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Abstract

We consider the problem of scheduling transmissions of multiple data users (flows)
sharing the same wireless channel (server). The unique feature of this problem is the
fact that the capacity (service rate) of the channel varies randomly with time and asyn-
chronously for different users.

We study a scheduling policy called Exponential scheduling rule, which was intro-
duced in an earlier paper. Given a system with N users, and any set of positive numbers
{an}, n = 1, 2, . . . , N , we show that in a heavy-traffic limit, under a non-restrictive com-

plete resource pooling condition, this algorithm has the property that, for each time t,
it (asymptotically) minimizes maxn anq̃n(t), where q̃n(t) is user n queue length in the
heavy traffic regime.

Key words and phrases: Wireless networks, scheduling, quality of service, Exponential
rule, heavy traffic limit, queueing networks, complete resource pooling, workload, state space
collapse, optimality

Abbreviated Title: Exponential Rule Optimality

AMS Subject Classification: 60K25, 90B15, 60J70

1 Introduction

The task of supporting data flows over wireless channels is currently of great interest. This
involves scheduling transmissions of multiple data flows over a shared wireless channel. The
unique feature of this problem is the fact that the capacity (service rate) of the channel varies
randomly with time and asynchronously for different users. The variations of the channel
capacity are due to different (and random) interference levels observed by different users, and
also due to fast fading [6], of a radio signal received by a moving user.

Such a scheduling problem arises, for example, in the 3G CDMA High Data Rate (HDR)
system [7], where multiple mobile users in a cell share the same CDMA wireless channel.
Packets destined for different users arrive to the cell base-station, are temporarily queued (a
separate queue is maintained for each user), and need to be delivered to the mobile users.
On the downlink (the link from cell base station to users), time is divided into fixed size
(1.67 msec) time slots. This slot size is short enough so that each user’s channel quality
stays approximately constant within one time slot. In each time slot, one user is scheduled for
transmission. At the beginning of each time slot, each user reports to the base station the rate
at which data can be transmitted if this user is scheduled for transmission. In a HDR system
(and in the generic variable channel model as well) a “good” scheduling algorithm should take
advantage of channel variations by giving some form of priority to users with instantaneously
better channels.

In this paper, we study the Exponential scheduling algorithm which explicitly uses infor-
mation on the state of the channel and the queues. This rule was introduced in [17], where it

2



is shown that this rule is throughput optimal (TO), i.e., it renders queues stable in any system
for which stability is feasible at all, with any other rule.

While this is a nice property to have, one must note that there are other throughput-
optimal policies (see [1]). If a given load is stabilizable by some policy and a TO-policy is
used for scheduling, then the queue lengths will not “blow up”; but this property does not
indicate how large they can get. For supporting QoS requirements, one would like to have
small queue-lengths (or small delays). In this paper, for a system with N users, given any set
of positive numbers {an}, n = 1, . . . , N, we consider the performance criterion maxi anQn(t),
where Qn(t) is the queue length of the nth user at the base-station. An interesting question
to ask with such a measure is the following: Is it possible to design a “statistics-oblivious”
scheduling algorithm that is the “best” with respect to the above criterion, i.e., minimize
maxn anQn(t), where a “statistics-oblivious” scheduling algorithm is one which does not have
any knowledge of arrival rates or channel statistics.

In this paper, we consider this problem for a heavily-loaded system, under a (non-
restrictive in applications) complete resource pooling (CRP) condition. Associated with CRP
condition is the notion of workload X(t) =

∑
n αnQn(t), where αn’s are some fixed posi-

tive constants, called workload contributions. (Workload contributions do not depend on a
scheduling rule.) We show that in the heavy traffic limit, under the CRP condition and the
EXP rule, the (appropriately rescaled) queue length process is such that, first, the workload
is minimized and converges to a one-dimensional reflected Brownian motion, and second, a
state space collapse (see [15, 16, 20, 3, 21]) occurs such that the queue length vector is always
proportional to [a−1

1 , . . . , a−1
N ], i.e., all (rescaled) anQn(t) are equal. Therefore, the EXP rule

is optimal in the sense that the limiting process is such that for each time t, it minimizes
(rescaled) maxn anQn(t). (As we comment in Section 7, this optimality property is pathwise,
i.e., holds with probability 1 in an appropriately defined probability space.)

Related previous work includes that of [19] where the MaxWeight scheduling rule is ana-
lyzed for a generalized switch model (which includes our variable channel model as a special
case). It is proved in [19] that, in the heavy traffic limit and under the CRP condition, the
MaxWeight rule minimizes the (rescaled) system workload X(t) (which converges to a one-
dimensional reflected Brownian motion) and causes the state space collapse such that the
queue length vector is always proportional to [α1/γ1, . . . , αN/γN ], where γn’s are the algo-
rithm parameters. Thus, if the problem is to minimize maxn anQn(t), then in order to solve it
with the MaxWeight rule, the workload contributions αn which depend on the arrival rates and
channel statistics would need to be either “precomputed” or estimated from “real-time” queue
length measurements, which may be impossible or impractical in many cases. In contrast, the
EXP rule solves this problem without any knowledge of input rates and channel statistics. We
note however that an additional (large deviations) condition on the arrival process is needed
to prove our result.

In [19], the proof uses properties of the system on a fluid-time-scale as well as on a diffusion
time-scale. Our proof differs from this in that we need to use three different time-scales, the
diffusion time-scale, a “conventional” fluid time-scale (defined in Section 6), and a slower fluid
time-scale (which was introduced in [17]). The properties on this slower time-scale (introduced
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in Section 6.1) are key to proving our result.

A multiuser variable channel scheduling model in heavy traffic has also been considered
in [5]. However, the controls proposed in [5] require that most of the service resources be
“preallocated” based on the arrival rates, and only a small portion of the resources is used for
dynamic control.

The outline of the rest of this paper is as follows. In Section 2, we introduce the model
and basic notation. Next, in Section 3, we describe the Exponential rule. Then, in Section 4,
we describe the Static Service Split (SSS) rule, a rule which “preallocates” resources based on
arrival rates and channel statistics. We then state the main result of this paper in Section 5.
In Section 6, we study the properties of the system on two fluid time-scales under critical
loading, i.e., when the arrival rate is on the boundary of the stability region. Using these
properties, in Section 7, we finally prove the main result of this paper that the EXP rule is
optimal in the sense that, in the heavy traffic scaling limit, it minimizes maxi aiQi(t) for each
t.

2 The Model and Notations

The system consists of N input flows1 (of discrete customers) which need to be served by a
single channel (or server). We will denote by N ≡ {1, . . . , N}, both the set of flows and its
cardinality. Each flow has its own queue where customers wait for service.

The channel operates in discrete time. The time interval [t, t + 1), with t = 0, 1, 2, . . .
will be called the time slot t. There is a finite set of channel states M ≡ {1, . . . , M}, and the
channel state is constant within each time slot. Associated with each state m ∈ M is a fixed
vector of data rates (µm

1 , . . . , µm
N), where all µm

n are strictly positive integers. The meaning of
µm

n is as follows. If in a given time slot t the channel is in state m and all service (in this time
slot) is allocated to queue n, then µm

n type n customers are served from those already present
at time t (or the entire content of queue n at t, whichever is less). Note that what we call a
“channel state” here is actually a collection of channel states with respect to individual flows.

However, the service in any time slot may be split according to a (generally speaking
random) stochastic vector σ̄ = (σ̄1, . . . , σ̄N ), σ̄n ≥ 0, ∀n,

∑
n σ̄n = 1. If in a given time slot t

the channel is in state m and a “split” vector σ̄ is chosen, then for each queue n, bσ̄nµm
n c type

n customers are served from those already present at time t (or the entire queue n content at
t, whichever is less). Here and below b·c denotes the integer part, and d·e - the ceiling of a
number, where the ceiling is the smallest integer greater than or equal to the argument of the
ceiling function.

The random channel state process is assumed to be an irreducible discrete time Markov
chain with the (finite) state space M . The (unique) stationary distribution of this Markov
chain we denote by π ≡ (π1, . . . , πM).

1The words flow and user are used interchangeably throughout this paper.
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Denote by An(t) the number of type n customers arrived in time slot t. We will adopt a
convention that all arrivals in the time slot t actually happen at time t, but those arrivals are
not available for service until time slot t + 1. We assume that the input processes An(t) are
mutually independent processes. Let us denote by λn, n = 1, . . . , N , the mean arrival rate
for flow n, i.e., the mean number of type n customers arriving in one time slot. Additional
assumptions on the arrival process pertaining to the heavy traffic limit will be introduced in
later sections.

The random process describing the behavior of the entire system is S = (S(t), t =
0, 1, 2, . . .), where

S(t) = {(Un1(t), . . . , UnQn(t)(t)), n = 1, . . . , N ; m(t) },

Qn(t) is the type n queue length at time t, and Unk(t) is the current delay of the k-th type-n
customer present in the system at time t. In other words, Unk(t) is the age (i.e., the time
difference between the current time and the arrival time) of the k-th type-n customer in the
queue (thus, Un1(t) is the current age of the type-n customer that arrived least recently).
(Within each type, the customers are numbered in the order of their arrivals.) In our heavy
traffic asymptotic regime, this delay is in fact (asymptotically) equivalent to end-to-end de-
lay seen be a customer of a particular type. By convention, if Qn(t) is zero, the vector
(Un1(t), . . . , UnQn(t)(t)) is replaced by a special symbol (such as the null symbol). Since the
possible values of S(t) is countable, it follows that S is a process with a countable state-space.
We will denote by Wn(t) ≡ Un1(t) the delay of flow n at time t (with Wn(t) = 0 if Qn(t) = 0
by convention).

A measurable mapping H which takes a system state S(t) in a time slot into a fixed
probability distribution H(S(t)) on the set of stochastic vectors σ̄, will be called a scheduling
rule, or a queueing discipline. In this paper, we consider the Exponential rule described in
Section 3. (We also consider a Static Service Split rule, described in Section 4, which helps to
define the system stability region and serves as a tool in the proof.) We denote by Dn(t) the
number of type n customers served in the time slot t, then according to our conventions, for
each time t,

Qn(t + 1) = Qn(t) − Dn(t) + An(t), ∀n,

where Dn(t) = min{Qn(t), bσ̄n(t)µ
m(t)
n c} and σ̄(t) is chosen randomly according to the distri-

bution H(S(t)).

3 The Exponential Rule

Let an arbitrary set of positive constants γ1, . . . , γN , a1, . . . , aN , and positive constants β and
η ∈ (0, 1) be fixed2.

2These parameters remain fixed for the rest of this paper.
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The following two related rules we will call Exponential. The Exponential (Queue length)
rule (EXP-Q) chooses for service in time slot t a single queue

n ∈ n(S(t)) = arg max
i

γi µi(t) exp

(
aiQi(t)

β + [Q(t)]η

)
,

where µn(t) ≡ µ
m(t)
n , Q(t) ≡ (1/N)

∑
j ajQj(t). and the arg max function is defined by

arg max
i∈A

fi(t) = {j ∈ A : fj(t) = max
i∈A

fi(t)}

Similarly, the Exponential (Waiting time) rule (EXP-W) chooses for service a queue

n ∈ n(S(t)) = arg max
i

γi µi(t) exp

(
aiWi(t)

β + [W (t)]η

)
,

where W (t) ≡ (1/N)
∑

j ajWj(t).

Remark 3.1 1. Formally speaking, in the definition of the EXP rule, we also need to specify
a “tie-breaking” convention. For example, we can assume that the queue i = max{j : j ∈
n(S(t))} is chosen.
2. In the rest of this paper, without loss of generality we assume γ1 = 1.
3. In this paper, for notational simplicity, we will consider only the EXP-Q rule. The results
in this paper can be generalized to handle the EXP-W rule as well. Also, just to make the
ensuing arguments more readable, we put η = 1/2. (The proof for any 0 < η < 1 is obtained
by trivial modifications.)

A useful property of this rule which has been proved in [17] is the following:

Theorem 3.1 An EXP rule (either EXP-Q or EXP-W), with any fixed set of positive pa-
rameters β, η ∈ (0, 1), and γn, an, n ∈ N , is throughput optimal.

4 The Static Service Split Rule

Suppose a (sub)stochastic matrix φ = (φmn, m ∈ M, n = 1, . . . , N) is fixed, which means
that φmn ≥ 0 for all m and n, and

∑
n φmn ≤ 1 for every m. Consider a Static Service Split

(SSS) scheduling rule [1], parameterized by the matrix φ. When the channel is in state m,
the SSS rule chooses for service a (single) queue n with probability φmn. Clearly, the vector
v = (v1, . . . , vN) = v(φ), where

vn =
∑

m

πmφmnµ
m
n ,

gives the long term average service rates allocated to different flows under φ. An SSS rule
associated with a stochastic matrix φ∗ we will call maximal if the vector v(φ∗) is not dominated
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by v(φ) for any other stochastic matrix φ. (We say that a vector v(1) is dominated by a vector

v(2) if v
(1)
n ≤ v

(2)
n for all n, and the strict inequality v

(1)
n < v

(2)
n holds for at least one n.)

We will denote by V , the set of all service rate vectors v = v(φ) corresponding to all SSS
rules. It is clear to see that V is a convex polyhedron. For a maximal φ∗, for each m ∈ M,∑

n φ∗
mn = 1. Also, let V ∗ ⊂ V be the subset of maximal v ∈ V , i.e., v∗ ∈ V ∗ is a service rate

vector corresponding to a maximal SSS rule. We now present a very useful characterization
of a maximal SSS rule. The following result is proved in [1].

Theorem 4.1 Consider a maximal SSS rule associated with a stochastic matrix φ∗. Suppose
in addition that all components of v∗ = v(φ∗) are strictly positive. Then there exists a set of
strictly positive constants αn, n = 1, 2, . . . , N such that for each m, n,

φ∗
mn > 0 implies n ∈ arg max

j
αjµ

m
j . (1)

The theorem says that a maximal SSS rule simply chooses for service at any time t a
queue n for which αnµ

m(t)
n is maximal. It does not specify what to do in case of a tie (when

αjµ
m
j is the same for multiple queues); as a result the same set of {αn} may (and typically

will) correspond to different maximal SSS rules. In the rest of this paper, without loss of
generality, we will normalize α1 = 1. Let us define bi by

γnebn ≡ αn , n ∈ N . (2)

Note that b1 = 0 (since α1 = 1 by the convention adopted).

Definition 4.1 We will say that a Complete Resource Pooling (CRP) condition holds for a
vector v∗, if it satisfies the following conditions:

(i) v∗ ∈ V ∗, i.e., it is the service rate vector corresponding to a maximal SSS rule.

(ii) all components of v∗ are strictly positive, and moreover, v∗ lies in the interior of one of
the faces of V .

The above definition of CRP is the same as that in [19]. However, for our model (which
is a special case of the model in [19]) it is easy to to see that, given condition (i) in the above
definition, condition (ii) is equivalent to the following one:

(ii’) There exists an SSS rule φ∗ corresponding to the vector v∗ which satisfies the following
condition. Choose any non-empty A ⊆ N such that N \ A is not empty. Then, there
exists some channel state m = m(A) ∈ M , users i = i(A) ∈ A and j = j(A) /∈ A such
that φ∗

mi > 0 and φ∗
mj > 0.
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In other words, for our model,

The CRP condition holds if and only if conditions (i) and (ii’) hold.

The notion of Complete Resource Pooling was introduced in earlier papers, in particular
in the work on parallel server systems [10, 12, 2, 22], and is closely related to the equivalent
workload formulations of Brownian control problems [13, 11]. From a physical viewpoint, CRP
means that “service resources” (in our case - channel states) are in a certain way “connected”
so that when the system is “heavily loaded,” all the resources can be “pooled together” and
operate as a single aggregate resource.

Consider any v∗ (and a corresponding SSS rule φ∗) satisfying the CRP condition. From
Theorem 4.1, it follows that there exists a set of strictly positive constants {αn, n = 1, 2, . . . , N}
such that φ∗

mn > 0 implies n ∈ arg maxj αjµ
m
j . As an aside, it can be shown (using (ii’) of the

CRP condition) that {αn} corresponding to v∗ are unique up to scaling. Let us next define

µ̄m ≡ max
n∈N

αnµm
n (3)

K∗(m) ≡ arg max
n∈N

αnµm
n (4)

Lemma 4.1 (i) For any v∗ satisfying the CRP condition, and a corresponding {αn} (defined
in Theorem 4.1), we have

∑

n∈N

αnv∗
n =

∑

m∈M

πmµ̄m.

(ii) Further, for any other v ∈ V, and with the {αn} defined in (i),
∑

n∈N

αnvn ≤
∑

m∈M

πmµ̄m.

Proof: We have
∑

n∈N

αnv∗
n =

∑

n∈N

αn

∑

m∈M

πmφ∗
mnµ

m
n

=
∑

m∈M

πm
∑

n∈N

αnµm
n φ∗

mn

=
∑

m∈M

πm




∑

{n:φ∗

mn>0}
αnµm

n φ∗
mn



 ,

with
∑

{n:φ∗

mn>0} φ∗
mn = 1. By definition of {αn}, for each m and for all n such that φ∗

mn > 0,
it follows that αnµm

n = µ̄m. Thus,

∑

n∈N

αnv∗
n =

∑

m∈M

πmµ̄m




∑

n:φ∗

mn>0

φ∗
mn





=
∑

m∈M

πmµ̄m

8



The proof of (ii) is straightforward. For brevity, we skip the proof.

To illustrate the CRP condition, we provide the following example.

Example 4.1 Suppose we have a two user system, and there are two (vector) channel states,
each occuring independently, and with equal probability. In channel state 1, the user rates
supported by the channel are given by the vector (1, 3) and in state 2, the corresponding vector
is given by (3, 1). For such a channel, V is given by the rates corresponding to the convex
polyhedron with vertices at (0, 0), (2, 0), (1.5, 1.5) and (0, 2). The rates in V ∗ are given by
the vectors corresponding to the faces (2, 0) − (1.5, 1.5) and (1.5, 1.5) − (0, 2). Consider v∗ =
(1.5, 1.5) (the vertex). For this vector, we see that (ii’) is not satisfied. The rule in such a
case is to serve user 1 in channel state 2 and user 2 in channel state 1. On the other hand,
for any other v∗ ∈ V ∗ not on a vertex, we would require that in one of the states, rates need to
be allocated to both users (i.e., “split” the service in that channel state), and the assumption
will be satisfied.

5 Heavy Traffic Regime for the Exponential Rule

Consider a fixed vector v∗ ∈ V ∗ satisfying the CRP condition. Associated with this vector is
a maximal SSS rule φ∗ and a set of coefficients {αi} from Theorem 4.1, with α1 = 1. Let us
define the quantity

X(t) ≡
N∑

n=1

αnQn(t)

We will refer to X(t) as the workload.

Now, consider a sequence of systems indexed by r ∈ R ≡ {r1, r2, . . .}, where ri > 0 for all
i, and ri ↗ ∞ as i → ∞, and let Ar

n = (Ar
n(t), t = 1, 2, . . .), n = 1, . . . , N , be the associated

arrival processes.

Assumption 5.1 We assume that the arrival processes satisfy the following properties. First,
for each r, the sequences Ar

n are mutually independent. In addition, for each n and r,

Ar
n(t), t = 0, 1, 2, . . . , are i.i.d., (5)

and

Var[Ar
n(0)] → σ2

n ≥ 0, as r → ∞, (6)

Next, we assume that for each n ∈ N , the mean input rate parameter λr
n is such that

r(λr
n − v∗

n) → cn, (7)
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where cn ∈ R is a fixed constant. We note that v∗ is the limiting mean arrival rate, and for
this reason, from now on we will denote λ ≡ v∗.

Finally, for any n ∈ N and any ε > 0, there exists a constant a = a(ε) > 0 such that the
following (large deviations) estimate holds. Uniformly in r ∈ R, for all sufficiently large k,

P{|1
k

k−1∑

t=0

Ar
n(t) − λr

n| ≥ ε} < e−ak . (8)

Remark 1. The property (8) holds for example when, as r → ∞, the distributions of
Ar

n(1) are stochastically dominated by and converge to the distribution of a random variable
An(1) with finite exponential moment EeνAn(1) < ∞ for some fixed ν > 0.

Under Assumptions (5), (6) and (7), it follows that a functional central limit (FCLT)
holds for each input flow:

{r−1(F r
n(r2t) − λr

nr2t), t ≥ 0} w→ {σnBn(t), t ≥ 0} (9)

where

F r
n(t) ≡

btc∑

l=0

Ar
n(l)

is the cumulative number of flow n customers arrived in the interval [0, t], Bn is a stan-
dard Brownian motion and

w→ denotes weak convergence of processes in the Skorohod space
D([0,∞), R).

Remark 2. It will be clear later that, as far as assumptions on the input flows are
concerned, our proofs rely only on the FCLT (9) and the following property.
Uniformly in r ∈ R and integers l ≥ 0, for all sufficiently large k,

P{|1
k

k−1∑

t=0

Ar
n(l + t) − λr

n| ≥ ε} < e−ak . (10)

Thus, (10) can replace the combination of the iid assumption (5) and assumption (8). In
other words, properties (9) and (10) hold in many cases when the input processes are not
necessarily i.i.d. For example, they hold in the case when, for each n, the processes Ar

n(·) are
Markov chains with the same finite state space, and transition probabilities of Ar

n(·) converge
to those of an irreducible Markov chain An(·).

The Markov chain describing the channel process does not change with r, and is assumed
to be independent of the arrival processes. Let us denote

µ̄ ≡
∑

m∈M

πmµ̄m

10



where µ̄m was defined in (3). From Lemma 4.1, and the fact that λ = v∗, it follows that

µ̄ =
∑

n∈N

αnλn

We note that µ̄ is the maximum possible (average) rate at which the workload can be processed.
Then, from the FCLT for Markov chains [9], for any initial state of the Markov chain, we have
as r → ∞,

{r−1(

br2tc∑

l=1

µ̄m(l−1) − µ̄r2t), t ≥ 0} w→ {σ2
N+1BN+1(t), t ≥ 0} , (11)

where BN+1(t) is a standard Brownian motion, with variance

σ2
N+1 ≡ lim

l→∞
l−1E(

l∑

t=1

µ̄m(t−1) − µ̄l)2.

The superscript of µ̄m(l−1), i.e. m(l − 1), denotes the channel state at (discrete) time (l − 1).

We will denote

σ2 ≡ σ2
N+1 +

∑

n∈N

α2
nσ2

n

For each value of the scaling parameter r, let Qr(·) and Xr(·) be the corresponding (vector)
queue length and workload processes. Let us apply the diffusion scaling to Qr(·) and Xr(·) to
define the following scaled processes:

q̃r(t) ≡ r−1Qr(r2t), t ≥ 0

x̃r(t) ≡ r−1Xr(r2t), t ≥ 0.

In general, in the rest of this paper, for a process Zr(t), we denote

z̃r(t) ≡ r−1Zr(r2t), t ≥ 0. (12)

We assume that the initial states of the scaled processes converge in such a way that q̃r(0)
w→

q̃(0) as r → ∞, and q̃(0) satisfies aiq̃i(0) = aj q̃j(0) for all 1 ≤ i, j ≤ N . Equivalently, we
define for each n ∈ N,

α0
n ≡ a−1

n∑N
i=1 αia

−1
i

and let α0 be the corresponding vector. Then, we have q̃n(0) = α0
nx̃(0), where x̃(0) ≥ 0 is a

fixed constant. Finally denote

c ≡
∑

n

αncn,

and consider the following one dimensional reflected Brownian motion process (x̃(t), t ≥ 0):

x̃(t) ≡ x̃(0) + ct + σB(t) + ỹ(t) (13)

ỹ(t) ≡ −[min(0, inf
0≤u≤t

{x̃(0) + cu + σB(u)})]. (14)

11



Theorem 5.1 Consider the system in heavy traffic.

(i) Suppose the scheduling rule is EXP-Q. Then, as r → ∞,

x̃r w→ x̃, (15)

and moreover,

q̃r w→ q̃ ≡ x̃α0. (16)

(ii) The EXP-Q rule is asymptotically optimal in that it minimizes the workload process.
More precisely, the workload process x̃G corresponding to a scheduling policy G is such
that for any time t ≥ 0 and any u ≥ 0,

lim inf
r→∞

P (x̃r
G(t) > u) ≥ P (x̃(t) > u). (17)

Let us define q̃r
n,G to be the (diffusion)-scaled queue length of flow n under a scheduling

policy G. Then, in addition to (17), the following properties hold:
for any time t ≥ 0 and u ≥ 0,

lim inf
r→∞

P (max
n

anq̃r
n,G(t) > u) ≥ P (max

n
anq̃n(t) > u), (18)

and for any continuous non-decreasing cost function C(ξ), ξ ≥ 0, and any t ≥ 0,

lim inf
r→∞

E

[∫ t

0

C
(
max

n
anq̃r

n,G(s)
)

ds

]
≥ E

[∫ t

0

C
(
max

n
anq̃n(s)

)
ds

]
. (19)

Remark. Just as in [19], our proof of the main result uses Skorohod representation, i.e.
the proof is pathwise. Consequently, statement (ii) of the above theorem can be reformulated
as pathwise optimality of the EXP rule. Namely, the sequence of processes corresponding to
arbirary scheduling rule G and to the EXP rule can be constructed on a common probability
space, such that the following holds for any t ≥ 0:

lim inf
r→∞

x̃r
G(t) ≥ x̃(t), (20)

lim inf
r→∞

max
n

anq̃r
n,G(t) ≥ max

n
anq̃n(t), (21)

and for any continuous non-decreasing cost function C(·),

lim inf
r→∞

∫ t

0

C
(
max

n
anq̃r

n,G(s)
)

ds ≥
∫ t

0

C
(
max

n
anq̃n(s)

)
ds. (22)
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6 The Fluid Limit

Let λ = v∗ satisfy the CRP condition, and consider the sequence of processes indexed by {r}
as introduced in the previous section. In this section, we study this sequence of processes
under the fluid limit scaling and the EXP-Q discipline.

First, we need to define the following additional functions associated with the system for
each value of the scaling parameter r. We recall that the functions F r(t), Qr(t) and Xr(t)
have already been defined. Let

F̂ r
n(t) ≡

btc∑

l=1

Dr
n(l)

denote the number of type-n customers that were served and have departed by time t ≥ 0.
Also, denote by Gr

m(t) the total number of time slots before time t (i.e., among the slots
0, 1, . . . , t − 1), when the channel was in state m; and by Ĝr

mi(t) the number of time slots
before time t when the channel state was m and the channel was allocated to serve queue i.
We will also denote for t ≥ 0,

Hr(t) ≡
btc∑

l=1

µ̄m(l−1)

Y r(t) ≡ Hr(t) −
∑

n

αnF̂ r
n(t)

=

btc∑

l=1

[µ̄m(l−1) −
∑

n

αnDr
n(l)]

and3

W r(t) ≡ Xr(0) +
∑

n

αnF r
n(t) − Hr(t).

Then the following relations obviously hold:

F r
n(0) = F̂ r

n(0) = 0, (23)

Qr
n(t) = Qr

n(0) + F r
n(t) − F̂ r

n(t), (24)

Xr(t) = W r(t) + Y r(t). (25)

Finally, let

Q̂r
n(t) ≡ anQr

n(t) − bn

√
1

N

∑

j

ajQ
r
j(t),

3Note that W r(·) is not to be confused with the waiting time of user i (Wi(t)) that is used in the EXP-W
rule definition.
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where bn was defined in (2). We will consider the process Zr = (Qr, Q̂r, Xr, W r, Y r, F r, F̂ r, Gr, Hr, Ĝr),
where

Qr = (Qr
i (t), t ≥ 0, i = 1, 2, . . . , N),

Q̂r = (Q̂r
i (t), t ≥ 0, i = 1, 2, . . . , N),

Xr = (Xr(t), t ≥ 0),

W r = (W r(t), t ≥ 0),

Y r = (Y r(t), t ≥ 0),

F r = (F r
i (t), t ≥ 0, i = 1, 2, . . . , N) ,

F̂ r = (F̂ r
i (t), t ≥ 0, i = 1, 2, . . . , N),

Gr = (Gr
m(t), t ≥ 0, m ∈ M) ,

Ĝr = (Ĝr
mi(t), t ≥ 0, m ∈ M, i = 1, 2, . . . , N),

Hr = (Hr(t), t ≥ 0).

Recall that our convention allows us to view the above functions as continuous-time processes
defined for all t ≥ 0, but having constant values in each interval [t, t + 1).

Now consider the scaled process zr = (qr, q̂, xr, wr, yr, f r, f̂ r, gr, hr, ĝr), where

qr = (qr
i (t), t ≥ 0, i = 1, 2, . . . , N) ,

q̂r = (q̂r
i (t), t ≥ 0, i = 1, 2, . . . , N) ,

xr = (xr(t), t ≥ 0) ,

wr = (wr(t), t ≥ 0) ,

yr = (yr(t), t ≥ 0) ,

f r = (f r
i (t), t ≥ 0, i = 1, 2, . . . , N) ,

f̂ r = (f̂ r
i (t), t ≥ 0, i = 1, 2, . . . , N),

gr = (gr
m(t), t ≥ 0, m ∈ M) ,

hr = (hr(t), t ≥ 0) ,

ĝr = (ĝr
mi(t), t ≥ 0, m ∈ M, i = 1, 2, . . . , N),

and the scaling is defined as

zr(t) =
1

r
Zr(rt) .

Note that from (24) we get:

qr
i (t) ≡ qr

i (0) + f r
i (t) − f̂ r

i (t), t ≥ 0, i = 1, 2, . . . , N. (26)

Next, using the large deviations condition (8) from Assumption 5.1, we present a useful
result which shows that the arrival rates and channel statistics converge to their respective

14



mean values uniformly over r
1

4 sized partitions of the interval [0, rT ], where T > 0. For each r,

let us cover the interval [0, rT ] with r
3

4 T equal non-overlapping r
1

4 -long intervals [(i−1)r
1

4 , ir
1

4 ),

1 ≤ i ≤ r
3

4 T . (Since r
3

4 T may not be an integer, we should divide into, say, brT/r
1

4 c + 1

intervals. To avoid trivial complications and heavy notation, we assume that r
3

4 T is integer.
It will be clear that we do not lose the correctness of the argument.)

Lemma 6.1 With probability 1, for any rational T > 0 and ε > 0, there exists finite R0 ≡
R0(T, ε) such that for all r > R0,

max
n∈N, 1≤i≤r

3
4 T

∣∣∣∣∣∣

F r
n

(
ir

1

4

)
− F r

n

(
(i − 1)r

1

4

)

r
1

4

− λr
n

∣∣∣∣∣∣
< ε , (27)

max
m∈M, 1≤i≤r

3
4 T

∣∣∣∣∣∣

Gr
m

(
ir

1

4

)
− Gr

m

(
(i − 1)r

1

4

)

r
1

4

− πm

∣∣∣∣∣∣
< ε . (28)

Proof: The proof is presented in [17]. It uses the large deviations estimate (8) and a large
deviations estimate for the finite state Markov chains.

Definition 6.1 A fixed set of functions z = (q, q̂, x, w, y, f, f̂ , g, h, ĝ) is called a fluid sample
path (FSP) if there exists a sequence Rf of values of r, and a sequence of paths {zr} such that
as r → ∞ along sequence Rf ,

zr → z, u.o.c.,

and the following properties hold:

||q(0)|| < ∞,

(q̂r
n(t), t ≥ 0) → (anqn(t), t ≥ 0) u.o.c.,

(f r
n(t), t ≥ 0) → (λnt, t ≥ 0) u.o.c., (29)

(gr
m(t), t ≥ 0) → (πmt, t ≥ 0) u.o.c., (30)

and, finally, for all rational ε > 0 and T > 0, for all sufficiently large r (which may depend
on T, ε),

conditions (27) and (28) hold. (31)

We now state a basic result, whose proof we omit. The details of the proof is analogous
to that of Lemma 1 in [1].

Lemma 6.2 Suppose a sequence {r}, and the associated sequence of paths {zr}, is fixed,
such that sup ‖qr(0)‖ < ∞, and properties (29),(30), and (31) hold. Then, there exists a
subsequence {k} ⊆ {r} such that the paths {zk} converges uniformly on compact sets (u.o.c.)
to an FSP.
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The following lemma states some basic properties of a fluid sample path. We omit the
proof for brevity.

Lemma 6.3 For any fluid sample path z, all its components are Lipschitz continuous, and in
addition,

fn(t) = λnt, t ≥ 0,

gm(t) = πmt, t ≥ 0,

qn(t) = fn(t) − f̂n(t), t ≥ 0 ,

w(t) = w(0) = x(0), t ≥ 0 ,

x(t) =
∑

n

αnqn(t) = x(0) + y(t) .

Since all the components of the FSP are Lipschitz in [0,∞), they are absolutely continuous.
Therefore, at almost all points t ∈ [0,∞) (with respect to Lebesgue measure), the derivatives
of all those functions exist. We will call such points regular. The vector q(t) corresponding to
an FSP we will call its state at time t. The dynamics of q(t) is governed by the differential
equation

d

dt
q(t) = λ − v(t),

which holds at every regular point t, and where the notation v(t) ≡ f̂ ′(t) is used.

6.1 A “Local” Fluid Limit

In this section, we study convergence of the process sample paths on a “finer” time-scale. The
paths we obtain in the limit will be called the “local-fluid-limits.” We consider a time interval
[t, t + δ] for some t and δ > 0. For each r, we study the (unscaled) time interval [rt, rt + rδ].
We divide this interval into

√
r sub-intervals, each of length

√
rδ, and study appropriately

rescaled processes on such sub-intervals. The convergence properties over this time-scale, as
we will see later, are essential to prove the main result of this paper.

Let us recall the notation

q̂r
n(t) ≡ 1

r
Q̂r

n(rt) ≡ 1

r
[anQr

n(rt) − bn

√
Q̄r(rt) ] ,

where

Q̄r(t) ≡ 1

N

∑

j

ajQ
r
j(t) .

Let us fix some δ > 0 and a sequence {sr} of non-negative numbers. Now consider the sequence
of unscaled intervals [rsr, rsr +

√
rδ] and the following processes:

�q
r
i (x) ≡

√
r[q̂r

i (s
r + x/

√
r) − max

k∈N
q̂r
k(s

r)], x ∈ [0, δ] , i ∈ N, (32)
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and denote

�ζ
r(x) ≡ max

i
�q

r
i (x), x ∈ [0, δ] .

We note that the process �q
r
i (·) is obtained from the process Qr

i (·) by the time “speedup” of√
r and the “space” scaling by the factor 1/

√
r (in addition to the centering). Thus, it is

very natural that as r → ∞, if the sequence {sr} converges to s, and the initial conditions
converge in a suitable manner, then the sequence of processes {�qr

i (·), i ∈ N}, all defined in
the interval [0, δ], should converge over a subsequence of {r} to another - “local” - fluid limit.
The proposition formulated below formalizes this observation.

Let us define the following functions, all defined for x ∈ [0, δ], and associated with the
time interval [rsr, rsr +

√
rδ]:√

r�f
r
i (x) is the number of type i customers arrived in the (unscaled) interval [rsr, rsr +

√
rx];√

r�f̂
r

i (x) is the number of type i customers served in the (unscaled) interval [rsr, rsr +
√

rx];√
r�g

r
i (x) is the number of (complete) time slots in the (unscaled) interval [rsr, rsr +

√
rx], in

which the channel was in state m;√
r�ĝ

r
mi(x) is the number of (complete) time slots in the (unscaled) interval [rsr, rsr +

√
rx],

in which the channel was in state m and the service was allocated to queue i.

Finally, let us define

ε∗∗ ≡ (min
n,m

µm
n )(min

n
αn)(min

m
πm) min{φ∗

mi, m ∈ M, i ∈ N : φ∗
mi > 0}.

and let

ε∗ ≡ ε∗∗

N maxn αn

> 0. (33)

Proposition 6.1 Consider a sequence r ∈ Rf such that the associated sequence of paths
{zr}, r ∈ Rf converges to an FSP. Fix any regular point t > 0 (for the FSP) and any δ > 0
such that

max
i

aiqi(s) > 0, s ∈ [t, t + δ]. (34)

Suppose that a further subsequence Rf1 ⊆ Rf is fixed, and associated paths {zr, r ∈ Rf1}, and
sub-intervals [rsr, rsr +

√
rδ] satisfy the following conditions:

(i) For some fixed s ∈ [t, t + δ],

sr → s, (35)

(ii) The ordering of values of q̂r
i (s

r), i ∈ N , remains the same. To be definite, without
loss of generality, let

q̂r
1(s

r) ≥ . . . ≥ q̂r
N (sr) .

(iii) For each i ∈ N,

�q
r
i (0) → �qi(0) ,
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where �q1(0) = 0 (by our construction), and each other �qi(0) is either finite non-positive or
−∞.

Then, the following properties (A) and (B) hold:

Property (A): There exists a further subsequence Rf2 ⊆ Rf1 such that along this subse-
quence, the following additional properties hold for each i ∈ N and m ∈ M :

(�f
r
i (x), 0 ≤ x ≤ δ) → (λix, 0 ≤ x ≤ δ) u.o.c. (36)

(�g
r
i (x), 0 ≤ x ≤ δ) → (πmx, 0 ≤ x ≤ δ) u.o.c. (37)

(�ĝ
r
mi(x), 0 ≤ x ≤ δ) → (�ĝmi(x), 0 ≤ x ≤ δ) u.o.c. (38)

(�f̂
r

i (x), 0 ≤ x ≤ δ) → (�f̂ i(x), 0 ≤ x ≤ δ) = (
∑

m

µm
i �ĝmi(x), 0 ≤ x ≤ δ) u.o.c. (39)

(�q
r
i (x), 0 ≤ x ≤ δ) → (�qi(x), 0 ≤ x ≤ δ) = (�qi(0) + ai(λix − �f̂ i(x)), 0 ≤ x ≤ δ) u.o.c. ,

(40)
(�ζ

r(x), 0 ≤ x ≤ δ) → (�ζ(x), 0 ≤ x ≤ δ) u.o.c. , (41)

where all the functions �ĝmi(·) and �f̂ i(·) are non-decreasing Lipschitz continuous with value
0 at x = 0, and all functions �qi(·) �ζ(·) are Lipschitz continuous, and in addition

N∑

i=1

�ĝmi(x) = πmx .

As before, we will call a point x ∈ (0, δ) regular if the derivatives of all the functions �ζ(·),
�qi(·), �ĝmi(·), and �f̂ i(·), exist in this point. Almost all points (with respect to Lebesgue
measure) of the interval (0, δ) are regular.

Property (B): At every regular point x ∈ (0, δ),

(�ζ(x))′ ≤ 0. (42)

Suppose in addition, {arg maxi �qi(x)} 6= {1, 2, . . . , N}. Then,

�ζ
′(x) ≤ −ε∗ . (43)

Finally, suppose that for all n ∈ N , �qn(0) > −∞. Then, at every regular point x ∈ (0, δ),

(min
i

�qn(x))′ ≥ 0. (44)

Proof: The proof of (A) is completely analogous to the proof of Lemma 6.3, which in turn is
presented in [1]. The convergence properties (36) and (37) trivially follow from the fact that
we consider a sequence of paths that converge to an FSP (and thus, properties (27) and (28)
hold).
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We will now prove (43) of (B). Equations (42) and (44) will follow from a similar reasoning.

For each r ∈ Rf2 consider the (unscaled) time interval [rsr, rsr +
√

rδ], and consider how
the coefficient of µi(t) (in the EXP-Q rule) behaves in this interval. Obviously, multiplying
the coefficients of all µi(t) by the same positive function of time (not necessarily a constant),
does not change the EXP-Q scheduling rule. Therefore, the following functions γ̂r

i (·) can be
regarded as the coefficients of µi(t). For every r, i ∈ N , and x ∈ [0, δ], we have

γ̂r
i (x) ≡ γi exp



aiQ
r
i (rs

r +
√

rx) − r maxk∈N q̂r
k(s

r)

β +
√

Q
r
(rs +

√
rx)





= γi exp




aiQ

r
i (rs

r +
√

rx) − bi

√
Q

r
(rsr +

√
rx) − r maxk∈N q̂r

k(s
r) + bi

√
Q

r
(rsr +

√
rx)

√
r

(
β√
r

+

√
Q

r
(rs+

√
rx)

r

)





= γi exp




bi

√
Q

r
(rsr+

√
rx)

r

β√
r

+

√
Q

r
(rsr+

√
rx)

r



 exp



 �q
r
i (x)

β√
r

+

√
Q

r
(rsr+

√
rx)

r



 .

Note that as r → ∞ the convergence

Q
r
(rsr +

√
rx)

r
−→ q(s)

is uniform on x ∈ [0, δ], where (from (34))

q(s) ≡ 1

N

∑

i

aiqi(s) > 0 .

Therefore, we have

(γ̂r
i (x), 0 ≤ x ≤ δ) → (αi exp(�qi(x)/

√
q(s)), 0 ≤ x ≤ δ) u.o.c. . (45)

Now, consider any regular point x ∈ (0, δ) such that {arg maxi �qi(x)} 6= {1, 2, . . . , N}.
Consider the subset of flows I∗∗ ⊆ N for which �qi(x) is maximal, i.e. �qi(x) = �ζ(x). By
assumption, there is at least one flow j /∈ I∗∗. Also, let us denote

M∗∗ ≡ {m ∈ M | φ∗
mi > 0 for at least one i ∈ I∗∗} .

For every m ∈ M∗∗, let us pick an element i(m) ∈ I∗∗ for which φ∗
mi > 0. Observe that

the value of αi(m)µ
m
i(m) will be the same regardless of which of those elements we pick. From

the form of the EXP-Q scheduling rule and the uniform convergence (45), we can make the
following observation. There exists a small ε1 > 0 such that for any z ∈ (x, x + ε1) and any
ε2 > 0, we have the following estimate for all sufficiently large r,

∑

i∈I∗∗

αi(�f̂
r

i (z) − �f̂
r

i (x)) =
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∑

i∈I∗∗

αi

∑

m

µm
i (�g

r
mi(z) − �g

r
mi(x)) ≥

∑

m∈M∗∗

∑

i∈I∗∗

αiµ
m
i (�g

r
mi(z) − �g

r
mi(x)) ≥

∑

m∈M∗∗

πm(1 − ε2)(z − x)αi(m)µ
m
i(m) =

∑

m∈M∗∗

πm(1 − ε2)(z − x)(
∑

i∈I∗∗

φ∗
miαiµ

m
i + (1 −

∑

i∈I∗∗

φ∗
mi)αi(m)µ

m
i(m)) =

∑

m∈M∗∗

πm(1 − ε2)(z − x)
∑

i∈I∗∗

φ∗
miαiµ

m
i +

∑

m∈M∗∗

πm(1 − ε2)(z − x)(1 −
∑

i∈I∗∗

φ∗
mi)αi(m)µ

m
i(m)

Now, by definition of vi(φ
∗), it follows that

∑

m∈M∗∗

πm(1 − ε2)(z − x)
∑

i∈I∗∗

φ∗
miαiµ

m
i = (1 − ε2)(z − x)

∑

i∈I∗∗

αivi(φ
∗) .

From the CRP condition, it follows that for some m ∈ M∗∗, j /∈ I∗∗, φ∗
mj > 0. Thus, it follows

that

∑

m∈M∗∗

πm(1 −
∑

i∈I∗∗

φ∗
mi)αi(m)µ

m
i(m) ≥ ε∗∗

Since ε2 > 0 is arbitrary, this implies that for any z ∈ (x, x + ε1),

∑

i∈I∗∗

αi(�f̂ i(z) − �f̂ i(x)) ≥ (z − x)
∑

i∈I∗∗

αivi(φ
∗) + (z − x)ε∗∗ ,

and therefore ∑

i∈I∗∗

αi�f̂
′
i(x) ≥

∑

i∈I∗∗

αivi(φ
∗) + ε∗∗ .

Then, �f̂
′
i(x) ≥ vi(φ

∗) + ε∗ for at least one i ∈ I∗∗, and therefore �q
′
i(x) ≤ −ε∗ holds for this i.

Point x is regular. By definition, in any regular point the derivatives �ζ
′(·) and �q

′
i(·) for all

i ∈ I∗∗ are all equal. Thus

�ζ
′(x) ≤ −ε∗ , (46)

and we are done.

A similar method can be adopted to show (42) and (44). For brevity, we will skip the
details.

20



6.2 Properties of the FSP

Finally, we present the main result of this section. Consider a fixed FSP with non-zero initial
state q(0).

Theorem 6.1 At every regular point t > 0,

max
i

aiqi(t) > 0 implies (max
i

aiqi(t))
′ ≤ 0. (47)

Further, if {arg maxi aiqi(t)} 6= {1, 2, . . . , N}, then

max
i

aiqi(t) > 0 implies (max
i

aiqi(t))
′ ≤ −ε∗. (48)

Consequently, there exists K > 0 such that with T = K||q(0)|| > 0, aiqi(t) = ajqj(t) for all
i, j ∈ N for any t ≥ T .

Finally, for all regular t ≥ T ,

(max
i

aiqi(t))
′ = 0. (49)

Proof: We will now prove (48). Equations (47) and (49) will follow from a similar reasoning.

Fix an FSP z, and fix any subsequence Rf ⊆ R and the corresponding sequence {zr, r ∈
Rf} converging to z. Now, let us assume that for some fixed regular point t > 0 and a
constant η1 < ε∗, ζ(t) ≡ maxi q̃i(t) ≡ maxi aiqi(t) > 0 and ζ ′(t) > −η1. Further, assume that
there is some flow j such that j /∈ arg maxi aiqi(t). Let us prove that this assumption leads to
a contradiction.

If the assumption holds, then there exist rational constants δ > 0, ξ > 0, and η2 ∈ (η1, ε
∗),

such that
ζ(s) > ξ , ∀s ∈ [t, t + δ] ,

and

ζ(t + δ) − ζ(t)

δ
> −η2 .

and j /∈ arg maxi aiqi(s) ∀s ∈ [t, t + δ].

For each r, let us now divide the interval [t, t + δ] into
√

r intervals, each of length δ√
r
.

(As before, to avoid trivial complications, we assume that
√

r is integer. It will be clear that
we do not lose the correctness of the argument.) Note that in the “unscaled time” (i.e. on
the time scale of the original process S), each sub-interval is of length δ

√
r.

As before, let us denote
ζr(t) ≡ max

i
q̂r
i (t) ,

21



and fix any constant η ∈ (η2, ε
∗). From the Dirichlet principle4, for all sufficiently large r, in

at least one of the sub-intervals (of length δ√
r
), the average rate of change of ζr(.) is greater

than or equal to (−η). We pick such a sub-interval [sr, sr + δ/
√

r] for each r. Let us choose
a further subsequence Rf1 ⊆ Rf such that, along this subsequence, sr → s for some fixed
s ∈ [t, t + δ]. Obviously, the right end-point sr + δ/

√
r of the sub-interval also converges to s.

We choose a further subsequence Rf2 ⊆ Rf1 such that the order of values of q̂r
i (s

r), i ∈ N ,
remains the same. Without loss of generality let us assume that

q̂r
1(s

r) ≥ . . . ≥ q̂r
N (sr) .

Finally, for each i ∈ N , consider the following processes:

�q
r
i (x) ≡

√
r[q̂r

i (s
r + x/

√
r) − q̂r

1(s
r)], x ∈ [0, δ] ,

�ζ
r(x) ≡ max

i
�q

r
i (x), x ∈ [0, δ] ,

and choose a subsequence Rf3 ⊆ Rf2 such that for each i,

�q
r
i (0) → �qi(0) ,

where �q1(0) = 0 (by our construction), and each other �qi(0) is either finite non-positive or
−∞. Indeed by our construction, it follows that �qj(0) = −∞, where j /∈ arg maxi aiqi(t).

As we have satisfied conditions (i)-(iii) of Proposition 6.1, it follows that there exists a
further subsequence Rf4 ⊆ Rf3 along which

(�ζ
r(x), 0 ≤ x ≤ δ) → (�ζ(x), 0 ≤ x ≤ δ) u.o.c. ,

and �ζ(.) is differentiable almost everywhere (w.r.t. the Lebesgue measure). Further, from
our construction, it follows that

�ζ(δ) − �ζ(0) ≥ −ηδ . (50)

Also, it is clear that for all x ∈ [0, δ], j /∈ arg maxi �qi(x). Thus, from (43) of Proposi-
tion 6.1, it follows that at each regular point x ∈ (0, δ), �ζ

′(x) ≤ −ε∗. This implies that

�ζ(δ) − �ζ(0) ≤ −ε∗δ (51)

which contradicts (50). Thus, we are done.

4This is also known as the pigeonhole principle, or the Dirichlet Box principle. In the discrete case, this
principle states given n boxes and m > n objects, at least one box must contain more than one object.
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7 The Heavy Traffic Regime: Proof of Theorem 5.1

For each r ∈ R consider the following process, obtained by a diffusion scaling (defined by
(12)):

(q̃r, x̃r, w̃r, ỹr, f̃ r, g̃r, h̃r) .

To prove properties (15)-(17), we will use Skorohod’s representation theorem (see, for exam-
ple, [14]), and show that on the appropriately chosen probability space, (15)-(17) hold with
probability 1.

According to Skorohod representation theorem for each n, the sequence of the input
processes {F r

n} can be constructed on a probability space such that the convergence in (9)
holds u.o.c. with probability 1 (w.p.1). Similarly, the sequence of channel state processes
(Markov chains) {mr} can be constructed on a probability space such that the convergence
in (11) holds u.o.c. w.p.1., which can be written as

(h̃r(t) − µ̄rt, t ≥ 0)
u.o.c.→ (σ2

N+1BN+1(t), t ≥ 0) . (52)

We can and do assume that the underlying probability space (Ω,F , P ) is a direct product of
those N + 1 probability spaces. (Here, we use the fact that all arrival processes and channel
state processes are mutually independent.) Without loss of generality we can also assume that
this probability space is complete. By ω we will denote elements (“elementary outcomes”) of
Ω.

From Assumption 5.1 and the fact that the channel process is a finite state Markov chain,
it follows (the proof is essentially the same as that of Lemma 6.1, which in turn is presented in
[17]) that the following properties also hold with probability 1, for any fixed rational T3 > 0:

max
n∈N, 1≤i≤T3r7/4

∣∣∣∣∣∣

F r
n

(
ir

1

4

)
− F r

n

(
(i − 1)r

1

4

)

r
1

4

− λr
j

∣∣∣∣∣∣
→ 0, (53)

max
m∈M, 1≤i≤T3r7/4

∣∣∣∣∣∣

Gr
m

(
ir

1

4

)
− Gr

m

(
(i − 1)r

1

4

)

r
1

4

− πm

∣∣∣∣∣∣
→ 0, (54)

max
1≤i≤T3r7/4

∣∣∣∣∣∣

Hr
(
ir

1

4

)
− Hr

(
(i − 1)r

1

4

)

r
1

4

− µ̄

∣∣∣∣∣∣
→ 0, (55)

where (55) follows from (54).

We also have
x̃r(t) = w̃r(t) + ỹr(t), t ≥ 0

and
(w̃r(t), t ≥ 0)

u.o.c.→ (w̃(t), t ≥ 0) ,

where
w̃r(t) ≡ x̃r(0) +

∑

n

αnf̃ r
n(t) − h̃r(t)
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and
w̃(t) ≡ x̃(0) + at + σB(t)

is a continuous function.

In the rest of this section, we restrict ourselves to a (measurable, probability 1) subset of
elementary outcomes ω ∈ Ω, such that all the probability 1 properties specified above hold.

For each r ∈ R, ỹr is a non-decreasing RCLL function. Therefore, for any fixed ω ∈ Ω,
from any subsequence R3(ω) ⊆ R (which may depend on ω!) it is always possible to find a
further subsequence R4(ω) ⊆ R3(ω) such that

ỹr ⇒ ỹ , (56)

where ỹ is a non-decreasing RCLL function, which may take the values +∞ (in other words,
ỹ ∈ D([0,∞), R̄), “⇒” denotes convergence in every point of continuity of the limit function
(except maybe point 0) and R̄ denotes the extended real line, that is, R̄ ≡ R

⋃
{−∞, +∞}.

We note that (56) implies that
x̃r ⇒ x̃ ≡ w̃ + ỹ , (57)

and therefore x̃(t) < ∞ if and only if ỹ(t) < ∞.

The following lemma contains the key observation which will be used in the proof of
Theorem 5.1. The statement of this lemma is analogous to Lemma 7 in [19]. However, our
proof is quite different from that in [19]. In our proof, we resort to the additional local fluid
limit on the

√
r time-scale, in addition to the conventional fluid time-scale. Thus, we use three

time-scales, a diffusion time-scale, and two fluid time-scales here.

Lemma 7.1 Suppose, ω ∈ Ω and a subsequence R4(ω) ⊆ R are fixed such that, along this
subsequence, (56) holds. Suppose, a sequence {t̃r, r ∈ R4(ω)} is fixed such that

t̃r → t′ ≥ 0 ,

and
x̃(t̃r) → C > 0 .

Let a rational δ > 0 be fixed, and

ε = ε(δ, t′) = sup
ξ1,ξ2∈[t′−δ,t′+δ]∩R+

|w̃(ξ1) − w̃(ξ2)| < C .

Then,
(a) ỹ (and x̃) is finite in [0, t′ + δ);
(b) ỹ does not increase in (t′, t′ + δ), i.e., ỹ(t′ + δ−) − ỹ(t′) = 0;
(c) the following bound holds

C − ε ≤ x̃(t) ≤ CC2 + ε , ∀t ∈ [t′, t′ + δ) ,
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with C2 = 1 +
⌈

2maxi ai

ε∗ mini αi

⌉
(
∑

n αnλn);

(d) for any η > 0,

(q̃r(t), t ∈ [t′ + η, t′ + δ − η])
u.o.c.→ (q̃(t), t ∈ [t′ + η, t′ + δ − η]) ,

where q̃(t) = x̃(t)α0.

If, in addition, t̃r = t′ for all r, and q̃r(t′) → q̃(t′), then
(b’) ỹ does not increase in [t′, t′ + δ), i.e., ỹ(t′ + δ−) − ỹ(t′−) = 0, where ỹ(0−) = 0 by
convention;
(d’) the following holds:

(q̃r(t), t ∈ [t′, t′ + δ])
u.o.c.→ (q̃(t), t ∈ [t′, t′ + δ]) .

Proof. The key construction in this proof, namely the construction of a set of processes

�q
r,l,p(·) (see below) on a slower - fluid - time scale. This is similar to Bramson’s construction in

Section 5 of [3], where a slower-fluid scale was used. In our proof, we use two fluid time-scales.

Let us choose a fixed T > 0 as follows. Define C1 ≡ maxi ai

mini αi
C. Then define T1 ≡ C1

ε∗
,

where ε∗ is defined in Theorem 6.1. Let T ≡ d2T1e. Now consider for each r, the unscaled
time-interval (r2t̃r, r2(t̃r + δ)). We partition this interval into rδ

T
intervals, each of length rT .

We index these intervals by l ∈ [0, rδ
T

− 1]. We further partition each such interval into√
r sub-intervals, each of length

√
rT . We index any sub-interval by the pair (l, p), where l

corresponds to the index of the interval of length rT and p ∈ [0,
√

r − 1] corresponds to the
pth sub-interval of the lth interval. Thus, (l, p) corresponds to a sub-interval of length

√
rT.

We say (l1, p1) > (l2, p2) if l1 > l2 or l1 = l2 and p1 > p2.

For each n ∈ N, r, (l, p), define for u ∈ [0, T ],

�q̄
r,l,p
n (u) ≡ 1√

r





(
anQr

n(r2t̃r + rlT +
√

rpT +
√

ru) − bn

√
Q̄r(r2t̃r + rlT +

√
rpT +

√
ru)

)

−maxk∈N

(
akQ

r
k(r

2t̃r + rlT +
√

rpT ) − bn

√
Q̄r(r2t̃r + rlT +

√
rpT )

)





where

Q̄r(.) =
1

N

∑

j∈N

ajQ
r
j(.)

We observe that this definition is analogous to (32) in Section 6.1. Let us denote �q̄
r,l,p(.) =

[�q̄
r,l,p
1 (.), . . . , �q̄

r,l,p
N (.)]. Finally, define for u ∈ [0, T ],

G
(
�q̄

r,l,p(u)
)

≡ max
n

�q̄
r,l,p
n (u) − min

n
�q̄

r,l,p
n (u)

�ζ̄
r,l,p

(u) ≡ max
n

�q̄
r,l,p
n (u)

Now fix any ε1 > 0. The following properties then hold.
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Property 1. For all r ∈ R4(ω) large enough, for l = 0, there exists some pr
1 ∈ [0,

√
r−1] and

u ∈ [0, T ], such that

G
(
�q̄

r,0,pr
1(u)

)
≤ ε1 (58)

G
(
�q̄

r,0,pr
1(T )

)
≤ 2ε1 (59)

We first show (58) by contradiction. Suppose it does not hold. Then, there exists a sub-
sequence R5(ω) ⊂ R4(ω) such that for all r ∈ R5(ω), for all p ∈ [0,

√
r − 1] and u ∈ [0, T ],

G(�q̄
r,0,p(u)) > ε1. For this subsequence, define for each n ∈ N ,

q̄r
n(t) =

1

r
Qr(r2t̃r + rt) t ∈ [0, T ] (60)

It is easily shown that we can choose a further subsequence R6(ω) ⊆ R5(ω) along which
the paths {q̄r

n(t), n ∈ N, t ∈ [0, T ]} converge to an FSP {q̄n(t), n ∈ N, t ∈ [0, T ]}. From
Theorem 6.1, and by the definition of T , it follows that for t > T

2
, aiq̄i(t) = aj q̄j(t) for all

i, j ∈ N , and for all regular t ≥ T
2
,

(max
i

aiq̄i(t))
′ = 0 (61)

Next, by assumption, along the subsequence r ∈ R5(ω), we have

G(�q̄
r,0,p(u)) > ε1, p ∈ [0,

√
r − 1]. (62)

Thus, for any sequence of sub-intervals (each of length
√

rT ) indexed by {pr} which are chosen
such that conditions (i)-(iii) of Proposition 6.1 hold, we have that along a further subsequence,

�ζ̄
r,0,pr

(.) converges to a “local” fluid limit �ζ̄(.), which from (43) and (62) satisfies

�ζ̄
′
(x) ≤ −ε∗ . (63)

An argument analogous to Theorem 6.1 based on the Dirichlet principle can now be used to
show that (61) and (63) lead to a contradiction. Finally, equation (59) now follows from (42),
(44) and (41). We skip the details for brevity. �

Next, it can be easily shown that for any fixed ε2 > 0, for r large enough,

1

r
Xr(r2t̃r + pr

1T
√

r) ≤ (CC2 + ε2)

with

C2 ≡ 1 +

⌈
2 maxi ai

ε∗ mini αi

⌉
(
∑

n

αnλn).

This bound follows from the definition of T and assuming (this is the worst case) that no
service is given to any queue over the first sub-interval of length rT .
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Now, define for u ∈ [0, T ],

ȳr,l,p(u) =
1

r

(
Y r(r2t̃r + rlT +

√
rpT +

√
ru) − Y r(r2t̃r + rlT +

√
rpT )

)
(64)

Property 2. For all r ∈ R4(ω) large enough, for all (l, p) > (0, pr
1), where pr

1 is defined in
Property 1, and u ∈ (0, T ),

G
(
�q̄

r,l,p(0)
)

≤ 2ε1 (65)

G
(
�q̄

r,l,p(u)
)

≤ 3ε1 (66)

We will prove this by contradiction. Let us assume Property 2 does not hold. Then, we can
choose a further subsequence R7(ω) ⊆ R4(ω), and for each r ∈ R5(ω), we define (lr2, p

r
2) to be

the first index after (0, pr
1) such that at least one of the following conditions occur:

(i) G
(
�q̄

r,l,p(0)
)

> 2ε1, or

(ii) G
(
�q̄

r,l,p(u)
)

> 3ε1 for some u ∈ (0, T ).

If (i) occurs, then, we let (lr3, p
r
3) be the index of the interval preceding (lr2, p

r
2), else, we let

(lr3, p
r
3) = (lr2, p

r
2). This construction implies the following three properties:

(p1) For all r ∈ R7(ω), we have

G
(
�q̄

r,lr3,pr
3(0)

)
≤ 2ε1 (67)

(p2) For all r ∈ R7(ω), one of the following two cases occur:

G
(
�q̄

r,lr
3
,pr

3(T )
)

> 2ε1 or (68)

G
(
�q̄

r,lr3,pr
3(u)

)
> 3ε1 for some u ∈ (0, T ) (69)

(p3) For (l, p) > (0, pr
1) and (l, p) < (lr3, p

r
3), and all u ∈ [0, T ], we have

G
(
�q̄

r,lr
3
,pr

3(u)
)

≤ 3ε1 (70)

Now, we observe that from (p3), it follows that for ε1 small enough, and (0, pr
1) <

(l, p) < (lr3, p
r
3), ȳr,l,p(T ) − ȳr,l,p(0) = 0. This follows from the fact that if G(�q̄

r,l,p(.))
is small enough, then, for each channel state m, only decisions from K∗(m) (recall that
K∗(m) = arg maxn αnµm

n ) can be chosen. Thus, it easily follows that for r large enough,

C − ε <
1

r
Xr(r2t̃r + lr3Tr + pr

3T
√

r) ≤ CC2 + ε2 (71)

For the sequence of processes {�q̄r,lr3,pr
3(.)}, is is easy to show that properties analogous to

Proposition 6.1 hold. In particular, we can choose a subsequence R8(ω) ⊆ R7(ω), such that
the left-end points of the intervals (lr3, p

r
3) converge, and satisfy (i)-(iii) of Proposition 6.1.

Then, along a further subsequence, we can show that �q̄
r,lr

3
,pr

3(.) converges uniformly over
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[0, T ] to �q̄(.), a “local” fluid limit, and this limit satisfies the analog of Property A and
Property B of Proposition 6.1.

Also, it follows from (p1) and (p2) that this limit satisfies G (�q̄(0)) ≤ 2ε1 and one of

G (�q̄(T )) ≥ 2ε1 or

G (�q̄(u)) ≥ 3ε1 for some u ∈ [0, T ]

which contradicts the analog of (42), (43) and (44) in Proposition 6.1. Thus, we are done. �

Property 2 implies that for all large r, for all l ≥ 1, for all p ∈ [0,
√

r − 1]

ȳr,l,p(T ) − ȳr,l,p(0) = 0. (72)

This implies (a)-(c). Statement (d) follows from Property 2 and the fact that ε1 can be chosen
to be arbitrarily small.

To prove properties (b’) and (d’), we use the same exact construction.

7.1 Proof of Theorem 5.1

To prove the convergences (15) and (16) in Statement (i) of the theorem, it will suffice to
prove the following

Proposition 7.1 As r → ∞ (along R), with probability 1 we have the following convergences

(ỹr(t), t ≥ 0)
u.o.c.→ (ỹ(t), t ≥ 0) , (73)

where ỹ is defined by (14), and

(q̃r(t), t ≥ 0)
u.o.c.→ (q̃(t), t ≥ 0) , (74)

where q̃ = x̃α0.

Proof of Proposition 7.1: The proof uses Lemma 7.1. The details are identical to those in
the proof of Theorem 1 (statement 1) in [19].

Proof of property (17) in Statement (ii) of Theorem 5.1 is identical to the reasoning in
the proof of Theorem 1 (statement 2) in [19], which basically follows from the properties of
the solution to the one-dimensional Skorohod problem (see Proposition B.1 of [2]). Property
(18) follows directly from (17). Finally, (19) follows from (18) by using Fatou’s lemma.
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8 Conclusion

In this paper, we have studied a scheduling algorithm (the EXP rule) for a wireless channel.
This is an “on-line” algorithm, which only uses the information on the current state of the
channel and the queues. We have studied the EXP rule for a heavily-loaded system, under
a complete resource pooling (CRP) condition. We show that, in the heavy traffic limit, this
algorithm minimizes the workload and induces a state space collapse such that the queue length
vector is always proportional to the vector [a−1

1 , . . . , a−1
N ], where ai’s are positive parameters

which can be chosen arbitrarily. (As a result, the algorithm minimizes the maximum of the
weighted queue lengths maxi aiQi(t).)

The fact that workload minimization and a state space collapse can be achieved by an
on-line rule has been demonstrated in previous work. We believe an important contribution of
this paper is that we show the existence an on-line scheduling rule which, in addition, induces
state space collapse along the desired line. This latter feature of the algorithm is important for
applications. Our technique of using a “local fluid limit” in the proof of state space collapse
may be of independent interest.
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