
Software Architecture

Dewayne E. Perry and Alexander L. Wolf

AT&T Bell Laboratories
600 Mountain Avenue

Murray Hill, New Jersey 07974

September 1989
(revised January 1991)

ABSTRACT

The purpose of this paper is to build the foundation for software architecture. We �rst develop

an intuition for software architecture by appealing to several well-established architectural disci-

plines. On the basis of this intuition, we present a model of software architecture that consists

of three components: elements, form, and rationale. Elements are either processing, data, or con-

necting elements. Form is de�ned in terms of the properties of, and the relationships among, the

elements | that is, the constraints on the elements. The rationale provides the underlying basis

for the architecture in terms of the system constraints, which most often derive from the system

requirements. We discuss the components of the model in the context of both architectures and

architectural styles and present an extended example to illustrate some important architecture and

style considerations. We conclude by presenting some of the bene�ts of our approach to software

architecture, summarizing our contributions, and relating our approach to other current work.

Keywords: software architecture; software process; large systems; reuse

c
 1989,1991 Dewayne E. Perry and Alexander L. Wolf

1 Introduction

Software design received a great deal of attention by researchers in the 1970s. This research

arose in response to the unique problems of developing large-scale software systems �rst recognized

in the 1960s [5]. The premise of the research was that design is an activity separate from imple-

mentation, requiring special notations, techniques, and tools [3, 9, 17]. The results of this software

design research has now begun to make inroads into the marketplace as computer-aided software

engineering (CASE) tools [7].

In the 1980s, the focus of software engineering research moved away from software design

speci�cally and more toward integrating designs and the design process into the broader context

of the software process and its management. One result of this integration was that many of the

notations and techniques developed for software design have been absorbed by implementation

languages. Consider, for example, the concept of supporting \programmming-in-the-large". This

integration has tended to blur, if not confuse, the distinction between design and implementation.

The 1980s also saw great advances in our ability to describe and analyze software systems.

We refer here to such things as formal descriptive techniques and sophisticated notions of typing

that enable us to reason more e�ectively about software systems. For example, we are able to

reason about \consistency" and \inconsistency" more e�ectively and we are able to talk about

\type conformance"1 rather than just \type equivalence".

The 1990s, we believe, will be the decade of software architecture. We use the term \archi-

tecture", in contrast to \design", to evoke notions of codi�cation, of abstraction, of standards, of

formal training (of software architects), and of style. While there has been some work in de�ning

particular software architectures (e.g., [19, 22]), and even some work in developing general support

for the process of developing architectures (notably Sara [8]), it is time to reexamine the role of

architecture in the broader context of the software process and software process management, as

well as to marshal the various new techniques that have been developed.

Some of the bene�ts we expect to gain from the emergence of software architecture as a major

discipline are: 1) architecture as the framework for satisfying requirements; 2) architecture as the

technical basis for design and as the managerial basis for cost estimation and process managment;

1Conformance is used to describe the relationship between types and subtypes.

1

3) architecture as an e�ective basis for reuse; and 4) architecture as the basis for dependency and

consistency analysis.

Thus, the primary object of our research is support for the development and use of software

architecture speci�cations. This paper is intended to build the foundation for future research in

software architecture. We begin in Section 2 by developing an intuition about software architecture

against the background of well-established disciplines such as hardware, network, and building

architecture, establish the context of software architecture, and provide the motivation for our

approach. In Section 3, we propose a model for, and a characterization of, software architecture

and software architectural styles. Next, in Section 4, we discuss an easily understood example to

elicit some important aspects of software architecture and to delineate requirements for a software-

architecture notation. In Section 5, we elaborate on two of the major bene�ts of our approach to

software architecture. We conclude, in Section 6, by summarizing the major points made in this

paper and considering related work.

2 Intuition, Context, and Motivation

Before presenting our model of software architecture, we lay the philosophical foundations for it

by: 1) developing an intuition about software architecture through analogies to existing disciplines;

2) proposing a context for software architecture in a multi-level product paradigm; and 3) providing

some motivation for software architecture as a separate discipline.

2.1 Developing an Intuition about Software Architecture

It is interesting to note that we do not have named software architectures. We have some

intuition that there are di�erent kinds of software architectures, but we have not formalized, or

institutionalized, them. It is our claim that it is because there are so many software architectures,

not because there are so few, that the present state of a�airs exists. In this section we look at

several architectural disciplines in order to develop our intuition about software architecture. We

look at hardware and network architecture because they have traditionally been considered sources

of ideas for software architecture; we look at building architecture because it is the \classical"

architectural discipline.

2

2.1.1 Computing Hardware Architecture

There are several di�erent approaches to hardware architecture that are distinguished by the

aspect of the hardware that is emphasized. RISC machines are examples of a hardware archi-

tecture that emphasizes the instruction set as the important feature. Pipelined machines and

multi-processor machines are examples of hardware architectures that emphasize the con�guration

of architectural pieces of the hardware.

There are two interesting features of the second approach to hardware architecture that are

important in our consideration of software architecture:

� there are a relatively small number of design elements; and

� scale is achieved by replication of these design elements.

This contrasts with software architecture, where there is an exceedingly large number of possible

design elements. Further, scale is achieved not by replicating design elements, but by adding more

distinct design elements. However, there are some similarities: we often organize and con�gure

software architectures in ways analogous to the hardware architectures mentioned above. For

example, we create multi-process software systems and use pipelined processing.

Thus, the important insight from this discussion is that there are fundamental and important

di�erences between the two kinds of architecture. Because of these di�erences, it is somewhat ironic

that we often present software architecture in hardware-like terms.

2.1.2 Network Architecture

Network architectures are achieved by abstracting the design elements of a network into nodes

and connections, and by naming the kinds of relationships that these two elements have to each

other. Thus we get star networks, ring networks, and manhattan street networks as examples of

named network architectures.

The two interesting architectural points about network architecture are:

� there are two components | nodes and connections; and

� there are only a few topologies that are considered.

3

It is certainly the case that we can abstract to a similar level in software architecture | for example,

processes and inteprocess communication. However, rather than a few topologies to consider, there

are an exceedingly large number of possible topologies and those topologies generally go without

names. Moreover, we emphasize aspects di�erent from the topology of the nodes and connections.

We consider instead such matters as the placement of processes (e.g., distributed architectures) or

the kinds of interprocess communication (e.g., message passing architectures).

Thus, we do not bene�t much from using networks as an analogy for software architecture, even

though we can look at architectural elements from a similar level of abstraction.

2.1.3 Building Architecture

The classical �eld of architecture provides some of the more interesting insights for software ar-

chitecture. While the subject matter for the two is quite di�erent, there are a number of interesting

architectural points in building architecture that are suggestive for software architecture:

� multiple views;

� architectural styles;

� style and engineering; and

� style and materials.

A building architect works with the customer by means of a number of di�erent views in which

some particular aspect of the building is emphasized. For example, there are elevations and
oor

plans that give the exterior views and \top-down" views, respectively. The elevation views may

be supplemented by contextual drawings or even scale models to provide the customer with the

look of the building in its context. For the builder, the architect provides the same
oor plans plus

additional structural views that provide an immense amount of detail about various explicit design

considerations such as electrical wiring, plumbing, heating, and air-conditioning.

Analogously, the software architect needs a number of di�erent views of the software architecture

for the various uses and users. At present we make do with only one view: the implementation. In

a real sense, the implementation is like a builders detailed view | that is, like a building with no

skin in which all the details are visible. It is very di�cult to abstract the design and architecture

of the system from all the details. (Consider the Pompidou Center in Paris as an example.)

4

The notion of architectural style is particularly useful from both descriptive and prescriptive

points of view. Descriptively, architectural style de�nes a particular codi�cation of design elements

and formal arrangements. Prescriptively, style limits the kinds of design elements and their formal

arrangements. That is, an architectural style constrains both the design elements and the formal

relationships among the design elements. Analogously, we shall �nd this a most useful concept in

software architecture.

Of extreme importance is the relationship between engineering principles and architectural

style (and, of course, architecture itself). For example, one does not get the light, airy feel of the

perpendicular style as exempli�ed in the chapel at King's College, Cambridge, from romanesque

engineering. Di�erent engineering principles are needed to move from the massiveness of the ro-

manesque to lightness of the perpendicular. It is not just a matter of aesthetics. This relationship

between engineering principles and software architecture is also of fundamental importance.

Finally, the relationship between architectural style and materials is of critical importance.

The materials have certain properties that are exploited in providing a particular style. One may

combine structural with aesthetic uses of materials, such as that found in the post and beam

construction of tudor-style houses. However, one does not build a skyscraper with wooden posts

and beams. The material aspects of the design elements provide both aesthetic and engineering

bases for an architecture. Again, this relationship is of critical importance in software architecture.

Thus, we �nd in building architecture some fundamental insights about software architecture:

multiple views are needed to emphasize and to understand di�erent aspects of the architecture;

styles are a cogent and important form of codi�cation that can be used both descriptively and

prescriptively; and, engineering principles and material properties are of fundamental importance

in the development and support of a particular architecture and architectural style.

2.2 The Context of Architecture

Before discussing our motivation for software architecture speci�cations, we posit a characteri-

zation of architecture in the context of the entire software product. Note that we do not mean to

imply anything about the particular process by which this product is created | though of course

there may be implications about the process that are inherent in our view. Our purpose is pri-

marily to provide a context for architecture in what would be considered a fairly standard software

5

product.

We characterize the di�erent parts of the software product by the kinds of things that are

important for that part | the kinds of entities, their properties and relationships that are important

at that level, and the kinds of decision and evaluation criteria that are relevant at that level:

� requirements are concerned with the determination of the information, processing, and the

characteristics of that information and processing needed by the user of the system;2

� architecture is concerned with the selection of architectural elements, their interactions, and

the constraints on those elements and their interactions necessary to provide a framework in

which to satisfy the requirements and serve as a basis for the design;

� design is concerned with the modularization and detailed interfaces of the design elements,

their algorithms and procedures, and the data types needed to support the architecture and

to satisfy the requirements; and

� implementation is concerned with the representations of the algorithms and data types that

satisfy the design, architecture, and requirements.

The di�erent parts of a particular product are by no means as simple as this characterization. There

is a continuum of possible choices of models, abstractions, transformations, and representations.

We simplify this continuum into four discrete parts primarily to provide an intuition about how

architecture is related to the requirements and design of a software system.

It should be noted that there are some development paradigms to which our characterization

will not apply | for example, the exploratory programming paradigm often found in AI research.

However, our characterization represents a wide variety of development and evolutionary paradigms

used in the creation of production software, and delineates an important, and hitherto undercon-

sidered, part of a uni�ed software product [15].

2.3 Motivation for Architectural Speci�cations

There are a number of factors that contribute to the high cost of software. Two factors that

are important to software architecture are evolution and customization. Systems evolve and are

2Note that the notion of requirements presented here is an idealistic one. In practice, requirements are not so

\pure"; they often contain constraints on the architecture of a system, constraints on the system design, and even

constraints on the implementation.

6

adapted to new uses, just as buildings change over time and are adapted to new uses. One fre-

quently accompanying property of evolution is an increasing brittleness of the system | that is,

an increasing resistance to change, or at least to changing gracefully [5]. This is due in part to two

architectural problems: architectural erosion and architectural drift. Architectural erosion is due to

violations of the architecture. These violations often lead to an increase in problems in the system

and contribute to the increasing brittleness of a system| for example, removing load-bearing walls

often leads to disastrous results. Architectural drift is due to insensitivity about the architecture.

This insensitivity leads more to inadaptability than to disasters and results in a lack of coherence

and clarity of form, which in turn makes it much easier to violate the architecture that has now

become more obscured.

Customization is an important factor in software architecture, not because of problems that

it causes, but because of the lack of architectural maturity that it indicates. In building software

systems, we are still at the stage of recreating every design element for each new architecture.

We have not yet arrived at the stage where we have a standard set of architectural styles with

their accompanying design elements and formal arrangements. Each system is, in essence, a new

architecture, a new architectural style. The presense of ubiquitous customization indicates that

there is a general need for codi�cation | that is, there is a need for architectural templates for

various architectural styles. For the standard parts of a system in a particular style, the architect

can select from a set of well-known and understood elements and use them in ways appropriate to

the desired architecture. This use of standard templates for architectural elements then frees the

architect to concentrate on those elements where customization is crucial.

Given our characterization of architecture and motivating problems, there are a number of

things that we want to be able to do with an architectural speci�cation:

� Prescribe the architectural constraints to the desired level | that is, indicate the desired

restrictiveness or permissiveness, determine the desired level of generality or particularity,

de�ne what is necessity and what is luxury, and pin-point the degree of relativeness and

absoluteness. We want a means of supporting a \principle of least constraint" to be able to

to express only those constraints in the architecture that are necessary at the architectural

level of the system description. This is an important departure from current practice that,

instead of specifying the constraints, supplies speci�c solutions that embody those desired

constraints.

7

� Separate aesthetics from engineering | that is, indicate what is \load-bearing" from what

is \decoration". This separation enables us to avoid the kinds of changes that result in

architectural erosion.

� Express di�erent aspects of the architecture in an appropriate manner | that is, describe

di�erent parts of the architecture in an appropriate view.

� Perform dependency and consistency analysis | that is, determine the interdependencies

between architecture, requirements and design; determine interdependencies between various

parts of the architecture; and determine the consistency, or lack of it, between architectural

styles, between styles and architecture, and between architectural elements.

3 Model of Software Architecture

In Section 2 we use the �eld of building architecture to provide a number of insights into what

software architecture might be. The concept of building architecture that we appeal to is that of

the standard de�nition: \The art or science of building: especially designing and building habital

structures" [11]. Perhaps more relevant to our needs here is a secondary de�nition: \A unifying or

coherent form or structure" [11]. It is this sense of architecture | providing a unifying or coherent

form or structure | that infuses our model of software architecture.

We �rst present our model of software architecture, introduce the notion of software architec-

tural style, and discuss the interdependence of processing, data, and connector views.

3.1 The Model

By analogy to building architecture, we propose the following model of software architecture:

Software Architecture = f Elements, Form, Rationale g

That is, a software architecture is a set of architectural (or, if you will, design) elements that have

a particular form.

We distinguish three di�erent classes of architectural elements :

� processing elements;

� data elements; and

� connecting elements.

8

The processing elements are those components that supply the transformation on the data elements;

the data elements are those that contain the information that is used and transformed; the con-

necting elements (which at times may be either processing or data elements, or both) are the glue

that holds the di�erent pieces of the architecture together. For example, procedure calls, shared

data, and messages are di�erent examples of connecting elements that serve to \glue" architectural

elements together.

Consider the example of water polo as a metaphor for the di�erent classes of elements: the

swimmers are the processing elements, the ball is the data element, and water is the primary

connecting element (the \glue"). Consider further the similarities of water polo, polo, and soccer.

They all have a similar \architecture" but di�er in the \glue" | that is, they have similar elements,

shapes and forms, but di�er mainly in the context in which they are played and in the way that

the elements are connected together. We shall see below that these connecting elements play a

fundamental part in distinguishing one architecture from another and may have an important

e�ect on the characteristics of a particular architecture or architectural style.

The architectural form consists of weighted properties and relationships. The weighting indi-

cates one of two things: either the importance of the property or the relationship, or the necessity

of selecting among alternatives, some of which may be preferred over others. The use of weighting

to indicate importance enables the architect to distinguish between \load-bearing" and \decora-

tive" formal aspects; the use of weighting to indicate alternatives enables the architect to constrain

the choice while giving a degree of latitude to the designers who must satisfy and implement the

architecture.

Properties are used to constrain the choice of architectural elements | that is, the properties

are used to de�ne constraints on the elements to the degree desired by the architect. Properties

de�ne the minimum desired constraints unless otherwise stated | that is, the default on constraints

de�ned by properties is: \what is not constrained by the architect may take any form desired by

the designer or implementer".

Relationships are used to constrain the \placement" of architectural elements | that is, they

constrain how the di�erent elements may interact and how they are organized with respect to each

other in the architecture. As with properties, relationships de�ne the minimum desired constraints

unless otherwise stated.

9

An underlying, but integral, part of an architecture is the rationale for the various choices made

in de�ning an architecture. The rationale captures the motivation for the choice of architectural

style, the choice of elements, and the form. In building architecture, the rationale explicates the

underlying philosophical aesthetics that motivate the architect. In software architecture, the ratio-

nale instead explicates the satisfaction of the system constraints. These constraints are determined

by considerations ranging from basic functional aspects to various non-functional aspects such as

economics [4], performance [2] and reliability [13].

3.2 Architectural Style

If architecture is a formal arrangement of architectural elements, then architectural style is that

which abstracts elements and formal aspects from various speci�c architectures. An architectural

style is less constrained and less complete than a speci�c architecture. For example, we might

talk about a distributed style or a multi-process style. In these cases, we concentrate on only

certain aspects of a speci�c architecture: relationships between processing elements and hardware

processors, and constraints on the elements, respectively.

Given this de�nition of architecture and architectural style, there is no hard dividing line be-

tween where architectural style leaves o� and architecture begins. We have a continuum in which

one person's architecture may be another's architectural style. Whether it is an architecture or a

style depends in some sense on the use. For example, we propose in Section 2.3 that architectural

styles be used as constraints on an architecture. Given that we want the architectural speci�cation

to be constrained only to the level desired by the architect, it could easily happen that one person's

architecture might well be less constrained than another's architectural style.

The important thing about an architectural style is that it encapsulates important decisions

about the architectural elements and emphasizes important constraints on the elements and their

relationships. The useful thing about style is that we can use it both to constrain the architecture

and to coordinate cooperating architects. Moreover, style embodies those decisions that su�er

erosion and drift. An emphasis on style as a constraint on the architecture provides a visibility to

certain aspects of the architecture so that violations of those aspects and insensitivity to them will

be more obvious.

10

3.3 Process/Data/Connector Interdependence

As mentioned above, an important insight from building architecture is that of multiple views.

Three important views in software architecture are those of processing, data, and connections. We

observe that if a process view3 of an architecture is provided, the resulting emphasis is on the

data
ow though the processing elements and on some aspects of the connections between the

processing elements with respect to the data elements. Conversely, if a data view of an architecture

is provided, the resulting emphasis is on the processing
ow, but with less an emphasis on the

connecting elements than we have in the process view. While the current common wisdom seems

to put the emphasis on object-oriented (that is, data-oriented) approaches, we believe that all three

views are necessary and useful at the architectural level.

We argue informally, in the following way, that there is a process and data interdependence:

� there are some properties that distinguish one state of the data from another; and

� those properties are the result of some transformation produced by some processing element.

These two views are thus intertwined | each dependent on the other for at least some of the

important characteristics of both data and processing. (For a more general discussion of process

and data interdependence, see [10].)

The interdependence of processing and data upon the connections is more obvious: the con-

necting elements are the mechanisms for moving data around from processor to processor. Because

of this activity upon the data, the connecting elements will necessarily have some of the properties

required by the data elements in precisely the same way that processing elements have some of the

properties required by the data elements.

At the architectural level, we need all three views and the ability to move freely and easily

among them. Our example in the next section provides illustrations of this interdependence and

how we might provide three di�erent, but overlapping, views.

3We use the dichotomy of process and data instead of function and object because these terms seem to be more

neutral. The latter terms seem to suggest something more speci�c in terms of programming than the former.

11

4 Examples

One of the few software architectural styles that has achieved widespread acceptance is that

of the multi-phase compiler. It is practically the only style in which every software engineer is

expected to have been trained. We rely on this familiarity to illustrate some of the insights that

we have gained into software architectures and their descriptions.

In this section we look at two compiler architectures of the multi-phase style:

� a compiler that is organized sequentially; and

� a compiler that is organized as a set of parallel processes connected by means of a shared

internal representation.

Because of space limitations and for presentation purposes, our examples are somewhat simpli�ed

and idealized, with many details ignored. Moreover, we use existing notations because they are

convenient for illustrative purposes; proposals for speci�c architectural notations are beyond the

scope of this paper. In each case we focus on the architectural considerations that seem to be the

most interesting to derive from that particular example. (Of course, other examples of multi-phase

compiler architectures exist and we make no claims of exhaustive coverage of this architectural land-

scape.) Before exploring these examples, we provide a brief review of their common architectural

style.

4.1 The Multi-phase Architectural Style

Our simpli�ed model of a compiler distinguishes �ve phases: lexical analysis, syntactic analysis,

semantic analysis, optimization, and code generation. Lexical analysis acts on characters in a

source text to produce tokens for syntactic analysis. Syntactic analysis produces phrases that are

either de�nition phrases or use phrases. Semantic analysis correlates use phrases with de�nition

phrases | i.e., each use of a program element such as an identi�er is associated with the de�nition

for that element, resulting in correlated phrases. Optimization produces annotations on correlated

phrases that are hints used during generation of object code. The optimization phase is considered

a preferred, but not necessary, aspect of this style. Thus, the multi-phase style recognizes the

following architectural elements:

12

Correlated Phrases

Phrases

Tokens

Characters

Figure 1: Data Element Relationships.

processing elements: lexer, parser, semantor, optimizer, and code generator; and

data elements: characters, tokens, phrases, correlated phrases, annotated phrases, and

object code.

Notice that we have not speci�ed connecting elements. It is simply the case that this style does

not dictate what connecting elements are to be used. Of course, the choice of connecting elements

has a profound impact on the resulting architecture, as shown below.

The form of the architectural style is expressed by weighted properties and relationships among

the architectural elements. For example, the optimizer and annotated phrases must be found

together, but they are both only preferred elements, not necessary. As another example, there

are linear relationships between the characters constituting the text of the program, the tokens

produced by the lexer, and the phrases produced by the parser. In particular, tokens consist of

a sequence of characters, and phrases consist of a sequence of tokens. However, there exists a

non-linear relationship between phrases and correlated phrases. These relationships are depicted in

Figure 1. As a �nal example, each of the processing elements has a set of properties that de�nes the

constraints on those elements. The lexer, for instance, takes as input the characters that represent

the program text and produces as output a sequence of tokens. Moreover, there is an ordering

correspondence between the tokens and the characters that must be preserved by the lexer. A good

architectural description would capture these and other such properties and relationships.

Let us illustrate this by formally describing the relationship between characters and tokens and

describing the order-preserving property of the lexer. We begin the description with a data view

stated in terms of sequences and disjoint subsequences.

Let C = fc1; c2; . . . ; cmg be a sequence of characters representing a source text, Ci
j

i � j be a subsequence of C whose elements are all the elements in C between ci

13

and cj inclusive, T = ft1; t2; . . . ; tng be a sequence of tokens, and \�=" indicate the

correspondence between a token in T and a subsequence of C. T is said to preserve C

if there exists an i, j, k, q, r, and s such that 1 � i < j � m, 1 < k < n, 1 < q � r < m,

and for all t 2 T there exists a C
x
y such that:

t �=

8>>>>>>><
>>>>>>>:

C
1
i if t = t1

C
j
m if t = tn

C
q
r if t = tk, where 9 u, v

���������

1 � u � q � 1

r + 1 � v � m

tk�1
�= C

u
q�1

tk+1
�= C

r+1
v

The lexer is now constrained from a processing perspective to accept a sequence of characters C,

produce a sequence of tokens T , and to preserve the ordering correspondence between characters

and tokens:

lexer: C ! T , where T preserves C

Finally, it is interesting to note that the connector view reveals additional constraints that

should be placed on the architectural style. These constraints are illustrated by the connection

between the lexer and the parser. In particular, connecting elements must ensure that the tokens

produced by the lexer are preserved for the parser, such that the order remains intact and that

there are no losses, duplicates, or spurious additions.

4.2 Sequential Architecture

If there is a \classical" multi-phase compiler architecture, then it is the sequential one, in which

each phase performs its function to completion before the next phase begins and in which data

elements are passed directly from one processing element to the other. Thus, we add the following

architectural elements to those characterizing the overall style:

connecting elements: procedure call and parameters.

Furthermore, we re�ne tokens to include the structuring of the identi�er tokens into a name table

(NT), and re�ne phrases to be organized into an abstract syntax tree (AST). Correlation of phrases

14

(NT+ASG)
Correlated Phrases

Lexer

Parser

Semantor

Characters

Tokens
(NT)

Phrases
(NT+AST)

Correlated Phrases
(NT+ASG)

Optimizer

Code
Generator

Annotated Cor. Phrases
(NT+AASG)

Object Code

Figure 2: Processing View of Sequential Compiler Architecture.

results in an abstract syntax graph (ASG) and optimization in an annotated abstract syntax graph

(AASG). Figure 2 gives a processing view of the sequential architecture, showing the
ow of data

through the system. Notice that there are two paths from the semantor to the code generator,

only one of which passes through the optimizer. This re
ects the fact that a separate optimization

phase is not necessary in this architecture. That is, a design satisfying this architecture need not

provide an optimizer.

To illustrate the interdependence of processing and data views, let us consider the data as a

whole being created and transformed as they
ow through the system. We have found that the

data view is best captured by a notion that we call application-oriented properties. Application-

oriented properties describe the states of a data structure that are of signi�cance to the processing

elements manipulating that structure. They can be used for such things as controlling the order

of processing, helping to de�ne the e�ects of a processing element on a data structure, and even

helping to de�ne the operations needed by the processing elements to achieve those e�ects.

For this example, the (simpli�ed) application-oriented properties are as follows:

15

has-all-tokens: a state produced as a result of lexically analyzing the program text, necessary

for the parser to begin processing;

has-all-phrases: a state produced by the parser, necessary for the semantor to begin process-

ing;

has-all-correlated-phrases: a state produced by the semantor, necessary for the optimizer and

code generator to begin processing; and

has-all-optimization-annotations: a state produced by the optimizer, preferred for the code

generator to begin processing.

Notice again that the last property is only preferred. While in this example the application-oriented

properties may appear obvious and almost trivial, in the next example they are crucial to the

description of the architecture and in guaranteeing the compliance of designs and implementations

with that architecture.

An interesting question to consider is why we evidently chose to use a property-based scheme

for describing architectural elements rather than a type-based scheme. The reason is that type

models, as they currently exist, are essentially only able to characterize elements and element types

in terms of the relationship of one element type to another (e.g., subtyping and inheritance [12]),

in terms of the relationships that particular elements have with other elements (e.g., as in Oros

[18]), and in terms of the operations that can be performed on the elements. They are not suited

to descriptions of characteristics of elements such as the application-oriented properties mentioned

above. For example, simply knowing that there is an operation associated with abstract syntax

graphs to connect one phrase to another does not lead to an understanding that the abstract syntax

graph must have all phrases correlated before the code generator can access the graph.

Property-based schemes, on the other hand, can be used to capture easily all these characteris-

tics; one property of an element could be the set of operations with which it is associated. It seems

reasonable to consider enhancing type models in this regard and we see this as a potentially inter-

esting area of future work. We note, however, that type-based schemes are already appropriately

used at the design level, as mentioned in Section 2. Further, we note that application-oriented

properties provide a good vehicle with which to drive the design, or justify the suitability, of a set

of operations for an element type.

16

annota.
optimiz.-

all-
has-

phrases
correlated-

all-
has-

phrases
all-
has-

tokens-
all-
has-

Code
Generator Generator

Code

Optimizer

Semantor

Parser

Lexer

Figure 3: Data View of Sequential Compiler Architecture.

Returning to the interdependence between the processing and data views, we can see that the

data view concentrates on the particular application-oriented properties that are of importance in

describing each data structure, while the processing view concentrates on the functional properties

of each processing element. These views are actually complementary. In fact, if we depict the data

view, as is done in Figure 3, and compare it to the processing view, shown in Figure 2, then the

correspondence becomes fairly obvious.

The important architectural considerations that derive from this example can be summarized

as follows:

� the form descriptions must include the relationships and constraints among the elements,

including relative weightings and preferences;

� current type-based schemes for characterizing elements are insu�cient; and

� there is a natural interdependence between the processing and data views that can provide

complementary descriptions of an architecture.

17

Representation
Internal

Lexer

Parser

Semantor

Tokens Tokens

Correlated Phrases

Phrases

Phrases

Characters

Figure 4: Partial Process View of Parallel Process, Shared Data Structure

Compiler Architecture.

4.3 Parallel Process, Shared Data Structure Architecture

Suppose that performance is of paramount importance, such that one wants to optimize the

speed of the compiler as much as possible. One possible solution is to adopt an architecture that

treats the processing elements as independent processes driven by a shared internal representation

| that is, the connecting element is the shared representation and each processing element performs

eager evaluation. Figure 4 depicts a simpli�ed and partial process view of this architecture, showing

the relationships between the internal representation and the lexer, the parser, and the semantor.

(We only consider these three processing elements in the remainder of this example.)

The application-oriented properties of the shared internal representation in this architecture are

much more complicated, and interesting, than those given in the previous example. In particular,

a number of processing elements are a�ecting the state of the internal representation, and doing so

concurrently. This implies that the application-oriented properties must provide for coordination

and synchronization among the processing elements. We begin by giving the basic properties that

the internal representation may exhibit:

18

no-tokens no-phrases no-correlated-phrases

has-token has-phrase have-correlated-phrases

will-be-no-more-tokens will-be-no-more-phrases all-phrases-correlated

Notice that these properties imply that tokens and phrases are consumed, but that correlated

phrases are accumulated (consider \has-phrase" versus \have-correlated-phrases").

Because of the parallel behavior of the processing elements, the interrelationships among the

various basic properties must be explicitly described. A number of notations exist that are suitable

for making such descriptions, including parallel path expressions [6], constrained expressions [1],

and petri nets [16]. In this example we use parallel path expressions, where a comma indicates

sequence, a plus sign indicates one or more repetitions, an asterisk indicates zero or more repetitions,

and subexpressions are enclosed in parentheses. Synchronization points occur where names of

application-oriented properties are the same in di�erent parallel path expressions. First, the path

expressions for each of the data elements | tokens, phrases, and correlated phrases | are given:

(no-tokens, has-token+)*, will-be-no-more-tokens, has-token*, no-tokens (1)

(no-phrases, has-phrase+)*, will-be-no-more-phrases, has-phrase*, no-phrases (2)

no-correlated-phrases, (have-correlated-phrases)*, all-phrases-correlated (3)

Next, the path expressions relating the application-oriented properties are given:

will-be-no-more-tokens, will-be-no-more-phrases, all-phrases-correlated (4)

has-token+, has-phrase (5)

has-phrase+, has-correlated-phrase (6)

Thus, tokens are consumed to produce phrases, and phrases are correlated until they are all pro-

cessed.

What we have given so far is essentially a connector view (and, in this case, e�ectively a

data view as well). Concentrating instead on the processing view allows us to describe how each

processing element transforms the internal representation as well as how those processing elements

are synchronized:

lexer: (no-tokens, has-token+)*, will-be-no-more-tokens

19

parser: no-phrases, (has-token+, has-phrase)*, will-be-no-more-tokens, (has-token+,

has-phrase)*, no-tokens, will-be-no-more-phrases

semantor: no-correlated-phrases, (has-phrase+, has-correlated-phrase)*,

will-be-no-more-phrases, (has-phrase+, has-correlated-phrase)*, no-phrases,

all-phrases-correlated

An interesting question to ask is how this architecture relates to the previous one. In fact, the

ability to relate similar architectures is an important aspect of the software process; an example is

the evaluation of \competing" architectures. Certainly, the architectures both being of a common

style captures some portion of the relationship. More can be said, however, given the use of

application-oriented properties. In particular, we can draw correlations among the properties of

the di�erent architectures. The table below shows some of these correlations.

Sequential Architecture Parallel Architecture

has-all-tokens will-be-no-more-tokens

has-all-phrases will-be-no-more-pharses

has-all-correlated-phrases all-phrases-correlated

In this case, the correlations indicate common points of processing, leading, for instance, to a better

understanding of the possible reusability of the processing elements.

The important points of this example can be summarized as follows:

� the processing elements are much the same as in the previous architecture, but with di�erent

\locus of control" properties;

� the form of this architecture is more complex than that of the previous one | there are more

application-oriented properties and those properties require a richer notation to express them

and their interrelationships;

� we still bene�t from the processing/data/connector view interdependence, albeit with more

complexity; and

� application-oriented properties are useful in relating similar architectures.

5 Some Bene�ts Derived from Software Architecture

We have previously mentioned the use of software architecture in the context of requirements

and design. Software architecture provides the framework within which to satisfy the system re-

20

quirements and provides both the technical and managerial basis for the design and implementation

of the system. There are two further bene�ts that we wish to discuss in detail: the kinds of analysis

that software architecture speci�cations will enable us to perform and the kinds of reuse that we

gain from our approach to software architecture.

5.1 Software Architecture and Analysis

Aside from providing clear and precise documentation, the primary purpose of speci�cations is

to provide automated analysis of the documents and to expose various kinds of problems that would

otherwise go undetected. There are two primary categories of analysis that we wish to perform:

consistency and dependency analysis. Consistency occurs in several dimensions: consistency within

the architecture and architectural styles, consistency of the architecture with the requirements, and

consistency of the design with the architecture. In the same way that Inscape [14] formally and

automatically manages the interdependencies between interface speci�cations and implementations,

we also want to be able to manage the interdependencies between requirements, architecture, and

design.

Therefore, we want to provide and support at least the following kinds of analysis:

� consistency of architectural style constraints;

� satisfaction of architectural styles by an architecture;

� consistency of architectural constraints;

� satisfaction of the architecture by the design;

� establishment of dependencies between architecture and design, and architecture and require-

ments; and

� determination of the implications of changes in architecture or architectural style on design

and requirements, and vice versa.

5.2 Architecture and the Problems of Use and Reuse

An important aspect in improving the productivity of the designers and the programmers is

that of being able to build on the e�orts of others | that is, using and reusing components whether

they come as part of another system or as parts from standard components catalogs.

21

There has been much attention given to the problem of �nding components to reuse. Finding

components may be important in reducing the duplication of e�ort and code within a system, but

it is not the primary issue in attaining e�ective use of standardized components. For example,

�nding the components in a math library is not an issue. The primary issue is understanding the

concepts embodied in the library. If they are understood, then there is usually no problem �nding

the appropriate component in the library to use. If they are not understood, then browsing will

help only in conjunction with the acquisition of the appropriate concepts.

The primary focus in architecture is the identi�cation of important properties and relationships

| constraints on the kinds of components that are necessary for the architecture, design, and

implementation of a system. Given this as the basis for use and reuse, the architect, designer,

or implementer may be able to select the appropriate architectural element, design element, or

implemented code to satisfy the speci�ed constraints at the appropriate level.

Moreover, the various parts of previously implemented software may be teased apart to select

that which is useful from that which is not. For example, the design of a component from another

systemmay have just the right architectural constraints to satisfy a particular architectural element,

but the implementation is constrained such that it con
icts with other system constraints. The

solution is to use the design but not the implementation. This becomes possible only by indentifying

the architectural, design, and implementation constraints and use them to satisfy the desired goals

of the architecture, design, and implementation.

The important lesson in reusing components is that the possibilities for reuse are the great-

est where speci�cations for the components are constrained the least | at the architectural level.

Component reuse at the implementation level is usually too late because the implementation ele-

ments often embody too many constraints. Moreover, consideration of reuse at the architectural

level may lead development down a di�erent, equally valid solution path, but one that results in

greater reuse.

6 Conclusions

Our e�orts over the past few years have been directed toward improving the software process as-

sociated with large, complex software systems. We have come to believe that software architecture

22

can play a vital role in this process, but that it has been both underutilized and underdeveloped.

We have begun to address this situation by establishing an intuition about and context for soft-

ware architecture and architectural style. We have formulated a model of software architecture

that emphasizes the architectural elements of data, processing, and connection, highlights their

relationships and properties, and captures constraints on their realization or satisfaction. More-

over, we have begun to delineate the necessary features of architectural description techniques and

their supporting infrastructure. In so doing, we have set a direction for future research that should

establish the primacy of software architecture.

Others have begun to look at software architecture. Three that are most relevant are Schwanke,

et al., Zachman, and Shaw.

Schwanke, et al., [20] de�ne architecture as the permitted or allowed set of connections among

components. We agree that that aspect of architecture is important, but feel that there is much

more to architecture than simply components and connections, as we demonstrate in this paper.

Zachman [23] uses the metaphor of building architecture to advantage in constructing an ar-

chitecture for information systems. He exploits the notion of di�erent architectural documents

to provide a vision of what the various documents ought to be in the building of an information

system. The architect is the mediator between the user and the builders of the system. The var-

ious documents provide the various views of di�erent parts of the product | the users view, the

contractors views, etc. His work di�ers from ours in that he is proposing a speci�c architecture for

a speci�c application domain while we are attempting to de�ne the philosophical underpinnings of

the discipline, to determine a notation for expressing the speci�cation of the various architectural

documents, and determine how these documents can be used in automated ways.

Shaw [21] comes the closest in approach to ours. She takes the view of a programming language

designer and abstracts classes of components, methods of composition, and schemas from a wide

variety of systems. These correspond somewhat to our notions of processing and data elements,

connecting elements, and architectural style, respectively. One major di�erence between our work

and Shaw's is that she is taking a traditional type-based approach to describing architecture,

while we are taking a more expressive property-based approach. Our approach appears better

able to more directly capture notions of weighted properties and relationships. Shaw's approach

of abstracting the various properties and relationships of existing architectures and embodying

23

them in a small set of component and composition types appears rather restrictive. Indeed, she

is seeking to provide a �xed set of useful architectural elements that one can mix and match to

create an architecture. Shaw's approach is clearly an important and useful one and does much to

promote the understanding of basic and important architectural concepts. Our approach, on the

other hand, emphasizes the importance of the underlying properties and relationships as a more

general mechanism that can be used to describe the particular types of elements and compositions

in such a way that provides a latitude of choice.

In conclusion, we o�er the following conjecture: perhaps the reason for such slow progress in the

development and evolution of software systems is that we have trained carpenters and contractors,

but no architects.

24

REFERENCES

[1] G.S. Avrunin, L.K. Dillon., J.C. Wileden, and W.E. Riddle, Constrained Expressions: Adding Analysis

Capabilities to Design Methods for Concurrent Systems, IEEE Trans. on Software Engineering,

Vol. SE-12, No. 2, Feb. 1986, pp. 278{292.

[2] J.L. Bentley, Writing E�cient Programs, Addison-Wesley, Reading, MA, 1982.

[3] G.D. Bergland, A Guided Tour of Program Design Methodologies, IEEE Computer, Vol. 14, No. 10,

Oct. 1981, pp. 13{37.

[4] B.W. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cli�s, NJ, 1981.

[5] F.P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley, Reading, MA, 1972.

[6] R.H. Campbell and A.N. Habermann,The Speci�cation of Process Synchronization by Path Expressions,

Lecture Notes in Computer Science, No. 16, Apr. 1974, pp. 89{102.

[7] E.J. Chikofsky (ed.), Software Development | Computer-aided Software Engineering, Tech-

nology Series, IEEE Computer Society Press, 1988.

[8] G. Estrin, R.S. Fenchel, R.R. Razouk, and M.K. Vernon, SARA (System ARchitects Apprentice), IEEE

Trans. on Software Engineering, Vol. SE-12, No. 2, Feb. 1986, pp. 293{277.

[9] P. Freeman and A.I. Wasserman,Tutorial on Software Design Techniques, IEEE Computer Society

Press, 1976.

[10] D. Jackson, Composing Data and Process Descriptions in the Design of Software Systems, LCS Tech.

Report 419, Massachusetts Institute of Technology, Cambridge, MA, May 1988.

[11] F.C. Mish,Webster's Ninth New Collegiate Dictionary,MerriamWebster, Spring�eld, MA, 1983.

[12] J.E.B. Moss and A.L. Wolf, Toward Principles of Inheritance and Subtyping for Programming Lan-

guages, COINS Tech. Report 88{95, COINS Dept., Univ. of Mass., Amherst, MA, Nov. 1988.

[13] J.D. Musa, Software Reliability: Measurement, Prediction, Application, McGraw-Hill, New

York, NY, 1990.

[14] D.E. Perry, The Inscape Environment, Proc. Eleventh Inter. Conf. on Software Engineering,

Pittsburgh, PA, IEEE Computer Society Press, May 1989, pp. 2{12.

[15] D.E. Perry, Industrial Strength Software Development Environments, Proc. IFIP Congress '89, The

11th World Computer Congress, San Francisco, CA, Aug. 1989.

[16] J.L. Peterson, Petri Nets, ACM Computing Surveys, Vol. 9, No. 3, Sept. 1977, pp. 223-252.

[17] W.E. Riddle and J.C.Wileden, Tutorial on Software SystemDesign: Description and Analysis,

Computer Society Press, 1980.

[18] W.R. Rosenblatt, J.C.Wileden, and A.L.Wolf,OROS: Towards a Type Model for Software Development

Environments, Proc. OOPSLA '89, New Orleans, Louisiana, October 1989.

25

[19] E. Sandewall, C. Str�omberg, and H. S�orensen, Software Architecture Based on Communicating Resi-

dential Environments, Proc. Fifth Inter. Conf. on Software Engineering, San Diego, CA, IEEE

Computer Society Press, Mar. 1981, pp. 144{152.

[20] R.W. Schwanke, R.Z. Altucher, and M.A. Plato�, Discovering, Visualizing and Controlling Software

Structure, Proc. Fifth Inter. Workshop on Software Speci�cation and Design, Pittsburgh,

PA, May 1989, appearing in ACM SIGSOFT Notes, Vol. 14, No. 3, May 1989, pp. 147{150.

[21] M. Shaw, Larger Scale Systems Require Higher-Level Abstractions,Proc. Fifth Inter. Workshop

on Software Speci�cation and Design, Pittsburgh, PA, May 1989, appearing in ACM SIGSOFT

Notes, Vol. 14, No. 3, May 1989, pp. 143{146.

[22] A.Z. Spector, Modular Architectures for Distributed and Database Systems, Proc. Eighth ACM

SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, Philadelphia, PA,

ACM Press, Mar. 1989, pp. 217{224.

[23] J.A. Zachman, A Framework for Information Systems Architecture, IBM Systems Journal, Vol. 26,

No. 3, 1987.

26

