
Distributed Link Scheduling with Constant Overhead

Sujay Sanghavi
LIDS, MIT

sanghavi@mit.edu

Loc Bui
CSL, UIUC

locbui@uiuc.edu

R. Srikant
CSL, UIUC

rsrikant@uiuc.edu

ABSTRACT
This paper proposes a new class of simple, distributed algo-
rithms for scheduling in wireless networks. The algorithms
generate new schedules in a distributed manner via simple
local changes to existing schedules. The class is parame-
terized by integers k ≥ 1. We show that algorithm k of
our class achieves k/(k +2) of the capacity region, for every
k ≥ 1.

The algorithms have small and constant worst-case over-
heads: in particular, algorithm k generates a new schedule
using (a) time less than 4k + 2 round-trip times between
neighboring nodes in the network, and (b) at most three
control transmissions by any given node, for any k. The
control signals are explicitly specified, and face the same
interference effects as normal data transmissions.

Our class of distributed wireless scheduling algorithms are
the first ones guaranteed to achieve any fixed fraction of
the capacity region while using small and constant over-
heads that do not scale with network size. The parameter
k explicitly captures the tradeoff between control overhead
and scheduler throughput performance and provides a tun-
ing knob protocol designers can use to harness this trade-off
in practice.

Categories and Subject Descriptors
H.1 [MODELS AND PRINCIPLES]: Systems and In-
formation Theory

General Terms
Algorithms, Performance, Theory

Keywords
Scheduling, wireless networks, primary interference, match-
ings

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

1. INTRODUCTION
This paper presents novel distributed algorithms for schedul-

ing transmissions in wireless networks. The algorithms rep-
resent the first instance in which any arbitrary fraction of
the capacity region can be achieved with constant overhead.
In addition, our algorithms are very simple. We now moti-
vate our work and summarize our contributions.

The task of wireless scheduling is challenging due to the si-
multaneous presence of two characteristics: interference be-
tween transmissions, and the need for practical distributed
implementation. In any given wireless network, interference
effects result in a fundamental upper limit on the data rates
that any scheduling algorithm – distributed or otherwise –
can hope to achieve. This fundamental limit, or capacity re-
gion, serves as a benchmark against which the performance
of various distributed scheduling algorithms can be com-
pared.

In practice, the need for distributed implementation in-
variably leads to an overhead, as the same time, power and
bandwidth resources that could have been used for data
transmission have to, instead, be wasted on control signals
in an effort to combat interference. Most of the previously
proposed scheduling algorithms, which we survey and com-
pare in Section 2, manage to achieve the capacity region (or
approximations thereof) using algorithms in which the time
and communication overheads grow with network size.

Most of these algorithms attempt to maximize scheduling
performance while ignoring (i.e. not explicitly accounting
for) the control overheads. This is clearly a problem from
the perspective of modelling wireless resource usage. In par-
ticular, it may be the case (especially for large networks)
that after using a large – and unaccounted for – portion of
resources for control signalling, the algorithms perform well
with regards to the benchmark in the remaining portion
used for data transmission.

Scheduling algorithms with growing overheads exacerbate
this problem, to the extent that it is in general not im-
mediately clear what relation the claimed scheduling per-
formance1 has to the actual efficiency of overall resource
utilization in general networks. In recognition of this fact,
the papers make (sometimes convincing, but heuristic) ar-
guments as to why their algorithms have manageable over-
heads.

In our paper we adopt a more principled approach of
taking the overheads into account a priori in the perfor-
mance evaluation. This fact, along with the fact that our

1which is typically compared to the benchmark “capacity
region” or “100% throughput region”

4k+221 21 4k+2

Scheduling Scheduling

qt−1 qt

Time Slot t − 1 Time Slot t

It−1 It

Figure 1: Each scheduling cycle is divided into a
control part and a data part. The control part con-
sists of 4k + 2 phases – each phase being the length
of a round-trip between neighbors – after which a
new set of active links will be decided. This new set
is active for the data part of the cycle. The whole
process is repeated in the next cycle with updated
queues. t counts the cycle number.

algorithms have constant overheads, implies that for our
algorithms it is clear (i) how efficiently the overall wire-
less resources are utilized, (ii) how we can tradeoff between
scheduling performance and control overhead, and (iii) how
a system designer can choose her operating point on this
tradeoff. These three aspects are elaborated on below, after
a brief description of our results.

As an aside, note that the modelling probem outlined
above is not present in the (algorithmically closely related)
task of switch scheduling. This is because in switches the
computation resources used in the overheads are separate
from the constrained resources that need to be efficiently
scheduled – namely, the crossbar switch. Growing overheads
thus do not need to figure in the accounting of the utilization
of the constrained resource. However, in wireless networks
the overheads use the same resource as the one that has to
be efficiently scheduled, and hence growing overheads are a
problem. The need for fast algorithms in switches is driven
primarily by practical hardware limitations.

Growing overheads are also undesirable from a wireless
protocol implementation viewpoint. Besides possible re-
source wastage, growing overheads have the potential to in-
troduce dependencies on network size into MAC scheduling,
complicating protocol design. We are not the first to recog-
nize the need for protocols with constant overheads: some
recent pieces of work [1, 2, 3] also propose constant-overhead
algorithms. Their results and approaches are summarized
and compared to ours in Section 2. These existing constant-
overhead algorithms can guarantee at most half of the ca-
pacity region (in the portion of resources dedicated to data
transmission), and essentially involve doing enhanced con-
tention resolution as a way to approximate maximal match-
ing in constant time. As opposed to these protocols, our
algorithms can capture any desired fraction of the capacity
region (in the data transmission part), and do not attempt
enhanced contention resolution. Thus our work differs from
the existing work in methodology, and goes beyond in terms
of performance.

In this paper, we present a class of simple distributed algo-
rithms for scheduling in the “node exclusive” or “primary”
interference model. In this model any node in the network
can communicate with at most one other node at any time.
This is an important model with a rich history of dedicated
work, which we survey in Section 2.

In our algorithms bandwidth is assumed to be fixed and
time is divided into scheduling cycles, with a new schedule

generated by the algorithm in every cycle. In our paper,
as in others in this area, the length of a cycle is left to
the protocol designer. Our algorithms partition each cycle
into two parts: a scheduling (control signalling) part and
a service (data-transmission) part. Figure 1 depicts this
partition.

The algorithm in our class corresponding to parameter
value k requires that the length of the scheduling part be
4k + 2 round-trip times, where one round-trip time is the
amount of time required for a node to make a very basic two-
way handshake with a neighboring node. This algorithm is

then guaranteed to achieve a fraction
“

k
k+2

”
of the capacity

region during the data part of the cycle, and for any network.
Also, in any scheduling cycle, the algorithm requires at most
three control signal transmissions, for any k. Also, the size of
each control transmission is fixed a priori and is independent
of k or network size. Finally, each node may have to perform
at most one computation, which is just taking the difference
of two integers given to it.

The partitioning of the scheduling cycle thus explicitly
captures the wastage in control signalling: the fraction of
resources wasted is the ratio of the length of the control
part to the length of the overall cycle.

A larger value of the parameter k requires a longer ab-
solute length of the control part, and in return guarantees
better performance in the data part, as explicitly detailed
above. Thus k captures the overhead-performance trade-
off. Our class thus provides the protocol designer a tunable
knob with which to optimize performance, with respect to
other system considerations. One such consideration that
may have a direct bearing on the appropriate choice of k is
the length of the scheduling cycle. If long cycles are deter-
mined to be feasible – where “long” is as compared to the
round-trip time – it may make sense to choose a protocol
with larger k. Conversely, short scheduling cycles may fa-
vor a small-k implementation. The choice of the parameter
k may depend on network characteristics like mobility and
arrival statistics; however, it does not depend on network
size.

In the rest of the paper we concentrate on two objec-
tives: specifying a scheduling algorithm that runs with the
above-mentioned control overheads, and showing that this
algorithm achieves the claimed capacity region during the
data part of the cycle. Thus, in the rest of the paper, the
term “capacity region” has to be interpreted as the capacity
of the data portion of the overall cycle. This will be com-
pared to the “100% throughput region” as it applies to the
data part.

The rest of the paper is organized as follows. In Section
2 we survey some of the existing literature most relevant
to our paper, and compare our results. Section 3 lays out
the formal system model for scheduling in the presence of
primary interference. Section 4 presents our parameterized
class of algorithms, along with examples, illustrations and
discussion. Section 5 proves the performance of our algo-
rithm for arbitrary networks. In Section 6 we investigate
the performance of our algorithm for a simple grid network.
We conclude with a discussion in Section 7.

2. BACKGROUND AND EXISTING WORK
Scheduling in the presence of interference constraints is a

central problem in communication networks. In this sum-

mary, we will mainly concentrate on the work involving
primary interference constraints, also known as the “node-
exclusive” model in wireless networks. Primary interference
constraints arise both in wireless networks and input-queued
crossbar switches in Internet routers, and the results of the
papers listed below are often of interest in both applications.
In the following, “complexity” refers to the number of op-
erations/amount of time that has to be spent every time a
new schedule has to be found.

Hajek and Sasaki [4] introduced the primary interference
model, which they studied in the wireless context and for
fixed given arrivals. Tassiulas and Ephremides [5] were the
first to consider stochastic arrivals in general interference
models, of which primary interference is a special case. They
characterized the maximum attainable capacity region, and
also presented a centralized algorithm guaranteed to achieve
it. In the case of primary interference, this algorithm boils
down to finding maximum weight matchings (with queue
lengths being weights). This algorithm thus has Ω(n2) com-
plexity. McKeown et. al. [6] also showed the same result
for switches.

The need for speedy implementation and low overhead
spurred the development of algorithms with lower complex-
ity (but possibly higher delays). Tassiulas [7] studied ran-
domized centralized algorithms that achieve the capacity re-
gion with O(n) complexity. This algorithm samples a new
candidate matching uniformly from the set of all matchings,
and switches schedules to this new sample if and only if it
represents a larger weight. For the case of switches, this
algorithm was de-randomized by Giaccone et. al. [8]. A
distributed implementation of [7] for wireless networks was
proposed by Modiano et. al. [9], with the weight comparison
between matchings being done via an averaging mechanism.

Weller and Hajek [10] showed that any algorithm that
uses a maximal matching in every time slot can achieve half
the capacity region. They showed this result for determin-
istically upper-constrained traffic. Dai and Prabhakar [11]
showed the same performance holds for stochastic packet ar-
rivals as well. Lin and Shroff [12] extended this result to the
case of flow arrivals and departures.

Recently, distributed algorithms achieving the entire ca-
pacity region have been proposed, see e.g. [9, 13, 14, 15].
This guarantee of course refers to the scheduling efficiency
with regards to data transmission, since there papers do not
account for resources used in overheads. Also, these proto-
cols have overheads that grow with network size.

All of the above algorithms involve complexities that grow
with network size. In some more recent work scheduling al-
gorithms with constant overheads have been proposed. Lin
and Rasool [1] showed that close to 1/3 of the capacity re-
gion can be achieved with O(1), i.e. constant, overhead.
Gupta et.al. [2] and Joo and Shroff [3] build on this result
to achieve close to 1/2 the capacity region with constant
overheads. These algorithms attempt to generate (approx-
imately) maximal matchings in every time slot using local
contention algorithms that terminate in O(1) time. Our ap-
proach in this paper is thus different from these papers, as
we do not attempt to resolve contention.

All the above papers consider single-hop traffic. Some
more recent developments have pushed in the directions of
multi-hop traffic and more general interference constraints:
see for example [16, 17, 18].

3. PRELIMINARIES
We now describe the (standard) model for scheduling in

the presence of primary interference, with the implicit un-
derstanding that the capacities and bounds refer to what
is achievable in the service part of a time slot. Consider a
wireless network modeled by a graph G = (V, E), where V
is the set of nodes and E is the set of links. We assume
that the time is slotted, denoted by t. Nodes communicate
data to other nodes in the form of packets, whose size is
normalized so that each packet can be communicated in one
time slot. All traffic is assumed to be single-hop. Let At(e)
denote the number of packets arriving at time t for trans-
mission over link e, and At be the vector of all arrivals at
time t. The packets in At can be communicated at time slot
t or later. The arrival process At is assumed to be indepen-
dent and identically distributed across time2, with average
arrival rate vector a = E[At] and bounded second moment
E[A′

tAt] < ∞. The arriving packets are stored in queues,
of which there is one for each link. Let qt(e) be the queue
length associated with link e at time t, and qt be the vector
of queue lengths at time t. We assume there is no a pri-
ori upper bound on the maximum queue size, so there are
delays but no packet drops.

Links can be active or inactive. Each active link can trans-
mit one packet in its queue. In this paper we work with the
node-exclusive spectrum sharing model of primary interfer-
ence in wireless networks, which requires that any node com-
municate with at most one other node in any time slot. This
means the set of simultaneously active links is constrained
to be a matching in G. We will use the binary vector It of
length |E| to denote the set of active links at time t, with
the convention that It(e) = 1 if and only if link e is active
and has a positive queue at time t. The queue lengths thus
evolve according to

qt+1 = qt + At+1 − It

Let I be the set of all feasible matching vectors I in G. The
capacity region C of the network is the strict convex closure
of all matchings: a ∈ C if and only if there exist non-negative
numbers λ1, . . . , λ|I| such that

a =
X

m

λmI(m) and
X

m

λm < 1

C has also been referred to in the literature as the “stability
region” and the “100% throughput region”. It is well known
[5] that any rate vector a /∈ C will lead to some queues in
the network being unstable. The task of a link scheduling
algorithm is to determine which links are to be activated
at any given time. Any algorithm which guarantees stable
queues for any a ∈ C is said to “achieve C”.

In this paper we will be interested in algorithms that
achieve a fraction 0 ≤ β ≤ 1 of the capacity region. The frac-
tion βC of the capacity region is the set of all arrival rates a
for which there exist non-negative numbers λ1, . . . , λ|I| such
that

a =
X

m

λmI(m) and
X

m

λm < β (1)

An algorithm is said to achieve βC if it can ensure queues
are stable for any a ∈ βC.

2It may be correlated across links. Time correlation can also
be allowed, but at the expense of more complicated proofs.

In our algorithms, the decision for which links become ac-
tive at time t is based on the pair (qt, It−1) of current queue
lengths and the last available schedule of active links. Con-
sider the algorithm corresponding to parameter k. Figure 1
summarizes the service structure for this algorithm. Each
time slot is divided into a scheduling part and a service
part. The scheduling part consists of 4k + 2 phases, during
which the set of active links in It will be decided based on
(qt, It−1). This new set of links remains active for the ser-
vice part of time slot t. The whole process is repeated in the
next time slot with updated queues. The length of a phase
is one round-trip time between adjacent nodes in G.

4. THE ALGORITHM
In this section we present our algorithm for determining

the new schedule It from (qt, It−1). To do so, we will need a
few simple definitions. In the following we will abuse nota-
tion by letting I denote matchings as well as the associated
{0, 1} valued vector of length |E|: I(e) = 1 if and only if
link e is in the matching I.

Recall that in I no two adjacent links can be active. An
augmentation A of a matching I is a path or cycle in which
every alternate link is in I, with the property that if all links
in A∩I are removed from I and all links in A−I are added3

to I, then the resulting set of links will remain a matching in
G. This process of changing I using A is called augmenting
I with A, and the resulting augmented matching is denoted
by I ⊕ A.

The size of augmentation A is the number |A− I| of links
in A that are not also in I. Note that any augmentation of
size k will have at most 2k + 1 links in it.

Two augmentations A1 and A2 are disjoint if no two links
in A1 − I and A2 − I are adjacent. This implies that I
can be simultaneously augmented by A1 and A2 and still be
a valid matching4. A is a set of disjoint augmentations if
every pair in A is disjoint. Clearly, if A is a set of disjoint
augmentations then I ⊕A will be a matching in G.5

Finally, for any time t, the gain of an augmentation A
to It−1 – the matching used in the previous time slot – is
defined as

gaint(A) :=
X

e∈A−It−1

qt(e) −
X

e∈A∩It−1

qt(e) (2)

If the queue lengths qt(e) are considered to be the weights
on links, then gaint(A) represents the change in the weight
of It−1 if it is augmented by A. Similarly, the gain of a set
A of disjoint augmentations is the sum of the gains each
augmentation in that set.

Our algorithm obtains It by augmenting It−1 with a set of
disjoint augmentations of size at most k and positive gain.
The process is illustrated in the example below:

The bold lines in the left-most figure indicate links in It−1.
The dotted lines in the central figure indicate the links in
augmentation A. The bold-dotted lines are in A∩ It−1, and
the thin-dotted lines are in A− It−1. It is obtained by aug-
menting It−1 with A. The bold lines in the last figure are

3Here A − I denotes the set of links in A but not in I.
4Note that a link in I can be part of both A1 and A2 even
if they are disjoint.
5I ⊕ A is I augmented by every A ∈ A. The fact that the
augmentations are disjoint means that this can be done in
any order.

It−1 It = It−1 ⊕ AA

the links in It. The idea of using fixed-length augmentations
to obtain aproximations to maximum-weight matching has
been used previously (see e.g. Pettie and Sanders [19]) in a
different, pure graph-theoretic context to find an approxima-
tion to maximum-weight matching with linear complexity.

In our algorithm, augmentations are built in a random
distributed fashion. We now present a simplified example
to aid in the visualization of how our algorithm makes one
augmentation.
Example 1: Augmentation Building in the Absence
of Contention

Consider Figure 2, which depicts our algorithm operating
in phases on a simple graph. The bold links in the top left
graph of Figure 2 are the links of It−1.

In our algorithm, an augmentation begins at a seed and
ends at a terminus. This seed is active in phase 1. When
a node is active, it tries to elongate its augmentation A by
adding links as follows:

1. if the node has a link in It−1 that is not already in A,
it adds It−1 to A.

2. else, it adds a random new link to A.

Every time a link is added, for the next phase the currently
active node becomes inactive, and the new end-node be-
comes active instead.

As seen in the first figure, node a is the only seed and is
active in phase 1. It adds link (a, b) to its (currently empty)
augmentation in phase 1, since (a, b) ∈ It−1 and it is not
currently in a’s augmentation. For phase 2, a is inactive
and b is active.

Node b can choose to add any one of the links (b, c) or
(b, f). Say it chooses (b, c). So, for phase 3, node c is active
and b is inactive.

Node c adds the link (c, d), because it is a new link in It−1.
So in phase 4 d becomes active. d picks randomly from links
(d, e) and (d, h). Say it picks (d, e).

Node e would have become active as a result, but it has
no further links to add to the augmentation. So it instead
becomes the terminus of the augmentation.

Terminus e then evaluates the gain

gaint(A) = qt(b, c) + qt(d, e) − qt(a, b) − qt(c, d)

using net queue length information that has been passed on
along a, b, c, d, e during the building of the augmentation.
In our example, it finds that gaint(A) > 0 and decides to
switch. This decision is then passed on back along the links
(e, d), (d, c),(c, b) and (b, a) over the next 4 phases. Then,
the links in A are switched to obtain the final graph above,
where bold links are the ones in It−1 ⊕ A. �

The above algorithm illustrates the simple basic idea un-
derlying our algorithm, namely: (i) randomly seed and grow
disjoint augmentations, and (ii) switch all the augmenta-
tions that have positive gain.

h

c
a

b d

e

f

g

c
a

b d

e

f

g

c
a

b d

e

f

g

c
a

b d

e

f

g

c
a

b d

e

f

g

c
a

b d

e

f

g

h h

hh

h

Figure 2: Augmentation building in our algorithm
(Example 1). The � indicates active nodes. Dashed
lines are links are in A. Bold lines in the first 5
graphs are links in It−1, and in the last graph are
links in It−1 ⊕ A. © indicates terminus.

The above example illustrated the augmentation build-
ing procedure in an idealized network where it was the only
augmentation. In an actual wireless network however, aug-
mentations are seeded at random. This means that there
will be multiple augmentations, which will have to contend
for access to links while ensuring that they remain consistent
(i.e. valid augmentations) and disjoint.

We now succinctly describe the algorithm that makes It

from (qt, It−1). A more realistic, and more detailed, example
and a brief discussion follows the description.

In our algorithm each augmentation builds up in phases
starting from a seed and ending in a terminus. For any
phase, and node v, let aug(v) denote the augmentation (if
any) that v is a part of in that phase. Also, the term “new
link” for a node v refers to any link (u, v) that is not already
in aug(v). For any active v except the seed, one of its links
will be in aug(v) and all the others will be new. Similarly, a
“new neighbor” for v is any node that shares with v a link
that is new for v.

We require the first link a seed adds be a link in It−1, if
one is incident on the seed. Else it adds a random link. In
each phase from 2 to 2k+1, every augmentation alternately
needs links in It−1 and links outside It−1.

Algorithm Description
1. Initialization: Before phase 1,

(a) each node randomly decides to be a seed with
probability p.

(b) Each seed chooses an intended size for its aug-
mentation, uniformly from the set {1, . . . , k}.

The seeds are the active nodes in phase 1.

2. Iteration: Every seed s that has some link (s, r) ∈
It−1 adds (s, r) to aug(s) and sends a REQ to the
corresponding r in phase 1. Every other seed sends a
REQ along a random link. In each phase from 2 to
2k +1, each active node v tries to extend its aug(v) as
follows:

(a) If aug(v) needs a new link It−1, and if one such
link (v, u) ∈ It−1 exists, then (v, u) is added to
aug(v). Also, v sends a REQ to u along (v, u). If
no such link exists, v becomes terminus.

(b) If aug(v) needs a new link outside It−1, but size(aug(v))
is already as intended, v sends no REQ and be-
comes terminus. Otherwise, v sends REQ to a
random, uniformly chosen, new neighbor. If no
new neighbor exists v becomes terminus.

The REQs above may face contentions. In any phase
if active v sends REQ to w and

(a) any another active u also sends REQ to w in that
phase, a collision occurs. w does not ACK, and
v becomes terminus.

(b) If w is a used node, i.e. it is already part of an
augmentation, then it w does not ACK and v be-
comes terminus.

(c) If w is unused and there is no collision, then w
sends ACK to v. The link (v, w) is added to
aug(v). w will become active in the next phase
and v will become inactive.

Every node that becomes terminus is inactive in sub-
sequent phases.

3. Termination: After 2k + 1 phases, every terminus w
checks the following three conditions

(a) if it is adjacent to its seed v,

(b) if aug(w) began and ended with links in It−1,

(c) if aug(w) has not reached its intended size.

If all of above are true, link (u, w) is added to aug(w).

Also, in either case, every terminus w evaluates gaint(aug(w))
and makes the decision of switching if and only if
gaint(aug(w)) > 0.

4. Back-propagation and Switching: Switching de-
cision is relayed back in phases 2k + 2 to 4k + 2 from
terminus to seed, along the path of each augmentation.
These communications will be non-interfering. After
phase 4k + 2, all nodes in augmentation implement
decision.

Discussion
Note that in our algorithm there is a small but crucial dif-
ference between links in It−1 and links outside It−1 with
regards to the timing of link addition to an augmentation.
Specifically, a link in It−1 is added before a REQ is sent
(and irrespective of whether an ACK is received), while a
link outside It−1 is added only after a REQ is sent and and
ACK is received. This difference in timing ensures that aug-
mentations are consistent, i.e. whenever a link e /∈ It−1 is

Figure 3: The working of our algorithm in phases
(Example 2). Bold lines in first seven graphs are
links in It−1, in the last graph are links in It. Dashed
lines are links in augmentations. � denotes active
nodes and © denotes terminus nodes. Arrows depict
the REQ signals in each phase.

added to A, all the links in It−1 adjacent to e are also added
to A.

It is easy to see that our algorithm will ensure disjointness
of augmentations. Consider the addition of a link (v, u) /∈
It−1 to aug(v) by an active node v in some phase. This
will only happen if v sends a REQ to u in that phase and
u responds with an ACK. Now, if u is already a member
of an augmentation by that phase (including the case of it
being already a member of aug(v) itself) then u will not
respond with an ACK. Also, if any other augmentation tries
to add some other link (w, u) /∈ It−1 at the same phase,
then neither augmentation will be successful. Thus no two
adjacent links outside It−1 will be part of augmentations.
Thus all augmentations are consistent and disjoint. Note
of course that any link (z, u) that is in It−1 can be added
to another augmentation. This however does not hurt the
disjointness.

We now illustrate how our algorithm works by means of
a slightly detailed example.
Example 2: Working of the Algorithm

Consider the network shown in Figure 3. The first graph
shows the schedule It−1 of the previous time slot. The sec-
ond graph shows the nodes active in phase 1, which are the
seeds of the network. Assume k = 2 and also that the in-
tended size chosen by every seed is also 2. Note that the
active nodes that have a link in It−1 incident on them im-
mediately include it in their augmentations, and also send
the REQ along that link. Other active nodes do not include
any links in their augmentations, and send REQs at random.

Since all REQs went to different targets, there were no
collisions and so there are four new nodes active in phase 2.
Again the newly active nodes that have a new link in It−1

incident on them immediately add it to their augmentation
and send REQs along them. Other newly active nodes send
REQs at random.

We see that two of the REQs sent in phase 2 will col-
lide. This means that the corresponding transmitters of the
collied REQs will become terminus of their augmentations,
which then stop growing. The other two augmentations con-
tinue growing.

In phase 4, the active node at the bottom sends REQ
to a used node (its own seed in this case). Hence, it does
not receive an ACK, and becomes the terminus. The other
active node in phase 4 adds its link without problems. How-
ever, the addition of another link to this augmentation would
make it exceed its intended size. Thus after the addition the
new node becomes terminus and does not further add links.

After the last phase 5, note that one of the augmenta-
tions (the bottom one) satisfies the conditions in step 4 of
the algorithm, namely: it began and ended with links in
It−1, its seed and terminus are joined by a link not in It−1

and the addition of this link does not violate the intended
size. Thus, this link is added to get the final set of disjoint
augmentations after phase 5 (=2k + 1).

These augmentations are switched depending on their gains.
In our example, two of the four augmentations are switched
and the other two are not. The switching decisions are re-
layed back in phases 6 to 10, after which the switching hap-
pens. The final graph depicts the resulting It. �

The example illustrates the fact that without possible the
last link addition in the “termination” part of the above
algorithm, we would not be able to build augmentations
that are (small) cycles.

Note that the information relayed on at each phase does
not grow with k or the network size: indeed, all that is
needed is the net gain of the augmentation up until the
current phase, and the identity of the first node (so that the
termination part of the algorithm can be implemented).

The probability p in the above algorithm is a parameter
that can be chosen by the system designer. If p is too high,
there will be too many seeds in the network which will result
in too much contention and not enough augmentations. if p
is too small, there will not be enough seeds to ensure a good
enough set of augmentations.

5. ANALYSIS
In this section we will prove that, for a given fixed integer

k ≥ 1, the algorithm described in Section 4 achieves the
fraction (k

k+2
)C when it builds augmentations of size at most

k. Broadly speaking, this result follows from two insights,
stated below as propositions.

Ours is a randomized algorithm: even for fixed values of
the link queue lengths, the new matching schedule is ran-
domly generated. In a landmark paper [7], Tassiulas con-
sidered centralized randomized algorithms that can achieve
the entire capacity region C. The algorithms in [7] gener-
ate a random new matching in every time slot. Links are
switched to be active according to the new matching gener-
ated at time t if and only if the weight6 of the new matching
is greater than the weight of the previous matching used in
time t − 1.

Tassiulas showed that if a particular randomized algo-
rithm has the ability to generate a maximum-weight match-
ing for qt from (qt, It−1) with probability at least δ > 0,
then that randomized algorithm achieves C. The probabil-
ity bound δ can depend on the graph G but should to be
independent of time t and queue lengths qt. So, for example,
if the centralized algorithm picks uniformly from the set I
of all matchings in G, then δ = 1

|I|
and so the algorithm will

achieve C.
Even in the centralized case, comparing and merging two

matchings takes O(n) time in the worst case. Constant time
algorithms can operate only in local neighborhoods, and it is
unlikely that global comparison can be achieved in this case.
Indeed, even generating a maximal matching7 may be an
O(n) process in the worst case. In light of these realizations,
it seems that constant-time algorithms may need to move
away from global generation and global comparison. This
may also imply a move away from trying to achieve the entire
region C to achieving a fraction βC.

Our first insight is that Tassiulas’ result [7] extends to the
case of approximately optimal matchings.

Proposition 1. Given any 0 ≤ β ≤ 1, suppose that an
algorithm has a probability at least δ > 0 of generating a
matching with weight at least β times the weight of the opti-
mal. Then, βC can be achieved by switching links to the new
matching when its weight is larger than the previous one,
and the link weights are the associated queue lengths. The
algorithm should generate the new matching It from the old
matching It−1 and current queue lengths qt.

The proof of Proposition 1 is presented in Appendix A.

6Where the weights on the links at time t are the queue
lengths at time t.
7A maximal matching is one to which no link can be added.

It is similar to the proof used in [7], but with a subtly
modified Lyapunov function to take into account the β-
approximation.

In light of Proposition 1, we look for ways to generate
matchings of approximately optimal weight. Also, this gen-
eration should finish in constant time, implying that changes
from It−1 to It have to be small and local.

The following lemma provides a key step towards gener-
ating such local changes in It−1. Some quick notation: for
any matching I, the term Iqt :=

P
e∈I

qt(e) refers to the
sum of the queue lengths of links that are in I. Also, for
any queue-length vector q, Iq stands for the matching with
the largest weight: Iqq ≥ Iq for all I ∈ I.

Lemma 1. Given any vector qt of queue lengths and ex-
isting matching It−1, there exists a set A∗ of disjoint aug-
mentations of It−1 such that

(It−1 ⊕A∗)qt ≥

„
k

k + 2

«
Iqtqt

and every augmentation in A ∈ A∗ has size(A) ≤ k.

The above lemma states that there exists a set A∗ of small
(size at most k) disjoint augmentations such that the weight
of the augmented matching will be close enough to the op-
timal weight. Given the existence of this A∗, and in light
of Proposition 1 above, all that is left to do is find an algo-
rithm which provably finds A∗ with probability at least δ.
We show that our algorithm indeed does this, and state the
overall result below.

Proposition 2. There exists a δ > 0 such that our algo-
rithm, operating using a fixed k ≥ 1, generates a matching
with weight within k

k+2
of the optimal with probability at least

δ, in any time slot t and for any values of (qt, It−1).

The proof of Proposition 2 and related lemmas, including
Lemma 1, is presented in Appendix B. Propositions 1 and

2 together imply that our algorithm achieves
“

k
k+2

”
C.

6. SIMULATIONS
In this section, we investigate the performance of our class

of algorithms via simulations. The primary purpose of this
investigation is to look at the delay performance of our al-
gorithms. In these simulations we compare our algorithm to
the Maximal Matching (MM) algorithm, which is the follow-
ing: at every time step a maximal matching8 is generated
and links in this matching are made active while others are
made inactive. Note that this algorithm, at least as stated
here and as simulated by us, is a centralized algorithm.

At present there do not exist no other constant-overhead
algorithms that can guarantee arbitrary fractions of the sta-
bility region. So we would like to compare our algorithms to
the existing constant-overhead algorithms [1, 2, 3]. Further-
more, each of these algorithms essentially tries to emulate
Maximal Matching via enhanced contention resolution. So,
for our simulations, we compare our algorithm directly with
the Maximal Matching algorithm itself, with the implicit
understanding that its performance would be better than
that of the existing constant-time protocols.

8Recall that a maximal matching is any matching to which
no link can be added without removing an existing link.

110 111 112 120

0 1 2

22

10

11 12 13 21

23 24 32

0.7λ0.7λ

0.7λ0.7λ

0.7λ0.7λ

0.7λ0.7λ

0.1λ

0.1λ

0.1λ

0.1λ0.1λ0.1λ

0.1λ 0.1λ 0.1λ

0.1λ0.1λ0.1λ

0.1λ0.1λ

0.1λ0.1λ

0.1λ0.1λ

0.1λ0.1λ

Figure 4: Network Topology.

Note of course that all of these algorithms, including the
centralized Maximal Matching algorithm, can guarantee at
best half of the capacity region, and so from the capacity
viewpoint they are not comparable: our algorthms can cap-
ture any fraction k/(k + 2) of the capacity region for any
k ≥ 1. We emphasize that in this section we compare only
the delay performance.

We ran our simulations on a simple grid network, shown
in Figure 4. The network is an 11x11 grid with 121 nodes
(represented by circles) and 220 links (represented by lines).
Each link has the unit capacity, i.e. it can transmit one
unit of data in one time slot, when active. The data arrival
model is as follows: on each link, in each time-slot, one unit
of data arrives with probability equal to the load on the link.
Otherwise, no data arrives.

Link loads in our example are parameterized by λ, and are
either 0.1λ or 0.7λ, as marked in the figure. It is clear that
the capacity region of this network corresponds to λ < 1.
The numbers 0.1 and 0.7 thus specify the direction in which
we are investigating the capacity region, while λ specifies
the extent of the capacity region that is captured along that
direction.

For any algorithm and network, as the load λ increases
the queue lengths will increase. Typically, as the load λ
grows towards a threshold the average of the node queue
lengths starts increasing rapidly and beyond this λ queues
are unstable (i.e. grow with time). The threshold provides
us with an estimate of the maximum load, i.e. the maximum
portion of the capacity region, that the algorithm can handle
with reasonable delays.

Notice that for our network, the maximum λ sustainable
by any algorithm – the “100% throughput load” – is equal
to 1: loads higher than this will correspond to arrival rates
that are outside the capacity region of the netwrok. This
is easy to see from Figure 4: at any central node, the total
load on all links incident on the node is λ. At most one of
these links can be scheduled in one time slot, and thus a
choice of λ ≥ 1 will result in the queues being unstable.

In Figure 5, we plot the average total queue backlog of
all links in the networks, in terms of λ. We have plotted
the performance of our augmenting algorithm for the cases
{k = 2, p = 0.2}, {k = 3, p = 0.2}, and {k = 3, p = 0.1}, as
well as the performance of the MM algorithm.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 T
ot

al
 B

ac
kl

og

Aug. (k=2, p=0.2)
Aug. (k=3, p=0.2)
Aug. (k=3, p=0.1)
MM

λ

Figure 5: Performance comparison to MM.

Notice first of all that even small-k implementations of
our algorithm can stabilize higher loads than MM in reason-
able networks like the one in the simulation. In particular,
while both MM and our algorithm for k = 2 both guar-
antee only half the capacity region, in the simulation our
k = 2 algorithm achieves close to 100% thourghput while
MM achieves only close to 85%. Also, the fact that k = 2 is
already so close to 100% means that k = 3 performs similar
to k = 2 in terms of achievable capacity. It however does
have a slightly better delay performance.

We note that in our simulated network the actual per-
formance of both MM and our algorithms is much better
than what is implied by the respective performance guaran-
tees, reflecting the fact that the guarantees represent con-
trived worst case scenarios for these algorithms. However,
as our simulations also show, there is still a difference in the
achievable throughput even over the enhanced performance
of MM.

Also observe that for small loads our algorithm has higher
queue sizes as compared to MM. This is because MM ensures
that every link will be scheduled, or there will be an interfer-
ing link scheduled instead. When loads are low, the number
of interfering links is small because the corresponding queues
are empty for large portions of the time. This leads to good
utilization. Ours algorithms are randomized, and do not en-
sure maximal usage. However, our simulations indicate that
the queue lengths of our algorithms are not unreasonable.

Finally, we note that the parameter p of a node becoming
a seed is a free parameter that can be set by the designer.
Our simluations seem to indicate that for reasonable values
of p, the exact value does not seem to have an overwhelminng
effect on performance. This seems to suggest that perfor-
mance may not be too sensitive to the exact choice of the
parameter.

To give another example, we ran another simulation on
the same network but probed the performance in a different
direction, i.e. with different relative loads on the links. In
particular, we made the heavy horizontal links with 0.7λ into
0.89λ, the lighter horizontal links 0.1λ are kept the same
and the vertical links are made into 0.01λ. That result is
presented in Figure 6.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

200

400

600

800

1000

1200

1400

1600

1800
A

ve
ra

ge
 T

ot
al

 B
ac

kl
og

Aug. (k=3, p=0.2)
MM

λ

Figure 6: Performance comparison to MM along a
different direction.

7. CONCLUSION AND DISCUSSION
This paper presents a novel class of simple distributed

wireless scheduling algorithms. Our algorithms can achieve
any fraction of the capacity region for data transmission, and
require constant overheads that do not scale with network
size. They represent the first instance in which both prop-
erties hold simultaneously. Our results are also interesting
from a practical standpoint the due to simple structure of
our algorithms, and our explicit accounting of the tradeoff
between overhead and scheduling performance.

The objective of this paper is to design simple algorithms
with appealing properties, not to announce a complete wire-
less protocol ready for implementation. In particular, care-
ful studies need to be done to arrive at the value of k that
would give the best performance in practice. This will likely
depend on the maximum length a scheduling cycle can have,
given mobility and other aspects of the network that have
been abstracted away in our model. An interesting avenue
for possible algorithmic investigation is to see how our ideas
adapt to designs for more general interference constraints.

APPENDIX

A. PROPOSITION 1 AND RELATED
LEMMAS

We now quickly develop some notation. In the follow-
ing, we will multiply vectors with each other but drop the
“transpose” symbol. Thus, for example, q2

t :=
P

e
(qt(e))

2

and Itqt :=
P

e
It(e)qt(e). Also, for a given q let Iq denote

any optimal matching for q, i.e. Iqq ≥ Iq for all I ∈ I.
The proof below parallels the development in [7, Section

5], of which it is an extension. The difference in the proofs
is that our Lyapunov function is a subtle modification of the
one used in [7]. Indeed, when β = 1, our Lyapunov function
is exactly the same as in [7].

Let Yt = (qt, It), and let its (countable) state space be Y.
We are interested in algorithms for which the process {Yt :
t ≥ 1} is an irreducible and aperiodic Markov chain. This is
clearly the case for our algorithm. To prove Proposition 1,
we show that a certain Lyapunov function V (Y), designed
below, has negative drift outside of a fixed finite subset of

Y. The well-known Foster’s criterion [20] will then imply
the stability of the system.

For a given fixed β, we now define a Lyapunov function
V (Y) = V1(Y) + V2(Y) on the state space (q, I), where

V1(q, I) = q2 and V2(q, I) = [(βIqq − Iq)+]2

In the above, we have used the convention x+ = max{x, 0}
for any real number x. In order to give the reader a roadmap
of the proof, we first prove Proposition 1 directly, assuming
certain lemmas hold. Subsequently we prove the lemmas.
Proof of Proposition 1:

The set {Y : V (Y) < B} is a finite subset of the state
space of Y . We will show that V (Yt) has negative drift
outside this set, for B large enough. From Lemmas 2 and
3 we have that if a ∈ βC then there exist positive constants
ǫ, c1, c2 and c3 such that

E[V (Yt+1) − V (Yt)|Yt] ≤ −ǫ
p

V1(Yt) + (2 + c2)
p

V2(Yt)

− δV2(Yt) + c1 + c3

If V (Yt) ≥ B then V1(Yt) ≥ (B −V2(Yt))+ and so the above
equation becomes

E[V (Yt+1) − V (Yt)|Yt] ≤ −
ǫ

2

p
V1(Yt) −

ǫ

2

p
(B − V2(Yt))+

+ (2 + c2)
p

V2(Yt) − δV2(Yt)

+ c1 + c3

Now, for B large enough, it follows that

E[V (Yt+1) − V (Yt)|Yt] ≤ −
ǫ

2

p
V1(Yt) if V (Yt) ≥ B

Given the above inequality, Foster’s criterion implies the
stability of the Markov chain Yt, and thus of the queues qt.
See the proof of [7, Prop. 1] for the exact application of this
result. Thus that the queues are stable whenever a ∈ βC. �

We now prove the lemmas used in the above proof.

Lemma 2. For any a ∈ βC there exist constants ǫ and c1

such that

E[V1(Yt+1) − V1(Yt)|Yt] ≤ − ǫ
p

V1(Yt) + 2
p

V2(Yt) + c1

Proof of Lemma 2:
E[V1(Yt+1) − V1(Yt)|Yt]

= E[(qt+1 − qt)(qt+1 + qt)|Yt]

= E[(At+1 − It)(2qt + At+1 − It)|Yt]

= E[(At+1 − It)2qt|Yt] + E[(At+1 − It)
2|Yt] (3)

We now look at each of the terms in (3) separately. For the
first term,

E[(At+1 − It)2qt|Yt]

= (a − It)2qt

= 2(a − βIqt)qt + 2(βIqt − It)qt (4)

Now, by the definition of a in (1),

2(a − βIqt)qt = 2

X

m

λmI(m)qt − βIqtqt

!

≤ 2

X

m

λm − β

!
Iqtqt

≤ 2

X

m

λm − β

!
1

|E|

p
V1(Yt)

where the second inequality above follows from the definition
of Iqt and the last inequality is proved as follows:

Iqtqt ≥ max
e∈E

qt(e) ≥
1

|E|

q
q2

t =
1

|E|

p
V1(Yt)

Also, 2(βIqt − It)qt ≤ 2
p

V2(Yt) and so from (4) we have
that

E[(At+1 − It)2qt|Yt] ≤ − ǫ
p

V1(Yt) + 2
p

V2(Yt)

where −ǫ = 2
`P

m λm − β
´

1
|E|

. Now,

E[(At+1 − It)
2|Yt] ≤ E[(At+1 + 1)2] ≤ c1

From the last two equations and (3) the lemma is proved.
�

Lemma 3. If the algorithm generates a β-optimal match-
ing with probability at least δ, then there exist constants c2

and c3 such that

E[V2(Yt+1) − V2(Yt)|Yt] ≤ −δV2(Yt) + c2

p
V2(Yt) + c3

Proof of Lemma 3:
Given Yt, let Eβ be the event {It+1qt+1 ≥ βIqt+1

qt+1}.
Then,

E[V2(Yt+1)|Yt] = P [Eβ |Yt] E[V2(Yt+1)|Yt, Eβ]

+ P [Ec
β |Yt] E[V2(Yt+1)|Yt, E

c
β]

≤ 0.P [Eβ |Yt] + (1 − δ)E[V2(Yt+1)|Yt, E
c
β]

= (1 − δ)E[((βIqt+1
− It+1)

×(qt + At+1 − It))
2|Yt, E

c
β] (5)

Now, by definition of Iqt , we have that βIqt+1
qt ≤ βIqtqt

and It+1qt ≥≥ Itqt − |E|. Thus,

(βIqt+1
− It+1) qt ≤ (βIqt − It)qt + |E|

≤
p

V2(Yt) + |E|

Also,

(βIqt+1
− It+1) (At+1 − It) ≤ At+1 + 1

Putting the above two equations into (5) proves the lemma,
since E[A2

t+1] = M < ∞. �

B. PROPOSITION 2 AND RELATED
LEMMAS

Lemma 1 says there exists a “good set” A∗ of augmenta-
tions: where each augmentation is not too large, and that
augmenting It−1 using the set represents a certain amount
of gain. We build up towards the proof of Lemma 1 by
designing a candidate set A∗ having augmentations of size
at most k. We will then prove the gain it represents is as
claimed by Lemma 1.

The symmetric difference S := It−1 △ Iqt of matchings
It−1 and Iqt is the set of links that are in exactly one of It−1

or Iqt . Links that are in both or in neither are excluded
from S. Consider the graph G′ := (V, S) containing only
the links in S. Since each I is a matching, a vertex in G′

has degree at most 2 and each connected component of S is
either an alternating path or even-length cycle. Also, each
component is an augmentation of It−1, so we can define the
size of a component in the same way as we defined the size
of an augmentation of It−1.

For any component C, let C1 := C ∩ Iqt denote the links
of C in the optimal matching and C2 := C ∩ It−1 be the
links in the current matching. Note that C1 and C2 are also
matchings in G and the terms C1qt and C2qt are as defined
before for matchings. Also note that size(C) = |C1|.

We build the set A∗ from S by finding a suitable set AC in
each component C of S. The following two lemmas ensure
this can be done.

Lemma 4. If component C of S is a path then there exists
a set AC of disjoint augmentations contained in C such that

1. size(A) ≤ k for every A ∈ AC

2. gain(AC) ≥ k
k+1

C1qt − C2qt

Proof of Lemma 4:
If C is small, with size(C) ≤ k, then let AC = {C} be

the set containing only C. This obviously satisfies both of
the above conditions, since gain(C) = C1qt − C2qt. So in
this case we are done.

So consider now a path C with size(C) ≥ k + 1. Starting
from any endpoint of the path, number all links in C1. Let
e1, . . . , ek+1 be the first k+1 links in C1. For each ei, 1 ≤ i ≤
k + 1, build a set Ai of disjoint augmentations by deleting
every (k+1)th link starting with ei: i.e., link em is deleted if
and only if m− i = 0 or m− i is divisible by k +1. Figure 7
shows this process for a simple example. After the deletions,
each remaining fragment of C will be an augmentation of
It−1, and will have size at most k. These fragments together
make the set Ai of disjoint augmentations.

Consider now the sets A1, . . . ,Ak+1, made from the links
e1, . . . , ek+1 above, respectively. It is clear that each link in
C2 will be a member of all k + 1 of these sets, and each link
in C1 will be a member of k of the sets. Recall from (2) that
the gain of any set A is the weight of all its links outside
It−1 minus the weight of all its links in It−1. Thus,

k+1X

i=1

gain(Ai) = kC1qt − (k + 1)C2qt

which means that there exists at least one j such that

gain(Aj) ≥
k

k + 1
C1qt − C2qt

Setting AC = Aj proves the lemma. �

Lemma 4 shows the existence of a good set of disjoint
augmentations in path components of S. We now use this
to prove a slightly weaker result for cycle components of S.

Lemma 5. If component C of S is a cycle, then there
exists a set AC of disjoint augmentations such that

1. every A ∈ AC is contained in C, i.e. A ⊂ C, and has
size(A) ≤ k

2. gain(AC) ≥ k
k+2

C1qt − C2qt

Note that the ratio is k
k+2

instead of k
k+2

as it was for
paths.
Proof of Lemma 5:

If size(C) ≤ k, set AC = {C} and we are done. So now
consider cycles C in S with size(C) ≥ k + 1.

Let e ∈ C1 be the link with the smallest queue in C1, (i.e.
lowest weight): qt(e) ≤ qt(e

′) for all e′ ∈ C1. Consider path

111

2

3

4

5
6

7

8

9

10

Figure 7: The path on the left is a path component
C of S, with bold links denoting C1 = C ∩ It−1 and
non-bold for C2 = Iqt . Links in C1 are numbered, and
k = 2. C is cut up starting at link number 2, going
anti-clockwise, to obtain the set A2 on the right.
Note that A2 contains disjoint augmentations of size
at most k = 2.

bC = C − e, and define bC1 := bC ∩ Iqt and and bC2 := bC ∩ It−1

as before. Obviously, C2 = bC2. Also, since e was chosen to
be the link in C1 with smallest queue and |C1| = size(C) ≥
k + 1 ,

bC1qt ≥
|C1|

|C1| + 1
C1qt ≥

k + 1

k + 2
C1qt

Also, by Lemma 4, there exists a set A bC
of disjoint augmen-

tations of size at most k in bC such that

gain(A bC
) ≥

k

k + 1
bC1qt − bC2qt

≥
k

k + 1

„
k + 1

k + 2
C1qt

«
− C2qt

=
k

k + 2
C1qt − C2qt

Setting AC = A bC
proves the lemma. �

We are now ready to build the set A∗: for each component
C of S add to A∗ the augmentations in the corresponding
AC – where AC is as specified by Lemmas 4 and 5 for paths
and cycles respectively. We are now ready to prove Lemma
1.
Proof of Lemma 1:

Let A∗ be as constructed above. Its gain will be the sum
of the gains of each of the AC ’s of which it is composed. So,

gain(A∗) =
X

C

gain(AC)

≥
k

k + 2

X

C

C1qt

!
−

X

C

C2qt

!

=
k

k + 2
[Iqtqt − (Iqt ∩ It−1)qt]

− [It−1qt − (Iqt ∩ It−1)qt]

≥
k

k + 2
Iqtqt − It−1qt

where Iqt ∩ It−1 is the matching consisting of links that are
in both Iqt and It−1. The lemma’s proof follows from the
fact that by definition gain(A∗) = (It−1 ⊕ A∗)qt − It−1qt.
�

Now that we have shown the existence of a suitable set
A∗, all we need to do to prove Proposition 2 is to uniformly
lower bound the probability of the algorithm generating A∗.
Proof of Proposition 2:

Recall that in our algorithm a disjoint set of augmen-
tations A is created and the ones with positive gain are
switched to obtain It from It−1. Thus,

Itqt ≥ (It−1 ⊕A)qt

So, it suffices to lower bound

P [A = A∗|qt, It−1]

by a quantity that is independent of (qt, It−1) but can de-
pend on graph structure and k. Note of course that A∗ is
not independent of (qt, It−1).

We will now provide a very naive lower bound to the above
probability. Let l = |A∗| be the number of disjoint augmen-
tations in A∗. Choose one node in each of these augmenta-
tions as follows: if the augmentation is a path, choose one
of its endpoints, and if it is a cycle choose any node. Let E
be the event that all of the following are true:

• the algorithm generates A = A∗,

• the only seeds active in phase 1 are the nodes chosen
above, and

• each augmentation’s intended length (chosen at its seed)
is equal to the actual length of that augmentation in
A∗ (i.e., no augmentation is a result of a cutoff due to
contention).

Clearly,

P [A = A∗|qt, It−1] ≥ P [E|qt, It−1]

We now lower bound the right hand side. The probability
that the nodes turn active or remain inactive as specified by
E is pl(1− p)n−l. Further, the probability that the intended
lengths are exactly as chosen is k−l, since they are chosen
uniformly from 1, . . . , k. Finally, we need each of the random
link-addition choices (step 2 of the algorithm) of each of the
above l augmentations to exactly parallel the corresponding
ones in A∗. There are a total of at most n such choices to
be made, and the probability of each being the correct one
is at least 1

∆
, where ∆ is the maximum degree of the graph.

Thus the probability of correct link choices is at least ∆−n.
Putting everything together, we have that

P [E|qt, It−1] ≥ pl(1 − p)n−lk−l∆−n

≥ min

1,

„
p

1 − p

«nff„
1 − p

k∆

«n

The right hand side of the last inequality is now independent
of (qt, It−1), providing us with the required uniform lower

bound. Setting δ = min
n

1,
“

p

1−p

”no`
1−p

k∆

´n
completes the

proof of the proposition. �

C. REFERENCES
[1] X. Lin and S. Rasool, “Constant-time distributed

scheduling policies for ad hoc wireless networks,” in
IEEE Conference on Decision and Control, 2006.

[2] A. Gupta, X. Lin, and R. Srikant, “Low-complexity
distributed scheduling algorithms for wireless
networks,” 2006, preprint.

[3] C. Joo and N. Shroff, “Performance of random access
scheduling schemes in multi-hop wireless networks,”
2006, preprint.

[4] B. Hajek and G. Sasaki, “Link scheduling in
polynomial time,” IEEE Transactions on Information
Theory, vol. 34, no. 5, pp. 910–917, Sept. 1988.

[5] L. Tassiulas and A. Ephremides, “Stability properties
of constrained queueing systems and scheduling
policies for maximum throughput in multihop radio
networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1949, Dec. 1992.

[6] N. McKeown, V. Anantharam, and J. Walrand,
“Achieving 100input-queued switch,” in Proceedings of
IEEE Infocom, 1996.

[7] L. Tassiulas, “Linear complexity algorithms for
maximum throughput in radionetworks and input
queued switches,” in Proceedings of IEEE Infocom,
1998.

[8] P. Giaccone, B. Prabhakar, and D. Shah, “Towards
simple, high-performance schedulers for
high-aggregate bandwidth switches,” in Proceedings of
IEEE Infocom, 2002.

[9] E. Modiano, D. Shah, and G. Zussman, “Maximizing
throughput in wireless networks via gossiping,” in
ACM SIGMETRICS / IFIP Performance, 2006.

[10] T. Weller and B. Hajek, “Scheduling nonuniform
traffic in a packet-switching system with small
propagation delay,” IEEE/ACM Trans. Networking,
vol. 5, pp. 813–823, Dec. 1997.

[11] J. G. Dai and B. Prabhakar, “The throughput of data
switches with and without speedup,” in Proceedings of
IEEE Infocom, 2000, pp. 556–564.

[12] X. Lin and N. B. Shroff, “The impact of imperfect
scheduling on cross-layer rate control in wireless
networks,” in Proceedings of IEEE Infocom, 2005.

[13] A. Brzezinski, G. Zussman, and E. Modiano,
“Enabling distributed throughput maximization in
wireless mesh networks – a partitioning approach,” in
ACM MOBICOM, Sept. 2006.

[14] A. Eryilmaz, A. Ozdaglar, and E. Modiano,
“Polynomial complexity algorithms for full utilization
of multi-hop wireless networks,” tech. Report 2006.

[15] Y. Yi, G. de Veciana, and S. Shakkottai, “Learning
contention patterns and adapting to load/topology
changes in a mac scheduling algorithm,” in
Proceedings of WiMesh, 2006, invited Paper.

[16] X. Wu and R. Srikant, “Regulated maximal matching:
A distributed scheduling algorithm for multi-hop
wireless networks with node-exclusive spectrum
sharing,” in IEEE Conf. on Decision and Control,
2005.

[17] P. Chaporkar, K. Kar, and S. Sarkar, “Achieving
queue length stability through maximal scheduling in
wireless networks,” in Workshop on Information
Theory and Applications, UCSD, 2006, invited.

[18] X. Wu, R. Srikant, and J. R. Perkins, “Queue-length
stability of maximal greedy schedules in wireless
networks,” in Workshop on Information Theory and
Applications, UCSD, 2006, invited.

[19] S. Pettie and P. Sanders, “A simpler linear time 2/3 -
ǫ approximation for maximum weight matching,” Inf.
Process. Lett., vol. 91, no. 6, pp. 271–276, 2004.

[20] S. Asmussen, Applied Probability and Queues 2nd Ed.
Springer, 2003.

