.2

Thus, a fundamental and important problem in build-

ing and evolving complex large scale software systems is

how to manage the phenomena of parallel changes. How

do we support the people doing these parallel changes

by organizational structures, by project management,

by process, and by technology? We are particularly in-

terested in the problems of technology support.

Before we can adequately answer these questions we

need to understand the depth and breadth of the prob-

lem. To explore the dimensions of this phenomena, we

take a look at the history of a subsystem of Lucent Tech-

nologies' 5ESS R
 telephone switch [13] to understand the

various aspects of parallel development in the context of

a large software development organization and project.

1By system organization, we mean the hardware and software

components which make up the product. It is not to be confused

with the developers' organization.
2Here there are two possibilities of knowledge centralization:

the knowledge of a part of the system, or the knowledge of (part

of) the problem to be solved. If one centralizes knowledge of

the system (for example, by �le ownership where only the �le

owner makes changes) then one must distribute knowledge of the

problems to be solved over the �le owners. Conversely, as is done

here, if one centralizes knowledge of the problems (for example,

by feature ownership) then one must distribute the knowledge of

the system over the feature owners.
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We use an observational case study method to do this

empirical investigation. We describe this study as obser-

vational since it captures many important quantitative

properties associated with the problem of concurrent

changes to software. We consider it to be a case study

because it is one speci�c instance of the observed phe-

nomena.

Central to this technique is an extended series of re-

peated observations to establish credibility [18]. In this

way, the method is similar to the ones used in Astron-

omy and the social sciences [8]. Finally, a theory is built

using these observations (e.g., with grounded theory [5])

to make predictions (hypotheses) that are tested with

future studies.

Our strategy for understanding the problem of paral-

lel changes is to look at the problem from a number of

di�erent angles and viewpoints in the context of a large-

scale, real-time system and a large-scale development.

We have two goals in this initial study. First, we provide

a basic understanding of the parallel change phenomena

that provides the context for subsequent studies. For

this we provide basic observational data on the nature

of parallel changes. Our thesis is that these problems

cannot be (and indeed have not been) adequately ad-

dressed without quantitative data illustrating their fun-

damental nature.

Second, we begin an investigation (which we will con-

tinue in subsequent studies) of an important subprob-

lem: interfering changes. Given the high degree of par-

allelism in our study system and the increasing em-

phasis on shorter development intervals, it is inevitable

that some of these changes will be incompatible with

each other in terms of their semantic intent. Here we

look at the prima facie cases where we have changes to

changes and changes made within the same day. We

have several hypotheses for this subproblem. First, in-

terfering changes are more likely to result in quality

problems later in the development than non-interfering

changes. Second, �les with signi�cant degrees of parallel

changes are likely candidates for code that \decays" over

time. The degree of interference increases this likely-

hood. Third, technology supporting the management of

these problems address only super�cial aspects of these

problems.

We �rst summarize the various kinds of tools that are

available to support parallel development. We then de-

scribe the context of this study: the characteristics of

the organizational, process and development environ-

ment and the characteristics of the subsystem under in-

vestigation. We do this to provide a background against

which to consider the phenomena of parallel changes.

Having set the context for the study, we present our

data and analyses of the parallel change phenomena and

discuss the construct, internal and external validity of

our study. Finally, we summarize our �ndings, evaluate

the various means of technological support in the light

of our results, and suggest areas for further research and

development.

2 RELATED WORK

In terms of technical support for parallel changes, there

are two di�erent strands of research that are relevant:

con�guration management and program analysis re-

search.

2.1 Con�guration Management

Classic con�guration management systems in wide-

spread use today, SCCS [15] and RCS [16], embody

the traditional library metaphor where source �les are

checked out for editing and then checked back in[6].

They induce a sequential model of software develop-

ment. The locking for an edget operation guarantees

that only one user can change a particular �le at a time

and blocks other developers from making changes until

an edput operation has been done thereby releasing the

lock on the �le. There is no checking for the presence

of con
icts between successive changes. The purpose of

the con�guration management system is to guarantee

that, like a database, no changes are lost due to race

conditions.

One of the standard features of even the classic con-

�guration management systems that enables developers

to create parallel versions is the branching mechanism.

The problem, however, is not in creating parallel ver-

sions, but in �guring out how to merge them back into

a single version. Mahler [12] makes a distinction be-

tween temporary and permanent variants. Permanent

variants are \branches in the product development path

that have their own life cycle". Temporary variants on

the other hand are meant to be merged eventually and

only need to exist for the time needed until merging.

PureAtria's ClearCase R
 [11] provides support for auto-

matic merging of up to 32 versions. This support con-

sists of automatically �guring out the best sequence for

merging the changes.

An automatic merge facility can help with

the mechanics of merging source code changes.

A merge too that knows the common ances-

tor of the versions being merged can generally

merge with little or no human interaction. Ex-

perience with DSEE and with ClearCase has

shown that over 90% of changed �les can be

merged without asking any questions. The

merge tool asks the user to resolve a con
ict in

the other cases. In about 1% of the the merge

tool inappropriately makes an automatic de-



cision, but nearly all of those cases are easily

detected because they result in compiler syn-

tax errors. [11]

This data came from an in-house merge of the Win-

dows port of ClearCase with their UNIX version [10].

The merge involved several thousand �les resulting from

nine to twelve months of diverging development e�ort

by about 10 people.

The Adele Con�guration Manager [4] incorporates the

notion of workspaces into con�guration management to

provide support for change management. Within a

workspace a lock can be set on a �le which causes the

transparent creation of a copy (referred to as dynamic

versioning). Releasing the lock causes the merging of

the dynamic copies. Coordination control is provided

amongst the workspaces (WSs) because

... object merging is not a perfect mecha-

nism. Inconsistencies may arise from an object

merger; the probability of problematic mergers

rapidly increases with the number of changes

performed in both copies. Were mergers to be

performed only at transaction commit, most

of them would not be successfully performed.

Frequent mergers, at some well de�ned points,

are needed to maintain two cooperating WSs

in synch. [4]

Thus Adele requires frequent updating of the changes

being made in the other workspaces to keep the various

parallel versions more or less in synch.

2.2 Program Analysis

The other strand of research is that of Horwitz, Prins

and Reps' [7] work on integrating noninterfering ver-

sions. They describe the design of a semantics-based

tool that automatically integrates noninterfering ver-

sions, given the base version and two derived but paral-

lel versions. The work makes use of dependence graphs

and program slices to determine if there is interference

and, if not, to determine the integration results.

2.3 Synchronize and Build

In trying to synchronize a consistent build of a system,

we have to worry about logical completeness of changes

| that is, we have to worry about dependencies that

are shared across multiple components in the system

[14]. Cusumano and Selby [3] noted this problem in the

course of applying Microsoft's synch and build strategy

to Windows NT. Their solution to coordinating changes

[3, page 273] was to post the intent to check in a par-

ticular component and for related �les to prepare and

coordinate their changes so as to be able to synchronize

a consistent build.
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Figure 1: Timeline of parallel releases. Each his-

togram represents work being done for one release of the

software. The top and bottom halves show releases for

the international and domestic products, respectively.

This problem of coordinating changes is certainly an

important one in the context of large scale systems build

out of separately evolved components and of multiple

dimensions of organization such as we have the system

under study.

2.4 Empirical Evaluation

In neither Adele nor Reps, Prins and Horwitz is any

data o�ered in support of their approaches. In the Adele

case, we believe the motivation to have come from usage

experience of the sequentialization of development. In

the case of Horwitz, Prins and Reps, we believe the

motivation to be that of advancing basic science by the

investigation of an interesting but di�cult problem.

The data o�ered in support of ClearCase is the only data

we know of that is relevant to the merging of parallel

versions and that data, as published, must be considered

anecdotal.

While there is no direct data about the number of com-

ponents on average involved in the evolution of Windows

NT, there is data provided about the speci�c case of �x-

ing bugs [3, page 319]: each bug �x required changes on

average to 3 to 5 �les.

3 STUDY CONTEXT

This study is one of several strands of research being

done in the context of the Code Decay Project [2],

a multi-disciplinary and multi-institution project sup-



ported by NSF.

We describe �rst the characteristics of the subsystem

under study, then the change and con�guration man-

agement data available to the Code Decay Project, and

�nally the change and con�guration management pro-

cesses.

3.1 The Subsystem Under Study

The data for this study comes from the complete change

and quality history of a subsystem of the Lucent Tech-

nologies' 5ESS. This data consists of the change and

con�guration management history representing a period

of 12 years from April 1984 to April 1996. This subsys-

tem is one of 50 subsystems in 5ESS. It was built at

a single development site. The development organiza-

tion has undergone several restructuring over the years

and its size has varied accordingly, reaching a peak of

200 developers and eventually decreasing to the current

50 developers. There are two main product o�erings,

one for US customers and another for international cus-

tomers. Historically, the two products have separate

development threads although they do share some com-

mon �les.

3.2 The 5ESS Change and Con�guration Man-

agement Process

Lucent Technologies uses a two-layered system for man-

aging the evolution of 5ESS: a change management

layer, ECMS [17], to initiate and track changes to the

product, and a con�guration management layer, SCCS

[15], to manage the versions of �les needed to construct

the appropriate con�gurations of the product.

All changes are handled by ECMS and are initiated us-

ing an Initial Modi�cation Request (IMR) whether the

change is for �xing a fault, perfecting or improving some

aspect of the system, or adding new features to the sys-

tem. Thus an IMR represents a problem to be solved

and may solve all or part of a feature. Features are the

fundamental unit of extension to the system and each

feature has at least one IMR associated with it as its

problem statement.

Each functionally distinct set of change requests is

recorded as a Modi�cation Request (MR) by the ECMS.

An MR represents all or part of a solution to a prob-

lem. A variety of information is associated with each

IMR and MR. For example, for each MR, ECMS in-

cludes such data as the date it was opened, its status,

a short text abstract of the work to be done, and the

date it was closed.

When a change is made to a �le in the context of an MR,

SCCS keeps track of the actual lines added, edited, or

deleted. This set of changes is known as a delta. For

each delta, the ECMS records its date, the developer
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Figure 2: Concurrent development activities in

the development interval of release I6. These pan-

els show the activities being conducted in parallel at the

feature, IMR, and MR levels during the development

interval for release I6. It also shows activities for other

releases during the same time period.

who made it, and the MR where it belongs.

The process of implementing an MR usually goes as

follows:

1. Make a private copy of necessary �les,

2. Try out the changes within the private copy,

3. Commit the changes as deltas in the SCCS,

4. Put the private copy through code inspection and

unit testing,

5. Submit the MR for load integration and feature and

regression test

There are several observations. At any given time, there

may be multiple private copies of a �le being edited by

di�erent developers. Unless the developers are aware

of each others' work, the changes being made by other

developers are not visible until these developers submit

their MRs for integration. It is hoped that any con
icts

are caught during load integration and feature and re-

gression testing.

When all the changes required by an MR have been

made, the MR is closed after all approval has been ob-

tained for all the dependent units. Similarly, when all

the MRs for an IMR have been closed, the IMR itself is

closed, and when all IMRs implementing a feature have

been closed the feature is completed.
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Figure 3: Distribution of number of developers

modifying each �le in the development interval

of release I6. Bar N shows the percentage of �les which

were worked on by N developers during the development

interval of release I6.

4 DATA AND ANALYSIS

4.1 Levels of Parallel Development

The 5ESS system is maintained as a series of releases,

with each release o�ering new features on top of the ex-

isting features in previous releases. The timeline on Fig-

ure 1 shows the number of deltas applied every month

to each release of the 5ESS subsystem under study. The

top half shows the international releases (labeled I1{I15)

and the bottom shows the domestic ones (labeled D1{

D12). It shows that for each product line, there may be

3{4 releases undergoing development and maintenance

at any given time.

Within each release shown in Figure 1, multiple features

are under development. The overlapping time schedule

of successive releases suggest that features for di�erent

releases are being developed almost concurrently. Fig-

ure 2 is a timeline showing the density of new feature

development during the development interval of release

I6. At its peak, there was work on about 60 features. It

not only shows that multiple features are being devel-

oped concurrently for release I6, but also shows that 8

other releases are doing new feature development.

Figure 2 also shows the density of IMRs and MRs devel-

oped for release I6 as well as other releases in the same

interval.

4.2 E�ects of Parallel Development on a File

Figure 2 does not show how these parallel activities in-

teract with each other, particularly in the case when

several of them make changes to the same �le. In Fig-

ure 3, we see that in the interval when release I6 was

being developed, about 50% of the �les are modi�ed by

more than one developer. Note also that the tail of the
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Figure 4: Activity pro�le for one �le. The top panel

shows the number of open MRs modifying this �le over

time. The second panel show the number of develop-

ers with open MRs modifying this �le. The third and

fourth panels show the number of IMRs and features,

respectively, that are involved.

distribution is signi�cant here | 25% of the �les are

modi�ed by four or more developers.

To illustrate further, Figure 4 shows the various levels

of activity going on for a certain �le. This clearly shows

that several developers may be working on the same �le

at the same time. Figure 5 is a closeup of the period

with the highest activity. It shows that at one time, as

many as 8 developers have open MRs a�ecting this �le

and as many as 4 modi�ed the �le on the same day.

4.3 Interfering Changes

Upon analyzing the available delta data, we found that

12.5% of all deltas are made to the same �le by di�er-

ent developers within 24 hours of each other. Given this

high degree of parallel development, sometimes changes

by one developer may interfere with changes made by

another developer by physically overlapping them. For

example, Figure 6 traces several versions of the �le ex-

amined in Figure 4 as 5 deltas were applied to it during

a 24-hour period. Developer A made 3 deltas, the �rst

two of which did not a�ect this fragment of code. Then
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Figure 5: A closer look at developer activity. This

is a closer look at the developer activity during the bus-

iest period (8/89). Each line in the top panel shows

MRs being worked on by 9 developers during this pe-

riod. The X's indicate when they made deltas into the

�le. The solid line in the bottom panel shows the num-

ber of developers who have open MRs on each of those

days. It is a magni�cation of the developer panel from

the previous �gure. The dashed line shows the number

of developers who actually made deltas on each day.

developer B put in changes on top of A's changes. Fi-

nally some of B's changes were modi�ed by developer C

on the same day.

Across the subsystem, 3% of the deltas made within

24 hours by di�erent developers physically overlap each

others' changes. Note that physical overlap is just one

way by which one developer's changes can interfere with

others. We believe that many more con
icts arise as

a result of parallel changes to the same data 
ow or

program slice.

4.4 Multilevel Analysis of Parallel Development

In this section we make liberal use of histograms to pro-

vide a clear picture of the data that would not be evi-

dent if we were to report merely the minimum, mean,

and maximum of each distribution. It is important to

notice that the tails of several distributions are long

and fall o� more slowly than the Poisson or binomial

distributions (classical engineering distributions). This

is extremely important to consider in designing tools: if

a tool is designed around the mean value, it will not be

particularly useful for the critical cases that need the

support the most, namely, those cases represented by

the tail of the distribution.

To understand the amount of parallelism going on at

the di�erent levels, we examine the number of features,
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Figure 6: Lines changed per delta. Each horizontal

line represents a version of the �le as it was changed by

a delta (denoted 1{5). The y-axis also encodes the de-

veloper who made the delta (denoted A{C). The delta

sequence is read from top to bottom. The lines con-

necting the horizontal lines show where lines have been

changed from one version to the next. An upright trian-

gle shows where new code was inserted while an inverted

triangle shows where code was deleted. The trapezoids

show modi�cations of blocks of code. Note that this

�gure only shows a fragment of each program version,

approximately from lines 7850-7950.

IMRs and MRs being developed per day. We then look

at four measures associated with the amount of work

within each feature, IMR and MR: their intervals, the

number of �les a�ected, the number of MRs involved,

and the number of developers involved. Table 1 sum-

marizes these data.

Figure 7 shows the frequency distributions of features,

IMRs, and MRs being worked on per day. The feature

and IMR distributions have means of 25 and 22, and

maximum values of 86 and 62, respectively. On the

other hand, there is a mean of 70 MRs open per day,

and a maximum of more than 200. Note that in all cases

the tail is very long with respect to the mean.

Figure 8 shows the frequency distributions of develop-

ment intervals at the three levels. The intervals are

measured by taking the dates of the �rst and last delta

associated with that feature, IMR, or MR, and comput-

ing the di�erence. Thus the interval re
ects the activity

only with respect to coding.3 One observation here is

that the shapes of all three distributions appear to be

similar, even though their scales are orders of magni-

tude apart. Note also that 46% of the IMRs and 50% of

the MRs are opened and solved on the same day. More

importantly, the tails here are even longer with respect

3For example, the feature interval measured excludes other

feature activities like estimation, planning, requirements, design,

and feature test.



Features IMRs MRs

Min Mean Max Min Mean Max Min Mean Max

Being worked on per day 0 25.3 86 0 21.8 62 1 69.3 223

Interval (days) 1 318.5 3344 < 1 14.6 2233 < 1 10.1 2191

Files a�ected 1 31.0 906 1 4.3 388 1 1.1 15

MR count 1 34.6 2188 1 2.6 86 n/a n/a n/a

Developer count 1 4.0 98 1 1.1 9 n/a n/a n/a

Table 1: Data summary. This table summarizes the data to be used in analyzing the degree of parallelism.

0
20

0
60

0
10

00

NUMBER OF FEATURES PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

0 10 20 30 40 50 60 70 80 90

0
20

0
60

0
10

00

NUMBER OF IMRs PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

0 10 20 30 40 50 60 70

0
20

0
60

0
10

00

NUMBER OF MRs PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

0 20 40 60 80 100 120 140 160 180 200 220

Figure 7: Feature, IMR, MR distribution per day.

These histograms show the distribution of the number

of features, IMRs, and MRs being worked on per day.

to the mean than in the previous �gure.

Figure 9 shows the frequency distributions on the num-

ber of �les a�ected in implementing each feature, IMR

or MR. The number of �les per feature exhibits a very

large tail distribution, with the maximum at 900. On

the other hand, 51% of the IMRs and more than 90%

of the MRs a�ect only one �le.

Figure 10 shows the frequency distributions on the num-

ber of MRs it took to implement each feature and IMR.

The number of MRs per feature again exhibits a large

tail, with the maximum needing 2,000 MRs. The tail

for IMRs, while not as long as that for features, is still
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Figure 8: Interval distributions. These histograms

show the development interval distributions for features,

IMRs and MRs in number of days.

signi�cant with a maximum of 86 needed for the largest

IMR while the mean is less than 3.

Figure 11 shows the frequency distributions on the num-

ber of developers working on each feature and IMR.4

The number of developers working on a feature does

not have as large a tail as the number of MRs, but

there were still some 20 features which involved 11 to

20 developers and the largest feature had 98 developers.

Similarly, the mean is one developer per IMR, but the

tail stretches out to a maximum of 9. Note however, the

percentage of IMRs requiring more than one developer

4Because of the way MRs are de�ned, there can be only one

developer per MR.



1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

40
60

FILES AFFECTED BY FEATURE

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
50

0
15

00
25

00

FILES AFFECTED BY IMR

N
U

M
B

E
R

 O
F

 IM
R

s

1 2 >2

0
50

00
15

00
0

25
00

FILES TOUCHED BY MR

N
U

M
B

E
R

 O
F

 M
R

s

Figure 9: Files touched. These histograms show the

distributions of number of �les a�ected per feature, IMR

and MR.

is only 10%.

4.5 Parallel Versions

Figure 12 shows the distribution of the number of MRs

a�ecting each �le over the lifetime of the �le. This is

an unreasonably high upper bound for the number of

versions for a �le. A tighter upper bound would be to

get the maximum of the number of active MRs per �le

(e.g. 8 for the �le in Figure 4). Figure 13 shows the

distribution of this quantity over all �les. It shows that

an average �le may have up to 1.7 MRs per day, which

translates to 1.7 active variants at a given time. It also

shows that 55% the �les never have more than one MR

at a time, although about 25% of the �les can have 2

MRs per day and 20% of the �les can have 3 to 16 MRs

per day.

5 VALIDITY

In any study, there are three aspects of validity that

must be considered in establishing the credibility of that

study: construct validity, internal validity, and external

validity. We consider each of these in turn.

In trying to understand the phenomena of parallel

changes it has been necessary to understand it at the
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Figure 10: Number of MRs used. These histograms

show the distributions of number of MRs used in imple-

menting each feature and IMR.
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Figure 11: Number of developers involved. These

histograms show the distributions of number of MRs

used in implementing each feature and IMR.

various levels at which it occurs: the product level, the

individual release level, the problem (IMR) level and

the solution (MR) level. The measures that we have

taken at these levels are precisely those which provide

us with the critical information about parallelism of de-

velopment. Thus we argue that we have the necessary

construct validity.

As can be seen from the data as we have presented it,

we have done only the minimal amount of data manip-

ulation and that to put it into easily understood forms
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Figure 12: Number of MRs per �le. This histogram

shows the distribution of the number of MRs a�ecting

each �le over the lifetime of the �le.
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Figure 13: Maximum number of MRs per �le per

day. This histogram shows the distribution of the max-

imal number of MRs that a�ect each �le in a day.

of summarization. Thus we argue that we have the nec-

essary internal validity.

It is in the context of external validity that we must

be satis�ed with arguments weaker that we would like.

We argue from extra data (namely, visualizations of the

entire 5ESS system similar to Figure 1) that this sub-

system is su�ciently representative of the other subsys-

tems to act as their surrogate. The primary problem

then is the representativeness of 5ESS as an embedded

real time and highly reliable system. In its favor are the

facts that it is built using a common language (C) and

development platform (UNIX). Also in its favor are the

facts that it is an extremely large and complicated sys-

tem development and that problems encounter here are

at least as severe as those found in lesser sized and com-

plicated developments. Thus we argue that our data has

a good level of external validity and is generalizable to

other developments of similar domains.

6 SUMMARY AND EVALUATION

6.1 Study Summary

This work represents initial empirical investigations to

understand the nature of large scale parallel develop-

ment. The data showed that in this subsystem:

� There are multiple levels of parallel development.

Each day, there is ongoing work on multiple MRs by

di�erent developers solving di�erent IMRs belong-

ing to di�erent features within di�erent releases.

� The activities within each of these levels cut across

common �les. 12.5% of all deltas are made by dif-

ferent developers to the same �les within a day of

each other and some of these may interfere with

each other.

� Over the interval of a particular release (I6), the

number of �les changed by multiple developers is

50% which while not concurrent with respect to

the MR level is concurrent with respect to the re-

lease. These may also have interfering changes |

though we would expect the degree of awareness of

the implications of these changes to be higher than

those made within one day of each other.

6.2 Evaluation of Current Support

As we mentioned in the introduction to the data and

analyses section, the histograms provide a critical pic-

ture of the problems that need to be solved. In par-

ticular, the tails of the distributions are the signi�cant

factors to consider in technical support, not the mean

values. In both the cases of workspaces and merging,

we claim that those critical factors have not been un-

derstood or appreciated.

The data in subsection 4.4 suggests that, if each MR had

its own workspace, we would need on the order of 70 to

200 workspaces per day for this particular subsystem.

(And this is just one of 50 5ESS subsystems!) More-

over, since 50% of MRs are solved in less than a day,

the cost and complexity of constructing and destroy-

ing workspaces becomes very important. One might re-

duce the number of workspace per day by assuming one

workspace per IMR or per feature. Doing so introduces

further coordination problems since there may be more

than one developer working on the IMR or feature.

Given the multi-level nature of feature development,

one might imagine the need for a hierarchical set of

workspaces[9] such that there is a workspace for each

feature, a subset of workspaces for each IMR for that

feature and then individual workspaces for each MR.

In either case, further studies are needed to determine

the costs and utility of workspaces in supporting the

phenomena we have found in this study.

The utility of the current state of merge support



depends on the level of interference versus non-

interference. The data in subsection 4.5 indicates that

about 45% of the �les can have 2 to 16 parallel versions

with potentially interfering changes. It is not clear how

well current merge technologies will be able to support

this degree of parallel versions | how do you merge 16

parallel versions? The data we have uncovered certainly

leads us to be sympathetic with Adele's claim that fre-

quent updates are necessary for coordinated changes

and that waiting until commit time will lead to par-

allel versions that cannot be merged without some very

costly overhead and coordinated e�ort. In fact, the sup-

ported strategy is what is left unsupported in these de-

velopments.

Further studies are needed to assess the validity and

utility of merge technologies. We note in the next sec-

tion one such study that will help to assess this area.

The synchronize and build strategy poses a problem in

this context where features are the primary unit of work.

Features represent a set of logically coherent changes to

the system. As noted in Figure 9 features have a very

large tail distribution with a maximum number of �les

per feature show in Table 1 as 906. Synchronizing at the

MR level is not a problem since most MRs a�ect only

one �le. However, each MR represents only a partial so-

lution to a problem as represented by an IMR and is not

a useful candidate for coherence and consistency. IMRs,

on the other hand, each represent a speci�c problem in

implementing a feature and have a mean value for the

�les a�ected of 4.3 per IMR. However, as we have noted

elsewhere, the mean is not a satisfactory indication of

the problem since the tail here is again a very substan-

tial one having a maximum value of 388 �les for at least

on IMR.

Here again, further studies are needed to assess the ap-

propriate level of parallelism that is useful in implement-

ing suchs a synch and build strategy.

6.3 Future Directions

We have looked at only the prima facie con
icts, namely,

those where there are changes on changes or changes

within a day of each other. A more interesting class

of con
icts are those which we might term semantic

con
icts. These cases arise where changes are made to

the same slices of the program and hence may interfere

with each other semantically. This phenomena requires

us to look very closely at the �les themselves via some

program analysis tools.

Once we have this level of understanding and knowl-

edge of interference, it will be interesting to see if there

are any correlations between the associated quality data

and programs where there are high degrees of parallel

changes and/or interference.
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