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Abstract—Compressed sensing allows perfect recovery photography [4], wireless networks [5], and structure
of sparse signals (or signals sparse in some basis) USithjiscovery in biological networks [6].
only a small number of random measurements. Existing 11 applications where compressed sensing is most
results in compressed sensing literature have focused on - . i
characterizing the achievable performance by bounding the bengﬂmal (e.g. MRI) hgve a h'Qh cost of acqu'“”g each
number of samples required for a given level of signal additional sample. If this cost (in terms of time, power,
sparsity. However, using these bounds to minimize the e.t.c) is high as compared to the cost of computation,
number of samples requires a-priori knowledge of the then it is suitable to use sophisticated recovery algo-
sparsity of the unknown signal, or the decay structure for rithms which include thef;-basedbasis pursuit[7]
near-sparse signals. Furthermore, there are some popular ’
recovery methods for which no such bounds are known. Qfee‘?'y approaches [8], and even non-convéy er

In this paper, we investigate an alternative scenario iterative formulations [9]-{11] to enable recovery from
where observations are available in sequence. For any fewer measurements.
recovery method, this means that there is now a sequence While some of the recovery methods, especially those
of candidate reconstructions. We propose a method t0 paged on/;-regularization, have analytically provable

estimate the reconstruction error directly from the samples erformance guarantees [2]. 1121 others. such as non-
themselves, for every candidate in this sequence. This P gu [2], [12], » Su

estimate is universal in the sense that it is based only on the CONVex ¢, reweighted/; [11], and sparse Bayesian
measurement ensemble, and not on the recovery method or learning (SBL) [13] do not, and they have been shown

any assumed level of sparsity of the unknown signal. With empirically to often require even fewer samples tiian
these estimates, one can now stop observations as s00n a§5sed methods. Furthermore, when guarantees do exist,

there is reasonable certainty of either exact or sufficiently thev are usually asvmptotic in nature and have been
accurate reconstruction. They also provide a way to obtain y y asymp

“run-time” guarantees for recovery methods that otherwise €Mmpirically observed to sometimes be highly pessimistic
lack a-priori performance bounds. [1], [14]. Another drawback is that much of the exist-

~We investigate both continuous (e.g. Gaussian) and ing analysis characterizes how many measurements are
discrete (e.g. Bernoulli or Fourier) random measurement aaded for a signal with a given sparsity level. However,
ensembles, both for exactly sparse and general near-sparse(,le the sparsitv level is often not known a-priori. it can be
signals, and with both noisy and noiseless measurements. p y . p o .
) _ very challenging to use these results in practical settings
Index Terms—Compressed sensing, sequential measure- | this paper we take an alternative approach and
ments, optimal stopping rule. . .
we develop estimates and bounds for the reconstruction
error using only the observations, without any a-priori
. INTRODUCTION assumptions on signal sparsity, or on the reconstruction

In compressed sensing (CS) [1], [2] a few randoriethod. We consider a scenario where one is able to get
linear measurements of a signal are taken, and the sigRgfervations in sequence, and perform computations in
is recovered using the additional knowledge that eith@Etween observations to decide whether enough samples
the signal or some linear transform of it is sparsé‘.ave been obtained — thus allowing to recover the signal

These ideas have generated a lot of excitement in thENET exactly or to a given tolerance from the smallest
signal processing and machine learning communitig2ossible number of observations. This, however, requires
and have been applied to a range of applications such®ygomputationally efficient approach to detect exactly

magnetic resonance imaging (MRI) [3], computationgfhen enough samples have been received. To get an
intuition behind our approach — suppose that we first
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Our results provide estimates of the reconstruction errof the paper. At the heart of compressed sensing lies
based on the statistics of the measurement model. Thag sparse recovery problénwhich tries to reconstruct
can thus be used to provide 'run-time’ guarantees evan unknown sparse signal from a limited number of
for decoders that are otherwise not amenable to analysiseasurementg = Ax, whereA € RM*N M << N.

We first consider the case when noiseless measultch of excitement in the field stems from the fact
ments are taken using the random Gaussian (or gendhiat the hard combinatorial problem of searching for
continuous) ensemble, and we show that simply checkisgarse solutions in the affine spa¢e : y = Ax}
for one-step agreement provides a way to check exactipnder certain suitable conditions can be solved exactly
when enough samples have been received. Here we uievarious tractable methods. The most widely known
the basis pursuit decoder, but our results apply to anyethods include greedy matching pursuit and its variants
sparse decoder, including greedy matching pursuit, SBJ8], and approaches based on convex optimization, using
¢, formulations, and even the brute-force decoder. Afté norms as a proxy for sparsity [7]:

receiving M samples the basis pursuit decoder solves min|x|l; such that y = Ax. @

sM __ . ' — 0. ;o .. L.
x¥ =argmin|x|l st oax=y;, i=1.,M (1) An early worst-case sufficient condition for sparse

In case of one-step agreement, 58/+! = %M, the recovery [16] states that the formulation in (2) recovers

decoder declareg™ to be the reconstruction and stopgh€ unique sparse solutionljctli%vxi‘ell-posed and is
requesting new measurements. In Section Il we showarse enough, i.e.|ifk[lo < LM whereM (A) =
in Propositions 1 and 2 that this decoder gives exaltdXi=; |a;a;|, and A has columnsa; normalized tol.
reconstruction with probability one. However, this simple condition is very pessimistic. Much
For some other measurement ensembles, such as figiter conditions are obtained by considering larger
dom Bernoulli and the ensemble of random rows froffubsets of columns ofi, e.g. the restricted isometry
a Fourier basis, the one-step agreement stopping rule Ri@perty (RIP) depends on the maximum and minimum
longer has zero probability of error. We modify the ruldingular values over all/ x K submatrices ofA [12].
to wait until 7 subsequent solutions™, ..., xM+7 all However, the RIP condition is very costly (exponential
agree. In Section IV we show in Proposition 3 that in thé? &) to check for a given matrix. _
Bernoulli case the probability of making an error using Compressed sensing takes advantage of RIP by bring-
this stopping rule decays exponentially with allowing "9 in the theory o_f random mqtrlces into the picture. In
trade-off of error probability and delay. compressed sensing we receive random measurements
In Sections V and VI we show how the error iny = ¥s where the unknown signal of interestis
reconstruction can be estimated from the sequence /§€!f sparse in some basis, i.e. = ®x. Hence the
recovered solutions. We first present analysis for tfgoblem reduces to finding sparse solutions satisfying
Gaussian measurement ensemble in Proposition 4, ahd Y ®x = Ax, whereA = V& is a random matrix.
then generalize to any sensing matrices with i.i.d. entries A collection of results have been established that RPI
This enables the decoder to stop once the error is belof@ds for random matrices of certain size from given
required tolerance — even for signals that are not exacfﬁsembles: Gaussian, Bernoulli, random Fourier rows
sparse, but in which the energy is largely concentratégl: [12], [14]. The general conclusion of these results
in a few components, or for measurements which af that the convex; formulation can recover (with high
corrupted by noise. probability) a signatkx € RY with K non-zeros from
Finally, we propose an efficient way to solve th@nly CKlog(N) measurements, wher€ is a constant
sequential problem in Section VII. Rather than re-solvingePending on the random measurement ensemble. This
the problem from scratch after an additional measurts indeed remarkable — as it only requires a logarithmic
ment is received, we use an augmented linear progrélgPendence of the number of measurementsVon
that uses the solution at stélg to guide its search for However, when each additional measurement is very

the new solution. We show empirically that this approacfPStly there are several problems with these bounds —
significantly reduces computational complexity. firstly, since they are h|gh—prob§bll|ty results indepantde
of y, they tend to be conservative, and also the constants

C are typically generous upper-bounds. Secondly, the

Il. BRIEF OVERVIEW OF COMPRESSED SENSING

As there is no dearth of excellent tutorials on com- 1The ground-breaking results [16] predating compressedirggns

. in thi . . were in context of sparse signal representation where oekss®
pressed sensing [1], [2], [15], in this section we 9VGepresent a vectoy in an overcomplete dictionaryl € RM XN,

only a brief outline mainly to set the stage for the rest/ << N, with coefficientsx, i.e.,y = Ax.
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Fig. 2. A new constraint is addeek’AHlx = ym+1. Probability

that this hyperplane passing througfi also passes through™ is
zero.
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_ _ o o , also holds if entries ah; are i.i.d. samples of an arbitrary
Fig. 1. Histogram of the stopping times distribution for Gsiaa and ti d iable. At st | th
Bernoulli measurement ensemble$: = 100, and K = 10, and ¢; Con.muous _ran om Vana €. ) sted we so Ye e
decoding. basis-pursuit problem in (1) using all the received data.

Results in compressed sensing [1], [14] indicate that
after receiving around// « K log(N) measurements,
number of measurements depends on the number?gﬂ.vmg (1.) recovers the signal” with h|gh probability.
is requires the knowledge df, which may not be

non-zero components af which may not be known lable. and onlv rouah bounds on th in nstant
a-priori. Finally, there are successful approaches whi@ya'av'e, and only rough bounas on the scaling constants
re known. Our approach is different - we compare the

we mentioned in Section | for which no such results af& ¢ < .
available solutions at stepl/ and M + 1, and if they agree, we

In Figure 1 we illustrate the drawbacks of using uppeerdare cor rect .regovery. . . :
bounds on the number of measurements. We find theProposmon 1:Ifin the GaUSS'an (geJr:lenc C(K?UI’IUOUS)
minimum numberM of random samples which weremﬁaiurfmﬁga err](s)szr;bt?lli? '; holds tit™* = %, then
needed to recover a sparse sigmaWwith N = 100, X Pi); ' Let P y ‘A , d
and K = 10 from random Gaussian and Bernoulli , 09" &t Yim = [y1:.~~7yM], an

. o AM 2 [a ay|’. Suppose that™ # x*. We
measurements using tife-formulation in (2), overs00 that b T ]ZM'AM d _ AMyt b .th )
random trials. We plot a histogram of these numbers, aH@‘é%M%yll=M ? th 7\] ?\2 }(;?:M . )I( ff oth x
we see that they exhibit high variance, and so relying X" be SHQAE E(Tr: )- t|men5|ona a |tne space
conditions that guarantee recovery with high probabilit éyl:”é N | x}. e_ne>,< megstl;]remerr]] Loass(;as a
often means taking many unnecessary samples. T om hyperplangns1 = a4, X" throughx- an

motivates the need for sequential compressed sensffigyces the dimension of thef;me subspgce of fea5|ble
utions by 1. In order for x* to remain feasible

scenario that can adaptively minimize the number _ LM
samples for each observed which we describe next. ¢ SEPM + L, it must hold thatyar1 = ap. X7
Since we also havey, 1 = a), ;x*, then x

remains feasible only if%™ — x*)ay1 = 0, i.e.
I1l. STOPPING RULE IN THE NOISELESS CONTINUOUS it ay4q falls in the N — 1 dimensional subspace of
CASE RY corresponding taVull((x™ — x*)’). As apryq IS

We now analyze the sequential CS approach for tfiandom and independent of'’ and of the previous
case when the measuremeatxome from a continuous Samplesay, ..., ay, the probability that this happens(s
ensemble (e.g., the i.i.d. Gaussian ensemble), having fg¥ent with measure zero). See Figure 2 for illustration.
property that a new measuremeny;; will not be in i
any lower-dimensional subspace determined by previous
measurement$ai 'f\il with probab|||ty 1. Suppose that Clearly, if we obtaink™ = x*, then the solution will
the underlying sparse signat € RN has K non-zero hot change with additional samples® is always in the
components (We denote the number of non-zero entri@Sible set, and the feasible set is Shrinking with each
in x by ||x|0). We sequentially receive random measurdew sample. The stopping rule can be simplified further:
mentsy; = a;X*, where for concreteness ~ ./\/'(07 [) if x™ has fewer tharl/ non-zero entries, thep™ = x*

is a N-vector of i.i.d. Gaussian samples, but the analysyéth probability 1.



0 ”X!|o still has probability zero. Hence, with probability

/\_ there is only one solution witfix||o < M, namelyx*. OJ
20t 1
0 ‘ ‘ ‘ Consider an example in Figure 3 wifii = 100, and

0 10 |I§<(|)| 30 40 K = 10. We keep receiving additional measurements
15 ‘ ‘ 1 ‘ and solving (1) until we reach one-step agreement,
10} ] %M = xM+1 The top plot shows thatx ||, increases
S’W ‘ ‘ ] linearly with M until one step agreement occurs at

0 10 I _2% | 30 e M = 35, at which point it drops td = 10 and a and

y 2 we recover the correct sparse solutis?! = x*. The

5 M ' 1 middle plot shows the monotonic increase|i ||; (as

00 m 2 0 20 the feasible set is shrinking witM). The bottom plot
M shows the error-norm of the solutiofig? — x*||,. On

average it tends to go down with more observations, but
Fig. 3. Gaussian ensemble examphé:= 100, and K = 10. (Top): non-monotonically. AfterM = 35 the error becomes
%M ]lo. (Middle): [|%M||1. (Bottom): [[x* — %™ ||2. zero. We see that in the ideal conditions of no mea-
surement noise, sparse unknown signals and Gaussian
measurement ensembles, the number of measurements

Proposition 2: For a Gaussian (continuous) measuré&2" be indeed minimized by a simple stopping rule.

ment ensemble, ifxM ||y < M, thenx™ = x* with
probability 1.2 IV. STOPPING RULE IN THEBERNOULLI CASE

Proof. Let A = AM to simplify notation. ThenA In this section we study a simple but popular measure-
is M x N, with M < N. The key fact about random ment ensemble that is not one of the generic continuous
matrices with i.i.d. entries from a continuous distribatio ensembles described in the previous section. Suppose
is that any M x M submatrix of A is non-singular that the measurement vectoes have equiprobable
with probability 1%. Let Z be the support of*, i.e. jid. Bernoulli entries+1. A difference emerges from
Z = {i | ; # 0}. Suppose that there is anothethe Gaussian case: the probability that all x AL
sparse feasible vectat # x* with support.7, such sybmatrices of4™ are non-singular is no longep.
that|7| < M. There are two possibilitief C J and This makes it possible (with non-zero probability) for
A 7& 7N J. We show that in both cases 7& x* can xM+1 o agree withx™ even thoughfcl\/[ 7& x*, and
occur only with probability zero. for erroneous solutiong to have cardinality less than

First supposeZ C J. Thenx — x* € Null(A), and ). We modify the stopping rule to require agreement
support ofx — x* is a subset of7, hence it is smaller for several steps - success is declared only when last
than M. But that means that fewer thal/ columns T solutions all agree. We show in proposition 3 that the
of A are linearly dependent, which only happens witRrobability of error decays exponentially with We use
probability zero. the following Lemma from [17]:

Now consider the casg # ZNJ. First fix some such  Lemma 1:Let a be an i.i.d. equiprobable Bernoulli
setJ. We use the notatiof\J = { i € I | i ¢ J}. vector witha € {—1,1}". Let W be a deterministici-

The probability that the vectoy = Az, 7x7, , falls  dimensional subspace &V, 0 < d < N. ThenP(a €

into span(Ay) is zero, as|J| < M and the elements W) < 24—,

of A7\ s are independent off ; and x*. The number  We are now ready to establish the following claim:

of such possible subsets is finite (albeit large),  Proposition 3: Consider the Bernoulli measurement

so the event thay falls into span of any sucltly; case. Ifx¥ = M+l = | = xM+T thenx™ = x*
with probability greater than or equal fio— 27

2N'ote that a random measurement model is essential: for a fixed Proof, Suppose thak ™ # x*. Denote the support of
a4 2 M en et bk, o such et 7 an the supportof by 7. ALstepi we have
probability that it will have ambiguous sparse solutions dorandom AMxr = AMZM et W = {a | (f(M - x*)’a = 0},
choice of A is zero. i.e. the nullspace ofx™ —x*)’. ThenW is an(N —1)-

3This is easy to see: fi€' C {1,..,N} with |T| = M. Then dimensional subspace &N

probability thatAr,, € span(Ar,,...,Ar,,_,) is zero, asAr,, ) .
is a random vector iR and the remaining columns span a lower- Given a new random Bernoulli sampkey;;1, the

dimensional subspace. vector X can remain feasible at step/ + 1 only



if (xM —x*) apy1 = 0, i.e. if apryq falls into W. whereHyor 2 {z | y; =alw, 1<i< M+T}is the
By Lemma 1, the probability thah,;; € W is a affine space determined by all + 7" measurements,
most1/2. The same argument applies to all subseque@itr is a random variable that we will bound, and
samples ofa,;,; for i = 1,..,T, so the probability of d(x™, H,; ) denotes the distance frofd” to H;, 7.
having T-step agreement with an incorrect solution i$Ve characterizeF[Cr] and Var[Cr] — this gives us
bounded above bg~7. O a confidence interval on the reconstruction error using
the observed distane&{x", Hy;. 7). We can now stop
We now pursue an alternative heuristic analysis, motaking new measurements once the error falls below a
akin to Proposition 2. For the Bernoulli cages ||, < desired tolerance. Note that our analysis does not assume
M does not implyx™ = x*. However, we believe that a model of decay, and bounds the reconstruction error
if N221-M <« 1, thenx™ = x* with high probability. by comparing subsequent solutions. In contrast, related
Since the elements ef; belong to finite se{—1,1}, an results in CS literature assume a power-law decay of
M x M submatrix ofAM can be singular with non-zero entries ofx* (upon sorting) and show that with roughly
probability. Surprisingly, characterizing this probatyil O(K log N) samplesx™ in (1) will have similar error
is a very hard question. It is conjectured [17] that thto that of keeping thd{ largest entries inx* [1].
dominant source of singularity is the event that two We now outline the analysis leading to the bound
columns or two rows are equal or opposite in sign. Thia (4). Consider Figure 2 again. The true sparse signal
leads to the following estimate (hef€,; is M x M):* x* lies on the hyperplanél,;, . Let §7 be the angle
P(det Xay = 0) = (1 +0(1))M221_M. 3) _kl)_ﬁt;/vﬁeen the line connecting* with x™, and H; .
However the very recent best provable bound on this |x* — 5(MH2 - M7 (5)
probability is still rather far:P(det Xp; = 0) = ((2 + sin(f7)
o(1))M) [17]. If we assume that the simple estimatguhered; is a random variable — it is the angle between
based on pairs of columns is accurate, similar analysisfixed vector inRY~—* and a randomV — (M + T)
shows that the probability that a rando#l M x N dimensional hyperplane. The constaht in (4) is equal
matrix with M < N having all M x M submatrices to —L . We next analyze the distribution @f- and

sin(6r1)

non-singular is(1 + o(1))N221=M, hence ofCr.
Let L = N — M. In the Gaussian case (due to
V. NEAR-SPARSE SIGNALS invariance to orthogonal transformations) it is equivalen

In practical settings, e.g. when taking Fourier anff consider the angle between a fixed(L — Tz'
wavelet transforms of smooth signals, we may only hafimensional subspack and a random vectds in R™.

approximate sparseness: a few values are large, and nig&// Pe the span of the ladt - T' coordinate vectors,
are very small. In this section we extend our approach #'d b be i.i.d. Gaussian. Then:

this case; again, and in contrast to existing work, we do ! L T
not need to assume a specific near-sparse structure, like Cr = — = Zlf / fo (6)
power-law decay, but instead provide bounds that hold sin(6) P P

for any signal. . . 5 . o g
The exact one-step agreement stopping rule from Sec-USing the properties ofz, xz,, and inversexy, distri-

tion Il is vacuous for near-sparse signals||as|jo = N, butions [19] and Jensen’s inequality, we have an estimate

and all samples are needed for perfect recovery. \Wthe meanE[Cr] ~ (/% and an upper bound on both
start by considering Gaussian measurements, and sHo@ mean and the variance:

that the current reconstruction error can be bounded by JAD)
obtaining a small number of additional measurements, E[Cr] <4/ 5 (7
and measuring the distance between the current recon-

. . . L-2 L
struction and the affine space determined by these new Var[Cr] < T3 T (8)
measurements. In particular we show that the reconstruc-
tion error satisfies We describe the analysis in Appendix A. Using these

Y Y bounds in conjunction with the Chebyshev inequality,
[x* — x| = Cr d(x™, Hyryr), (4)

“4Probability that two columns are equal or opposite in sigttis™,  d(x™+T %M) but we can measuré(x™, Hy;, 1) directly without
and there are(M?) pairs of columns. needing to comput&™+7 giving tighter bounds.

SWe note that in [18] we used the faet(x™, Hpri7) <
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Fig. 4. (Top left) Mean estimate and (bottom left) standardiat®mn bound ofCr vs. averages over 2500 samplés= 100. (Top right):
Estimated and actual errors: power-law decay, and (bottght)rblocky signals.N = 80, T = 3.

p(la—Ela]| > ko,) < 77, we have the following result: number of extra samples. However, in the following we
give estimates and bounds that depend onlyIprand
Proposition 4:In  the Gaussian measuremenin that sense are weaker for the Gaussian case; they are
ensemble we havetx* — xM ||, < Ck d(x™, Hyr.7) however more generally applicable.
with  probability at least 1 — 5, Wwhere Suppose we have a current reconstructionand
Ok = \/% n k\/% — L, for anyk > 0. supposex* is the (unknown) true signal. We now take
new sampleg; = a/x*, for 1 < ¢ < T'. For each of these
In Figure 4 (left) we plot the mean estimate and th&2mples we computz = ajx"' to be thesamevectora;
standard deviation bound foE = 100 and a range @pplied to the current reconstruction. Denote the current
of T. We compare them to sample mean and standdf8or vector bys = xM —x*, and compute; = J; — ¥,
deviation ofC based on 2500 samples. They give verSJ"e deviations from the actual measurements. Then
good approximation for most of the range 6f > 2.
Standard deviation quickly falls off witl’, giving tight

confidence intervals. On the right plots we show that Pr&1e new measurements; are independent ok and

dicted errors (via Chebyshev inequality) follow cIoseI%f x*, hence ofs. The z's are i.i.d. from some (un-

th.e actual errors for two examp?Ie nea,r—s_parse 5'9”?"5.- cﬁ’heown) distribution, which has zero mean and variance
with power-law decay and a 'blocky’ signal consistin

5 . 9 L
of a few large coefficients and a few coefficients wit%jl'igr:ézrgﬁgé\y: ﬁi;iﬁg;a;ﬁaiuélgé eﬁ;‘?gﬂgﬁ&hgf
medium values. the estimate will depend on the exact distributioragf.
For instance, if we know that; is i.i.d. Gaussian then

A. Analysis for More General Ensembles z; is Gaussian as well, and we can get more accurate

To get the bound in (4) we characterized the distrestimates or bounds ah More generally, if we assume
bution of ﬁ and used the properties of the Gausthatd has a modest number of non-zero entries, then the
sian measurement ensemble. Analysigpffor general distribution ofz; can be approximated by a Gaussian by
ensembles is challenging. We now consider a simplen appeal to the central limit theorem. For simplicity
analysis which will give useful estimates whén<< L, suppose thal’ar(a;;) = 1, then the distribution of;
i.e. the case of main interest for compressed sensingj.i.d. Gaussian with zero-mean and variatjéd3. Let
and when the measurement coefficients are from Zr = Zf‘ij{fﬂ 2. Then Zp & H%—Tz ~ X5, i.e. x?
an i.i.d. zero-mean ensemble. The previous bound fandom variable withl' degrees OP freedom. Now to
the Gaussian case depended on blaththe number of obtain a confidence interval we use the cumulatife

samples used for the current reconstruction, @ndhe distribution. We pick a confidence levél o (for some

zi=ald, 1<i<T 9)



smalla > 0), and we use thg?2. cumulative distribution 1
to find the largest* such thatp(Zy < 2*) < .8

We note that in this analysis we use the distribution  0-5]
of a;, but we ignore the actual realization af. When
T < L this has little impact, however whéh =~ L then
the analysis in (5) would be more accurate.

—True err
= Conf. bound

Log errors
s
a1

VI. NOISY CASE -1

Next we consider the noisy measurement scenaric -15}
where the observations are corrupted by additive uncor
. . X . . i 5 ‘ ‘ ‘

related i.i.d. Gaussian noise with variancg: 0 20 20 50 80

yi=aw+n;, i€{l,. M} (10)

. . . Fig. 5. Error estimate in the noisy case: true error argh-gercent
To solve this problem one can apply the noisy version @bnfidence bound (on log-scaleéy; = 80, T' = 10.

basis pursuit (or a variety of other solvers) sequentially:

Y 1 ,
*M = argmlniHyl:M — AM.T||§ + Azl (1)

VIl. EFFICIENT SEQUENTIAL SOLUTION
Again we are interested in a stopping rule which tells

us thatx is reasonably close te*. Due to the presence .
reduce the number of measurements to as few as possi-

of noise, exact agreement will not occur no matter ho . .
) ; le. Yet, we would also like to keep the computational
many samples are taken. We consider a stopping rule . .
L ) . . .complexity of the sequential approach low. We focus
similar to the one in Section V. In principle, the analysis

. . ; on the ¢;-based formulations here, and show that there
in (4) can be extended to the noisy case, but we instea . o - )
o o ; IS some potential of using "memory” in the sequential
follow the simplified analysis in Section V-A. . . . .
. . setting for reducing the computational complexity. For
We establish that the reconstruction error can : . . .
: . . - e static setting there exists a great variety of appraache
bounded with high probability by obtaining a smal : ; . o .
to solve both noiseless and noisy basis pursuit in various

number of additional samples, and seeing how far the . :
measurements deviate froj — a/%™. With such a i?orms, e.g. [20]-[22]. However, instead of re-solving the

-7 o linear program (1) after each new sample, we would like
bound one can stop receiving additional measurements y : X

. ; {0 use the solution to the previous problem to guide the
once the change in the solution reaches levels that can

. ) o : current problem. It is known that interior point methods
be explained due to noise. The deviatiapnsow include . .
R o are not well-suited to take advantage of such “warm-
contribution due to noise:

starts” [20]. Some methods are able to use warm-starts

The main motivation for the sequential approach is to

zi =9 — vy = a,(&M —x*) —n,. (12) in the context of following the solution path in (11)
_ 9 . . s a function ofA [20], [23], [24]. In that context the
Let Zy = 3.z Consider the Gaussian measureime@aglution pathk(\) is continuous (nearby values afgive

ensemble for simplicity. Then; = a’d ,andZp & : :

7. 5 Th% diZtributin of i i;gzaussianTwith nearby solutions) enabling warm-starts. However, once
Bl +oz ~ X1 ) ) QZZ , a new measurement is received, this in general makes
mean zero and varianc@|; + o,,. Now following @ {he previous solution infeasible, and can dramatically

similar analysis as in previous section we can obtain Mange the optimal solution, making warm-starts more
estimate of|d/|3+ o2 from a sample o, and subtract challenging.

2 P 2
o, to get an estimate ofé[. We now investigate a linear programming approach

We show an e_xample in Figure 5 Wh_ere the true ermeg, arm.-starts using the simplex method to accomplish
appears along with our 95-percent confidence bound. s in the noiseless case. We can not use the solution
have N = 80, T" = 10, and 9, = 0.05. The bound ¢ar girectly as a starting point for the new problem at
clearly shows where the sparse signal has been recovelgd, 1/ 1 1" pecause in general it will not be feasible. In
(here the signal hak™ = 5 non-zero elements) and when[he Gaussian measurement case. unidés— x*. the
the noise floor has been reached. new constraink,, ;% =y, will be violated. One

SWe have that2 = %T gives the smallest value @f2 such that

probabilit% of observingZr is at leasto. That is to say, the bound  7In related work, [25] proposed to use Row-action methods dan-c
1817 < ZZ will hold for at leastl — « fraction of realizations of pressed sensing, which rely on a quadratic programming fotionla

z

Zr. equivalent to (1) and can take advantage of sequential nerasuts.



The efficiency of the approach depends on the number
of break-points in this piecewise linear path, but the
simulations results in the papers are very promising.

=

o

(=]
T

num iter.

ol
o
T

- ‘ VIII. CONCLUSION AND DISCUSSION

0 5 10 15 20 25 30 . .
M This paper presents a formulation for compressed

. _ . o sensing in which the decoder receives samples sequen-
Fig. 6. A comparison of the number of simplex iterations Whe[ﬂially and can perform computations in between samples.

solving (1) from scratch (LP1) and using the solution at stép- 1 . B
(LP2). We plot the average # iter. V3, over 100 trials. We showed how the decoder can estimate the error in

way to handle this is through a dual formulation, but w#he current reconstruction; this enables stopping once the

instead use an augmented primal formulation [26].  error is within a required tolerance. Our results hold for
First, to model (1) as a linear program we use the stagny decoding algorithm, since they only depend on the

dard trick: definer]” = max(z;,0), ; = max(—x;,0), distribution of the measurement vectors. This enables

K3

and x = xT — x~. This gives a linear program in “run-time” performance guarantees in situations where a-

standard form: priori guarantees may not be available, e.g. if the sparsity
i level of the signal is not known, or for recovery methods
min'x™ + 1'x (13)  for which such guarantees have not been established.
yiar = [AM — AM] [xj} . and xt,x~ >0 We have studied a number of scenarios including
noiseless, noisy, sparse and near sparse, and involving
Next we need to add an extra constraipt 1 = Gaussian and Bernoulli measurements, and demonstrated

aj,,,x" —a},, x . Suppose thaa, ;%" > yr 1. that the sequential approach is practical, flexible and
We add an extra slack variableto the linear program, has wide applicability. A very interesting problem is to
and a high positive cogp on z. This gives the following both extend the results to other measurement ensembles,
linear program: e.g. for sparse ensembles, and moreover, to go beyond
min1'x* + 1'x~ + Q= (14) results for partiCl_JIar ensembles and.develop a genergl
theory of sequential compressed sensing. Furthermore, in
Yim = [AM - AM] [;‘f} , and xT,x™ >0 many important applications the sparse signal of interest
may also be evolving with time during the measurement
process. Sequential CS with a notion of 'time of a
Now using x* and =z = aj, ,(x)" — measurement is a natural candidate setting in which to
aly, 1 (X))~ —yr41 vields a basic feasible solution toexplore this important extension to the CS literature.
this augmented problem. By selectidylarge enough,  We also remark that there is a closely related problem
z will be removed from the optimal basis (i.eis set to of recovering low-rank matrices from a small number
0), and the solutions to this problem and i +1)-th of random measurements [29], [30], where instead of
sequential problem are the same. searching for sparse signals one looks for matrices with
We test the approach on an example with= 200, low-rank. This problem admits a convex 'nuclear-norm’
K =10, and100 trials. In Figure 6 we plot the numberrelaxation (much akin té; relaxation of sparsity). Some
of iterations of the simplex method required to solve thef our results can be directly extended to this setting
problem (1) at stepV/ from scratch (LP1) and using— for example if in the Gaussian measurement case
the formulation in (14) (LP2). To solve (13) we firstwith no noise there is one-step agreement, then the
have to find a basic feasible solution, BFS, (phase f8covered low-rank matrix is the true low-rank solution
and then move from it to the optimal BFS. An importantith probability one.
advantage of (14) is that we start right away with a BFS, Finally we comment on an important question [6], [31]
so phase 1 is not required. The figure illustrates that fof whether it is possible to do better than simply using
large M the approach LP2 is significantly faster. random measurements — using e.g. experiment design or
We note that recently a very appealing approadctive learning techniques. In [6] the authors propose
for sequential solution in the noisy setting has bedo find a multivariate Gaussian approximation to the
proposed based on the homotopy continuation idea [2ppsteriorp(x |y) wherep(y | x) exp(%lIY— Ax|?),
[28], where a homotopy (a continuous transition) iandp(x) o< exp(—Al|x||1). Note that MAP estimation in
constructed from the problem at stép to the problem this modelx = arg maxy p(x | y) is equivalent to the
at stepM + 1 and the piecewise-linear path is followedformulation in (11), but does not provide uncertainties.

/ ! —
Ymi1 = ay o x —ahx —z, and z>0



Using the Bayesian formalism it is possible to do ex10]
periment design, i.e. to select the next measurement to
maximally reduce the expected uncertainty. This is a vepy;
exciting development, and although much more complex

M. Cetin, D. M. Malioutov, and A. S. Willsky, “A variatioal
technique for source localization based on a sparse signah#
struction perspective,” iIlCASSP 2002.

E. J. Candes, M. Wakin, and S. Boyd, “Enhancing spaisity
reweighted |1 minimization,” 2007, technical report, Califia

than the sequential approach presented here, may red[Li(Z:e'”S“tUte of Technology.

the number of required samples even further.

APPENDIXA
DERIVATION OF THE DISTRIBUTION FOR

Consider E[sin()?]
5, Bl

EE '
Blpm] = 1. In fact Elj5z] follows a Dirichlet
distribution. ThereforeE[sin(6)?] = L. [16]

Using Jensen’s inequality with the convex function

1 [13]
inf

E[(xL12?) /IxIl3). Since
1, and eachz; is ii.d., we have

(14]

(18]

V1/z, z >0, we haveE[1/sin(0)] >/ &. [17]
Now, El i) = =3 (for T > 2). This is true

18

pecause Eloshye] = (3, 2) /(50 07) = 09

[19]

L+ (Shge?) /(Zhia?) = 14+ (L - D)5
The second term is a product of &2 random [20]
variable with (L — T') degrees of freedom and an
inversey? distribution with T degrees of freedom:
E[Y g2} = L-T, and Elr=r—] = 715,

see [19]. Nowl + (L — T) /(T —2) = (L — 2)/(T — 2).

[21]

1
T

: . . . , 22
Finally, using Jensen’s inequality with the concav[e

function vz, Elg] <4/ 175
[23]
REFERENCES

(1]
(2]
(3]

E. J. Candes, “Compressive sampling,”’Rmoc. Int. Congress of [24]
Math, 2006, Madrid, Spain.

D. Donoho, “Compressed sensindEEE Trans. on Information [25)
Theory vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

M. Lustig, D. L. Donoho, and J. M. Pauly, “Sparse MRI: [26]
The application of compressed sensing for rapid MR imaging,”
Magnetic Resonance in Medicineol. 58, no. 6, pp. 1182-1195, 7]
Dec. 2007.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, ThSu

K. F. Kelly, and R. Baraniuk, “Single pixel imaging via com- [28]
pressive sampling,JEEE Signal Processing Magazineol. 25,

no. 2, pp. 83-91, Mar. 2008.

W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressiv[?g]
wireless sensing,” innt. Conf. on Information Processing in
Sensor Networks (IPSNApril 2006.

F. Steinke, M. Seeger, and K. Tsuda, “Experimental desan [30]
efficient identification of gene regulatory networks usimgrse
Bayesian models BMC Systems Biologyol. 1, no. 51, 2007. [31]
S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic
decomposition by basis pursuit3IAM J. Scientific Computing

vol. 20, no. 1, pp. 33-61, 1998.

J. Tropp, “Greed is good: Algorithmic results for spargp@x-
imation,” IEEE Trans. Info. Theoryvol. 50, no. 10, pp. 2231-
2242, Oct. 2004.

R. Chartrand and W. Yin, “Iteratively reweighted algbrns for
compressive sensing,” ICASSP 2008.

(4]

(5]

(6]

(7]

8l

(9]

] E

. Cands, J. Romberg, and T. Tao, “Robust uncertaintycjplies:
Exact signal reconstruction from highly incomplete frequen
information,” IEEE Trans. on Information Theoryol. 52, no. 2,
pp. 489-509, Feb. 2006.

D. P. Wipf and B. D. Rao, “Sparse Bayesian learning fosiba
selection,” IEEE Transactions on Signal Processjngol. 52,
no. 8, 2004.

M. Rudelson and R. Vershynin, “Sparse reconstructipednvex
relaxation: Fourier and Gaussian measurementsCIBS 2006
2006.

R. Baraniuk, “Compressive sensindEEE Signal Processing
Magazine vol. 24, no. 4, pp. 118-121, Jul. 2007.

D. L. Donoho and X. Huo, “Uncertainty principles and &e
atomic decomposition,JEEE Trans. on Information Theory
vol. 47, no. 7, pp. 2845-2862, Nov. 2001.

T. Tao and V. Vu, “On the singularity probability of raooh
Bernoulli matrices,"Journal Amer. Math. Sogvol. 20, pp. 603—
628, 2007.

D. M. Malioutov, S. R. Sanghavi, and A. S. Willsky, “Com-
pressed sensing with sequential observations|CIASSR 2008.
S. Kotz, N. Balakrishnan, and N. L. Johns@pntinuous Multi-
variate Distributions Wiley and Sons, 2000.

M. Figueiredo, R. Nowak, and S. Wright, “Gradient prdjen
for sparse reconstruction: application to compressed sgrsid
other inverse problemsJEEE Journal of Selected Topics in
Signal Processingvol. 1, no. 4, pp. 586-598, 2007.

S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky,
“A method for large-scale I1-regularized least squar¢éBFE
Journal on Selected Topics in Signal Processingl. 4, no. 1,
pp. 606617, Dec. 2007.

] I. Daubechies, M. De Friese, and C. De Mol, “An iterative

thresholding algorithm for linear inverse problems with arsjty
constraint,"Comm. in Pure and Applied Mathol. 57, pp. 1413—
1457, 2004.

M. R. Osborne, B. Presnell, and B. A. Turlach, “A new aggrh

to variable selection in least squares problerfigA Journal of
Numerical Analysisvol. 20, no. 3, pp. 389-403, 2000.

D. M. Malioutov, M. Cetin, and A. S. Willsky, “Homotopy
continuation for sparse signal representation,JGASSR 2005.

S. Sra and J. A. Tropp, “Row-action methods for compressed
sensing,” inICASSR vol. 3, 2006, pp. 868-871.

D. Bertsimas and J. N. Tsitsikligntroduction to linear optimiza-
tion. Athena Scientific, 1997.

P. J. Garrigues and L. El Ghaoui, “An homotopy algorithm
for the Lasso with online observations,” Meural Information
Processing Systems (NIR®)ec. 2008.

M. S. Asif and J. Romberg, “Streaming measurements in com-
pressive sensing: L1 filtering,” ifProc. of 42nd Asilomar Con-
ference on Signals, Systems and Computers. 2008.

B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum
rank solutions to linear matrix equations via nuclear normimin
mization,” submitted to SIAM Review2007.

R. Keshavan, A. Montanari, and S. Oh, “Learning low rank
matrices from O(n) entries,” ikllerton Conference.Oct. 2008.

Y. Weiss, H. S. Chang, and W. T. Freeman, “Learning congae@s
sensing,” inAllerton ConferenceSep. 2007.



