### **Embedded Systems Laboratory**

- Using ARM Cortex M4
- From the Basics to Applications
- Internet of Things, Bluetooth

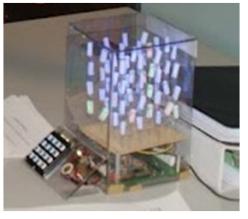


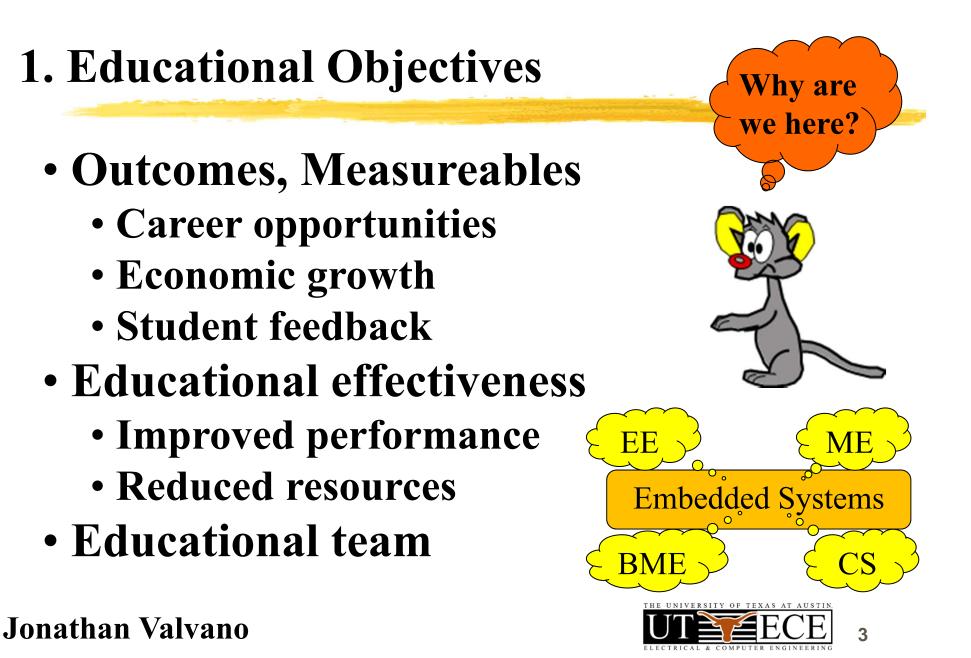
#### Jonathan Valvano

#### Why M4?

- Market share
- Complexity
- Parallelism
- Verification




## Outline


1. Objectives

### What do students need forever?

- **2.** Approach  $\rightarrow$  **5** Takeaways
- 3. Courses, Books and Labs
- **4.** Successes → Competitions
- 5. Conclusions
- **6. BLE demonstration** Engineers make two things:
- Systems
- Interfaces between systems Jonathan Valvano







# 2A. Takeaway: Bottom up (what?)

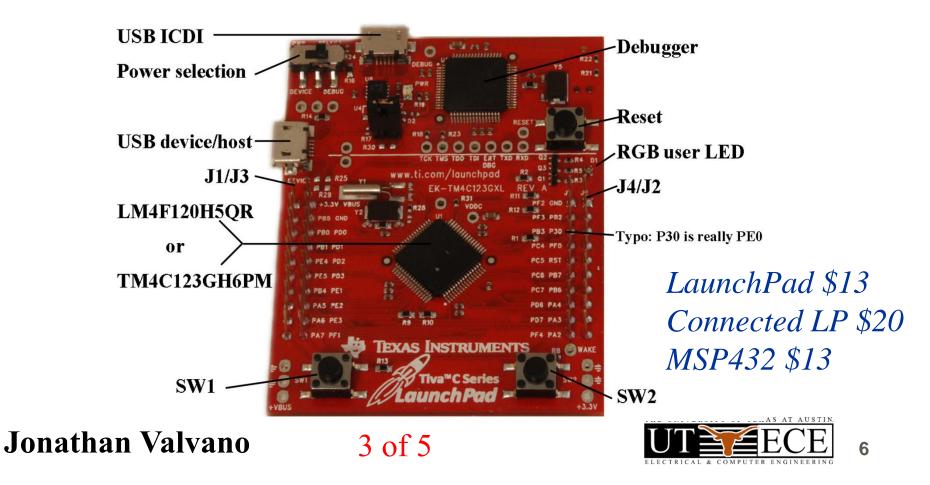
- Bottom up: From simple to complex
  - Transistors -> Gates -> Computer -> Systems
  - Assembly  $\rightarrow C \rightarrow Java/C++ \rightarrow LabVIEW$
- Abstraction
  - Understand  $\rightarrow$  Put it in a box  $\rightarrow$  Use the box
- Systems
  - Take two systems  $\rightarrow$  Connect  $\rightarrow$  New system+



### 2B. Takeaway: See one, do one, teach one

Students learn by doing

- Equipment must work
- Assignments must be clear
- Tasks support learning objectives
- Professors must do labs


Students learn by teaching



5

### **2C. Takeaway: Empower Students**

### • Students should have their own board



# **2C Takeaway: Empower Students**

Students need to learn outside of lab

- Students should have their own DVM
- Show labs to friends and parents
- Encourage them to work beyond lab
  - Find sources of free parts
  - Give simple stuff away
- Mentor their careers
  - Job versus grad school
- Online presence Jonathan Valvano

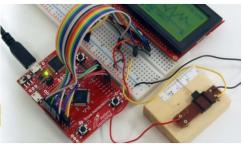
## **2D. Takeaway: Structure vs Flexibility**

### **Pedagogy:** students learn differently

- Remove fear of failure
- Some need structure
  - Demonstrate working labs
- Some thrive on open ended design
  - Let students negotiate deliverables
- Allow for extra credit
- Create an open-ended design lab

Jonathan Valvano 4 of 5




### 2E. Takeaway: Team-approach

### It takes a village to educate

- Empower the TAs
  - Invite them into the decision circle
- Empower the staff
  - Invite them into the decision circle
- Make excuses to show off projects
  - Chairman, Dean, Newspaper
  - Promote your students



### **3. Courses, Books and Labs**



Introduction to Embedded Systems Freshman, MOOC System Level Design Junior, PCB, IoT **Real-time Operating Systems** Senior/grad, CAN, Robot

• Cortex-M4

- serial, SPI, ADC,
- timer, PWM, DMA
- interrupt controller
- JTAG debugger
- floating point

\$13 EK-TM4C123GXL, 43 I/O pins, 32k RAM, 256k RAM, 80 MHz, USB, CAN EK-TM4C1294XL, 90 I/O pins, 256k RAM, 1M ROM, 120 MHz, Ethernet \$20 MSP-EXP432P401R, 67 I/O pins, 64k RAM, 256k ROM, 48 MHz, low power \$13



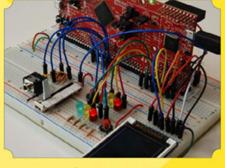


# **3. Applications**

# • Compiler, Simulator, Debugger

- Texas Instruments Code Composer Studio
- Keil uVision
- TExaS (simulation, grading, scope)
- Circuit design and PCB layout
  - PCB Artist
  - Eagle (100 by 80 mm, 2 layers)
- Design tools
  - Texas Instruments Filter Pro




(bottom-up)

# **3. Introduction to Embedded Systems**

## Volume 1 (freshmen EE or BME)



Embedded Systems



Jonathan W. Valvano



- Switches and LEDs
- Design and Debugging
- Finite State Machine
- Interrupts
- DAC output
- LCD graphics interface
- Fixed-point
- ADC input
- UART and distributed
- Capstone design



video game

12

Assembly or C programming

Design and Debugging

- Simulation, logic analyzer, scope

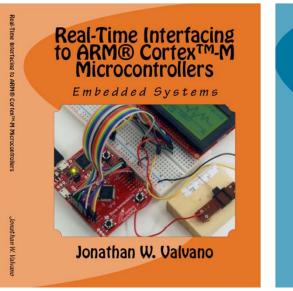
### Jonathan Valvano

505 pages, \$41 7600 sold

### **Embedded Systems – Shape the World**

### • What is and isn't a MOOC?

- -Spring 2014, 2015, 2016
- over 100,000 enrolled
- over 2 million video hits
- over 7% got certificates
- -2/3 who started, finished -95% approval rate




- Lab kit Physical kit increased completion rates
- Teaching videos Tue. 6/28, 4:45-6:15pm, Room 337
- LaunchPad simulator, graders, voltmeter, scope
- Today's BLE demo is a MOOC lab Jonathan Valvano



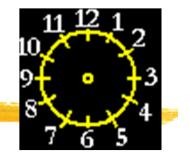
# **3. Interfacing and Systems**

# *Volume 2 (junior EE)*





- Hardware/software debugging
- Design and debugging
- Analog, power, computer *Kindle version*

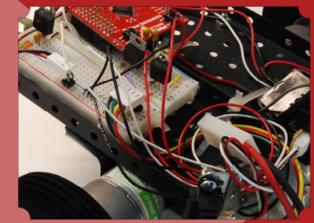

### Jonathan Valvano

600 pages, \$40 sold



• Graphics device driver

- Alarm clock
- Stepper or DC motor
- Music player
- Temperature acquisition
- Wifi and IoT
- Capstone design
  - open ended
  - PCB
  - Power




# **3. Real-Time Operating Systems**

### *Volume 3 (senior/grad EE)*



Embedded Systems



Jonathan W. Valvano

Jonathan Valvano

- Memory manager, device driver
- Thread switching RTOS
- Blocking semaphores
- Priority scheduler
- Digital and analog filters, FFT
- Digital control systems
- File system
- CAN or Ethernet network
- Autonomous robot racing

MOOC starting 9/2016 on edX

http://ow.ly/ophC301Aa0p

447 pages, \$34



### **3. Support for teaching**

### Web site (download and edit)

- Examples for TM4C123, TM4C1294, MSP432
- PowerPoint slides
- Lab manual, data sheets
- http://users.ece.utexas.edu/~valvano/
- edX: Intro Spring 2017, RTOS-BLE Fall 2016

### Launchpad tester

Adopt a book → Free parts for LaunchPad tester http://users.ece.utexas.edu/~valvano/arm/tester/

#### Jonathan Valvano



http://ow.ly/ophC301Aa0p



### 4. Successes: Competitions

### Students need to appreciate relevance

- Appropriate use of teams
- Build things that are fun to play with
  - Show off to friends, family, interviewers
- Competitions
  - Fun, intense
- Open-ended
  - Creativity, life-long learning, springboard



## 4. Competition

### Volume 1 (freshmen EE or BME)

- Handheld game
- Peer review
- Teams of 2

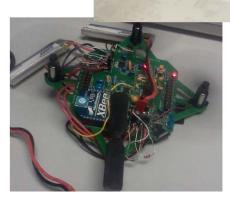


Jonathan Valvano



http://youtu.be/QxDQUUDStOw http://youtu.be/z6\_j1M2Y5qI




# 4. Competition

# Volume 2 (junior EE)

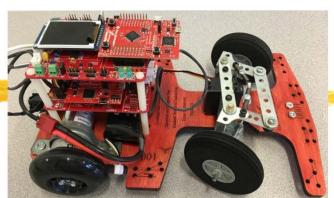
- Requirements document
- Design cycle
- Design for test
- Systems Engineering
- Verification



http://www.youtube.com/watch?v=K9FD50qpGwg Jonathan Valvano






### 4. Competitions

# Volume 3 (senior/grad EE)• Autonomous Robot Racing

• Teams of four



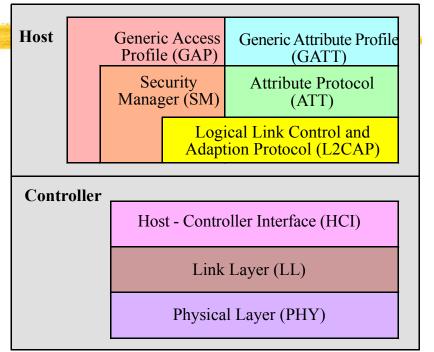




http://youtu.be/bZ1fXtN1T08 http://youtu.be/GKctvlvprAQ



# **5.** Conclusions


- Bottom-up
- Lab-centered
- Empower students
- Motivate students
- Be flexible
- Be a team builder
- Make a plan and do it

Understanding Design Innovation



## 6. BLE demonstration

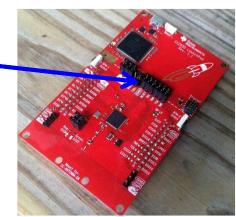
- Code Composer Studio
- TExaSdisplay
- MSP432 LaunchPad
- MK-II Booster Pack
- CC2560 LaunchPad
  - ValvanoWare
  - VerySimpleApplicationProcessor MSP432
  - ApplicationProcessor\_MSP432
  - Lab6\_MSP432, Lab3\_MSP432





### 6. BLE demonstration overview

- Install drivers
  - Device Manager




- Configure Code Composer Studio
  - Import examples into workspace
- Very simple application processor
  - Services, characteristics advertising
- Simple application processor
  - Data communication
- Labs 3, 6 Fitness device, RTOS, BLE Jonathan Valvano

### 6. CC2650

| 11 | Pin   |       | CC2650LP  |    | MSP432   |
|----|-------|-------|-----------|----|----------|
| 11 | J1.3  | UART  | DIO3_TXD  | -> | RxD P3.2 |
| 11 | J1.4  | UART  | DIO2_RXD  | <- | TxD P3.3 |
| 11 | J2-14 | MRDY  | DIO8 in   | <- | P1.7 out |
| // | J2-12 | SRDY  | DIO14 out | -> | P5.2 in  |
| // | J4.35 | Reset | H/W reset | <- | P6.7 out |
| // | J1.1  | 3.3V  | 3.3V in   | <- | 3.3V out |
| // | J2.20 | gnd   | gnd       |    | gnd      |

Remove jumpers on CC2650 LP for RxD and TxD Jonathan Valvano





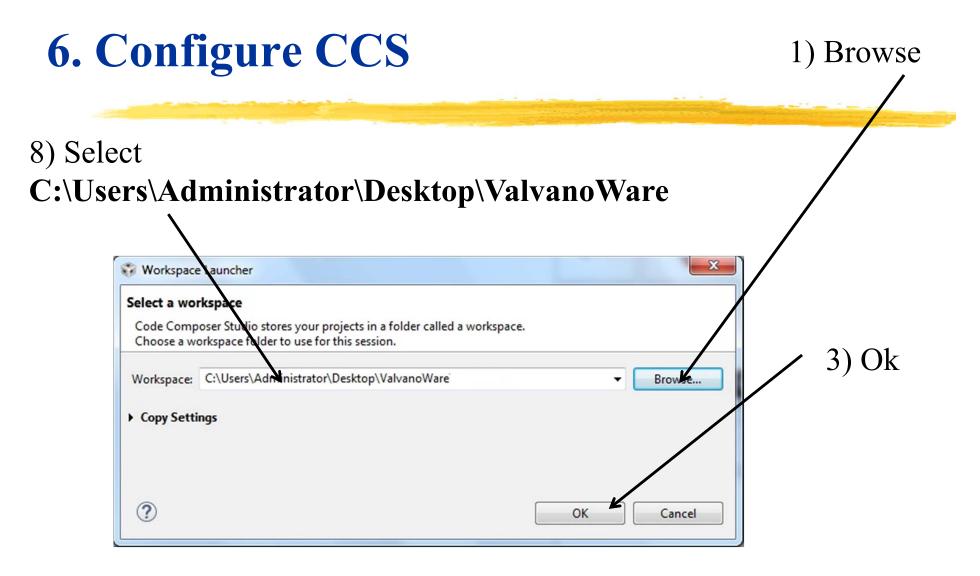
### 6. MSP432 drivers

- U × 📲 Device Manager Help File Action View 🔽 🛛 🖬 💐 E 🚽 Valvano-HP + Batteries **Biometric Devices** + Computer Disk drives Display adapters DVD/CD-ROM drives Human Interface Devices IDE ATA/ATAPI controllers 🗄 🔚 Imaging devices Jungo + Ceyboards • Memory technology driver Mice and other pointing devices + Monitors Network adapters Ports (COM & LPT) XDS110 Class Application/User UART (COM69) XDS110 Class Auxiliary Data Port (COM70) + Processors Sound, video and game controllers + System devices 🖃 🖳 Texas Instruments Debug Pro 🖳 XDS110 Class Data Port XDS110 Class Debug Probe 主 🖷 Universal Serial Bus controllers

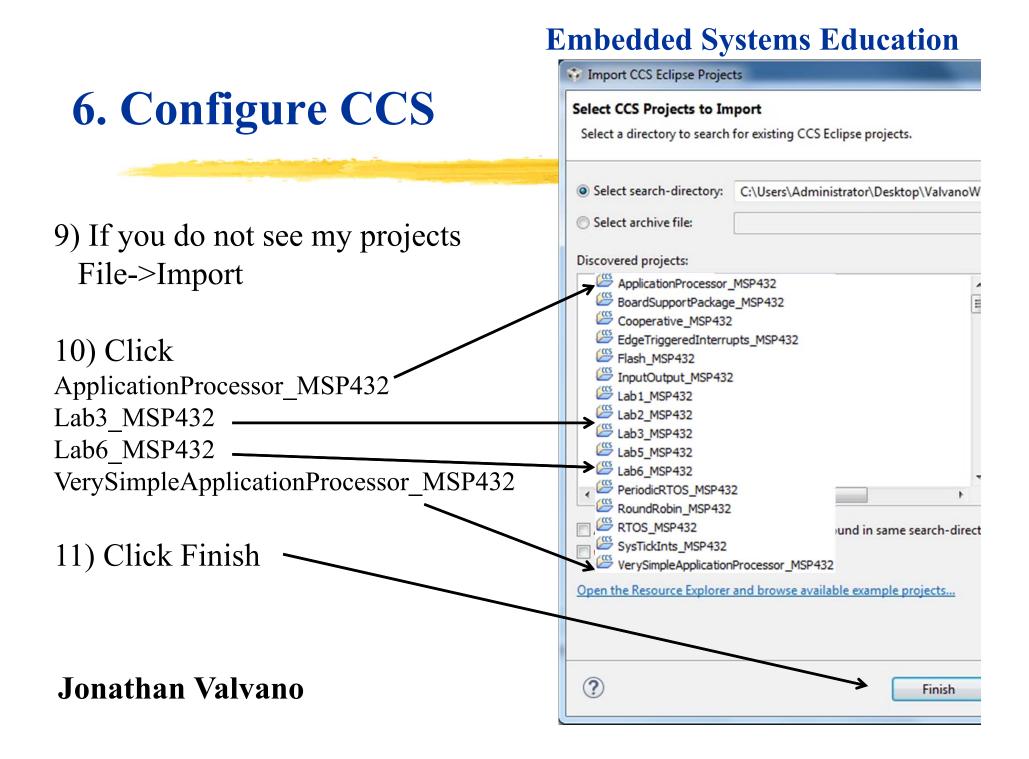
0) Unpack three boards 1) Connect three boards MK-II on top MSP432 LaunchPad in middle CC2650 on bottom 2) Open Device Manager 3) Connect LaunchPad USB to PC and power up the two boards 4) Watch installation - Look for first XDS110 COM port - Class Application/User UART



ELECTRICAL & COMPUTER ENGINEERING


### 6. TExaSdisplay

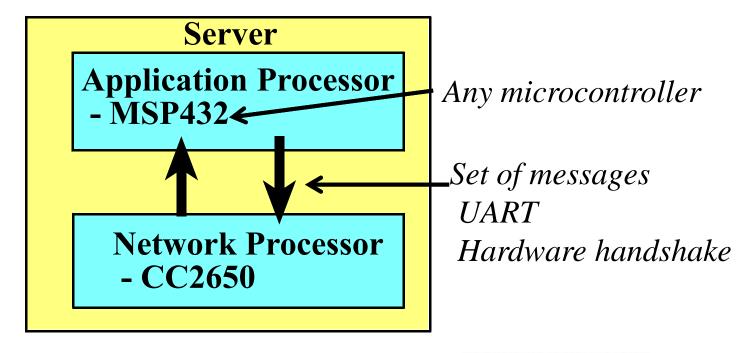
|              |                                             |                                 | And the second |
|--------------|---------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|
| Untitled     | - TExaS display                             |                                 |                                                                                                                  |
| File Edit (  | COM Action View Help                        |                                 |                                                                                                                  |
| 🗋 🖼 🛛        | Settings F3                                 | OPEN CLR TET OIL DEF 🔝 🗠 RUN ON | e 💡                                                                                                              |
|              | Open Port F4                                |                                 |                                                                                                                  |
|              | Open next port Shft+F4<br>Already closed F5 | ĸ                               |                                                                                                                  |
| _            | 1110302/ 00000 10                           | · \                             |                                                                                                                  |
|              |                                             |                                 |                                                                                                                  |
|              |                                             |                                 |                                                                                                                  |
|              |                                             |                                 |                                                                                                                  |
|              | 5) Before you                               | start CCS                       |                                                                                                                  |
|              | - start 7                                   | [ExaSdisplay]                   |                                                                                                                  |
|              |                                             | ->OpenNextPort (shift           | F <sub>4</sub> )                                                                                                 |
|              |                                             | -> Openiveziti ort (sinit       | 1 +)                                                                                                             |
|              |                                             |                                 |                                                                                                                  |
|              |                                             |                                 |                                                                                                                  |
|              |                                             |                                 |                                                                                                                  |
| f open close | current COM port, then open                 | the next COM port               | NUM ///                                                                                                          |
| onatha       | an Valvano                                  |                                 | THE UNIVERSITY OF TEXAS AT AUSTIN                                                                                |
| /116UU1164   |                                             |                                 |                                                                                                                  |


# 6) Start CCS 7) If you do not see my projects File->Switch Workspace choose Other...

**6. Configure CCS** 

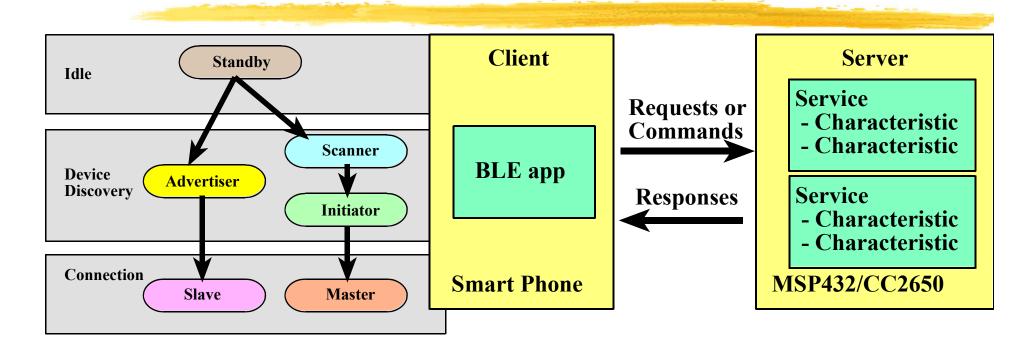
| File | Edit View Navigate      | e Project Run Scripts | Window Help                             |
|------|-------------------------|-----------------------|-----------------------------------------|
|      | New                     | Alt+Shift+N ►         |                                         |
|      | Open File               |                       |                                         |
|      | Close                   | Ctrl+W                |                                         |
|      | Close All               | Ctrl+Shift+W          |                                         |
|      | Save                    | Ctrl+S                |                                         |
| 8    | Save As                 |                       |                                         |
| 6    | Save All                | Ctrl+Shift+S          |                                         |
|      | Revert                  |                       |                                         |
|      | Move                    |                       |                                         |
|      | Rename                  | F2                    |                                         |
| E    | Refresh                 | F5                    |                                         |
|      | Convert Line Delimiters | To •                  |                                         |
| •    | Print                   | Ctrl+P                |                                         |
|      | Switch Workspace        | •                     | Other                                   |
|      | Restart                 | L                     |                                         |
| è.   | Import                  |                       |                                         |
| 2    | Export                  |                       |                                         |
|      | Properties              | Alt+Enter             | Mennel   Mennelog // Se<br>Mentel // Se |
|      | Exit                    |                       | Builts // Set                           |








# 6. VerySimpleApplicationProcessor


12) Click on VerySimpleApplicationProcessor\_MSP432 project
13) Open VerySimpleApplicationProcessor.c and edit lines 88, 96

- Change '0', '0', '1' to the three digit number on your handout





### 6. VerySimpleApplicationProcessor



Characteristic1: lines 159-176 (R/W) Characteristic2: lines 177-194 (R) Characteristic3: lines 212-229 (W) Characteristic4: lines 230-248 (notify)



### 6. VerySimpleApplicationProcessor

14) Compile Click on Hammer
15) Download and start debugger Run->Debug
16) Run the program, observe messages between MSP432/CC2650

TExaSdisplay shows SAP ↔ SNP messages

17) Observe behavior on cell phone
For Android run BLE scanner from Bluepixel
For iPhone run LightBlue Explorer from PunchThrough

- Connect
- Read characteristic1
- Write characteristic1

When done, quit CCS debugger



# 6. SimpleApplicationProcessor

18) Click on SimpleApplicationProcessor\_MSP432 project19) Open AP.c and edit lines 194, 202

- Change '0', '0', '1' to the three digit number on your handout 20) Look at main in **ApplicationProcessor.c** 

- Setting characteristics, hooks, variables

### 21) Compile Click on Hammer

22) Download and start debugger **Run->Debug** 

23) Run the program, observe messages between MSP432/CC2650

24) Observe behavior on cell phone (turn iPhone on and off)

- Connect
- Read HalfWordData (switches)
- Write WordData (bottom three bits to LED)
- Activate Notify on **Button1**

When done, quit CCS debugger



# 6. Logic Analyzer

25) Quit TExaSdisplay, unplug LaunchPad USB

26) Add MK-II Booster

27) Plug LaunchPad USB

28) Start TExaSdisplay, COM->OpenNextPort (shift F4)

29) In CCS, click on Lab3\_MSP432 project

30) Open Lab3.c and edit lines 1247,1248

- include line 1248 to activate logic analyzer

31) Look at main in Lab3.c

- Personal fitness device with RTOS

32) Compile Click on Hammer

33) Download and start debugger Run->Debug

34) Run the program

35) Observe profile on Logic analyzer

-F6 to zoom out, F7 to zoom in



# 6. Lab 6, Fitness, RTOS, BLE

36) Click on Lab6\_MSP432 project37) Open AP.c and edit lines 194, 202

- Change '0', '0', '1' to the three digit number on your handout 38) Look at main in Lab6.c

- Lines 789-841 configure Bluetooth

- Lines 466-476 run Bluetooth processing, and notifications
- 39) Compile Click on Hammer
- 40) Download and start debugger Run->Debug

41) Run the program, observe messages between MSP432/CC265042) Observe behavior on cell phone (turn iPhone on and off)

- Connect

- Read Light, Sound, Temperature
- Activate Notify on NumSteps



# 7. Interesting web sites

### Valvano Example code

http://users.ece.utexas.edu/~valvano/arm/ http://tinyurl.com/nuq4zpx (CCS projects) **TI Example code** 

http://www.ti.com/tool/sw-ek-tm4c123gxl http://www.ti.com/tool/ek-tm4c123gxl

### **Free samples**

http://www.ladyada.net/library/procure/samples.html **Compilers** 

http://www.ti.com/tool/ccstudio http://www.keil.com/arm/mdk.asp



## 7. For more information

### Jonathan Valvano valvano@mail.utexas.edu

http://users.ece.utexas.edu/~valvano/

EE319K Introduction

### EE445L Interfacing and systems

### EE445M Real-time operating systems

https://www.edx.org/course/embedded-systems-shape-world-utaustinx-ut-6-03x http://edx-org-utaustinx.s3.amazonaws.com/UT601x/index.html/ http://users.ece.utexas.edu/~valvano/Volume1/E-Book/VideoLinks.htm http://edx-org-utaustinx.s3.amazonaws.com/UT601x/RTOS.html

### **Texas Instruments**

univ@ti.com

