
Synthesis of Zero-Aliasing Elementary-Tree Space Compactors

Bahram Pouya and Nur A. Touba

Computer Engineering Research Center
Department of Electrical and Computer Engineering

University of Texas, Austin, TX 78712-1084
E-mail: {pouya, touba}@ece.utexas.edu

Abstract

A new method is presented for designing space
compactors for either deterministic testing or pseudo-
random testing. A tree of elementary gates (AND, OR,
NAND, NOR) is used to combine the outputs of the
circuit-under-test (CUT) in a way that zero-aliasing is
guaranteed with no modification of the CUT. The
elementary-tree is synthesized by adding one gate at a
time without introducing redundancy. The end result is a
cascaded network, CUT followed by space compactor,
that is irredundant and has fewer outputs than the CUT
alone. All faults in the CUT and space compactor can
be tested. Only the outputs of the space compactor need
to be observed during testing. Experimental results are
surprising; they show that very high compaction ratios
can be achieved with zero-aliasing elementary-tree
space compactors. Compared with parity trees and
other space compactor designs that have been proposed,
the method presented here requires less overhead and
yet guarantees zero-aliasing.

1. Introduction

The test response of a circuit-under-test (CUT) must
be checked to see if it is fault-free. In order to reduce
the volume of data that must be checked, the test
response is usually compacted. There are two types of
compaction: space compaction and time compaction
[Saluja 83]. Space compaction involves using
combinational logic to merge n response streams into k
response streams (where k < n). Space compaction
reduces the number of bits of test response that are
generated each clock cycle. The compaction ratio for a
space compactor is defined as n / k. An example of a
space compactor is a parity-tree. Time compaction
involves using sequential logic to combine the test
response during one clock cycle with the test response
from previous clock cycles to form a signature. An
example of a time compactor is a multiple-input
signature register (MISR).

This paper focuses on space compaction. There are
many applications where space compaction can be used
to reduce test costs. Three major applications are
described below:

1. Test point condensation - A very common design-for-
test (DFT) technique is to insert observation points in
the CUT to improve fault coverage [Hayes 74]. This
is especially the case for non-scan or partial scan
designs [Chickermane 93], [Rudnick 94], and for
pseudo-random pattern testing [Eichelberger 83]. A
space compactor can be used to combine (or
“condense” [Fox 77]) the observation points to
reduce the number of additional scan elements or
chip pins that must be added to the design for testing.

2. Built-In Self-Test (BIST) - In BIST, the test response
must be checked with on-chip hardware. Typically,
MISR’s are used to compact the test response into
signatures which are then compared with fault-free
reference signatures stored on-chip. A space
compactor can be used to reduce the size of the
MISR’s that are required (as illustrated in Fig. 1).
This also reduces the storage requirements for the
fault-free reference signatures. This is especially
helpful when checking multiple signatures.

3. Intellectual Property Core Testing - Consider the
case where some user-defined logic (UDL) is driving
the inputs of an intellectual property core (as
illustrated in Fig. 2). One common DFT approach
for testing embedded cores is to multiplex the core
I/O’s to the chip pins (this provides parallel access to
the core) [Immaneni 90]. However, one problem that
arises is how to test the UDL driving the core if the
internal structure of the core is not known (i.e., it is a
black block). Some means for observing the outputs
of the UDL is required; a space compactor can be
used to reduce the cost for this. Space compactors
also support partial isolation ring [Touba 97] and
UDL output space modification [Pouya 97] DFT
techniques.

An important issue when compacting test response is
aliasing. Aliasing occurs when the compacted test
response for a faulty circuit is the same as the compacted
test response for the fault-free circuit (despite the fact
that the uncompacted responses were different). Aliasing
results in reduced fault coverage. Most of the existing
techniques for designing space compactors are based on
probabilistic error models and thus do not guarantee
aliasing-free compression [Li 87], [Karpovsky 87],
[Reddy 88], [Jone 91], [Das 95], [Ivanov 96]. There are
some recent techniques proposed by Chakrabarty, et al.,
that do guarantee zero-aliasing [Chakrabarty 94, 95, 96].

In [Chakrabarty 94, 96], techniques are proposed for
achieving zero-aliasing using a multiplexed parity-tree.
In order for a fault to be detected with no aliasing
through a parity tree, it must be sensitized to an odd
number of outputs. However, some circuits contain
faults that cannot be odd-sensitized. For those circuits, a
procedure for adding additional fanout points or selective
multiplexing is used to achieve zero-aliasing.

In [Chakrabarty 95], very interesting theoretical
results are shown for constructing response graphs and

designing optimal space compactors for a particular test
set. However, if it is possible to choose a different test
set for the CUT, then there are many possible minimal
response graphs. The overhead for an optimal space
compactor depends on the test set chosen. This degree
of freedom is not utilized by the techniques in
[Chakrabarty 95].

In this paper, a new method for designing zero-
aliasing space compactors for either deterministic testing
or pseudo-random testing is presented. Similar to the
technique in [Li 87], a tree of elementary gates is
constructed, however, only AND, OR, NAND, and NOR
gates are used (no XOR gates). To compact n outputs
into k outputs, n - k elementary gates are used (as
illustrated in Fig. 3). A very efficient hill-climbing
search strategy is used to construct the “elementary-tree”
space compactor. All faults in both the CUT and the
space compactor itself are guaranteed to be detected.

Circuit Under Test

& + + &

+ &

&

Figure 3. Example of Elementary-Tree Space
Compactor

The advantages of a zero-aliasing elementary-tree
space compactor over previous techniques are clear:
zero-aliasing is achieved with no modifications to the
CUT, the area and propagation delay of an elementary-
tree are much less than a parity-tree, and the technique
works for either deterministic or pseudo-random testing.
The big question is what compaction ratio can be
achieved with a zero-aliasing elementary-tree space
compactor. The experimental results presented here are
very surprising. For many circuits, the proposed
synthesis procedure constructs a zero-aliasing
elementary-tree space compactor that achieves
maximum or near maximum compaction ratio for
deterministic testing. The results for pseudo-random
testing are also very good.

LFSR

Circuit Under Test

Space Compactor

MISR

n

k

Figure 1. Using Space Compactor for BIST

User-Defined
Logic

Intellectual Property
Core

Space
Compactor

Output
Response

Figure 2. Using Space Compactor for Observing
Logic Driving an IP Core

The paper is organized as follows: Section 2
describes the conditions for zero-aliasing. Section 3
presents a method for synthesizing zero-aliasing
elementary-tree space compactors for deterministic
testing. Section 4 describes how to modify the procedure
in Sec. 3 for pseudo-random testing. Experimental
results are shown in Sec. 5. Section 6 is a conclusion.

2. Zero-Aliasing Space Compaction

In order for a space compactor to have zero-aliasing
for a particular fault class, all faults that are detectable at
the outputs of the CUT must also be detectable at the
outputs of the space compactor. For deterministic
testing, the problem of constructing a zero-aliasing space
compactor can be thought of as adding gates to combine
the outputs of the CUT without introducing redundancy
in the overall circuit (CUT + space compactor). The
cascaded network, CUT followed by space compactor,
should be irredundant with fewer outputs than the CUT
alone. If it is irredundant, then all faults in either the
CUT or space compactor can be detected at the outputs
of the space compactor.

For pseudo-random testing (commonly used in
BIST), the pseudo-random generator can be simulated to
determine the pseudo-random test set. For zero-aliasing,
any fault in the CUT that is detected at the outputs of the
CUT by the pseudo-random test set should also be
detected at the outputs of the space compactor. For
pseudo-random testing, the problem of constructing a
zero-aliasing space compactor can be thought of as
adding gates to combine the outputs of the CUT without
introducing redundancy with respect to (w.r.t.) the
pseudo-random test set. In other words, the space
compactor should not cause any fault in the CUT or in
the space compactor itself to be left undetected by the
pseudo-random test set. Of course, any faults in the
CUT before adding the space compactor that are not
detected (i.e., redundant w.r.t. the pseudo-random test
set) are not considered when adding the space
compactor -- there is no issue of aliasing because they
are not detected to start with.

3. Synthesizing Space Compactors For
Deterministic Testing

As shown in the previous section, the conditions for a
zero-aliasing space compactor can be defined in terms of
redundancy for either deterministic testing or pseudo-
random testing. In this section, a procedure for
constructing a zero-aliasing elementary-tree space
compactor is described for deterministic testing. The
same basic procedure applies for pseudo-random testing

with a few differences which will be explained in Sec. 4.
Constructing a zero-aliasing elementary-tree space

compactor involves combining the outputs of the CUT
with elementary gates without introducing redundancy.
There are two degrees of freedom in constructing an
elementary-tree space compactor. One is choosing
which pairs of outputs to combine in a particular gate,
and the other is choosing which type of gate to combine
them with. The number of possible elementary-tree
space compactors is exponential in the number of
outputs in the CUT. Thus, some heuristic strategy is
needed in constructing the space compactor. A hill
climbing strategy is used here where outputs continue to
be combined until a point is reached where no more
outputs can be combined without introducing
redundancy (no backtracking is done). This simple and
fast heuristic strategy yields very good results as will be
shown in Sec. 5.

3.1 Overview of Procedure

The basic steps for synthesizing an elementary-tree
space compactor are the following:

1. Choose a pair of outputs to combine (explained in
Sec. 3.4).

2. Choose which type of gate to combine them with
(explained in Sec. 3.3).

3. Check if any redundancy has been introduced
(explained in Sec. 3.2).

4. If no redundancy, then stop if only one output
remains, otherwise loop back to step 1.

5. If redundancy introduced, then choose another type
of gate if possible and loop back to step 3.

6. If all gate types have been tried, then choose a
different pair of outputs if possible and loop back to
step 3.

7. If all pair of outputs have been tried, then stop.

This hill climbing procedure keeps combining outputs
until there is only one output left or until it is no longer
possible to do so without introducing redundancy. At
that point, the procedure stops and the gates that are
added for combining the outputs form the elementary-
tree space compactor. Note that each time a pair of
outputs are combined with a gate, the total number of
outputs is reduced by one (the two original outputs are
replaced by the output of the gate in which they are
combined).

The worst case complexity of the procedure is O(n3)
where n is the number of outputs in the CUT. However,

if the order in which the outputs are combined and the
order in which the gate types are tried is chosen
intelligently, then redundancy will rarely be found in
step 3 except when the number of outputs gets very
small. Thus, the procedure will rapidly combine outputs
until the number of outputs gets small.

The three things that need to be discussed are how to
choose which pair of outputs to combine, how to choose
which type of gate to combine them with, and how to
efficiently check for the introduction of redundancy.
These are discussed in reverse order in the next three
subsections. The issues related to checking for
redundancy influence the decisions about which pair of
outputs to combine and which gate type to use.

3.2 Efficiently Checking for the Introduction of
Redundancy

To make the procedure practical for large circuits, an
efficient means for checking for the introduction of
redundancy is needed. The proposed technique for
accomplishing this involves using 5-valued logic. In
5-valued logic, each logic value is in the following set
{0, 1, X, D, D’}. D (D’) represents the case where the
fault-free value is 1 (0) and the faulty value is 0 (1). A
test pattern is initially found for each fault in the CUT.
Then 5-valued simulation is used to determine the
5-valued output vector for each test pattern. Each
5-valued output vector will have at least one D or D’
since the fault is detected. When a pair of outputs is
combined with a gate Gnew (as illustrated in Fig. 4) then
the 5-valued output vector for each fault is recalculated
by simply performing the logic operation that
corresponds to the gate type for Gnew (as shown in
Fig. 5). The example in Figs. 4 and 5 shows how the
5-valued output vector for each fault changes when
outputs Z4 and Z5 are combined with an AND gate. The
two columns corresponding to outputs Z4 and Z5 are
combined into one column labeled Z45 which is computed
by taking the logical AND of the values for Z4 and Z5.

After recalculating the output vectors, any fault
whose new 5-valued output vector still contains a D or
D’ is guaranteed to not be redundant because it will still
be detected through the space compactor by the same
test vector. However, any fault whose new 5-valued
output vector no longer contains a D or D’ may
potentially be redundant. In the example in Fig. 5,
Fault 2 is the only fault whose 5-valued output vector no
longer contains a D or D’, so fault 2 may potentially be
redundant.

ATPG must be done to find a test pattern for any
potentially redundant faults in the circuit with gate Gnew

included. If ATPG is successful in finding a test pattern,
then 5-valued simulation is done for the test pattern to
obtain the new 5-valued output vector for the fault (it
will contain at least one D or D’). If ATPG is
unsuccessful, then that means the fault is redundant and
therefore the gate Gnew cannot be used in the space
compactor because it introduces redundancy.

If none of the faults in the fault list are made
redundant by adding gate Gnew, and the faults associated
with Gnew itself are irredundant, then Gnew can be added
to the zero-aliasing space compactor. The faults
associated with Gnew are added to the fault list for
consideration in subsequent redundancy checks.

This procedure for checking for the introduction of
redundancy minimizes the amount of ATPG that is
performed. ATPG is only done for faults whose new
5-valued output vector doesn’t contain a D or D’. As
soon as any fault is found redundant, then no further
ATPG is done. So the number of times that ATPG is
targeting a redundant fault is limited to no more than
once per redundancy check.

3.3 Choosing Gate Type for Combining Outputs

The proposed procedure for constructing the space
compactor selects a pair of outputs to combine and then
tries all the possible gate types for combining them. The
order in which the gate types are tried is chosen to

Circuit Under Test

 &

Z1 Z2 Z3 Z4 Z5

Z45

Gnew

Figure 4. Example: Adding Gate Gnew to Combine
Outputs Z4 and Z5

Fault 1:

Fault 2:

Fault 3:

Fault 4:

Fault 5:

1 D’ 0 D

0 1 1 0

D D’ 0 0

1 1 D 0

0 1 0 D

Z1 Z2 Z3 Z45

1 D’ 0 D 1

0 1 1 0 D

D D’ 0 0 1

1 1 D 0 D’

0 1 0 D D

Z1 Z2 Z3 Z4 Z5

Gnew

Figure 5. Example: 5-Valued Output Vectors Change
When Gate Gnew is Added

minimize the amount of ATPG that is required when
checking for the introduction of redundancy.

There are four different classes of elementary gates as
far as error propagation properties are concerned. They
are shown in Fig. 6. The different classes are shown as
AND gates with inverters and OR gates with inverters.
NAND and NOR gate equivalents can be found by
straightforward use of De Morgan transformations.
When constructing the elementary-tree space compactor,
there is no concern with optimizing inverters since that
can be done at the end using simple transformations.

In Fig. 6, each row corresponds to input combinations
and each column corresponds to one of the four classes
of elementary gates. Each entry indicates whether or not
the error(s) at the input of the gate propagate to the
output of the gate.

Using the error propagation information in Fig. 6, a
quick check can be made to see how many faults will
require ATPG when performing the redundancy check
(i.e., how many 5-valued output vectors will not have a
D or D’ bit). The gate types are then tried in order of
increasing ATPG requirements. Generally the gate type
that requires the least ATPG during the redundancy
check is the one that is most likely to not introduce
redundancy.

3.4 Choosing Pair of Outputs to Combine

The decision about which pair of outputs to combine
each time determines the structure of the elementary-tree
space compactor. It will not necessarily be a balanced
tree. There are two proposed strategies for choosing the
outputs to combine depending on what objective is more
important.

If the delay through the space compactor is an issue,
then a strategy for minimizing the delay is to always try
to combine the pair of outputs at the lowest
combinational depth first. The combinational depth of

each output in the CUT is initially calculated. As gates
are added to construct the space compactor, the depth of
each output is updated. The output pairs are chosen in
increasing order of depth. By so doing, the maximum
delay through the CUT plus space compactor is
minimized. The delay through the space compactor
limits how fast the CUT can be clocked during testing.
In some applications it may be important to minimize
this delay.

If maximizing the compaction ratio is the most
important objective, then the strategy is to choose the
pair of outputs to combine that will result in the smallest
decrease in the total number of D and D’ bits in the
5-valued output vectors for all the faults. Minimizing
the number of D and D’ bits that are lost in compaction
is a heuristic that attempts to minimize the chances that
subsequent merging of outputs will introduce
redundancy. Intuitively, the more outputs that each fault
can be detected through, the less likely combining any
pair of outputs will cause the fault to become redundant.
If a fault can be detected through three or more outputs,
then combining any pair of outputs is guaranteed not to
cause the fault to become redundant. This is because
even if the fault is masked at the two outputs that are
combined, it will still be detected through the third
output.

3.5 Summary of Procedure

The procedure outlined in Sec. 3.1 can be used to
construct a zero-aliasing elementary-tree space
compactor. The order in which the outputs are combined
is chosen depending on whether minimizing delay
through the compactor is the primary objective or
whether maximizing the compression ratio is the primary
objective. The gate type that is used to combine a
particular pair of outputs is chosen based on minimizing
APTG. Checking whether combining a pair of outputs
through a particular gate type will introduce redundancy
is done with an efficient procedure that minimizes the
number of faults that need to be considered. Outputs are
combined until there is only one output left or until a
point is reached where no more outputs can be combined
without introducing redundancy.

The resulting elementary-tree space compactor can be
transformed and technology mapped. ATPG can be
performed to find test vectors for every fault in both the
CUT and space compactor to provide 100% fault
coverage. Only the outputs of the space compactor
needs to be observed during testing.

0D or 0D’

1D or 1D’

D0 or D’0

D1 or D’1

DD or D’D’

DD’ or D’D

Propagate

Propagate

Propagate

Propagate

Propagate

Propagate

Propagate

Propagate

Propagate

Propagate

& + & & &+ + +

Propagate

Propagate

Figure 6. Error Propagation Properties for the Four
Different Classes of Gates

4. Synthesizing Space Compactors For
Pseudo-Random Testing

Space compaction is often used in pseudo-random
BIST environments. The test patterns that are applied to
the CUT are determined by the pseudo-random test
pattern generator circuit and thus cannot be selected or
altered as they can with deterministic testing. However,
the same procedure that was used for synthesizing a
zero-aliasing elementary-tree space compactor for
deterministic testing can also be used for pseudo-random
testing. The only thing that changes is the procedure
used for checking for the introduction of redundancy
(i.e., step 3 in Sec. 3.1).

As was explained in Sec. 2, for pseudo-random
testing, redundancy is defined w.r.t. the pseudo-random
test set. So instead of using ATPG to check for the
introduction of redundancy, fault simulation of the
pseudo-random test set is used. Initially, fault simulation
is done to determine which faults in the CUT are
detected and to record one pattern in the test set that
detects each fault. 5-valued simulation is then used to
find the 5-valued output vector for each detected fault.
As before, when checking for the introduction of
redundancy, new 5-valued output vectors are computed
for each fault based on the outputs that are being
combined and the logical operation of the gate Gnew that
is being added. If the new 5-valued output vector for a
fault doesn’t have any D or D’ bits in it, then the fault is
potentially redundant w.r.t. the pseudo-random test set.
Fault simulation of the potentially redundant faults for
the pseudo-random test set is performed on the circuit
that results from adding the gate Gnew. Any fault that is
not detected is redundant w.r.t. the pseudo-random test
set. If all the faults are detected, then 5-valued
simulation can be done for the pattern that detected each
fault to find a new 5-valued output vector for the fault.
As before, the faults associated with the gate Gnew are
added to the fault list.

The procedure for pseudo-random testing is basically
the same as for deterministic testing except that fault
simulation replaces ATPG. The time required for fault
simulation is short due to the fact that only a small set of
the faults (i.e., the potentially redundant faults) are
simulated each time and fault dropping can be done.
The compaction ratio that can be achieved for pseudo-
random testing will be the same or less than that for
deterministic testing because the set of test patterns is
restricted.

When the procedure completes, the resulting
elementary-tree space compactor will guarantee
detection of all faults that are detected at the outputs of
the CUT by the pseudo-random test set. Moreover, all

faults in the space compactor itself will be detected by
the pseudo-random test set. Only the outputs of the
space compactor need to be observed during testing.

5. Experimental Results

The synthesis procedures described here were used
to design zero-aliasing elementary-tree space compactors
for the ISCAS 85 benchmark circuits [Brglez 85].
Table 1 shows the results for deterministic testing. The
number of primary inputs, primary outputs, and the
maximum number of logic levels for each of the
benchmark circuits are shown followed by the results for
adding a space compactor to the circuit. For the CUT
cascaded with the space compactor, the table shows the
number of primary outputs, the total levels of logic, the
area overhead, the space compaction ratio, and the CPU
times. The CPU times are shown for achieving a space
compaction ratio of 2, 5, and the final space compaction
ratio. The area overhead is computed by comparing the
weighted gate count (gate count multiplied by the
average fanin) of the CUT alone and the CUT with the
space compactor. As can be seen, the area overhead is
very small since no more than one elementary gate is
added per CUT output. Note also that routing of the
elementary-tree is very simple since it is a fanout-free
circuit. The compaction ratio is quite substantial. Three
of the circuits got down to just a single output. For
comparison of the overhead, the zero-aliasing single
output space compactor for C880 reported in
[Chakrabarty 95] required 19% area overhead compared
with only 7.1% here. Note also that the number of logic
levels added to the circuit by the space compactor is very
small due to the technique of combining the outputs at
the lowest logic levels first.

Table 2 shows results for pseudo-random testing with
10,000 patterns. The compaction ratios were not as high
as for deterministic testing as is to be expected.
However, the results are still very good with all circuits
getting down to 13 or fewer outputs with zero-aliasing.

As can be seen from the CPU times that are shown,
the procedure runs very fast initially and then
progressively slows down as the compaction ratio gets
higher since there are more potentially redundant faults
in each iteration. Note that it is easy to tradeoff
computation time with the compaction ratio. Since it is
a hill climbing procedure, it can be stopped at any time
and the space compactor that has been constructed up to
that point can be used. Another approach for reducing
the computation time for very large circuits would be to
partition the outputs of the circuit and run the procedure
on each partition separately.

Table 1. Results for Deterministic Testing

Circuit Under Test (CUT) CUT + Space Compactor

Name PI PO Levels PO Levels
Area Ovrhd

(%)
Compaction

Ratio
Time (Min.)

CR = 2
Time (Min.)

CR = 5
Time (Min.)

Final CR

C432 36 7 24 2 26 2.7 3.5 < 1 NA < 1
C499 41 32 19 1 24 10.1 32.0 < 1 2 4
C880 60 26 25 1 26 7.1 26.0 < 1 < 1 < 1
C1355 41 32 25 1 30 6.0 32.0 1 1 1
C1908 33 25 27 3 28 2.9 8.3 1 2 10
C2670 233 140 25 2 26 13.5 70.0 10 10 60
C3540 50 22 38 2 39 1.4 11.0 6 20 30
C5315 178 123 37 4 38 5.4 30.8 30 60 300
C6288 32 32 120 2 120 1.3 16.0 80 200 500
C7552 207 108 28 5 34 3.4 21.6 20 60 600

Table 2. Results for Pseudo-Random Testing with 10,000 Patterns

Circuit Under Test (CUT) CUT + Space Compactor

Name PI PO Levels PO Levels
Area Ovrhd

(%)
Compaction

Ratio
Time (Min.)

CR = 2
Time (Min.)

CR = 5
Time (Min.)

Final CR

C432 36 7 24 2 25 2.7 3.5 < 1 NA < 1
C499 41 32 19 3 23 9.4 10.7 1 2 10
C880 60 26 25 3 26 6.5 8.7 < 1 5 6
C1355 41 32 25 3 29 5.6 10.7 2 5 20
C1908 33 25 27 5 28 2.7 5.0 9 60 60
C2670 233 140 25 2 26 13.5 70.0 10 10 30
C3540 50 22 38 2 39 1.4 11.0 3 10 10
C5315 178 123 37 13 39 5.0 9.5 100 600 1000
C6288 32 32 120 3 121 1.2 10.7 70 200 300
C7552 207 108 28 8 32 3.3 13.5 10 100 500

6. Conclusions

The space compactors synthesized with the procedure
presented in this paper offer a number of advantages:

• Zero-Aliasing - No loss of fault coverage in the CUT
results from using the space compactor. Moreover, all
the faults in the space compactor itself are fully tested.

• Minimal Overhead - An elementary-tree is a very
efficient structure for combining outputs. It is fanout-
free so the routing is simple.

• High Compaction Ratio - Results indicate that very
substantial compression ratios can be achieved.

• Small Propagation Delay - The technique of combining
the outputs at the lowest levels first keeps the
additional delay added to CUT during testing very
small.
As was found in [Ivanov 96], the results here also

indicate the power of customizing a space compactor for

a particular CUT as opposed to using a CUT independent
space compactor such as a parity tree. Not only can loss
of fault coverage be prevented, but area and delay
overhead can be significantly improved as well. The
techniques described in this paper can be automated to
provide a push-button solution for designing efficient
zero-aliasing space compactors.

Acknowledgements

This material is based on work supported in part by
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. DABT63-94-C-0045, in
part by the National Science Foundation under Grant No.
MIP-9702236, and in part by the Texas Advanced
Research Program under Grant No. 1997-003658-369.

References

[Brglez 85] Brglez, F., and H. Fujiwara, “A Neutral Netlist of
10 Combinational Benchmark Circuits and a Target
Translator in Fortan,” Proc. of Int. Symposium on Circuits.
and Systems, pp. 663-698, 1985.

[Chakrabarty 94] Chakrabarty, K., and J.P. Hayes, “Efficient
Test Response Compression for Multiple-Output Circuits,”
Proc. of Int. Test Conference, pp. 501-510, 1994.

[Chakrabarty 95] Chakrabarty, K., B.T. Murray, and J.P.
Hayes, “Optimal Space Compaction of Test Responses,”
Proc. of Int. Test Conference, pp. 834-843, 1995.

[Chakrabarty 96] Chakrabarty, K., and J.P. Hayes, “Test
Response Compaction Using Multiplexed Parity Trees,”
IEEE Trans. on Computer-Aided Design, Vol. 15, No. 11,
pp. 1399-1408, Nov. 1996.

[Chickermane 93] Chickermane, V., E.M. Rudnick, P.
Banerjee, and J.H. Patel, “Non-Scan Design-For-Testability
Techniques for Sequential Circuits,” Proc. of 30th Design
Automation Conference, pp. 236-241, 1993.

[Das 95] Das, S.R., H.T. Ho, W.-B. Jone, and A.R. Nayak,
“An Improve Output Compaction Technique for Built-In
Self-Test in VLSI Circuits,” Proc. of Int. Conference on
VLSI Design, pp. 403-407, 1995.

[Eichelberger 83] Eichelberger, E.B., and E. Lindbloom,
“Random-Pattern Coverage Enhancement and Diagnosis
for LSSD Logic Self-Test,” IBM Journal of Research and
Development, Vol. 27, No. 3, pp. 265-272, May 1983.

[Fox 77] Fox, J.R., “Test-point Condensation in the Diagnosis
of Digital Circuits,” Proc. of the IEE, Vol. 124, No. 2,
Feb. 1977, pp. 89-94.

[Hayes 74] Hayes, J.P., and A.D. Friedman, “Test Point
Placement to Simplify Fault Detection,” IEEE Trans. on
Computers, Vol. C-23, No. 7, pp. 727-735, Jul. 1974.

[Immaneni 90] Immaneni, V., and S. Raman, “Direct Access
Test Scheme - Design of Block and Core Cells for
Embedded ASICS,” Proc. of Int. Test Conference,
pp. 488-492, 1990.

[Ivanov 96] Ivanov, A., B. Tsuji, and Y. Zorian,
“Programmable BIST Space Compactors,” IEEE Trans. on
Computers, Vol. 45, No. 12, pp. 1393-1404, Dec. 1996.

[Jone 91] Jone, W.-B., and S.R. Das, “Space Compression
Method for Built-In Self-Testing of VLSI Circuits,” Int.
Journal of Computer-Aided Design, Vol. 3, pp. 309-322,
Sep. 1991.

[Karpovsky 87] Karpovsky, M., and P. Nagvajara, “Optimal
Time and Space Compression of Test Responses for VLSI
Devices,” Proc. of Int. Test Conference, pp. 523-529, 1987.

[Li 87] Li, Y.K., and J.P. Robinson, “Space Compaction
Methods with Output Data Modification,” IEEE Trans. on
Computer-Aided Design, Vol. 6, No. 3, pp. 290-294,
Mar. 1987.

[Pouya 97] Pouya, B., and N.A. Touba, “Modifying User-
Defined Logic to Provide Test Access to Embedded
Cores,” Proc. of Int. Test Conference, pp. 60-68, 1997.

[Reddy 88] Reddy, S.M., K.K. Saluja, and M.G. Karpovsky,
“A Data Compression Technique for Built-In Self-Test,”
IEEE Trans. on Computers, Vol. C-37, No. 9, pp. 1151-
1156, Sep. 1988.

[Rudnick 94] Rudnick, E., V. Chickermane, J.H. Patel, “An
Observability Enhancement Approach for Improved
Testability and At-Speed Test,” IEEE Trans. on Computer-
Aided Design, Vol. 13, No. 8, pp. 1051-1056, Aug. 1994.

[Saluja 83] Saluja, K.K., and M. Karpovsky, “Test
Compression Hardware Through Data Compression in
Space and Time,” Proc. of Int. Test Conference, pp. 83-88,
1983.

 [Touba 97] Touba, N.A., and B. Pouya, “Testing Core-Based
Designs Using Partial Isolation Rings,” IEEE Design &
Test, pp. 52-59, Oct. 1997.

