
Quantifying the Potential of Program Analysis Peripherals

Mohit Tiwari, Shashidhar Mysore, Timothy Sherwood
Department of Computer Science

University of California, Santa Barbara
tiwari,shashimc,sherwood@cs.ucsb.edu

Abstract—As programmers are asked to manage more com-
plicated parallel machines, it is likely that they will become
increasingly dependent on tools such as multi-threaded data
race detectors, memory bounds checkers, dynamic dataflow
trackers, and various performance profilers to understand and
maintain their software. As these tools continue to grow in
importance, it is worth exploring the potential for special
purpose accelerators for these tasks, especially since commodity
multi-cores can only provide limited speedups. Rather than
performing all the instrumentation and analysis on the main
processor, we explore the idea of using the increasingly high-
throughput board level interconnect available on many systems
to offload analysis to a parallel off-chip accelerator. There are
many non-trivial technical issues in taking such an approach
that may not appear in simulation, and to flush them out we
have developed a prototype system that maps a DMA based
analysis engine, sitting on a PCI-mounted FPGA, into the
Valgrind instrumentation framework. Using this prototype we
characterize the potential of such a system to both accelerate
existing software development tools and enable a new class of
heavyweight dynamic analysis. While many issues still remain
with such an approach, we demonstrate that program analysis
speedups of 29% to 440% could be achieved today with strictly
off-the-shelf components on some of the state-of-the-art tools,
and we carefully quantify the bottlenecks to illuminate several
new opportunities for further architectural innovation.

Keywords-Dynamic program analysis, Hardware support,
Debugging and Security, Offchip accelerator

I. INTRODUCTION

Developing fast, quality software on a modern computer
system is by no means easy. Even today, software bugs are so
damaging and widespread that they cost the U.S. economy
alone an estimated $59.5 billion annually (more than half
a percent of the US GNP). Although it is certainly not
possible to remove all errors, it is estimated that more than
a third of the cost associated with bugs could be eliminated
through an improved testing and analysis infrastructure [22].
The problems associated with inefficient and buggy software
are not going to be helped by the fact that the amount of
hardware complexity exposed to the programmer is growing
rapidly on desktop and server machines in the form of
threading, parallelism, and complex application middleware.
To cope with this complexity, and ensure the quality of soft-
ware infrastructure, an increased reliance on sophisticated
software analysis and testing tools seems inevitable.

One important aspect of the testing problem is that
complex pointer errors, memory leaks, race conditions, and

performance anomalies may manifest themselves during
tests, but finding them requires sifting through a sea of
runtime data. To find these errors, many people rely on dy-
namic analysis frameworks such as Valgrind [19], Pin [14],
and DynamoRIO [1]. While dynamic analysis can be done
completely in software through binary instrumentation, the
amount of analysis that can be done at test-time is bounded
by the performance impact that can be tolerated. The per-
formance impact is especially critical in long running and
interactive programs (keep in mind even loading a page in
Firefox takes about 900 million instructions), or when anal-
ysis methods require significant computation be performed
on-line with the execution (for example in tracking all the
memory addresses in a race condition detector).

In this paper, we explore the potential for off-chip
hardware-accelerated software analysis tools that can sift
through on-line profile data. In particular, we consider a
class of designs where the profiling support is parallelized
between the on-chip task of data gathering and the off-chip
task of actual analysis. The on-chip system, which may even
be implemented strictly in software, gathers and packs data
for transport. The off-chip system then unpacks the data and
performs the actual dynamic program analysis. To uncover
the potential issues with such an approach, for this paper
we have designed, built, and evaluated a working prototype
that uses binary instrumentation to extract dynamic program
information and passes it, via DMA, to a PCI mounted
FPGA board for analysis.

The end goal of this research is three fold: 1) To demon-
strate that there is potential benefit from specially designed
program analysis devices, even if they can only be inte-
grated with the system through existing peripheral channels.
2) To determine how “heavy-weight” a program analysis
tool would need be before offloading has the potential for
performance gains. 3) To identify and carefully quantify the
bottlenecks and system-level issues in a real design so as to
help identify places where microarchitectural support might
be most judiciously applied. While we do not contend that
this is always the best way to perform instrumentation and
analysis, in some situations it may prove to be an enabling
idea for those interested in building very analysis-heavy
dynamic software analysis.

In this paper we describe the performance of the var-
ious components, the system-level problems that arise in

����� � �� � � 	�

� ������� �� � � 	�
��
������ � � 	�

�

���� �
�� �

�����

� ��!#"%$ &

'�(*) +�,�-/.�(�01�-�.�(�0,324-�.�(�0

57698

:�;=<?>
< ���

:�@ACB D3E�F�G
G
D/B
H IJ K9L9M

����� � �� � � 	�

� ������� �� � � 	�
��
������ � � 	�

�

���� �
�� �

�����

� ��!#"%$ &

'�(*) +�,�-/.�(�01�-�.�(�0,324-�.�(�0

57698

:�;=<?>
< ���

:�@ACB D3E�F�G
G
D/B
H IJ K9L9M

����� � �� � � 	�

� ������� �� � � 	�
��
������ � � 	�

�

���� �
�� �

�����

� ��!#"%$ &� ��!#"%$ &

'�(*) +�,�-/.�(�01�-�.�(�0,324-�.�(�0

57698

:�;=<?>
< ���

:�@ACB D3E�F�G
G
D/B
H IJ K9L9M

Figure 1. Figure shows important details of the online program analysis
architecture. As a host CPU executes processes, profile is gathered via
binary instrumentation. Gathered data is then batched in a buffer and handed
over to the interconnect driver (here PCI) when it is full. The various stages
of a DMA transfer are shown: 1. Data is written out to a buffer stored in
memory. This buffer’s pages are locked in physical memory to prevent
them from being paged out. 2. Once the buffer is full, DMA setup writes
are made to PCI registers to convey the size and address in memory of
the buffer. 3. The PCI device then requests master control of PCI bus, and
reads data from buffer. The figure also shows available points of attachment
for an offchip analyzer and the available bandwidth at each point. A 10X
increase in bandwidth can be seen as we move from a PCI(X) device to
being attached directly to the CPU.

0
10
20
30
40
50
60
70
80
90
100

a
p
p
lu

g
cc

g
zi
p

m
p
e
g
d
e
c

m
p
e
g
e
n
c

v
p
r

w
u
p
w
is
e

M
ch
k-
av
g

LU
t

fm
m

b
a
rn
e
s

w
a
te
r-
n
2

w
a
te
r-
sp

H
e
lg
-a
vg

Instrumentation-only Analysis

Figure 2. The ratio of analysis to instrumentation time in two software-
only dynamic analysis tools, a memory error detector (Memcheck) and a
race detector (Helgrind). The y-axis is percent time on a real executing
system for the full tool (100%) versus a “stub” tool that excludes tool-
specific analysis. Even the relatively simple Memcheck analysis takes a
large portion of the execution time (over 50% on average), while Helgrind
performs over 70% analysis on average.

getting the software elements to integrate seamlessly, a
set of instrumentation optimizations specifically suited to
this new profiling methodology, the problems with such
an approach, and evaluate the architectural bottlenecks that
prevent further scaling and provide opportunity for future
research. Even with PCI technology developed 10 years
ago, our prototype has the potential to speed up memory
monitoring by 29% and a race condition detector, Helgrind,
by 440% over the state-of-the-art, with room to grow using
a better interconnect. However, before we can explore the
potential of such an approach, we need to first understand
the trends in peripheral bandwidth that makes this research
possible.

II. PROGRAM ANALYSIS ON A PERIPHERAL

Peripheral bandwidth and its application to program
analysis: An important aspect of our approach is that it
leverages existing market trends towards including high-

speed board level interconnect. Figure 1 shows in detail
the tremendous improvement in offchip bandwidth. A PCI-
X bus (referred to simply as PCI throughout the rest of
this paper) can support a theoretical peak bandwidth in
the range of 133MBps to 4GBps, while a 32-channel PCI-
e link (which is a point-to-point interface) can provide
6.4GBps peak bandwidth. Currently, peripheral devices can
also be inserted into a HyperTranport Bus that acts as the
Front Side Bus for the processor. Maximum throughputs
currently for these 16b interconnects are 6.4GBps, and
the processor-peripheral communication shares bandwidth
with the processor-memory communication. At the highest
end, FPGAs can be connected to an Opteron processor’s
open socket over a HyperTransport bus, at effective peak
bandwidths of almost 12.8GBps for 16b transfers [10]. The
HyperTransport-3.1 protocol released in 2008, increases the
clock frequency from 1GHz to 3.2GHz and improves the
16b bandwidth to 25.6GBps. Moreover, by supporting an
increased bus width of 32b, such a connection can attain a
peak bandwidth of 51.2 GBps.

The Overhead of Analysis vs Instrumentation: Even
simple analysis, such as checking valid memory accesses,
requires significant analysis computation. To demonstrate
this point consider Memcheck [30], a memory monitoring
tool implemented in the Valgrind binary instrumentation
framework [19]. Memcheck [30] uses dataflow tracking to
observe the memory usage of the monitored application
and detects memory leaks, use of unallocated, undefined
or freed memory regions and bad frees of heap blocks. It
has been used in very large software projects such as the
OpenOffice suite, Mozilla, KDE, GNOME, Perl, MySQL,
Samba, Unreal Tournament and a host of other programs
ranging in size up to 25 million lines of code [30]. We
quantify the execution time break down on a real machine by
executing Memcheck with and without the analysis functions
inserted into monitored code and measuring the full and
instrumentation only times.

Experiments indicate that a surprising amount of the
slowdown comes from the actual analysis overhead rather
than the instrumentation overhead. Specifically, Figure 2
shows that the computation required to check valid memory
accesses accounts for more than 50% of the slowdown
incurred by the Memcheck tool, while the rest is due to
overhead of the Valgrind execution environment itself.

Race detection tools exhibit an even greater ratio of
analysis. For example, Helgrind, a multi-threaded data race
detector included in the Valgrind suite, implements the
Lockset algorithm to expose errors in locking behavior
of programs [19]. When used on Splash benchmarks [38]
running only 4 threads, Helgrind slows down by almost
300X compared to native, with analysis accounting for
87.5% to over 99% of the overhead (for FMM and LU
respectively) and instrumentation-only cost making up the
rest. Similarly, Intel’s ThreadChecker [25] has been shown

to have an average slowdown of 231X with 90% of it due
to analysis. Clearly, the key to accelerating such tools is to
target the analysis overhead.

Why an offchip accelerator: One natural question is,
why not offload analysis to an alternate core available on
a Chip Multi-Processor (CMP)? For example, Speck [21]
is a software-only technique that transfers dynamic data to
alternate cores in a CMP and uses a deterministic replay
system to perform dynamic analysis in the background.
For light-weight analyses like scanning the address space
for sensitive data or analyzing system calls for anomalous
behavior, this approach offers up to 7.5X speedup with
8 cores. However, we want to explore the possibility of
eventually using hardware acceleration to run very heavy-
weight analysis with more acceptable overheads and are less
concerned with making very light-weight analysis run with
0% overhead. For example, Speck reports that the sequential
nature of dataflow tracking severely limits the speedups
to only 2X with 8 processors. While Speck improves the
performance of Taintcheck with only 1 tag bit per word of
memory, there is already a demand for tools that perform
even more powerful analyses. Tools that do not simply
detect errors but reveal their exact origin [29], the precise
conditions that led to an exploit [37], or even help understand
complex enterprise software [16]. These tools require 32-
bit tags per byte and incur analysis overheads from 100 to
300X.

If a specially designed device was developed to perform
program analysis orders of magnitude faster than a general
purpose processor, could we integrate it into a real system
today with no changes to the processor? Where would the
bottlenecks be, and how “heavy” does a tool need to be for
off-chip acceleration to be a win? These are the questions
that we attempt to answer in this paper. Later in the paper
(Figure 5) we show that even with older technology, through
our optimizations, less that 10% of the execution time on
average is actually spent transferring the data off-chip. All of
the other overheads of extracting the data should be the same
regardless of whether the analysis is performed off-chip or
on-chip, and quantifying them on a real system can point us
to where micro-architectural support would be most useful.
While in this paper we do not directly address the question
of how that off-chip analysis hardware should be designed,
there is no shortage of on-chip hardware-accelerators for
analysis proposed in the literature to draw upon. Just as an
example, Range Caches [34] can store a highly compressed
representation of large dataflow tags, even the 32-bit tags
per byte mentioned above.

III. BUILDING AN ANALYSIS PERIPHERAL

Instrumentation: We chose to use Memcheck and Hel-
grind as the dynamic binary analysis tools in our study.
These are very popular tools included in the Valgrind in-
strumentation framework. We note that Pin [14] would have

been an equivalent alternative to Valgrind, but Pin is closed
source and did not work with the threading libraries used by
WinDriver PCI driver. However, similar Pintools have been
shown to have comparable overheads [5], and the choice
between Pin and Valgrind does not affect our results.

Analysis logic on the FPGA: For our prototype anal-
ysis engine, we do not implement the complete analysis
logic for both tools. Instead, we implement a hardware
structure that forms the core of numerous dataflow track-
ing tools such as Memcheck[30], Taintcheck[20], Origin
Tracking[29], Raksha[9] and many others. Since HARD [40]
showed that hashing the lockset for an address into a 16-
bit tag can enable efficient lockset processing in hardware,
Range Cache could be used to store locksets too. Given the
generic requirement of operating on large tags, we imple-
mented Range Cache [34]. The additional logic needed to
complete specific tools would be a logical OR of the tags
for Memcheck and logical bit-operations for Helgrind that
are easy to implement on FPGAs.

Interconnect: For our off-chip design we chose the
most widely available technology, PCI, because it is well
supported, the cost of development is low, and because it is
sufficient to meet our objective of examining the feasibility
and bottlenecks in peripheral-based profilers.

PCI has several different transfer modes, such as single
transfers, batch transfers, and DMA. A single PCI write
involves setting up a PCI transaction (read/write), and trans-
fers one data word per transaction. This mode incurs the
overhead of setting up the transaction for every word that
is transferred, and thus has very limited throughput. The
second option is to batch up the profile data in a buffer
stored in the memory hierarchy, and perform a bulk transfer
when it is full. In a bulk transfer, the PCI transaction is
setup just once, and data is transferred on each subsequent
clock cycle. This mode incurs several overheads, including
allocating a buffer in Valgrind’s segment of virtual memory,
profile data writes to the memory buffer competing for space
in the cache with useful program data, the time taken to
write to and read back from the memory buffer and finally,
performing a bulk write transfer over the PCI bus. The major
gain this mode achieves is by avoiding the transaction setup
time for each word that has to be transferred.

Figure 3 shows the performance of the above PCI-profilers
compared to a software-only scheme. These result are, as
all the results in this paper are, the actual timing data of
a real implementation. Each data point is an average of
5 different runs. The software-only scheme is labeled SW
in the figure and is on an average 90X slower than native
program execution. The Y-axis represents the execution time
of a PCI profiler as normalized to SW execution time for
a variety of applications. As expected and is evident from
Figure 3, single PCI writes (PCI-Simple) and bulk PCI
writes (PCI-Bulk) suffer very high slowdowns (17X and 13X
respectively) over the base software (SW) implementation.

The problem is that, even in a bulk transfer mode, the
processor has to perform the tasks of writing out profile
data per event to the memory buffer, read the buffer back
when it is full, set up the PCI transaction and transfer the
batched data over PCI. Hence, an immediate improvement
can be made by freeing up the processor from two of these
tasks: reading the data back from the memory and writing
it out to the peripheral – using DMA.

In the simple DMA case, at each event (for Memcheck
that is a load or a store) the processor makes a function call
that writes data into the memory buffer. When the buffer
is full, the PCI driver signals the DMA Controller on the
PCI device to read the data from system memory. The PCI
device then requests control of the PCI bus and reads the
buffer from the main memory. This optimization makes a
dramatic difference, reducing the runtime by almost a factor
of 7 even if it uses this simple one-function call per event
scheme (labeled DMA-Func in the graph). By inlining the
function call and applying another optimization (discussed
in Section IV), the 2X slowdown of DMA-func relative to
SW-only reduces to almost 1.5X (labeled DMA-Inline in
Figure 3). However, this is still slower than the software
only approach.

The end point to take away here is that, while there is a
potential for off-chip profilers to significantly speed program
analysis, the most straight-forward approaches cannot match
the performance of a software-only approach. To get to the
heart of this slowdown, we have to more fully understand
the way the instrumentation and the peripheral interact at
the instruction level so that we can construct our system to
avoid important bottlenecks.

IV. SYSTEM-LEVEL ISSUES WITH HARDGRIND

To explore the potential of analysis offloading, we have
an implementation that uses a modified version of Valgrind
and a PCI-mounted FPGA card (which we call Hardgrind).
Our prototype is built using Valgrind-3.1.1 for Memcheck
and Valgrind-2.4.1 for Helgrind on Linux. The instrumented
binaries communicate profile data to the analyzer hardware
implemented on a Stratix EP1S25F1020C5 FPGA plugged
into a 32b/33MHz PCI slot. The analysis hardware has two
components, Altera PCI Controller MegaCore function along
with DMA logic forms the front-end of the device, while the
Range Cache logic forms the analysis backend. A WinDriver
PCI driver talks to the FPGA front-end from the software
side.

The Range Cache synthesis results for the Stratix device
indicate that it requires 1092 ALUTs (FPGA logic blocks)
which is less than 10% of the total ALUTs on the FPGA, and
has a maximum operating frequency of 160 MHz. Given that
it requires two cycles to process a range request, the average
throughput is 80M requests per second. If the memory
accesses were being emitted in real time, this throughput
is obviously insufficient. However, the slowdown imposed

by simply offloading the analysis using DBI reduces the
throughput requirement and makes it just enough.

The first key result is that even a slow interconnect
and a slow analysis device provide immediate, substantial
speedups. The second fallout is that if and when hardware
support for offloading the data [6], [2] becomes available,
extant higher-throughput interconnects and possibly novel
analysis engines (ASIC, stream processor, or even general
purpose cores) could use our techniques and obtain much
higher speedups than we show in this work.

The key to implementing our prototype with low over-
head is carefully optimizing the low level aspects of the
instrumentation, managing the virtual address space, and
exploiting the full potential of the DMA hardware interface.
In this Section we discuss how the analysis peripheral can be
mapped in the virtual address space of the program-under-
test and how DMA interacts with this approach.

A. Mapping the Analysis Peripheral into Virtual Memory

The most fundamental job of our instrumentation scheme
is to write the data out to the analysis device. The good news
is if we can handle this functionality efficiently we can easily
build support for many different types of analysis. The bad
news is that we have to do a lot of these writes, so they have
to be very efficient. A simplistic choice would be invoke
ioctls for every write, but it is much better to map the
PCI registers on the analysis device into the virtual memory
address space of the instrumented program. The advantage
of this is that we can then directly access the hardware
through simple writes inserted (via instrumentation) into the
program.

A client program is invoked in Valgrind by giving it as an
argument to Valgrind’s loader. The operating system invokes
this loader, whose first task is to load Valgrind’s initial-
ization code into a high virtual address. After initializing
the Valgrind core, it loads the specific Valgrind tool and its
required libraries, and finally loads the client executable into
the virtual address space. Virtual memory is assigned to each
component as separate segments separated by “red zones”
which are regions of memory purposely left empty so that
overwrites can be detected.

In order to map the PCI device registers onto the same
address space as the instrumented binary, the Valgrind core
needs to reserve a segment of virtual addresses for commu-
nicating with the device. We modified Valgrind to lower the
clstack top value suggested to the client by 256MB, and
the device driver is allocated segments from this reclaimed
memory. The final allocated memory map can be seen in
Figure 4, with space for the PCI registers, the PCI driver
running in the kernel, buffer space allocated directly within
Valgrind, and the instrumentation inserted into the program
address space. Once this is done, the client executable is set
to be translated and executed.

N
O
P
Q
R
S

TUU
V W XYY X Z[U

\U]
X^]Y

\U]
X]_Y `Ua

bWU
b[c
]

T `]a
TX]d efg

hij k
lij m
fn lk
om
pqj r
fsi k
t u
v

w�xzy{w}|�~ � �%�3� ��� |3��� �
�C��� w%� ����� ��y{���{���� � � ��� ���{�3�4�
�C��� � �C��� �}��� � � ���
���9� ~ ���{�?� ������~ ����
� � � �����3���
���9��� �?� � ����y � ��� � �������� � � ���� 7¡��{~ ~ ��¢��

£4¤�¥ ¦§¦�¥ ¨ £�¤�¥ ¨z¦�¥ £ ©�ª�¥ ¦«£�¬�¥ ¨ ©�¤�¥ ¦­£�®�¥ ¯ ©�¬�¥ ¬°©�©
¥ £ ¬�¥ ©±ª�¥ ª £4ª�¥ ¯²£4®£³¨�¥ ¬´£�£?¥ ¯

Figure 3. The figure compares performance of some preliminary PCI-versions of Memcheck to the base performance of software-only Memcheck. The PCI
versions range from a simple one-PCI-write-per-event to an simple DMA-based Memcheck with all analysis code inlined as Valgrind micro-instructions.
While these results indicate that with a simple DMA approach we can get close to the software-only results, a more clever scheme is required to beat that
performance

µ·¶�¸�¶�¹ º�¶�»�¼ ½�¹�¾�¶�¹ ¿�¶
À

Á À Â ¶�¿?Ã�Ä�½�»�¶

Å Æ Ç È É³Å Ê Ë{È Ì Í�Î�ÌÐÏ Ñ Ò�Ó Í
Ô�Õ·Ö{× Ø�Ù�Ú Û�Ü Ø�× Û%Ý%Þ�ß?ß?Ø�à�á�Ø�× Ø

â·Ø�Ý·ã�× ä9å?æ4ç ç Ø�×?ç ã�×�ß?× ã?ç Ú è Ø%à�Þ�Ü Þ

µ}¶�¸�¶
¹ º�¶
»�¼ ½�¹3¾/¶�¹ ¿�¶
À

é·ê
À ë�¹ Â ¿�»*¸�¶�ë3ì�¶�¿?Ã

Á À Â ¶�¿?Ã3Ä?½�»�¶7íî»�ê�Ã ê

Á À Â ¶�¿?Ã�¸�Ã ê�Ä�ï

À »3ð ¸�½3ñ�À Â ò�Ä�ð ¸�½3ñ�¶�Ã Ä�ð

ó

ô

õ

À »�ð ¸�½3ñ�À Â ò�Ä�ð ¸�½3ñ�¶�Ã Ä�ð

ö�÷�ø3ù{ú û/ü?ý ù�ú ÷4þ�ÿ���ö����3ú � ý ÷�þ

����	
��ú � �³÷{ú

Figure 4. Virtual Address layout in Hardgrind: Figure shows the layout of
the virtual address space shared by Valgrind, the PCI driver and the client
program in addition to the kernel. (a)By default, the virtual address space
is shared amongst the kernel, Valgrind itself and the client code. (b) The
following changes are made to the default scheme: 1. The client’s stack-
top pointer is moved up to reclaim virtual memory where PCI registers can
be mapped in. 2. A buffer to store profile data is allocated in Valgrind’s
segment of the virtual memory. 3. Code is inserted into the client’s code
segment to perform profile data stores to memory and DMA setup writes
to memory-mapped PCI registers. Writes to the PCI registers are finally
handled by a kernel driver module mapped into the kernel space.

One final note is that Valgrind prevents a monitored
application from accidentally using a portion of the address
space occupied by Valgrind data, by replacing malloc with
a specialized version that avoids Valgrind addresses. It ini-
tializes its records with details about pre-existing memory-
mapped segments by reading the contents of /proc/self/maps
when it starts up. Valgrind can be made explicitly aware
of the peripheral registers being memory-mapped into its
address space by performing the PCI device initialization in
the Valgrind core before it reads /proc/self/maps. Either the
device has to be registered with Valgrind in this manner (so
that its mallocs can avoid the peripheral’s memory), or the
PCI connection can be torn down and re-established in a

new portion of the address-space if required. The address is
not hard-wired into the PCI device, rather it is negotiated at
initialization.

B. Making efficient use of DMA

As discussed in Section III, there are several different
ways to access a PCI peripheral, and in the case of memory
mapped devices, they all come down to writes. At first one
might be tempted to simply perform write directly to the
device. On the instrumentation side of things, this would
be quite easy to implement: simply insert a store with the
address of the device at every single instrumentation point.
The problem is that, each of those writes is recognized by
the system as an I/O access, the machine stalls, handles the
event (writing it all the way out to the PCI bridge), waits
for it to complete, and then resumes execution. What looks
just like a simple store in fact incurs a huge performance
penalty. The PCI-Simple approach from Figure 3 is actually
implemented in this way.

Instead we need to make effective use of the memory
hierarchy, buffering data in the cache until it is ready to be
written. This involves utilizing the DMA capabilities of a
PCI device, as shown in Figure 1. The processor just writes
data into the memory buffer (which results in stores that
slowly percolate out to main memory), and when the buffer
is full, the PCI driver signals the DMA Controller on the
PCI device to read the data from system memory (Two
buffers are really required so that the profile data can be
written into the second while the first one is being read out
by the peripheral). The PCI device then requests control of
the PCI bus and reads the buffer from the main memory
(ensuring that main memory accesses by the processor take
precedence). Specifically, the DMA procedure involves the
following steps:

1) A buffer is allocated in Valgrind’s segment of the
virtual address space.

2) The PCI driver is used to ’lock’ this buffer in physical
memory. This is done so that the buffer does not get
paged out to the disk when it is being read by the PCI

device. The Lock function also returns the physical
page frame addresses for each virtual page of the
buffer.

3) As the client executes, profile data is written into this
locked buffer. When the buffer is full, the instrumen-
tation module writes the physical address and size of
the locked buffer to the PCI device.

4) The DMA logic on the device then requests mastery of
the PCI bus. Given the size and the physical memory
address of the profile data buffer, the device performs
a Master Read of the main memory.

V. OPTIMIZING HARDGRIND PERFORMANCE

Exploring the instrumentation framework and its interac-
tion with the interconnect provides deeper insights towards
realistic optimizations, opens new avenues for research in
off-chip analysis engine, and aids in better architectural
designs geared for heavy-weight program analysis. Towards
this end, we demonstrate the utility of our PCI-based pro-
gram analyzer with an actual tool (we use Memcheck to
drive our design), carefully quantify the overheads, optimize
the design and actually beat a software-only based approach,
and then demonstrate that our results are applicable to other
dynamic analysis tools. That is the goal of this section.

A. Quantifying the Overheads in the simple DMA scheme

When we first encountered the DMA results presented
in Section III we were surprised. Freeing up the processor
through DMA-func did not help improve Helgrind’s per-
formance beyond the software-only profiler that we use as
our base. DMA-func provides two sources of overhead to
be immediately optimized: one, the insertion of a function
call after every event incurs the cost of saving and restoring
the monitored program’s registers’ state; and two, checking
if the buffer is full after every event involves executing a
comparison followed by a conditional jump. We thus built
an optimized version of DMA-func where the function call
was replaced with the function code inlined directly into the
monitored program’s code. This inlined code stored profile
data into a memory buffer and dynamically incremented
the buffer’s current pointer, without checking for the buffer
being full. Buffer checking frequency was altered to be
done once per basic block, instead of once per event,
which substantially reduces the number of times its code
is executed. Both these optimizations result in version we
called DMA Inline which is illustrated in Figure 6. However,
we know from the results in Figure 3 that the performance of
this approach is still not sufficient. To more fully understand
where the slowdown is coming from, we performed a series
of experiments to clearly identify the sources of slowdown.
At a high level, the overheads of DMA-Inline are due to
its three components; instrumentation, data transfer, and
analysis.

The instrumentation overhead stems from two sources.
First, simply running a program (like gcc) as a Valgrind
client incurs the overhead of its executable being translated
into Valgrind’s IR and back in a JIT manner. There is a
default tool, Nulgrind, that does exactly that which allows
us to calculate the overhead of that step. Second, a tool often
provides its own version of certain functions and inserts
listeners for various events detected by the Valgrind core.
For example, Memcheck provides its own implementation
of malloc, free and related functions, and registers handlers
for system calls with the Valgrind core. Thus there is an
added cost of just running the monitored program through
a tool that has all its instrumentation setup in place but is
not inserting any analysis code. For Memcheck, we term
this second component Memcheck null. As mentioned in
Section II, we do not seek to reduce the cost of these two
parts of instrumentation, but rather hope to reduce the cost
of program analysis.

Since Hardgrind aims to supplant the cost of analysis with
that of transferring data over to the offchip analyzer, the
overheads come from: execution of the store to the profile
buffer, the memory hierarchy interference caused by keeping
the buffer in the user address space (i.e. cache pollution), the
cost of incrementing the buffer pointer so that it does not
overwrite the old data, checking if the buffer is full and ready
to be written out to memory, and finally the cost of the actual
DMA transfer itself. Figure 5 shows the contribution of each
of the above components to DMA-Inline’s total execution
time, for our set of benchmark programs. The method we
used to calculate each breakdown is as follows:
Nulgrind and Memcheck null: The two lowest segments
in each stacked bar thus form the total instrumentation cost
as measured through runs of Nulgrind and Memcheck null
tools that simply quantify the total instrumentation overhead.
Store instruction only – The third segment in the stack
represents the overhead of inserting a store statement into
the monitored program. To isolate just this overhead, we
inserted store statements that access the same destination
address at every event. Thus there should be minimal impact
on the memory hierarchy (only one address is being accessed
repeatedly) and there is no overhead in incrementing the
pointer.
Increment instruction only – To determine the cost of just
the increment operation, we need to exclude the effects of
changing addresses on the system, which includes the cache
pollution effects, the need to prevent buffer overflow, and
the cost of flushing the buffer out over PCI. Our method of
isolating each of these three overheads is by introducing the
increment instructions into the monitored code, but with the
increment value set to zero. This will quantify the time spent
in executing the increment instructions and, with the buffer
pointer staying at the same value, will not incur any memory
hierarchy effects or buffer checking logic. This overhead is
shown by the fourth segment from below in Figure 5.

��

����

����

����

����

����

����

����

����

����

������

���� � ��� � ! �
"�#
�$ #�

"�#
�#%� &�'

(��
(!)#

�
&#'�
�#

* +,-
./0 1
2/0 3
,45
6

798;:�<�=�> =;> ? =A@CBCD
EF?
GHEFIKJF? LHEAD DME�N�> B
O BQPSRTD DMEF?
U�RWV VXNAYCE�NAZ
: @CNA? EFIKEF@�>QO @CB�> ?[RCN�> O JF@C\ JF@WV L
] > J�? E^O @CB�> ?[RCN�> O JF@HJF@WV L
GHEFIKNAYCE�NAZ`_9@WRWV V
aSRWV bF? O @C<cJF@WV L

Figure 5. Breakdown of overheads in a DMA-Inline implementation: The cost of each component is shown as a percentage of total execution time. It is
interesting to note that on average, the overheads of inserting a simple store instruction and incrementing the buffer address during run-time are individually
greater than overheads due to memory pollution or data transfers to peripheral.

d egfih jlkCeTenm`j

kCeTeif�h o h[j9pqj

r�sutXvTwns wHxzyi{ |~}� v�t�s ����yi{ ��|~}w�vTv�t�s �H��s ���;�r�sut�s ��x�yi{ ��|~}

r�sutSv�wns wHxzy�{ |~}� v�t9s �H�zy�{ �F|W}w�vTv�t9s ����s ���;�r�sut9s ��xzy�{ �F|W}

w�vTv�tSvTwTs wHx�yi{ |W}� v�t�s ����yi{ ��|~}w�vTv�t�s ����s ���;�r�sut�s ��x�yi{ ��|~}

� h�f�h o kCe�enm �

��� � ���T���C�T �� ¡H�W� ¢~¡C£

d e¤f�h j¥kCeTeTm¦j

kCeTe§fTh o¨h[jSpqj

� hgf�h o¨k�e�enm �

w�vTv�t©s �H��s ���~�r�sªt©v�wns wHxzy�{ s �T}

w�vTv«tSs �H��s ���i�r�s¬tSvTwTs wHxzy�{ s �n}

w�vTvHt©s ����s �H�i�r�sutXvTwns wHxcy�{ s �T}

� v­t�s ���zy�{ |~}

r�sut�s ��x�yi{ |W}

��� � ���T���C�T �� ¡H�W� ¢~¡C£

d e¤fTh[j¥k�e�enm`j

kCeTe®f�h o¯h[j9pKj
� h°f�h o¨kCeTeTm �

wTv�v�t�s �H��s �C�A�r�s�tXvTwTs wHxzy�{ s �n}

wTv�vHt©s ����s ���i�r�sut©vTwTs wHxcy�{ s �n}

� v­t�s �;��yi{ |W}

wTv�vHt©s ����s �i�q�r�sutn±T±�² vHxzy�{ |~}r�sut�s ��xzy�{ |~}

��� � �C�����C�T �� ¡��~� ¢W¡�£

³ ´Tµ�² r�s ´C³Cr©wn¶n´r�sutXvTwns w�x�yi{ |W}� v�t©s ����yi{ ��|~}w�vTv�t©s �H��s ���;�r�sut©s �Hxcy�{ �F|W}³ ´Tµ�² r�s ´C³W³ ´Tr�s ·�³ ´³ ´ns

d e°f�h[jlk�e�enm`j

kCeTeif�h o h[j9pKj

��� � ���T���C�T �� ¡H�W� ¢~¡C£

¸©w � � tn¹T³ ·Xº ² � ´X»�º ¼n½ ¾

¸©w � � tn¹T³ ·Xº ² � ´X»�º ¼T½ ¾

¸©w � � tn¹�³ ·Xº ² � ´X»�º ¼T½ ¾
� h°f�h o¨kCeTeTm �

¹�³ ·Xº ² � ´©»Cº ¼n½ ¾

DMA-func DMA-inline fixed increment dataflow-aware

x

�

� � � �

x

x

x�
� �

Figure 6. (L-R) The figure shows instrumented basic blocks for DMA implementations of Hardgrind, in increasing order of optimization. Client program’s
instructions are italicized and code inserted through binary instrumentation is included in shaded arrows. (a)DMA-func invokes a function call at every
profiled event. This function stores profile data to a buffer address B, increments B, checks if the buffer is full, and if full, transfers it to the analyzer using
DMA. (b)DMA-Inline inlines the above function code to be executed at each event to avoid register save and restore overhead. Additionally, it performs
buffer overflow checks only one per basic block instead of once per event (not shown for simplicity).(c)Fixed increment saves on incrementing B during
run-time by calculating store address offsets at instrumentation time for every store inserted into a basic block.(d)Dataflow-aware saves on inserting a store
instruction at every event and instruments only loads, stores and basic block entries. It thus sends only the minimum run-time data required to reconstruct
the execution of a basic block by the analyzer.

isBufferFull check – The next check is the instruction
overhead of actually performing the check to see if the buffer
is full and ready to be written out. We measure this by
keeping all the stores still going to the same address, but
the number of profile data writes per basic block is counted
at instrumentation time and a check is performed at the end
of the basic block as to whether the buffer is full or not (this
is the buffer check optimization that was mentioned earlier
– we check the buffer once per basic block rather than every
instruction because we know exactly how many loads and
stores are in a basic block at instrumentation time).
Memory effects – Now that we have tools that quantify
the instruction execution overheads, we have increments and
buffer checks in place, we can now add in the cache pollution
effects to see what effect they have. All we have to do is

change our tool to increment addresses by 1 word rather
than by 0. The difference between the two should indicate
the cache pollution effects on execution time.
PCI data transfer – The only difference between the tool to
quantify the memory effects from an functional tool is that
the data needs to be actually pulled from memory by the
PCI device. Hence, as the last step, when the buffer is full,
we insert stores to the memory mapped PCI registers to set
up the DMA transfer. In our implementation, this requires
two stores to communicate to the physical memory address
and size of the profile data buffer to the PCI device. The
execution time with the full DMA setup is represented by the
whole bars in Figure 5, with the topmost segment indicating
the overhead of performing the PCI data transfers.

There are several interesting things to note about these

results. The bottom two segments account for the cost of
using Valgrind and the tool’s specific requirements, and
optimizing them is outside our project’s focus. Of the
remaining, the number of PCI DMA setup writes have
already been minimized to send only the address and size
of the buffer. In terms of the buffering, we observed that
performance improvements from increasing the size of the
buffer out to about 32KB, and we use this size for the
rest of our experiments. Moreover, it is interesting to note
that the effect of cache pollution is on average less than
the overheads of inserting either store instructions or the
increment instructions. While our initial idea was to propose
some techniques to mitigate the impact on the memory
hierarchy, after performing this analysis we realized that the
overhead of the extra instructions themselves was the most
important factor.

B. Optimized Design on Memcheck

To attack these overheads we have developed a set of
optimization techniques that reduce the total number of
instructions executed at each instrumentation point signif-
icantly.

Instrumentation-time Increment: The first target for
optimization is the cost of increment instructions in the
DMA-inline example above. In Figure 6 the cost of per-
forming these increments at each and every instrumenta-
tion point becomes apparent (the additional instructions for
buffer overflow checking (at the end of a basic block) and
PCI DMA writes are not shown for simplicity). Instead,
we note that because the code within a basic block will
execute in that order, we can pre-compute the increments at
instrumentation time. Rather than load the old value of the
pointer, increment it, perform the store to that address, and
then write back the updated pointer, this sequence of events
can be replaced with a smaller set that makes use of the
position of the instruction within the basic block.

The optimized code is labeled Fixed Incr in Figure 6.
The example shows a monitored code sequence involving a
load followed by an add and a store (shown in italics). If
we assume Memcheck as the tool under consideration, all
three instructions are ‘events’ that require analysis code to
be inserted (to track both loads and stores but also to track
the dataflow in the system).

The monitored program is instrumented in units of its
basic blocks, and the number and location of buffer stores
to be inserted in each block is known at instrumentation-
time. In effect, the tool has an ordered list of buffer stores
to be inserted, each of which addresses a successive address
in the PCI buffer. In Figure 6 for example, Memcheck has to
insert store instructions addressed to address (B+1) through
(B+3), and increment B by 3 at the end of the basic block.
This results in the run-time overhead being reduced to an
add and a store per event, and an extra load and store per
basic block (to get and save B). Figure 7 (second bar from

left) shows the performance of Instrumentation-time Incr for
various programs, and its reduced analysis cost is found to
bring down its average execution time from 1.5X of SW-only
for DMA-Inline to be almost on par with SW-only.

Dataflow-aware Profiling: Our final optimization to the
Hardgrind architecture caters to tools that need to perform
data-flow analysis and thus require extensive instrumentation
for profile data gathering. Memcheck and Taintcheck are two
important existing tools in this class, for they need to track
definedness/validity/taintedness of data through both regis-
ters and memory locations. Such tools are most challenging
for Hardgrind because of their high number of ‘events’ per
time unit resulting in more code to be inserted and more
data to be transferred.

As shown in Figure 5, even just having an extra store
at every instruction results is a substantial overhead. Our
optimization stems from the observation that, of all the
dataflow that results from the execution of a basic block,
it is only the loaded and stored addresses that cannot be
determined at instrumentation time. The rest of the dataflow
is a function of the structure of the basic block. Thus, for
data flow analysis it is sufficient for a Data-flow aware
profiler to send the address and a basic block identifier,
as long as the analysis device can map the basic block
identifier to a representation of the data flow effects that
it would cause. Introducing this optimization into Hardgrind
made a substantial impact to its performance, and resulted in
an average speedup of 35% over the previous optimization
(Instrumentation-time Incr). Figure 7 shows the final results
for Memcheck in software vs the various DMA schemes.
With successive optimizations, Hardgrind improves from an
almost 60% slowdown in its DMA-Inline mode to being on
par with SW-only in its Instrumentation-time Incr mode, and
finally achieves a speedup of 29% in its Data-flow aware
mode. Moreover these trends of improving performance
for successive optimizations and a final improvement over
a software-only scheme are consistent for a varied set of
benchmark programs.

C. Helgrind: Performance analysis

Thus far, we have demonstrated the effect of each opti-
mization in Hardgrind on Memcheck. We observe modest
performance improvements, and this shows that at around
50% ratio of analysis to instrumentation in the original tool,
Memcheck forms the break-even point when the benefits
of offloading the analysis will begin to show. Memcheck
being one of the simplest dynamic information flow tracking
tools today, this study indicates that tools such as Origin
Tracking or 32-bit Taint tracking stand to gain much higher
benefits (since they perform heavier analysis but use the
same dynamic program data).

In this section we present a similar study of another
important tool, Helgrind. Helgrind (a.k.a Valgrind-Lockset)
is an implementation of the Eraser[27] data race-detection al-

¿À�¿
ÁÂ¿�¿ÁÂÀ�¿
Ã©¿�¿Ã©À�¿
Ä�¿�¿Ä�À�¿
ÅX¿�¿ÅXÀ�¿
À�¿�¿À�À�¿

Æ�ÇWÇ�È É Ê�ËTË ÊCÌTÍ Ç ÎHÇ�Ï�Ê�ÐWÏ�Ë ÎHÇ�Ï�Ê�Ï~ÑXË ÒTÇ�Ó Ô9ÉTÇnÔ9Í ÕTÏ Æ©ÒnÏ~Ó ÆnÊWÏ
Ö ×ØÙ Ú
ÛÜ ÝÞ
ÛÜ ß
Øà á
ØÙáâ ãåä�æèç ÑTÈ Í ÑXÏé Í ênÏ�Ð ç ÑXËCÓë Ð�ì í�îWï�Ó ð�ñMÍ È Í Ñ©ÊHð~ÑTÈ ò

íFð�ñ î Ô�ÆCÓ Ï�ó ð~ÑnÈ ò

Figure 7. Performance of DMA implementations compared to software-only Memcheck: (L-R) Each cluster on the Y-axis represents execution times of
DMA-Inline, Fixed Increment, Dataflow-aware and SW-only Memchecks. Successive optimizations from Figure 6 improve the DMA performance at each
step, as seen in first three bars of each cluster. The final version of Hardgrind (second bar from right) has an average speedup of 29% over the rightmost
bar of SW-only Memcheck.

gorithm for multi-threaded programs. Helgrind instruments
only instructions that read or write to memory, and accesses
tables of locks and locksets, for various threads, to ensure
consistency in the locks held by these threads when a shared
memory is accessed. Although the algorithm is simple, there
is a significant amount of analysis computation involved
when there is a lot of sharing (over 70% on average as
shown in Figure 2).

We modified Helgrind to instrument a client basic block
in the Instrumentation-time Increment fashion described in
the previous section, and perform profile data stores at
appropriate events (note that the dataflow-aware optimiza-
tion does not apply to Helgrind because it already only
instruments loads and stores). Every event requires the
corresponding thread identifier and the memory location
to be transferred. A performance comparison between PCI
Helgrind (Hardgrind) and the SW-only version can be found
in Figure 8. It demonstrates the potential of Hardgrind to
accelerate the cases where there is heavyweight program
analysis. We observed that applications such as LU, Barnes
and FMM, which scaled very poorly in SW-only Helgrind
for increasing processors and input sizes, consequently had
the highest speedups. While a SW-only scheme suffers an
average slowdown of 7X over Nulgrind, Hardgrind intro-
duces only a 1.6X average slowdown, resulting in an overall
speedup of 4.4X. Overall, we see that Hardgrind not only
provides a platform to speedup existing analysis tools, but
also opens up avenues for more complex analysis.

VI. RELATED WORK

In addition to the work described throughout the paper,
we can consider related work in one of two main camps,
special purpose and general purpose.

Special Purpose: Memory errors are perhaps the most
well studied set of special purpose problems. Statistical
methods [4] and anomaly detection techniques for finding
memory errors [3] are two examples. Relevant to our work,
HeapMon [31] uses helper threads while MemTracker [36]
provides support for attaching state bits to each virtual
memory location to detect heap errors. MemorIES [17]
proposes using an FPGA for accelerating memory system
design by capturing and analyzing memory traffic, while

iWatcher [39] provides mechanisms to watch for unsafe
pointer dereferences and memory regions.

Hardware assistance can also be used dynamically track
one-bit dataflow tags through the architecture [33], [7] to
help identify the code that is most likely to be exploited
by worms and other network based attacks. Furthermore,
there is demand for even more complex tools that detect
concurrency bugs such as data races [27] and atomicity
violations [13], [11], [26], or record shared memory depen-
dencies for later playback as in Strata [18]. HARD [40]
proposes tightly integrated hardware acceleration of the
lockset based race detection algorithm with 16 bit tags for
cache lines and additional logic to update the tags. Using
our techniques, custom accelerators could be built and fed
through instrumentation rather than direct introspection.

General Purpose: Generalizing from these on-chip pro-
gram profiling and analysis systems, several prior works
have proposed methods to dynamically insert instructions
into the execution stream [6] to alternate cores in CMPs [23],
[32] to specialized profiling co-processors [41], reconfig-
urable monitors [28] and 3D introspection engines [15].
FlexiTaint [35] and Raksha [9] generalize uniprocessor
hardware support for information flow tracking (Note that
Raksha prototypes full systems on FPGAs, while we use
FPGAs as coprocessors for existing systems). Patil and
Fischer in [23] describe an approach close to ours where
the computation of an instrumented program is divided into
a main thread and a shadow thread where the shadow thread
could potentially execute on an idle core in a multiprocessor
architecture. The “shadow processing” approach can benefit
from the instrumentation and transport mechanisms provided
by our Hardgrind framework, and may not even require
customization since a fast analysis engine on the FPGA
has been shown to provide large performance benefits over
general purpose cores for specific applications [8], [12]. Log-
Based Architectures [2], [24] propose a similar decoupling
in the context of CMPs, and uses hardware support to
extract, compress and transport profile data to “lifeguard”
processes running on idle cores of a multi-core processor.
If a log-based architecture was implemented and sold as
a commodity part, our technique would certainly benefit

ôõ
ö ÷
øù¦ô
ùÂõù
ö
ù ÷

ú û ü ü ý ü[þHþ ÿ���� ����� 	
�Xý ��� � ��
 	��Xý ��� � ��� ������� ������ ���
��� �
��� �
�� ��
��
 !� "
�#$

% ���ný � ûTþ&���©ý �Xý ' (���� (��Tú)
*+(�ü ý 	���� �-,.�~ú ��� ' ��/
0213%�,2�~ú ��� ' ��/

4�576 8

Figure 8. Performance comparison of Hardgrind and SW-only versions of Helgrind: The graph plots execution times of both versions normalized to
Nulgrind’s execution time on the Y-axis for different SPLASH-2 applications on the X-axis. As compared to Memcheck, Helgrind’s greater ratio of
analysis to instrumentation results in greater (4.4X on average) speedup for Hardgrind over SW-only Helgrind.

from the ability to extract information and compress it with
less interaction from the core processor. With lower data
extraction overheads, the new high-throughput interconnects
could be exercised to their maximum throughput. The closest
work to ours is Speck [21], that uses software techniques
to offload analysis to alternate cores on CMPs. However,
as mentioned in the motivation section, our approach is
complementary in that we seek to accelerate very heavy-
weight analyses that are hard to parallelize.

VII. CONCLUSION

Making software systems more bug-free, efficient, and
secure has driven both academia and industry to develop
powerful new dynamic analysis tools. As the burdens of
system complexity, including parallelism, are passed along
to the programmer, the need for a new class of tools has
emerged. Such tools need not only to detect errors but must
reveal information such as to the origin of those memory
errors, the exact conditions under which a vulnerability was
exploited, and uncover the thread interleavings that cause
race conditions. Unfortunately running such tools on real-
world software will be challenging since they run hundreds
of times slower than native executions. With more than
90% of the time spent performing dynamic analysis, as
opposed to the instrumentation to retrieve dynamic program
data, the key to accelerating these tools lies in speeding up
their analysis component. While previous studies have found
that these heavy-weight analyses provide limited returns
when parallelized using commodity multi-cores (2x on 8
cores) we consider a complementary approach and show that
increases in I/O bandwidth can enable a new class of off-
the-shelf hardware support for debugging: program analysis
peripherals.

We demonstrate how, through careful optimization at the
low level hardware/software interface, a dynamic instrumen-
tation system can be used to shuttle data to an offchip
analysis accelerator more efficiently than performing the
analysis on the same processor core. Even for existing tools
such as Memcheck and Helgrind (which each perform a
moderate amount of run-time analysis) speedups of 29%
and 440% respectively should be possible, using relatively
slow hardware. This shows that a) there is a substantial im-

provement in performance to be had in the short term using
only off-the-shelf components, b) future micro-architectural
support should be directed towards flexible instrumentation
such as DISE[6] or LBA[2](instead of mitigating impact of
profile data on the cache hierarchy) while c) the increasing
offchip bandwidth feeds specialized hardware that accelerate
the analysis. In the end we hope that this paper motivates
research into the development of programmable off-chip
analysis accelerators, general purpose or otherwise.

ACKNOWLEDGMENTS

The authors would like to thank Fred Chong and the
anonymous reviewers for providing useful comments on this
paper. This work was funded in part by NSF Career Grant
CCF-0448654.

REFERENCES

[1] D. Bruening. Efficient, transparent, and comprehensive run-
time code manipulation. In PhD Thesis, M.I.T., Sept 2004.

[2] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons,
T. C. Mowry, V. Ramachandran, O. Ruwase, M. Ryan, and
E. Vlachos. Flexible hardware acceleration for instruction-
grain program monitoring. In ISCA ’08: Proceedings of
the 35th International Symposium on Computer Architecture,
pages 377–388, Washington, DC, USA, 2008. IEEE Com-
puter Society.

[3] T. Chilimbi and V. Ganapathy. Heapmd: Identifying heap-
based bugs using anomaly detection. In Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), 2006.

[4] T. Chilimbi and M. Hauswirth. Low-overhead memory leak
detection using adaptive statistical profiling. In Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2004.

[5] J. Clause, W. Li, and A. Orso. Dytan: a generic dynamic taint
analysis framework. In ISSTA ’07: Proceedings of the 2007
international symposium on Software testing and analysis,
2007.

[6] M. L. Corliss, E. C. Lewis, and A. Roth. Low-overhead
debugging via flexible dynamic instrumentation via dise. In
Proceedings of the Eleventh International Symposium on
High-Performance Computer Architecture (HPCA-11), pages
303–314, February 2005.

[7] J. R. Crandall and F. T. Chong. Minos: Control data attack
prevention orthogonal to memory model. In MICRO 37:
Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture, 2004.

[8] Cray goes FPGA. http://www.fpgajournal.com/articles 2005/
20050405 cray.htm.

[9] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible
information flow architecture for software security. In 34th
International Symposium on Computer Architecture (ISCA),
2007.

[10] DRC Reconfigurable Processor Unit Datasheet , 2006. http://
www.drccomputer.com/pdfs/DRC\ RPU100\ datasheet.pdf.

[11] C. Flanagan and S. Qadeer. A type and effect system for
atomicity. In PLDI ’03: Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and im-
plementation, pages 338–349, New York, NY, USA, 2003.
ACM Press.

[12] FPGA Acceleration in HPC: A Case Study in Finan-
cial Analytics. http://www.xtremedatainc.com/pdf/FPGA
Acceleration in HPC.pdf.

[13] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity
violations via access interleaving invariants. In ASPLOS-XII:
Proceedings of the 12th international conference on Archi-
tectural support for programming languages and operating
systems, pages 37–48, New York, NY, USA, 2006. ACM
Press.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowner, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In PLDI’05, Chicago IL, June 2005.

[15] S. Mysore, B. Agrawal, N. Srivastava, S.-C. Lin, K. Banerjee,
and T. Sherwood. Introspective 3D chips. In ASPLOS-XII:
Proceedings of the 12th international conference on Archi-
tectural support for programming languages and operating
systems, pages 264–273, New York, NY, USA, 2006. ACM
Press.

[16] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood.
Understanding and visualizing full systems with data flow
tomography. In Proceedings of the 13th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, 2008.

[17] A. Nanda, K.-K. Mak, K. Sugavanam, R. K. Sahoo,
V. Soundararajan, and T. B. Smith. Memories: a pro-
grammable, real-time hardware emulation tool for multipro-
cessor server design. SIGPLAN Not., 35(11):37–48, 2000.

[18] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared
memory dependencies using strata. In ASPLOS-XII: Pro-
ceedings of the 12th international conference on Architectural
support for programming languages and operating systems,
2006.

[19] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proceedings
of the Conference on Programming Language Design and
Implementation (PLDI), San Diego, California, USA, June
2007.

[20] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. In Proceedings of the 12th
Annual Network and Distributed System Security Symposium
(NDSS ’05), February 2005.

[21] E. Nightingale, D. Peek, P. M. Chen, and J. Flynn. Paralleliz-
ing security checks on commodity hardware. In Proceedings
of the 13th international conference on Architectural support
for programming languages and operating systems, 2008.

[22] NIST News Release. http://www.nist.gov/public affairs/releases/
n02-10.htm. 2002.

[23] H. Patil and C. Fischer. Low-cost, concurrent checking of
pointer and array accesses in c programs. Softw. Pract. Exper.,
27(1):87–110, 1997.

[24] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran,
S. Chen, M. Kozuch, and M. Ryan. Parallelizing dynamic
information flow tracking. In SPAA ’08: Proceedings of the
twentieth annual symposium on Parallelism in algorithms and
architectures, New York, NY, USA, 2008. ACM.

[25] P. Sack, B. Bliss, Z. Ma, P. Petersen, and J. Torrellas.
Accurate and efficient filtering for the intel thread checker
race detector. In Workshop on Architectural and System

Support for Improving Software Dependability (ASID), 2006.
[26] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller. Au-

tomated type-based analysis of data races and atomicity. In
PPoPP ’05, pages 83–94, New York, NY, USA, 2005. ACM
Press.

[27] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Computer
Systems, 15(4):391–411, 1997.

[28] M. Schulz, B. S. White, S. A. McKee, H.-H. S. Lee, and
J. Jeitner. Owl: next generation system monitoring. In CF ’05:
Proceedings of the 2nd conference on Computing frontiers,
pages 116–124, New York, NY, USA, 2005. ACM Press.

[29] J. Seward. Origin tracking tool, valgrind release-3.4.0. Pre-
release at svn co svn://svn.valgrind.org/valgrind/trunk.

[30] J. Seward and N. Nethercote. Using Valgrind to detect
undefined value errors with bit-precision. In Proceedings
of the USENIX’05 Annual Technical Conference, CA, USA,
2005.

[31] R. Shetty, M. Kharbutli, Y. Solihin, and M. Prvulovic. Heap-
mon: a helper-thread approach to programmable, automatic,
and low-overhead memory bug detection. IBM J. Res. Dev.,
50(2/3), 2006.

[32] W. Shi, H. S. Lee, L. Falk, and M. Ghosh. An integrated
framework for dependable and revivable architectures using
multicore processors. In ISCA ’06: Proceedings of the 33rd
annual international symposium on Computer Architecture,
2006.

[33] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking. In
ASPLOS-XI: Proceedings of the 11th international conference
on Architectural support for programming languages and
operating systems, pages 85–96, New York, NY, USA, 2004.
ACM Press.

[34] M. Tiwari, B. Agrawal, S. Mysore, J. K. Valamehr, and
T. Sherwood. A small cache of large ranges: Hardware
methods for efficiently searching, storing, and updating big
dataflow tags. In Proceedings of the International Symposium
on Microarchitecture (Micro), 2008.

[35] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic.
Flexitaint: A programmable accelerator for dynamic taint
propagation. In Fourteenth International Symposium on High
Performance Computer Architecture (HPCA), 2008.

[36] G. Venkataramani, B. Roemer, Y. Solihin, and M. Prvulovic.
Memtracker: Efficient and programmable support for mem-
ory access monitoring and debugging. In Proceedings of
the International Symposium on High-Performance Computer
Architecture (HPCA), 2007.

[37] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross site scripting prevention with dynamic
data tainting and static analysis. In Network and Distributed
System Security Symposium (NDSS), 2007.

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological
considerations. In Proceedings of the 22th International
Symposium on Computer Architecture, Italy, 1995.

[39] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher:
Efficient architectural support for software debugging. In
Proceedings of International Symposium on Computer Archi-
tecture (ISCA), 2004.

[40] P. Zhou, R. Teodorescu, and Y. Zhou. Hard: Hardware-
assisted lockset-based race detection. In Proceedings of
International Symposium on High-Performance Computer
Architecture (HPCA), 2007.

[41] C. B. Zilles and G. S. Sohi. A programmable co-processor for
profiling. In Proceedings of the 7th International Symposium
on High Performance Computer Architecture, 2001.

