
DOCUMENT NUMBER
9S12DP512DGV1/D
MC9S12DP512

Device Guide

V01.25

Covers also

MC9S12DT512, MC9S12DJ512,

MC9S12A512

Original Release Date: 27 Nov 2001
Revised: 05 Jul 2005

Motorola, Inc
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

DOCUMENT NUMBER
9S12DP512DGV1/D
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

V01.00
 27 Nov

2001
11 Feb
2002

- Initial version based on DP256 V2.09.

V01.01
13 Mar
2002

13 Mar
2002

- Updated document formats.
- Removed reference to SIM in overview.
- Changed XCLKS to PE7 in signal description.
- Removed "Oscillator start-up time from POR or STOP" from Oscillator
Characterisitcs.
- Changed VDD and VDDPLL to 2.35V.
- Updated CINS.
- Updated IOL/IOH values.
- Updated input capacitance.
- Updated NVM timing characteristics.

V01.02
02 Apr
2002

02 Apr
2002

- Updated document reference (SPI, SCI).

V01.03
15 Apr
2002

15 Apr
2002

- Corrected values in device memory map (RAM start, flash protected
sector sizes).
- Updated document reference (SCI).

V01.04
06 Jun
2002

06 Jun
2002

- Changed all operating frequency references to 50MHz EXTAL and
removed references to 80 pin LQFP.

V01.05
05 Jul
2002

05 Jul
2002

- Preface Table "Document References": Changed to full naming for
each block.
- Table "Interrupt Vector Locations", Column "Local Enable": Corrected
several register and bit names.
- Table "Signal Properties": Added column "Internal Pull Resistor".
- Table "PLL Characteristics": Updated parameters K1 and f1
- Figure "Basic Pll functional diagram": Inserted XFC pin in diagram
- Enhanced section "XFC Component Selection"
- Added to Sections ATD, ECT and PWM: freeze mode = active BDM
mode.
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

2

MC9S12DP512 Device Guide V01.25
V01.06
24 Jul
2002

24 Jul
2002

- Updated SPI electrical characteristics.
- Updated Derivative Differences table.
- Added ordering number example.
- Added Detailed Register Map.
- Changed Internal Pull Resistor column of signal table.
- Added pull device description for MODC pin.
- Corrected XCLKS figure titles. Moved table to section Modes of
Operation.
- Removed ’1/2’ from BDM in Figure Clock Connections.
- Completely reworked section Modes of Operation. Added Chip
Configuration Summary and Low Power Mode description.
- Changed classification to C for internal pull currents inTable 5V I/O
Characteristics.
- Changed input leakage to 1uA for all pins.
- Updated VREG section and layout recommendation.
- Moved Power and Gound Connection Summary table to start of
Power Supply Pins section.
- Added ROMONE to pinout

V01.07
29 Jul
2002

05 Aug
2002

- Corrected mem map: ’MEBI map x of 3’
- Corrected mem map: KEYEN bits in FSEC.
- Added section Printed Circuit Board Layout Proposal.
- Corrected addresses in Reserved, CAN and EEP buffer map.
- Updated NVM electricals.

V01.08
21 Aug
2002

21 Aug
2002

- Updated table ’Document References’
- Added section ’Oscillator (OSC) Block Description’

V01.09
24 Sep
2002

24 Sep
2002

- Section HCS12 Core Block Desciption: mentioned alternalte clock of
BDM to be equivalent to oscillator clock
- Corrected tables 0-1 and 0-2

V01.10
18 Oct
2002

18 Oct
2002

- Added derivatives to cover sheet.
- Added part ID for 1L00M maskset.
- Corrected in footnote of Table "PLL Characteristics": fOSC = 4MHz.

V01.11
29 Oct
2002

29 Oct
2002

- Renamed Preface section to Derivative Differences and Document
references.
- Added A512 derivative.
- Updated module set of DJ512 in Table 0-1.
- Added details for derivatives without CAN and/or BDLC modules.

V01.12
03 Dec
2002

03 Dec
2002

- Corrected several entries in ’Detailed Memory Map’.
- Removed footnote on input leakage current from table ’5V I/O
Characteristics’.

V01.13
08 Jan
2003

08 Jan
2003

- Updated section ’Unsecuring the Microcontroller’.
- Updated footnote 1 in table ’Operating Conditions’.

V01.14
23 Jan
2003

23 Jan
2003

- Renamed ROMONE pin to ROMCTL.

V01.15
28 Feb
2003

28 Feb
2003

- Corrected PE[1,0] pull specification in Signal Properties Summary
Table.

Version
Number

Revision
Date

Effective
Date Author Description of Changes
3

MC9S12DP512 Device Guide V01.25
V01.16
31 Mar
2003

31 Mar
2003

- Corrections in App. A ’NVM, Flash and EEPROM’:
- Number of words per flash row = 64
- Replaced ’burst programming’ with ’row programming’
- Sector erase size = 1024 bytes
- Corrected feature description ECT
- Corrected min. bus freq. in table ’Operating Conditions’

V01.17
30 May
2003

30 May
2003

- Replaced references to HCS12 Core Guide with the individual HCS12
Block guides throughout document
- Table ’Absolute Maximum Ratings’ corrected footnote on clamp of
TEST pin

V01.18
23 Jul
2003

23 Jul
2003

- Mentioned ’S12 LRAE’ bootloader in Flash section
- Document References: corrected S12 CPU document reference

V01.19
24 Jul
2003

24 Jul
2003

- Added part ID for 2L00M maskset.

V01.20
01 Sep
2003

01 Sep
2003

- Added part ID for 3L00M maskset.
- Added cycle definition to ’CPU 12 Block Description’.
- Diagram ’Clock Connections’: Connected Bus Clock to HCS12 Core.
- Corrected ’Background Debug Module’ to ’HCS12 Breakpoint’ at
address $0028 - $002F in table 1-1.
- Corrected ’Blank Check Time Flash’ value in table ’NVM Timing
Characteristics’
- Added EXTAL pin VIH, VIL and EXTAL pin hysteresis value to
’Oscillator Characteristics’. Updated oscillator description and table
note.

V01.21
08 Mar
2004

08 Mar
2004

- Added part ID for 4L00M maskset.
- Corrected pin name KWP5 in device pinout.

V01.22
23 Aug
2004

23 Aug
2004

- Updated VIH,EXTAL and VIL,EXTAL in table ’Oscillator Characteristics’
- Removed item ’Oscillator’ from table ’Operating Conditions’ as
already covered in table ’Oscillator Characteristics’

V01.23
09 Feb
2005

09 Feb
2005

- Corrected Flash Row Programming Time in NVM Timing
Characteristics

V01.24
01 Apr
2005

01 Apr
2005

- Changed TJavg and added footnote to data retention time in NVM
Reliability Characteristics

V01.25
05 Jul
2005

05 Jul
2005

- Updated NVM Reliability Characteristics

Version
Number

Revision
Date

Effective
Date Author Description of Changes
4

MC9S12DP512 Device Guide V01.25
Table of Contents

Section 1 Introduction

1.1 Overview. .19

1.2 Features .19

1.3 Modes of Operation .21

1.4 Block Diagram .22

1.5 Device Memory Map. .24

1.5.1 Detailed Register Map .27

1.6 Part ID Assignments. .49

1.7 Memory Size Assignments .49

Section 2 Signal Description

2.1 Device Pinout .52

2.2 Signal Properties Summary .53

2.3 Detailed Signal Descriptions. .55

2.3.1 EXTAL, XTAL — Oscillator Pins .55

2.3.2 RESET — External Reset Pin .55

2.3.3 TEST — Test Pin .55

2.3.4 VREGEN — Voltage Regulator Enable Pin .55

2.3.5 XFC — PLL Loop Filter Pin .56

2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin56

2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1 .56

2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins of ATD1 .56

2.3.9 PAD7 / AN07 / ETRIG0 — Port AD Input Pin of ATD0 .56

2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0 .56

2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins .57

2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins .57

2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7 .57

2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6 .58

2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5 .58

2.3.16 PE4 / ECLK — Port E I/O Pin 4 .58

2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3 .59

2.3.18 PE2 / R/W — Port E I/O Pin 2 .59

2.3.19 PE1 / IRQ — Port E Input Pin 1 .59
5

MC9S12DP512 Device Guide V01.25
2.3.20 PE0 / XIRQ — Port E Input Pin 0. .59

2.3.21 PH7 / KWH7 / SS2 — Port H I/O Pin 7 .59

2.3.22 PH6 / KWH6 / SCK2 — Port H I/O Pin 6 .59

2.3.23 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5 .59

2.3.24 PH4 / KWH4 / MISO2 — Port H I/O Pin 2 .59

2.3.25 PH3 / KWH3 / SS1 — Port H I/O Pin 3 .60

2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2 .60

2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1 .60

2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0 .60

2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7.60

2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 660

2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0] .60

2.3.32 PK7 / ECS / ROMCTL — Port K I/O Pin 7 .60

2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0] .61

2.3.34 PM7 / TXCAN3 / TXCAN4 — Port M I/O Pin 7 .61

2.3.35 PM6 / RXCAN3 / RXCAN4 — Port M I/O Pin 6 .61

2.3.36 PM5 / TXCAN2 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5.61

2.3.37 PM4 / RXCAN2 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4.61

2.3.38 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3 .61

2.3.39 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2 .61

2.3.40 PM1 / TXCAN0 / TXB — Port M I/O Pin 1 .62

2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0. .62

2.3.42 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7 .62

2.3.43 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6 .62

2.3.44 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5. .62

2.3.45 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4. .62

2.3.46 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3 .62

2.3.47 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2 .63

2.3.48 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1. .63

2.3.49 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0. .63

2.3.50 PS7 / SS0 — Port S I/O Pin 7 .63

2.3.51 PS6 / SCK0 — Port S I/O Pin 6 .63

2.3.52 PS5 / MOSI0 — Port S I/O Pin 5 .63

2.3.53 PS4 / MISO0 — Port S I/O Pin 4 .63

2.3.54 PS3 / TXD1 — Port S I/O Pin 3 .63

2.3.55 PS2 / RXD1 — Port S I/O Pin 2 .64
6

MC9S12DP512 Device Guide V01.25
2.3.56 PS1 / TXD0 — Port S I/O Pin 1 .64

2.3.57 PS0 / RXD0 — Port S I/O Pin 0 .64

2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0] .64

2.4 Power Supply Pins .64

2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers .65

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & Internal Voltage Regulator65

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins65

2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG .65

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins .65

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL .65

2.4.7 VREGEN — On Chip Voltage Regulator Enable .66

Section 3 System Clock Description

3.1 Overview. .67

Section 4 Modes of Operation

4.1 Overview. .69

4.2 Chip Configuration Summary .69

4.3 Security. .70

4.3.1 Securing the Microcontroller .70

4.3.2 Operation of the Secured Microcontroller .70

4.3.3 Unsecuring the Microcontroller .71

4.4 Low Power Modes .71

4.4.1 Stop .71

4.4.2 Pseudo Stop. .71

4.4.3 Wait .71

4.4.4 Run. .72

Section 5 Resets and Interrupts

5.1 Overview. .73

5.2 Vectors .73

5.2.1 Vector Table. .73

5.3 Effects of Reset .74

5.3.1 I/O pins. .74

5.3.2 Memory .75

Section 6 HCS12 Core Block Description
7

MC9S12DP512 Device Guide V01.25
6.1 CPU12 Block Description .77

6.1.1 Device-specific information .77

6.2 HCS12 Module Mapping Control (MMC) Block Description .77

6.2.1 Device-specific information .77

6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block Description77

6.3.1 Device-specific information .77

6.4 HCS12 Interrupt (INT) Block Description .77

6.5 HCS12 Background Debug (BDM) Block Description .78

6.5.1 Device-specific information .78

6.6 HCS12 Breakpoint (BKP) Block Description .78

Section 7 Clock and Reset Generator (CRG) Block Description

7.1 Device-specific information. .78

Section 8 Oscillator (OSC) Block Description

8.1 Device-specific information. .78

Section 9 Enhanced Capture Timer (ECT) Block Description

Section 10 Analog to Digital Converter (ATD) Block Description

Section 11 Inter-IC Bus (IIC) Block Description

Section 12 Serial Communications Interface (SCI) Block Description

Section 13 Serial Peripheral Interface (SPI) Block Description

Section 14 J1850 (BDLC) Block Description

Section 15 Pulse Width Modulator (PWM) Block Description

Section 16 Flash EEPROM 512K Block Description

Section 17 EEPROM 4K Block Description

Section 18 RAM Block Description

Section 19 MSCAN Block Description
8

MC9S12DP512 Device Guide V01.25
Section 20 Port Integration Module (PIM) Block Description

Section 21 Voltage Regulator (VREG) Block Description

Section 22 Printed Circuit Board Layout Proposal

Appendix A Electrical Characteristics

A.1 General. .85

A.1.1 Parameter Classification .85

A.1.2 Power Supply .85

A.1.3 Pins .86

A.1.4 Current Injection. .87

A.1.5 Absolute Maximum Ratings .87

A.1.6 ESD Protection and Latch-up Immunity .88

A.1.7 Operating Conditions .89

A.1.8 Power Dissipation and Thermal Characteristics .89

A.1.9 I/O Characteristics .91

A.1.10 Supply Currents .92

A.2 ATD Characteristics .95

A.2.1 ATD Operating Characteristics .95

A.2.2 Factors influencing accuracy .95

A.2.3 ATD accuracy. .97

A.3 NVM, Flash and EEPROM .99

A.3.1 NVM timing. .99

A.3.2 NVM Reliability. .101

A.4 Voltage Regulator. .103

A.5 Reset, Oscillator and PLL. .105

A.5.1 Startup .105

A.5.2 Oscillator .106

A.5.3 Phase Locked Loop .107

A.6 MSCAN. .111

A.7 SPI .113

A.7.1 Master Mode .113

A.7.2 Slave Mode .115

A.8 External Bus Timing .117

A.8.1 General Muxed Bus Timing .117
9

MC9S12DP512 Device Guide V01.25
Appendix B Package Information

B.1 General. .121

B.2 112-pin LQFP package. .122
10

MC9S12DP512 Device Guide V01.25
List of Figures

Figure 0-1 Order Part Number Example .15

Figure 1-1 MC9S12DP512 Block Diagram .23

Figure 1-2 MC9S12DP512 Memory Map .26

Figure 2-1 Pin Assignments in 112-pin LQFP .52

Figure 2-2 PLL Loop Filter Connections .56

Figure 2-3 Colpitts Oscillator Connections (PE7=1) .57

Figure 2-4 Pierce Oscillator Connections (PE7=0) .58

Figure 2-5 External Clock Connections (PE7=0) .58

Figure 3-1 Clock Connections. .67

Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator82

Figure 22-2 Recommended PCB Layout for 112LQFP Pierce Oscillator83

Figure A-1 ATD Accuracy Definitions . 98

Figure A-2 Typical Endurance vs Temperature. 102

Figure A-3 Basic PLL functional diagram . 107

Figure A-4 Jitter Definitions . 109

Figure A-5 Maximum bus clock jitter approximation . 109

Figure A-6 SPI Master Timing (CPHA=0) . 113

Figure A-7 SPI Master Timing (CPHA=1) . 114

Figure A-8 SPI Slave Timing (CPHA=0) . 115

Figure A-9 SPI Slave Timing (CPHA=1) . 116

Figure A-10 General External Bus Timing. 118

Figure B-1 112-pin LQFP mechanical dimensions (case no. 987) 122
11

MC9S12DP512 Device Guide V01.25
12

MC9S12DP512 Device Guide V01.25
List of Tables

Table 0-1 Derivative Differences .15

Table 0-2 Document References .17

Table 1-1 Device Memory Map .24

$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)27

$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)27

$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt) .28

$0017 - $0019 Reserved .28

$001A - $001B Device ID Register (Table 1-3) .28

$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-4)28

$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)28

$001F - $001F INT map 2 of 2 (HCS12 Interrupt) .28

$0020 - $0027 Reserved .28

$0028 - $002F BKP (HCS12 Breakpoint) .29

$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control)29

$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)29

$0034 - $003F CRG (Clock and Reset Generator) .29

$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels) 30

$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)33

$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel). .34

$00C8 - $00CF SCI0 (Asynchronous Serial Interface) .36

$00D0 - $00D7 SCI1 (Asynchronous Serial Interface) .36

$00D8 - $00DF SPI0 (Serial Peripheral Interface) .36

$00E0 - $00E7 IIC (Inter IC Bus) .37

$00E8 - $00EF BDLC (Bytelevel Data Link Controller J1850) .37

$00F0 - $00F7 SPI1 (Serial Peripheral Interface) .38

$00F8 - $00FF SPI2 (Serial Peripheral Interface) .38

$0100 - $010F Flash Control Register (fts512k4) .38

$0110 - $011B EEPROM Control Register (eets4k) .39

$011C - $011F Reserved for RAM Control Register .39

$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)40

$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN) .41

Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout.42

$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN) .43
13

MC9S12DP512 Device Guide V01.25
$01C0 - $01FF CAN2 (Motorola Scalable CAN - MSCAN) .44

$0200 - $023F CAN3 (Motorola Scalable CAN - MSCAN) .45

$0240 - $027F PIM (Port Integration Module PIM_9DP256) .46

$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN) .48

$02C0 - $03FF Reserved .49

Table 1-3 Assigned Part ID Numbers .49

Table 1-4 Memory size registers .49

Table 2-1 Signal Properties .53

Table 2-2 MC9S12DP512 Power and Ground Connection Summary64

Table 4-1 Mode Selection .69

Table 4-2 Clock Selection Based on PE7 .70

Table 4-3 Voltage Regulator VREGEN .70

Table 5-1 Interrupt Vector Locations .73

Table 22-1 Suggested External Component Values .81

Table A-1 Absolute Maximum Ratings .87

Table A-2 ESD and Latch-up Test Conditions .88

Table A-3 ESD and Latch-up Protection Characteristics .88

Table A-4 Operating Conditions .89

Table A-5 Thermal Package Characteristics .91

Table A-6 5V I/O Characteristics .92

Table A-7 Supply Current Characteristics .93

Table A-8 ATD Operating Characteristics .95

Table A-9 ATD Electrical Characteristics .96

Table A-10 ATD Conversion Performance. .97

Table A-11 NVM Timing Characteristics .100

Table A-12 NVM Reliability Characteristics .101

Table A-13 Voltage Regulator Recommended Load Capacitances.103

Table A-14 Startup Characteristics. .105

Table A-15 Oscillator Characteristics .106

Table A-16 PLL Characteristics .110

Table A-17 MSCAN Wake-up Pulse Characteristics .111

Table A-18 Measurement Conditions. .113

Table A-19 SPI Master Mode Timing Characteristics. .114

Table A-20 SPI Slave Mode Timing Characteristics. .116

Table A-21 Expanded Bus Timing Characteristics .119
14

MC9S12DP512 Device Guide V01.25
Derivative Differences and Document References

Derivative Differences

Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the
compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.

The following figure provides an ordering number example for the MC9S12D-Family devices.

Figure 0-1 Order Part Number Example

Table 0-1 Derivative Differences1

NOTES:
1. ✓: Available for this device, —: Not available for this device

Modules MC9S12DP512 MC9S12DT512 MC9S12DJ512 MC9S12A512
of CANs 5 3 2 0

CAN0 ✓ ✓ ✓ —

CAN1 ✓ ✓ — —

CAN2 ✓ — — —

CAN3 ✓ — — —

CAN4 ✓ ✓ ✓ —

J1850/BDLC ✓ — ✓ —

Package 112 LQFP 112 LQFP 112 LQFP 112 LQFP

Package
Code

PV PV PV PV

Mask set L00M L00M L00M L00M

Temp Options M, V, C M, V, C M, V, C C

Notes
An errata exists
contact Sales

Office

An errata exists
contact Sales

Office

An errata exists
contact Sales

Office

An errata exists
contact Sales

Office

MC9S12 DP512 C PV
Package Option

Temperature Option

Device Title

Controller Family

Temperature Options
C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C

Package Options
FU = 80 QFP
PV = 112 LQFP
15

MC9S12DP512 Device Guide V01.25
The following items should be considered when using a derivative (Table 0-1):

• Registers

– Do not write or read CAN0 registers (after reset: address range $0140 - $017F), if using a
derivative without CAN0.

– Do not write or read CAN1registers (after reset: address range $0180 - $01BF), if using a
derivative without CAN1.

– Do not write or read CAN2 registers (after reset: address range $01C0 - $01FF), if using a
derivative without CAN2.

– Do not write or read CAN3 registers (after reset: address range $0200 - $023F), if using a
derivative without CAN3.

– Do not write or read CAN4 registers (after reset: address range $0280 - $02BF), if using a
derivative without CAN4.

– Do not write or read BDLC registers (after reset: address range $00E8 - $00EF), if using a
derivative without BDLC.

• Interrupts

– Fill the four CAN0 interrupt vectors ($FFB0 - $FFB7) according to your coding policies for
unused interrupts, if using a derivative without CAN0.

– Fill the four CAN1 interrupt vectors ($FFA8 - $FFAF) according to your coding policies for
unused interrupts, if using a derivative without CAN1.

– Fill the four CAN2 interrupt vectors ($FFA0 - $FFA7) according to your coding policies for
unused interrupts, if using a derivative without CAN2.

– Fill the four CAN3 interrupt vectors ($FF98 - $FF9F) according to your coding policies for
unused interrupts, if using a derivative without CAN3.

– Fill the four CAN4 interrupt vectors ($FF90 - $FF97) according to your coding policies for
unused interrupts, if using a derivative without CAN4.

– Fill the BDLC interrupt vector ($FFC2, $FFC3) according to your coding policies for unused
interrupts, if using a derivative without BDLC.

• Ports

– The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5,
PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0.

– The CAN1 pin functionality (TXCAN1, RXCAN1) is not available on port PM3 and PM2, if
using a derivative without CAN1.

– The CAN2 pin functionality (TXCAN2, RXCAN2) is not available on port PM5 and PM4, if
using a derivative without CAN2.

– The CAN3 pin functionality (TXCAN3, RXCAN3) is not available on port PM7 and PM6, if
using a derivative without CAN3.
16

MC9S12DP512 Device Guide V01.25
– The CAN4 pin functionality (TXCAN4, RXCAN4) is not available on port PJ7, PJ6, PM7,
PM6, PM5 and PM4, if using a derivative without CAN0.

– The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a
derivative without BDLC.

– Do not write MODRR1 and MODRR0 bits of Module Routing Register (PIM_9DP256 Block
Guide), if using a derivative without CAN0.

– Do not write MODRR3 and MODRR2 bits of Module Routing Register (PIM_9DP256 Block
Guide), if using a derivative without CAN4.

Document References

The Device Guide provides information about the MC9S12DP512 device made up of standard HCS12
blocks and the HCS12 processor core.

This document is part of the customer documentation. A complete set of device manuals also includes the
individual Block Guides of the implemented modules. In an effort to reduce redundancy, all module
specific information is located only in the respective Block Guide. If applicable, special implementation
details of the module are given in the block description sections of this document.

See Table 0-2 for names and versions of the referenced documents throughout the Device Guide.

Table 0-2 Document References
Block Guide Version Document Order Number

HCS12 CPU Reference Manual V02 S12CPUV2/D

HCS12 Module Mapping Control (MMC) Block Guide V04 S12MMCV4/D

HCS12 Multiplexed External Bus Interface (MEBI) Block Guide V03 S12MEBIV3/D

HCS12 Interrupt (INT) Block Guide V01 S12INTV1/D

HCS12 Background Debug (BDM) Block Guide V04 S12BDMV4/D

HCS12 Breakpoint (BKP) Block Guide V01 S12BKPV1/D

Clock and Reset Generator (CRG) Block Guide V04 S12CRGV4/D

Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block Guide V01 S12ECT16B8V1/D

Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block Guide V02 S12ATD10B8CV2/D

Inter IC Bus (IIC) Block Guide V02 S12IICV2/D

Asynchronous Serial Interface (SCI) Block Guide V02 S12SCIV2/D

Serial Peripheral Interface (SPI) Block Guide V03 S12SPIV3/D

Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block Guide V01 S12PWM8B8CV1/D

512K Byte Flash (FTS512K4) Block Guide V01 S12FTS512K4V1/D

4K Byte EEPROM (EETS4K) Block Guide V02 S12EETS4KV2/D

Byte Level Data Link Controller -J1850 (BDLC) Block Guide V01 S12BDLCV1/D

Motorola Scalable CAN (MSCAN) Block Guide V02 S12MSCANV2/D

Voltage Regulator (VREG) Block Guide V01 S12VREGV1/D

Port Integration Module (PIM_9DP256) Block Guide1 V03 S12DP256PIMV3/D

Oscillator (OSC) Block Guide V02 S12OSCV2/D
17

MC9S12DP512 Device Guide V01.25
NOTES:
1. Reused due to functional equivalence.
18

MC9S12DP512 Device Guide V01.25
Section 1 Introduction

1.1 Overview

The MC9S12DP512 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip
peripherals including a 16-bit central processing unit (HCS12 CPU), 512K bytes of Flash EEPROM, 14K
bytes of RAM, 4K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), three
serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit
analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link
Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital
I/O lines with interrupt and wake up capability, five CAN 2.0 A, B software compatible modules
(MSCAN12), and an Inter-IC Bus. The MC9S12DP512 has full 16-bit data paths throughout. However,
the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for
lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be
adjusted to suit operational requirements.

1.2 Features

• HCS12 Core

– 16-bit HCS12 CPU
i. Upward compatible with M68HC11 instruction set

ii. Interrupt stacking and programmer’s model identical to M68HC11

iii. Instruction queue

iv. Enhanced indexed addressing

– MEBI (Multiplexed External Bus Interface)

– MMC (Module Mapping Control)

– INT (Interrupt control)

– BKP (Breakpoints)

– BDM (Background Debug Mode)

• CRG (Clock and Reset Generation)

– Low current Colpitts oscillator or

– Pierce oscillator

– PLL

– COP watchdog

– Real Time Interrupt

– Clock Monitor

• 8-bit and 4-bit ports with interrupt functionality
19

MC9S12DP512 Device Guide V01.25
– Digital filtering

– Programmable rising or falling edge trigger

• Memory

– 512K Flash EEPROM

– 4K byte EEPROM

– 14K byte RAM

• Two 8-channel Analog-to-Digital Converters

– 10-bit resolution

– External conversion trigger capability

• Five 1M bit per second, CAN 2.0 A, B software compatible modules

– Five receive and three transmit buffers

– Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit

– Four separate interrupt channels for Rx, Tx, error and wake-up

– Low-pass filter wake-up function

– Loop-back for self test operation

• Enhanced Capture Timer

– 16-bit main counter with 7-bit prescaler

– 8 programmable input capture or output compare channels

– Four 8-bit or two 16-bit pulse accumulators

• 8 PWM channels

– Programmable period and duty cycle

– 8-bit 8-channel or 16-bit 4-channel

– Separate control for each pulse width and duty cycle

– Center-aligned or left-aligned outputs

– Programmable clock select logic with a wide range of frequencies

– Fast emergency shutdown input

– Usable as interrupt inputs

• Serial interfaces

– Two asynchronous Serial Communications Interfaces (SCI)

– Three Synchronous Serial Peripheral Interface (SPI)

• Byte Data Link Controller (BDLC)

– SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible
for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
20

MC9S12DP512 Device Guide V01.25
• Inter-IC Bus (IIC)

– Compatible with I2C Bus standard

– Multi-master operation

– Software programmable for one of 256 different serial clock frequencies

• 112-Pin LQFP package

– I/O lines with 5V input and drive capability

– 5V A/D converter inputs

– Operation at 50MHz equivalent to 25MHz Bus Speed over -40˚C <= TA <= 125˚C

– Development support

– Single-wire background debug™ mode (BDM)

– On-chip hardware breakpoints

1.3 Modes of Operation

User modes

• Normal and Emulation Operating Modes

– Normal Single-Chip Mode

– Normal Expanded Wide Mode

– Normal Expanded Narrow Mode

– Emulation Expanded Wide Mode

– Emulation Expanded Narrow Mode

• Special Operating Modes

– Special Single-Chip Mode with active Background Debug Mode

– Special Test Mode (Motorola use only)

– Special Peripheral Mode (Motorola use only)

Low power modes

• Stop Mode

• Pseudo Stop Mode

• Wait Mode
21

MC9S12DP512 Device Guide V01.25
1.4 Block Diagram

Figure 1-1 shows a block diagram of the MC9S12DP512 device.
22

MC9S12DP512 Device Guide V01.25
Figure 1-1 MC9S12DP512 Block Diagram

512K Byte Flash EEPROM

14K Byte RAM

Enhanced Capture

RESET

EXTAL
XTAL

VDD1,2
VSS1,2

SCI0

 4K Byte EEPROM

BKGD

R/W

MODB

XIRQ

NOACC/XCLKS

System
Integration

Module
(SIM)

VDDR

CPU12

Periodic Interrupt
COP Watchdog
Clock Monitor

Single-wire Background

Breakpoints

PLLVSSPLL

XFC
VDDPLL

Multiplexed Address/Data Bus

VDDA
VSSA

VRH
VRLATD0

Multiplexed
Wide Bus

Multiplexed

VDDX
VSSX

Internal Logic 2.5V

Narrow Bus

PPAGE

VDDPLL
VSSPLL

PLL 2.5V

IRQ

LSTRB
ECLK
MODA

PA
4

PA
3

PA
2

PA
1

PA
0

PA
7

PA
6

PA
5

TEST

A
D

D
R

12
A

D
D

R
11

A
D

D
R

10
A

D
D

R
9

A
D

D
R

8

A
D

D
R

15
A

D
D

R
14

A
D

D
R

13
D

AT
A

12
D

AT
A

11
D

AT
A

10
D

AT
A

9
D

AT
A

8

D
AT

A
15

D
AT

A
14

D
AT

A
13

P
B

4
P

B
3

P
B

2
P

B
1

P
B

0

P
B

7
P

B
6

P
B

5
A

D
D

R
4

A
D

D
R

3
A

D
D

R
2

A
D

D
R

1
A

D
D

R
0

A
D

D
R

7
A

D
D

R
6

A
D

D
R

5
D

AT
A

4
D

AT
A

3
D

AT
A

2
D

AT
A

1
D

AT
A

0

D
AT

A
7

D
AT

A
6

D
AT

A
5

D
AT

A
4

D
AT

A
3

D
AT

A
2

D
AT

A
1

D
AT

A
0

D
AT

A
7

D
AT

A
6

D
AT

A
5

PE3
PE4
PE5
PE6
PE7

PE0
PE1
PE2

AN02

AN06

AN00

AN07

AN01

AN03
AN04
AN05

PAD03
PAD04
PAD05
PAD06
PAD07

PAD00
PAD01
PAD02

IOC2

IOC6

IOC0

IOC7

IOC1

IOC3
IOC4
IOC5

PT3
PT4
PT5
PT6
PT7

PT0
PT1
PT2

VRH
VRL

VDDA
VSSA

VRH
VRLATD1

AN10

AN14

AN08

AN15

AN09

AN11
AN12
AN13

PAD11
PAD12
PAD13
PAD14
PAD15

PAD08
PAD09
PAD10

VDDA
VSSA

RXD
TXD

MISO
MOSI

PS3
PS4
PS5

PS0
PS1
PS2SCI1

RXD
TXD

PP3
PP4
PP5
PP6
PP7

PP0
PP1
PP2

PIX2

PIX0
PIX1

PIX3

ECS

PK3

PK7

PK0
PK1

XADDR17

ECS

XADDR14
XADDR15
XADDR16

SCK
SS

PS6
PS7

SPI0

IIC
SDA
SCL

PJ6
PJ7

CAN0
RXCAN
TXCAN

PM1
PM0

CAN1
RXCAN
TXCAN

PM2
PM3

CAN2
RXCAN
TXCAN

PM4
PM5

CAN3
RXCAN
TXCAN

PM6
PM7

KWH2

KWH6

KWH0

KWH7

KWH1

KWH3
KWH4
KWH5

PH3
PH4
PH5
PH6
PH7

PH0
PH1
PH2

KWJ0
KWJ1

PJ0
PJ1

I/O Driver 5V

VDDA
VSSA

A/D Converter 5V &

DDRA DDRB

PTA PTB

D
D

R
E

P
T

E

A
D

1

A
D

0

P
T

K

D
D

R
K

P
T

T

D
D

R
T

P
T

P

D
D

R
P

P
T

S

D
D

R
S

P
T

M

D
D

R
M

P
T

H

D
D

R
H

P
T

J

D
D

R
J

PK2

BDLC RXB
TXB

Clock and
Reset
Generation
Module

Voltage Regulator
VSSR

Debug Module

VDD1,2
VSS1,2

VREGEN

VDDR
VSSR

Voltage Regulator 5V & I/O

CAN4
RXCAN
TXCAN

MISO
MOSI
SCK

SS

SPI2

MISO
MOSI
SCK

SS

SPI1

PIX4
PIX5

PK4
PK5

XADDR18
XADDR19

Voltage Regulator Reference

KWP2

KWP6

KWP0

KWP7

KWP1

KWP3
KWP4
KWP5

KWJ6
KWJ7

Timer

(J1850)
M

od
ul

e
to

 P
or

t R
ou

tin
g

PWM2

PWM6

PWM0

PWM7

PWM1

PWM3
PWM4
PWM5

PWM
23

MC9S12DP512 Device Guide V01.25
1.5 Device Memory Map

Table 1-1 and Figure 1-2 show the device memory map of the MC9S12DP512 after reset. Note that after
reset the bottom 1k of the EEPROM ($0000 - $03FF) are hidden by the register space

Table 1-1 Device Memory Map

Address Module Size
(Bytes)

$0000 - $000F HCS12 Multiplexed External Bus Interface 16

$0010 - $0014 HCS12 Module Mapping Control 5

$0015 - $0016 HCS12 Interrupt 2

$0017 - $0019 Reserved 3

$001A - $001B Device ID register (PARTID) 2

$001C - $001D HCS12 Module Mapping Control 2

$001E HCS12 Multiplexed External Bus Interface 1

$001F HCS12 Interrupt 1

$0020 - $0027 Reserved 8

$0028 - $002F HCS12 Breakpoint 8

$0030 - $0031 HCS12 Module Mapping Control 2

$0032 - $0033 HCS12 Multiplexed External Bus Interface 2

$0034 - $003F Clock and Reset Generator (PLL, RTI, COP) 12

$0040 - $007F Enhanced Capture Timer 16-bit 8 channels 64

$0080 - $009F Analog to Digital Converter 10-bit 8 channels (ATD0) 32

$00A0 - $00C7 Pulse Width Modulator 8-bit 8 channels (PWM) 40

$00C8 - $00CF Serial Communications Interface 0 (SCI0) 8

$00D0 - $00D7 Serial Communications Interface 0 (SCI1) 8

$00D8 - $00DF Serial Peripheral Interface (SPI0) 8

$00E0 - $00E7 Inter IC Bus 8

$00E8 - $00EF Byte Data Link Controller (BDLC) 8

$00F0 - $00F7 Serial Peripheral Interface (SPI1) 8

$00F8 - $00FF Serial Peripheral Interface (SPI2) 8

$0100- $010F Flash Control Register 16

$0110 - $011B EEPROM Control Register 12

$011C - $011F Reserved 4

$0120 - $013F Analog to Digital Converter 10-bit 8 channels (ATD1) 32

$0140 - $017F Motorola Scalable Can (CAN0) 64

$0180 - $01BF Motorola Scalable Can (CAN1) 64

$01C0 - $01FF Motorola Scalable Can (CAN2) 64

$0200 - $023F Motorola Scalable Can (CAN3) 64

$0240 - $027F Port Integration Module (PIM) 64

$0280 - $02BF Motorola Scalable Can (CAN4) 64

$02C0 - $03FF Reserved 320

$0000 - $0FFF EEPROM array 4096

$0800 - $3FFF RAM array 14336

$4000 - $7FFF
Fixed Flash EEPROM array
incl. 1K, 2K, 4K or 8K Protected Sector at start

16384
24

MC9S12DP512 Device Guide V01.25
$8000 - $BFFF Flash EEPROM Page Window 16384

$C000 - $FFFF
Fixed Flash EEPROM array
incl. 2K, 4K, 8K or 16K Protected Sector at end
and 256 bytes of Vector Space at $FF80 - $FFFF

16384

Table 1-1 Device Memory Map

Address Module Size
(Bytes)
25

MC9S12DP512 Device Guide V01.25
Figure 1-2 MC9S12DP512 Memory Map

* Assuming that a ‘0’ was driven onto port K bit 7 during MCU is reset into normal expanded wide or narrow mode.

$0400

$0000

$0800

$4000

$8000

$C000

$FF00
VECTORS

$FFFF

EXTERN

EXPANDED*

VECTORS

NORMAL
SINGLE CHIP

VECTORS

SPECIAL
SINGLE CHIP

REGISTERS
(Mappable to any 2k Block
within the first 32K)

$0000

$03FF

$0000

$0FFF

4K Bytes EEPROM
(Mappable to any 4K Block)

14K Bytes RAM
(Mappable to any 16K
and alignable to top or
bottom)

$4000

$7FFF

16K Fixed Flash
Page $3E = 62
(This is dependant on the
state of the ROMHM bit)

$8000

$BFFF

16K Page Window
32 x 16K Flash EEPROM
pages

$C000

$FFFF

16K Fixed Flash
Page $3F = 63

$FF00

$FFFF

BDM
(if active)

$0800

$3FFF
26

MC9S12DP512 Device Guide V01.25
1.5.1 Detailed Register Map

$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0000 PORTA
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0001 PORTB
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0002 DDRA
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0003 DDRB
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0004 -
$0007

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0008 PORTE
Read:

Bit 7 6 5 4 3 2
Bit 1 Bit 0

Write:

$0009 DDRE
Read:

Bit 7 6 5 4 3 Bit 2
0 0

Write:

$000A PEAR
Read:

NOACCE
0

PIPOE NECLK LSTRE RDWE
0 0

Write:

$000B MODE
Read:

MODC MODB MODA
0

IVIS
0

EMK EME
Write:

$000C PUCR
Read:

PUPKE
0 0

PUPEE
0 0

PUPBE PUPAE
Write:

$000D RDRIV
Read:

RDPK
0 0

RDPE
0 0

RDPB RDPA
Write:

$000E EBICTL
Read: 0 0 0 0 0 0 0

ESTR
Write:

$000F Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0010 INITRM
Read:

RAM15 RAM14 RAM13 RAM12 RAM11
0 0

RAMHAL
Write:

$0011 INITRG
Read: 0

REG14 REG13 REG12 REG11
0 0 0

Write:

$0012 INITEE
Read:

EE15 EE14 EE13 EE12 EE11
0 0

EEON
Write:

$0013 MISC
Read: 0 0 0 0

EXSTR1 EXSTR0 ROMHM ROMON
Write:

$0014 Reserved
Read: 0 0 0 0 0 0 0 0
Write:
27

MC9S12DP512 Device Guide V01.25
$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0015 ITCR
Read: 0 0 0

WRINT ADR3 ADR2 ADR1 ADR0
Write:

$0016 ITEST
Read:

INTE INTC INTA INT8 INT6 INT4 INT2 INT0
Write:

$0017 - $0019 Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0017-
$0019

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$001A - $001B Device ID Register (Table 1-3)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$001A PARTIDH
Read: ID15 ID14 ID13 ID12 ID11 ID10 ID9 ID8
Write:

$001B PARTIDL
Read: ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0
Write:

$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-4)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$001C MEMSIZ0
Read: reg_sw0 0 eep_sw1 eep_sw0 0 ram_sw2 ram_sw1 ram_sw0
Write:

$001D MEMSIZ1
Read: rom_sw1 rom_sw0 0 0 0 0 pag_sw1 pag_sw0
Write:

$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$001E INTCR
Read:

IRQE IRQEN
0 0 0 0 0 0

Write:

$001F - $001F INT map 2 of 2 (HCS12 Interrupt)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$001F HPRIO
Read:

PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1
0

Write:

$0020 - $0027 Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$0020 -
$0027

Reserved
Read: 0 0 0 0 0 0 0 0
Write:
28

MC9S12DP512 Device Guide V01.25
$0028 - $002F BKP (HCS12 Breakpoint)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0028 BKPCT0
Read:

BKEN BKFULL BKBDM BKTAG
0 0 0 0

Write:

$0029 BKPCT1
Read:

BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
Write:

$002A BKP0X
Read: 0 0

BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0
Write:

$002B BKP0H
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$002C BKP0L
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$002D BKP1X
Read: 0 0

BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0
Write:

$002E BKP1H
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$002F BKP1L
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0030 PPAGE
Read: 0 0

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
Write:

$0031 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0032 PORTK
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0033 DDRK
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0034 - $003F CRG (Clock and Reset Generator)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0034 SYNR
Read: 0 0

SYN5 SYN4 SYN3 SYN2 SYN1 SYN0
Write:

$0035 REFDV
Read: 0 0 0 0

REFDV3 REFDV2 REFDV1 REFDV0
Write:

$0036
CTFLG

Test Only
Read: TOUT7 TOUT6 TOUT5 TOUT4 TOUT3 TOUT2 TOUT1 TOUT0
Write:

$0037 CRGFLG
Read:

RTIF PROF
0

LOCKIF
LOCK TRACK

SCMIF
SCM

Write:

$0038 CRGINT
Read:

RTIE
0 0

LOCKIE
0 0

SCMIE
0

Write:
29

MC9S12DP512 Device Guide V01.25
$0039 CLKSEL
Read:

PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI
Write:

$003A PLLCTL
Read:

CME PLLON AUTO ACQ
0

PRE PCE SCME
Write:

$003B RTICTL
Read: 0

RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0
Write:

$003C COPCTL
Read:

WCOP RSBCK
0 0 0

CR2 CR1 CR0
Write:

$003D
FORBYP
Test Only

Read:
RTIBYP COPBYP

0
PLLBYP

0 0
FCM

0
Write:

$003E
CTCTL

Test Only
Read: TCTL7 TCTL6 TCTL5 TCTL4 TCLT3 TCTL2 TCTL1 TCTL0
Write:

$003F ARMCOP
Read: 0 0 0 0 0 0 0 0
Write: Bit 7 6 5 4 3 2 1 Bit 0

$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0040 TIOS
Read:

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0
Write:

$0041 CFORC
Read: 0 0 0 0 0 0 0 0
Write: FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0

$0042 OC7M
Read:

OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0
Write:

$0043 OC7D
Read:

OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0
Write:

$0044 TCNT (hi)
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0045 TCNT (lo)
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0046 TSCR1
Read:

TEN TSWAI TSFRZ TFFCA
0 0 0 0

Write:

$0047 TTOV
Read:

TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0
Write:

$0048 TCTL1
Read:

OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4
Write:

$0049 TCTL2
Read:

OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0
Write:

$004A TCTL3
Read:

EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A
Write:

$004B TCTL4
Read:

EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A
Write:

$004C TIE
Read:

C7I C6I C5I C4I C3I C2I C1I C0I
Write:

$004D TSCR2
Read:

TOI
0 0 0

TCRE PR2 PR1 PR0
Write:

$004E TFLG1
Read:

C7F C6F C5F C4F C3F C2F C1F C0F
Write:

$0034 - $003F CRG (Clock and Reset Generator)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
30

MC9S12DP512 Device Guide V01.25
$004F TFLG2
Read:

TOF
0 0 0 0 0 0 0

Write:

$0050 TC0 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0051 TC0 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0052 TC1 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0053 TC1 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0054 TC2 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0055 TC2 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0056 TC3 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0057 TC3 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0058 TC4 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0059 TC4 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$005A TC5 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$005B TC5 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$005C TC6 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$005D TC6 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$005E TC7 (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$005F TC7 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0060 PACTL
Read: 0

PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI
Write:

$0061 PAFLG
Read: 0 0 0 0 0 0

PAOVF PAIF
Write:

$0062 PACN3 (hi)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0063 PACN2 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0064 PACN1 (hi)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0065 PACN0 (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0066 MCCTL
Read:

MCZI MODMC RDMCL
0 0

MCEN MCPR1 MCPR0
Write: ICLAT FLMC

$0067 MCFLG
Read:

MCZF
0 0 0 POLF3 POLF2 POLF1 POLF0

Write:

$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
31

MC9S12DP512 Device Guide V01.25
$0068 ICPAR
Read: 0 0 0 0

PA3EN PA2EN PA1EN PA0EN
Write:

$0069 DLYCT
Read: 0 0 0 0 0 0

DLY1 DLY0
Write:

$006A ICOVW
Read:

NOVW7 NOVW6 NOVW5 NOVW4 NOVW3 NOVW2 NOVW1 NOVW0
Write:

$006B ICSYS
Read:

SH37 SH26 SH15 SH04 TFMOD PACMX BUFEN LATQ
Write:

$006C Reserved
Read:
Write:

$006D
TIMTST
Test Only

Read: 0 0 0 0 0 0
TCBYP

0
Write:

$006E -
$006F

Reserved
Read:
Write:

$0070 PBCTL
Read: 0

PBEN
0 0 0 0

PBOVI
0

Write:

$0071 PBFLG
Read: 0 0 0 0 0 0

PBOVF
0

Write:

$0072 PA3H
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0073 PA2H
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0074 PA1H
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0075 PA0H
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0076 MCCNT (hi)
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0077 MCCNT (lo)
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0078 TC0H (hi)
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0079 TC0H (lo)
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$007A TC1H (hi)
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$007B TC1H (lo)
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$007C TC2H (hi)
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$007D TC2H (lo)
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$007E TC3H (hi)
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$007F TC3H (lo)
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
32

MC9S12DP512 Device Guide V01.25
$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0080 ATD0CTL0
Read: 0 0 0 0 0 0 0 0
Write:

$0081 ATD0CTL1
Read: 0 0 0 0 0 0 0 0
Write:

$0082 ATD0CTL2
Read:

ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE
ASCIF

Write:

$0083 ATD0CTL3
Read: 0

S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:

$0084 ATD0CTL4
Read:

SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:

$0085 ATD0CTL5
Read:

DJM DSGN SCAN MULT
0

CC CB CA
Write:

$0086 ATD0STAT0
Read:

SCF
0

ETORF FIFOR
0 CC2 CC1 CC0

Write:

$0087 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0088 ATD0TEST0
Read: 0 0 0 0 0 0 0 0
Write:

$0089 ATD0TEST1
Read: 0 0 0 0 0 0 0

SC
Write:

$008A Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$008B ATD0STAT1
Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:

$008C Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$008D ATD0DIEN
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$008E Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$008F PORTAD0
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0090 ATD0DR0H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0091 ATD0DR0L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0092 ATD0DR1H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0093 ATD0DR1L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0094 ATD0DR2H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0095 ATD0DR2L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0096 ATD0DR3H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0097 ATD0DR3L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0098 ATD0DR4H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
33

MC9S12DP512 Device Guide V01.25
$0099 ATD0DR4L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$009A ATD0DR5H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$009B ATD0DR5L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$009C ATD0DR6H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$009D ATD0DR6L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$009E ATD0DR7H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$009F ATD0DR7L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00A0 PWME
Read:

PWME7 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0
Write:

$00A1 PWMPOL
Read:

PPOL7 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0
Write:

$00A2 PWMCLK
Read:

PCLK7 PCLK6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0
Write:

$00A3 PWMPRCLK
Read: 0

PCKB2 PCKB1 PCKB0
0

PCKA2 PCKA1 PCKA0
Write:

$00A4 PWMCAE
Read:

CAE7 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0
Write:

$00A5 PWMCTL
Read:

CON67 CON45 CON23 CON01 PSWAI PFRZ
0 0

Write:

$00A6
PWMTST
Test Only

Read: 0 0 0 0 0 0 0 0
Write:

$00A7 PWMPRSC
Read: 0 0 0 0 0 0 0 0
Write:

$00A8 PWMSCLA
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00A9 PWMSCLB
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00AA PWMSCNTA
Read: 0 0 0 0 0 0 0 0
Write:

$00AB PWMSCNTB
Read: 0 0 0 0 0 0 0 0
Write:

$00AC PWMCNT0
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$00AD PWMCNT1
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$00AE PWMCNT2
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
34

MC9S12DP512 Device Guide V01.25
$00AF PWMCNT3
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$00B0 PWMCNT4
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$00B1 PWMCNT5
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$00B2 PWMCNT6
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$00B3 PWMCNT7
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write: 0 0 0 0 0 0 0 0

$00B4 PWMPER0
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00B5 PWMPER1
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00B6 PWMPER2
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00B7 PWMPER3
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00B8 PWMPER4
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00B9 PWMPER5
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00BA PWMPER6
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00BB PWMPER7
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00BC PWMDTY0
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00BD PWMDTY1
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00BE PWMDTY2
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00BF PWMDTY3
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00C0 PWMDTY4
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00C1 PWMDTY5
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00C2 PWMDTY6
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00C3 PWMDTY7
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00C4 PWMSDN
Read:

PWMIF PWMIE
PWM

RSTRT
PWMLVL

0
PWM7IN

PWM7
INL

PWM7
ENAWrite:

$00C5 -
$00C7

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
35

MC9S12DP512 Device Guide V01.25
$00C8 - $00CF SCI0 (Asynchronous Serial Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00C8 SCI0BDH
Read: 0 0 0

SBR12 SBR11 SBR10 SBR9 SBR8
Write:

$00C9 SCI0BDL
Read:

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
Write:

$00CA SC0CR1
Read:

LOOPS SCISWAI RSRC M WAKE ILT PE PT
Write:

$00CB SCI0CR2
Read:

TIE TCIE RIE ILIE TE RE RWU SBK
Write:

$00CC SCI0SR1
Read: TDRE TC RDRF IDLE OR NF FE PF
Write:

$00CD SC0SR2
Read: 0 0 0 0 0

BRK13 TXDIR
RAF

Write:

$00CE SCI0DRH
Read: R8

T8
0 0 0 0 0 0

Write:

$00CF SCI0DRL
Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0

$00D0 - $00D7 SCI1 (Asynchronous Serial Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00D0 SCI1BDH
Read: 0 0 0

SBR12 SBR11 SBR10 SBR9 SBR8
Write:

$00D1 SCI1BDL
Read:

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
Write:

$00D2 SC1CR1
Read:

LOOPS SCISWAI RSRC M WAKE ILT PE PT
Write:

$00D3 SCI1CR2
Read:

TIE TCIE RIE ILIE TE RE RWU SBK
Write:

$00D4 SCI1SR1
Read: TDRE TC RDRF IDLE OR NF FE PF
Write:

$00D5 SC1SR2
Read: 0 0 0 0 0

BRK13 TXDIR
RAF

Write:

$00D6 SCI1DRH
Read: R8

T8
0 0 0 0 0 0

Write:

$00D7 SCI1DRL
Read: R7 R6 R5 R4 R3 R2 R1 R0
Write: T7 T6 T5 T4 T3 T2 T1 T0

$00D8 - $00DF SPI0 (Serial Peripheral Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00D8 SPI0CR1
Read:

SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:

$00D9 SPI0CR2
Read: 0 0 0

MODFEN BIDIROE
0

SPISWAI SPC0
Write:

$00DA SPI0BR
Read: 0

SPPR2 SPPR1 SPPR0
0

SPR2 SPR1 SPR0
Write:

$00DB SPI0SR
Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:
36

MC9S12DP512 Device Guide V01.25
$00DC Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$00DD SPI0DR
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00DE -
$00DF

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$00E0 - $00E7 IIC (Inter IC Bus)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00E0 IBAD
Read:

ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1 0
Write:

$00E1 IBFD
Read:

IBC7 IBC6 IBC5 IBC4 IBC3 IBC2 IBC1 IBC0
Write:

$00E2 IBCR
Read:

IBEN IBIE MS/SL TX/RX TXAK
0 0

IBSWAI
Write: RSTA

$00E3 IBSR
Read: TCF IAAS IBB

IBAL
0 SRW

IBIF
RXAK

Write:

$00E4 IBDR
Read:

D7 D6 D5 D4 D3 D2 D1 D 0
Write:

$00E5 -
$00E7

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$00E8 - $00EF BDLC (Bytelevel Data Link Controller J1850)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00E8 DLCBCR1
Read:

IMSG CLKS
0 0 0 0

IE WCM
Write:

$00E9 DLCBSVR
Read: 0 0 I3 I2 I1 I0 0 0
Write:

$00EA DLCBCR2
Read:

SMRST DLOOP RX4XE NBFS TEOD TSIFR TMIFR1 TMIFR0
Write:

$00EB DLCBDR
Read:

D7 D6 D5 D4 D3 D2 D1 D0
Write:

$00EC DLCBARD
Read: 0

RXPOL
0 0

BO3 BO2 BO1 BO0
Write:

$00ED DLCBRSR
Read: 0 0

R5 R4 R3 R2 R1 R0
Write:

$00EE DLCSCR
Read: 0 0 0

BDLCE
0 0 0 0

Write:

$00EF DLCBSTAT
Read: 0 0 0 0 0 0 0 IDLE
Write:

$00D8 - $00DF SPI0 (Serial Peripheral Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
37

MC9S12DP512 Device Guide V01.25
$00F0 - $00F7 SPI1 (Serial Peripheral Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00F0 SPI1CR1
Read:

SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:

$00F1 SPI1CR2
Read: 0 0 0

MODFEN BIDIROE
0

SPISWAI SPC0
Write:

$00F2 SPI1BR
Read: 0

SPPR2 SPPR1 SPPR0
0

SPR2 SPR1 SPR0
Write:

$00F3 SPI1SR
Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:

$00F4 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$00F5 SPI1DR
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00F6 -
$00F7

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$00F8 - $00FF SPI2 (Serial Peripheral Interface)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$00F8 SPI2CR1
Read:

SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
Write:

$00F9 SPI2CR2
Read: 0 0 0

MODFEN BIDIROE
0

SPISWAI SPC0
Write:

$00FA SPI2BR
Read: 0

SPPR2 SPPR1 SPPR0
0

SPR2 SPR1 SPR0
Write:

$00FB SPI2SR
Read: SPIF 0 SPTEF MODF 0 0 0 0
Write:

$00FC Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$00FD SPI2DR
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$00FE -
$00FF

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0100 - $010F Flash Control Register (fts512k4)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0100 FCLKDIV
Read: FDIVLD

PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0
Write:

$0101 FSEC
Read: KEYEN1 KEYEN0 NV5 NV4 NV3 NV2 SEC1 SEC0
Write:

$0102 FTSTMOD
Read:

0 0 0 WRALL
0 0 0

0
Write:

$0103 FCNFG
Read:

CBEIE CCIE KEYACC
0 0 0

BKSEL1 BKSEL0
Write:

$0104 FPROT
Read:

FPOPEN NV6 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0
Write:

$0105 FSTAT
Read:

CBEIF
CCIF

PVIOL ACCERR
0

BLANK
0 0

Write:
38

MC9S12DP512 Device Guide V01.25
$0106 FCMD
Read: 0

CMDB6 CMDB5
0 0

CMDB2
0

CMDB0
Write:

$0107 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0108 FADDRHI
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0109 FADDRLO
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$010A FDATAHI
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$010B FDATALO
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$010C -
$010F

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0110 - $011B EEPROM Control Register (eets4k)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0110 ECLKDIV
Read: EDIVLD

PRDIV8 EDIV5 EDIV4 EDIV3 EDIV2 EDIV1 EDIV0
Write:

$0111 -
$0112

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0113 ECNFG
Read:

CBEIE CCIE
0 0 0 0 0 0

Write:

$0114 EPROT
Read:

EPOPEN
NV6 NV5 NV4

EPDIS EP2 EP1 EP0
Write:

$0115 ESTAT
Read:

CBEIF
CCIF

PVIOL ACCERR
0

BLANK
0 0

Write:

$0116 ECMD
Read: 0

CMDB6 CMDB5
0 0

CMDB2
0

CMDB0
Write:

$0117 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0118 EADDRHI
Read: 0 0 0 0 0

10 9 Bit 8
Write:

$0119 EADDRLO
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$011A EDATAHI
Read:

Bit 15 14 13 12 11 10 9 Bit 8
Write:

$011B EDATALO
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$011C - $011F Reserved for RAM Control Register

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$011C -
$011F

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0100 - $010F Flash Control Register (fts512k4)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
39

MC9S12DP512 Device Guide V01.25
$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0120 ATD1CTL0
Read: 0 0 0 0 0 0 0 0
Write:

$0121 ATD1CTL1
Read: 0 0 0 0 0 0 0 0
Write:

$0122 ATD1CTL2
Read:

ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE
ASCIF

Write:

$0123 ATD1CTL3
Read: 0

S8C S4C S2C S1C FIFO FRZ1 FRZ0
Write:

$0124 ATD1CTL4
Read:

SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
Write:

$0125 ATD1CTL5
Read:

DJM DSGN SCAN MULT
0

CC CB CA
Write:

$0126 ATD1STAT0
Read: SCF 0 ETORF FIFOR 0 CC2 CC1 CC0
Write:

$0127 Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0128 ATD1TEST0
Read: 0 0 0 0 0 0 0 0
Write:

$0129 ATD1TEST1
Read: 0 0 0 0 0

0
0

SC
Write:

$012A Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$012B ATD1STAT1
Read: CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
Write:

$012C Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$012D ATD1DIEN
Read:

Bit 7 6 5 4 3 2 1 Bit 0
Write:

$012E Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$012F PORTAD1
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0130 ATD1DR0H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0131 ATD1DR0L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0132 ATD1DR1H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0133 ATD1DR1L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0134 ATD1DR2H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0135 ATD1DR2L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0136 ATD1DR3H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$0137 ATD1DR3L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0138 ATD1DR4H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:
40

MC9S12DP512 Device Guide V01.25
$0139 ATD1DR4L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$013A ATD1DR5H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$013B ATD1DR5L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$013C ATD1DR6H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$013D ATD1DR6L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$013E ATD1DR7H
Read: Bit 15 14 13 12 11 10 9 Bit 8
Write:

$013F ATD1DR7L
Read: Bit 7 6 5 4 3 2 1 Bit 0
Write:

$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0140 CAN0CTL0
Read:

RXFRM
RXACT

CSWAI
SYNCH

TIME WUPE SLPRQ INITRQ
Write:

$0141 CAN0CTL1
Read:

CANE CLKSRC LOOPB LISTEN
0

WUPM
SLPAK INITAK

Write:

$0142 CAN0BTR0
Read:

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:

$0143 CAN0BTR1
Read:

SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:

$0144 CAN0RFLG
Read:

WUPIF CSCIF
RSTAT1 RSTAT0 TSTAT1 TSTAT0

OVRIF RXF
Write:

$0145 CAN0RIER
Read:

WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:

$0146 CAN0TFLG
Read: 0 0 0 0 0

TXE2 TXE1 TXE0
Write:

$0147 CAN0TIER
Read: 0 0 0 0 0

TXEIE2 TXEIE1 TXEIE0
Write:

$0148 CAN0TARQ
Read: 0 0 0 0 0

ABTRQ2 ABTRQ1 ABTRQ0
Write:

$0149 CAN0TAAK
Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:

$014A CAN0TBSEL
Read: 0 0 0 0 0

TX2 TX1 TX0
Write:

$014B CAN0IDAC
Read: 0 0

IDAM1 IDAM0
0 IDHIT2 IDHIT1 IDHIT0

Write:
$014C -
$014D

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$014E CAN0RXERR
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:

$014F CAN0TXERR
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:

$0150 -
$0153

CAN0IDAR0 -
CAN0IDAR3

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
41

MC9S12DP512 Device Guide V01.25
$0154 -
$0157

CAN0IDMR0 -
CAN0IDMR3

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$0158 -
$015B

CAN0IDAR4 -
CAN0IDAR7

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:
$015C -
$015F

CAN0IDMR4 -
CAN0IDMR7

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$0160 -
$016F

CAN0RXFG
Read: FOREGROUND RECEIVE BUFFER see Table 1-2
Write:

$0170 -
$017F

CAN0TXFG
Read:

FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:

Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$xxx0
Extended ID Read: ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21
Standard ID Read: ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
CANxRIDR0 Write:

$xxx1
Extended ID Read: ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15
Standard ID Read: ID2 ID1 ID0 RTR IDE=0
CANxRIDR1 Write:

$xxx2
Extended ID Read: ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7
Standard ID Read:
CANxRIDR2 Write:

$xxx3
Extended ID Read: ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR
Standard ID Read:
CANxRIDR3 Write:

$xxx4 -
$xxxB

CANxRDSR0 -
CANxRDSR7

Read: DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0
Write:

$xxxC CANRxDLR
Read: DLC3 DLC2 DLC1 DLC0
Write:

$xxxD Reserved
Read:
Write:

$xxxE CANxRTSRH
Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:

$xxxF CANxRTSRL
Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:

$xx10

Extended ID Read:
ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

CANxTIDR0 Write:
Standard ID Read:

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3
Write:

$xx11

Extended ID Read:
ID20 ID19 ID18 SRR=1 IDE=1 ID17 ID16 ID15

CANxTIDR1 Write:
Standard ID Read:

ID2 ID1 ID0 RTR IDE=0
Write:

$xx12

Extended ID Read:
ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7

CANxTIDR2 Write:
Standard ID Read:

Write:

$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
42

MC9S12DP512 Device Guide V01.25
$xx13

Extended ID Read:
ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

CANxTIDR3 Write:
Standard ID Read:

Write:
$xx14 -
$xx1B

CANxTDSR0 -
CANxTDSR7

Read:
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Write:

$xx1C CANxTDLR
Read:

DLC3 DLC2 DLC1 DLC0
Write:

$xx1D CANxTTBPR
Read:

PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0
Write:

$xx1E CANxTTSRH
Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8
Write:

$xx1F CANxTTSRL
Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0
Write:

$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0180 CAN1CTL0
Read:

RXFRM
RXACT

CSWAI
SYNCH

TIME WUPE SLPRQ INITRQ
Write:

$0181 CAN1CTL1
Read:

CANE CLKSRC LOOPB LISTEN
0

WUPM
SLPAK INITAK

Write:

$0182 CAN1BTR0
Read:

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:

$0183 CAN1BTR1
Read:

SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:

$0184 CAN1RFLG
Read:

WUPIF CSCIF
RSTAT1 RSTAT0 TSTAT1 TSTAT0

OVRIF RXF
Write:

$0185 CAN1RIER
Read:

WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:

$0186 CAN1TFLG
Read: 0 0 0 0 0

TXE2 TXE1 TXE0
Write:

$0187 CAN1TIER
Read: 0 0 0 0 0

TXEIE2 TXEIE1 TXEIE0
Write:

$0188 CAN1TARQ
Read: 0 0 0 0 0

ABTRQ2 ABTRQ1 ABTRQ0
Write:

$0189 CAN1TAAK
Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:

$018A CAN1TBSEL
Read: 0 0 0 0 0

TX2 TX1 TX0
Write:

$018B CAN1IDAC
Read: 0 0

IDAM1 IDAM0
0 IDHIT2 IDHIT1 IDHIT0

Write:
$018C -
$018D

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$018E CAN1RXERR
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:

$018F CAN1TXERR
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:

$0190 -
$0193

CAN1IDAR0 -
CAN1IDAR3

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Table 1-2 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
43

MC9S12DP512 Device Guide V01.25
$0194 -
$0197

CAN1IDMR0 -
CAN1IDMR3

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$0198 -
$019B

CAN1IDAR4 -
CAN1IDAR7

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:
$019C -
$019F

CAN1IDMR4 -
CAN1IDMR7

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$01A0 -
$01AF

CAN1RXFG
Read: FOREGROUND RECEIVE BUFFER see Table 1-2
Write:

$01B0 -
$01BF

CAN1TXFG
Read:

FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:

$01C0 - $01FF CAN2 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$01C0 CAN2CTL0
Read:

RXFRM
RXACT

CSWAI
SYNCH

TIME WUPE SLPRQ INITRQ
Write:

$01C1 CAN2CTL1
Read:

CANE CLKSRC LOOPB LISTEN
0

WUPM
SLPAK INITAK

Write:

$01C2 CAN2BTR0
Read:

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:

$01C3 CAN2BTR1
Read:

SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:

$01C4 CAN2RFLG
Read:

WUPIF CSCIF
RSTAT1 RSTAT0 TSTAT1 TSTAT0

OVRIF RXF
Write:

$01C5 CAN2RIER
Read:

WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:

$01C6 CAN2TFLG
Read: 0 0 0 0 0

TXE2 TXE1 TXE0
Write:

$01C7 CAN2TIER
Read: 0 0 0 0 0

TXEIE2 TXEIE1 TXEIE0
Write:

$01C8 CAN2TARQ
Read: 0 0 0 0 0

ABTRQ2 ABTRQ1 ABTRQ0
Write:

$01C9 CAN2TAAK
Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:

$01CA CAN2TBSEL
Read: 0 0 0 0 0

TX2 TX1 TX0
Write:

$01CB CAN2IDAC
Read: 0 0

IDAM1 IDAM0
0 IDHIT2 IDHIT1 IDHIT0

Write:
$01CC -
$01CD

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$01CE CAN2RXERR
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:

$01CF CAN2TXERR
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:

$01D0 -
$01D3

CAN2IDAR0 -
CAN2IDAR3

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:
$01D4 -
$01D7

CAN2IDMR0 -
CAN2IDMR3

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
44

MC9S12DP512 Device Guide V01.25
$01D8 -
$01DB

CAN2IDAR4 -
CAN2IDAR7

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:
$01DC -
$01DF

CAN2IDMR4 -
CAN2IDMR7

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$01E0 -
$01EF

CAN2RXFG
Read: FOREGROUND RECEIVE BUFFER see Table 1-2
Write:

$01F0 -
$01FF

CAN2TXFG
Read:

FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:

$0200 - $023F CAN3 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0200 CAN3CTL0
Read:

RXFRM
RXACT

CSWAI
SYNCH

TIME WUPE SLPRQ INITRQ
Write:

$0201 CAN3CTL1
Read:

CANE CLKSRC LOOPB LISTEN
0

WUPM
SLPAK INITAK

Write:

$0202 CAN3BTR0
Read:

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:

$0203 CAN3BTR1
Read:

SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:

$0204 CAN3RFLG
Read:

WUPIF CSCIF
RSTAT1 RSTAT0 TSTAT1 TSTAT0

OVRIF RXF
Write:

$0205 CAN3RIER
Read:

WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:

$0206 CAN3TFLG
Read: 0 0 0 0 0

TXE2 TXE1 TXE0
Write:

$0207 CAN3TIER
Read: 0 0 0 0 0

TXEIE2 TXEIE1 TXEIE0
Write:

$0208 CAN3TARQ
Read: 0 0 0 0 0

ABTRQ2 ABTRQ1 ABTRQ0
Write:

$0209 CAN3TAAK
Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:

$020A CAN3TBSEL
Read: 0 0 0 0 0

TX2 TX1 TX0
Write:

$020B CAN3IDAC
Read: 0 0

IDAM1 IDAM0
0 IDHIT2 IDHIT1 IDHIT0

Write:
$020C -
$020D

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$020E CAN3RXERR
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:

$020F CAN3TXERR
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:

$0210 -
$0213

CAN3IDAR0 -
CAN3IDAR3

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:
$0214 -
$0217

CAN3IDMR0 -
CAN3IDMR3

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$0218 -
$021B

CAN3IDAR4 -
CAN3IDAR7

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

$01C0 - $01FF CAN2 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
45

MC9S12DP512 Device Guide V01.25
$021C -
$021F

CAN3IDMR4 -
CAN3IDMR7

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$0220 -
$022F

CAN3RXFG
Read: FOREGROUND RECEIVE BUFFER see Table 1-2
Write:

$0230 -
$023F

CAN3TXFG
Read:

FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:

$0240 - $027F PIM (Port Integration Module PIM_9DP256)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0240 PTT
Read:

PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0
Write:

$0241 PTIT
Read: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0
Write:

$0242 DDRT
Read:

DDRT7 DDRT7 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0
Write:

$0243 RDRT
Read:

RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0
Write:

$0244 PERT
Read:

PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0
Write:

$0245 PPST
Read:

PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0
Write:

$0246 -
$0247

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0248 PTS
Read:

PTS7 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0
Write:

$0249 PTIS
Read: PTIS7 PTIS6 PTIS5 PTIS4 PTIS3 PTIS2 PTIS1 PTIS0
Write:

$024A DDRS
Read:

DDRS7 DDRS7 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0
Write:

$024B RDRS
Read:

RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0
Write:

$024C PERS
Read:

PERS7 PERS6 PERS5 PERS4 PERS3 PERS2 PERS1 PERS0
Write:

$024D PPSS
Read:

PPSS7 PPSS6 PPSS5 PPSS4 PPSS3 PPSS2 PPSS1 PPSS0
Write:

$024E WOMS
Read:

WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0
Write:

$024F Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$0250 PTM
Read:

PTM7 PTM6 PTM5 PTM4 PTM3 PTM2 PTM1 PTM0
Write:

$0251 PTIM
Read: PTIM7 PTIM6 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0
Write:

$0252 DDRM
Read:

DDRM7 DDRM7 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0
Write:

$0253 RDRM
Read:

RDRM7 RDRM6 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0
Write:

$0200 - $023F CAN3 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
46

MC9S12DP512 Device Guide V01.25
$0254 PERM
Read:

PERM7 PERM6 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0
Write:

$0255 PPSM
Read:

PPSM7 PPSM6 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0
Write:

$0256 WOMM
Read:

WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
Write:

$0257 MODRR
Read: 0

MODRR6 MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
Write:

$0258 PTP
Read:

PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0
Write:

$0259 PTIP
Read: PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0
Write:

$025A DDRP
Read:

DDRP7 DDRP7 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0
Write:

$025B RDRP
Read:

RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0
Write:

$025C PERP
Read:

PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0
Write:

$025D PPSP
Read:

PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSS0
Write:

$025E PIEP
Read:

PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0
Write:

$025F PIFP
Read:

PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0
Write:

$0260 PTH
Read:

PTH7 PTH6 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0
Write:

$0261 PTIH
Read: PTIH7 PTIH6 PTIH5 PTIH4 PTIH3 PTIH2 PTIH1 PTIH0
Write:

$0262 DDRH
Read:

DDRH7 DDRH7 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0
Write:

$0263 RDRH
Read:

RDRH7 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0
Write:

$0264 PERH
Read:

PERH7 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0
Write:

$0265 PPSH
Read:

PPSH7 PPSH6 PPSH5 PPSH4 PPSH3 PPSH2 PPSH1 PPSH0
Write:

$0266 PIEH
Read:

PIEH7 PIEH6 PIEH5 PIEH4 PIEH3 PIEH2 PIEH1 PIEH0
Write:

$0267 PIFH
Read:

PIFH7 PIFH6 PIFH5 PIFH4 PIFH3 PIFH2 PIFH1 PIFH0
Write:

$0268 PTJ
Read:

PTJ7 PTJ6
0 0 0 0

PTJ1 PTJ0
Write:

$0269 PTIJ
Read: PTIJ7 PTIJ6 0 0 0 0 PTIJ1 PTIJ0
Write:

$026A DDRJ
Read:

DDRJ7 DDRJ7
0 0 0 0

DDRJ1 DDRJ0
Write:

$026B RDRJ
Read:

RDRJ7 RDRJ6
0 0 0 0

RDRJ1 RDRJ0
Write:

$026C PERJ
Read:

PERJ7 PERJ6
0 0 0 0

PERJ1 PERJ0
Write:

$0240 - $027F PIM (Port Integration Module PIM_9DP256)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
47

MC9S12DP512 Device Guide V01.25
$026D PPSJ
Read:

PPSJ7 PPSJ6
0 0 0 0

PPSJ1 PPSJ0
Write:

$026E PIEJ
Read:

PIEJ7 PIEJ6
0 0 0 0

PIEJ1 PIEJ0
Write:

$026F PIFJ
Read:

PIFJ7 PIFJ6
0 0 0 0

PIFJ1 PIFJ0
Write:

$0270 -
$027F

Reserved Read:

$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

$0280 CAN4CTL0
Read:

RXFRM
RXACT

CSWAI
SYNCH

TIME WUPE SLPRQ INITRQ
Write:

$0281 CAN4CTL1
Read:

CANE CLKSRC LOOPB LISTEN
0

WUPM
SLPAK INITAK

Write:

$0282 CAN4BTR0
Read:

SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0
Write:

$0283 CAN4BTR1
Read:

SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10
Write:

$0284 CAN4RFLG
Read:

WUPIF CSCIF
RSTAT1 RSTAT0 TSTAT1 TSTAT0

OVRIF RXF
Write:

$0285 CAN4RIER
Read:

WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE
Write:

$0286 CAN4TFLG
Read: 0 0 0 0 0

TXE2 TXE1 TXE0
Write:

$0287 CAN4TIER
Read: 0 0 0 0 0

TXEIE2 TXEIE1 TXEIE0
Write:

$0288 CAN4TARQ
Read: 0 0 0 0 0

ABTRQ2 ABTRQ1 ABTRQ0
Write:

$0289 CAN4TAAK
Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0
Write:

$028A CAN4TBSEL
Read: 0 0 0 0 0

TX2 TX1 TX0
Write:

$028B CAN4IDAC
Read: 0 0

IDAM1 IDAM0
0 IDHIT2 IDHIT1 IDHIT0

Write:
$028C -
$028D

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

$028E CAN4RXERR
Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0
Write:

$028F CAN4TXERR
Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0
Write:

$0290 -
$0293

CAN4IDAR0 -
CAN4IDAR3

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:
$0294 -
$0297

CAN4IDMR0 -
CAN4IDMR3

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$0298 -
$029B

CAN4IDAR4 -
CAN4IDAR7

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

$0240 - $027F PIM (Port Integration Module PIM_9DP256)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
48

MC9S12DP512 Device Guide V01.25
1.6 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses $001A and $001B after
reset). The read-only value is a unique part ID for each revision of the chip. Table 1-3 shows the assigned
part ID number.

1.7 Memory Size Assignments

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses $001C
and $001D after reset). Table 1-4 shows the read-only values of these registers. Refer to HCS12 Module
Mapping Control (MMC) Block Guide for further details.

$029C -
$029F

CAN4IDMR4 -
CAN4IDMR7

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:
$02A0 -
$02AF

CAN4RXFG
Read: FOREGROUND RECEIVE BUFFER see Table 1-2
Write:

$02B0 -
$02BF

CAN4TXFG
Read:

FOREGROUND TRANSMIT BUFFER see Table 1-2
Write:

$02C0 - $03FF Reserved

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
$02C0 -
$03FF

Reserved
Read: 0 0 0 0 0 0 0 0
Write:

Table 1-3 Assigned Part ID Numbers

Device Mask Set Number Part ID1

NOTES:
1. The coding is as follows:
Bit 15 - 12: Major family identifier
Bit 11 - 8: Minor family identifier
Bit 7 - 4: Major mask set revision number including FAB transfers
Bit 3 - 0: Minor - non full - mask set revision

MC9S12DP512 0L00M $0400

MC9S12DP512 1L00M $0401

MC9S12DP512 2L00M $0402

MC9S12DP512 3L00M $0403

MC9S12DP512 4L00M $0404

Table 1-4 Memory size registers

Register name Value
MEMSIZ0 $26

MEMSIZ1 $82

$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN)

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
49

MC9S12DP512 Device Guide V01.25
50

MC9S12DP512 Device Guide V01.25
Section 2 Signal Description

This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal
properties, and detailed discussion of signals. It is built from the signal description sections of the Block
Guides of the individual IP blocks on the device.
51

MC9S12DP512 Device Guide V01.25
2.1 Device Pinout

The MC9S12DP512 is available in a 112-pin low profile quad flat pack (LQFP). Most pins perform two
or more functions, as described in the Signal Descriptions. Figure 2-1 shows the pin assignments.

Figure 2-1 Pin Assignments in 112-pin LQFP

VRH
VDDA
PAD15/AN15/ETRIG1
PAD07/AN07/ETRIG0
PAD14/AN14
PAD06/AN06
PAD13/AN13
PAD05/AN05
PAD12/AN12
PAD04/AN04
PAD11/AN11
PAD03/AN03
PAD10/AN10
PAD02/AN02
PAD09/AN09
PAD01/AN01
PAD08/AN08
PAD00/AN00
VSS2
VDD2
PA7/ADDR15/DATA15
PA6/ADDR14/DATA14
PA5/ADDR13/DATA13
PA4/ADDR12/DATA12
PA3/ADDR11/DATA11
PA2/ADDR10/DATA10
PA1/ADDR9/DATA9
PA0/ADDR8/DATA8

PP
4/

KW
P4

/P
W

M
4/

M
IS

O
2

PP
5/

KW
P5

/P
W

M
5/

M
O

SI
2

PP
6/

KW
P6

/P
W

M
6/

SS
2

PP
7/

KW
P7

/P
W

M
7/

SC
K2

PK
7/

EC
S/

RO
M

C
TL

VD
D

X
VS

SX
PM

0/
R

XC
AN

0/
R

XB
PM

1/
TX

C
AN

0/
TX

B
PM

2/
R

XC
AN

1/
R

XC
AN

0/
M

IS
O

0
PM

3/
TX

C
AN

1/
TX

C
AN

0/
SS

0
PM

4/
R

XC
AN

2/
R

XC
AN

0/
R

XC
AN

4/
M

O
SI

0
PM

5/
TX

C
AN

2/
TX

C
AN

0/
TX

C
AN

4/
SC

K0
PJ

6/
KW

J6
/R

XC
AN

4/
SD

A/
R

XC
AN

0
PJ

7/
KW

J7
/T

XC
AN

4/
SC

L/
TX

C
AN

0
VR

EG
EN

PS
7/

SS
0

PS
6/

SC
K0

PS
5/

M
O

SI
0

PS
4/

M
IS

O
0

PS
3/

TX
D

1
PS

2/
R

XD
1

PS
1/

TX
D

0
PS

0/
R

XD
0

PM
6/

R
XC

AN
3/

R
XC

AN
4

PM
7/

TX
C

AN
3/

TX
C

AN
4

VS
SA

VR
L

SS1/PWM3/KWP3/PP3
SCK1/PWM2/KWP2/PP2

MOSI1/PWM1/KWP1/PP1
MISO1/PWM0/KWP0/PP0

XADDR17/PK3
XADDR16/PK2
XADDR15/PK1
XADDR14/PK0

IOC0/PT0
IOC1/PT1
IOC2/PT2
IOC3/PT3

VDD1
VSS1

IOC4/PT4
IOC5/PT5
IOC6/PT6
IOC7/PT7

XADDR19/PK5
XADDR18/PK4

KWJ1/PJ1
KWJ0/PJ0

MODC/TAGHI/BKGD
ADDR0/DATA0/PB0
ADDR1/DATA1/PB1
ADDR2/DATA2/PB2
ADDR3/DATA3/PB3
ADDR4/DATA4/PB4

AD
D

R
5/

DA
TA

5/
PB

5
AD

D
R

6/
DA

TA
6/

PB
6

AD
D

R
7/

DA
TA

7/
PB

7
SS

2/
KW

H
7/

PH
7

SC
K2

/K
W

H
6/

PH
6

M
O

SI
2/

KW
H

5/
PH

5
M

IS
O

2/
KW

H
4/

PH
4

XC
LK

S/
N

O
AC

C
/P

E7
M

O
D

B/
IP

IP
E1

/P
E6

M
O

DA
/IP

IP
E0

/P
E5

EC
LK

/P
E4

VS
SR

VD
D

R
R

ES
ET

VD
D

PL
L

XF
C

VS
SP

LL
EX

TA
L

XT
AL

TE
ST

SS
1/

KW
H

3/
PH

3
SC

K1
/K

W
H

2/
PH

2
M

O
SI

1/
KW

H
1/

PH
1

M
IS

O
1/

KW
H

0/
PH

0
LS

TR
B/

TA
G

LO
/P

E3
R

/W
/P

E2
IR

Q
/P

E1
XI

R
Q

/P
E0

MC9S12DP512
112LQFP

11
2

11
1

11
0

10
9

10
8

10
7

10
6

10
5

10
4

10
3

10
2

10
1

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
52

MC9S12DP512 Device Guide V01.25

P
F

V

1

P

0

PA

a

a

t

2.2 Signal Properties Summary

Table 2-1 summarizes the pin functionality.

Table 2-1 Signal Properties

in Name
unct. 1

Pin Name
Funct. 2

Pin Name
Funct. 3

Pin Name
Funct. 4

Pin Name
Funct. 5

Power
Supply

Internal Pull
Resistor

Description
CTRL Reset

State
EXTAL — — — —

VDDPLL

None None

Oscillator Pins
XTAL — — — —

RESET — — — — VDDR External Reset

TEST — — — — NA Test Input

REGEN — — — — VDDX Voltage Regulator Enable Input

XFC — — — — VDDPLL PLL Loop Filter

BKGD TAGHI MODC — — VDDR
Always

Up
Up

Background Debug, Tag High, Mode
Input

PAD15 AN15 ETRIG1 — —

VDDA None None

Port AD Input, Analog Input AN7 of
ATD1, External Trigger Input of ATD

AD[14:8] AN[14:08] — — —
Port AD Inputs, Analog Inputs
AN[6:0] of ATD1

PAD07 AN07 ETRIG0 — —
Port AD Input, Analog Input AN7 of
ATD0, External Trigger Input of ATD

D[06:00] AN[06:00] — — —
Port AD Inputs, Analog Inputs
AN[6:0] of ATD0

PA[7:0]
ADDR[15:8]/
DATA[15:8]

— — —

VDDR

PUCR/
PUPAE

Disabled
Port A I/O, Multiplexed Address/Dat

PB[7:0]
ADDR[7:0]/
DATA[7:0]

— — —
PUCR/
PUPBE

Port B I/O, Multiplexed Address/Dat

PE7 NOACC XCLKS — —
PUCR/
PUPEE

Up Port E I/O, Access, Clock Select

PE6 IPIPE1 MODB — —
While RESET

pin is low:
Down

Port E I/O, Pipe Status, Mode Input

PE5 IPIPE0 MODA — —
While RESET

pin is low:
Down

Port E I/O, Pipe Status, Mode Input

PE4 ECLK — — —

PUCR/
PUPEE

Up

Port E I/O, Bus Clock Output

PE3 LSTRB TAGLO — — Port E I/O, Byte Strobe, Tag Low

PE2 R/W — — — Port E I/O, R/W in expanded modes

PE1 IRQ — — — Port E Input, Maskable Interrupt

PE0 XIRQ — — — Port E Input, Non Maskable Interrup
53

MC9S12DP512 Device Guide V01.25

4

4

P
F

PH7 KWH7 SS2 — —

VDDR
PERH/
PPSH

Disabled

Port H I/O, Interrupt, SS of SPI2

PH6 KWH6 SCK2 — — Port H I/O, Interrupt, SCK of SPI2

PH5 KWH5 MOSI2 — — Port H I/O, Interrupt, MOSI of SPI2

PH4 KWH4 MISO2 — — Port H I/O, Interrupt, MISO of SPI2

PH3 KWH3 SS1 — — Port H I/O, Interrupt, SS of SPI1

PH2 KWH2 SCK1 — — Port H I/O, Interrupt, SCK of SPI1

PH1 KWH1 MOSI1 — — Port H I/O, Interrupt, MOSI of SPI1

PH0 KWH0 MISO1 — — Port H I/O, Interrupt, MISO of SPI1

PJ7 KWJ7 TXCAN4 SCL TXCAN0

VDDX
PERJ/
PPSJ

Up

Port J I/O, Interrupt, TX of CAN4,
SCL of IIC, TX of CAN0

PJ6 KWJ6 RXCAN4 SDA RXCAN0
Port J I/O, Interrupt, RX of CAN4,
SDA of IIC, RX of CAN0

PJ[1:0] KWJ[1:0] — — — Port J I/O, Interrupts

PK7 ECS ROMCTL — —
VDDX

PUCR/
PUPKE

Up

Port K I/O, Emulation Chip Select,
ROM Control

PK[5:0]
XADDR
[19:14]

— — — Port K I/O, Extended Addresses

PM7 TXCAN3 TXCAN4 — —

VDDX
PERM/
PPSM

Disabled

Port M I/O, TX of CAN3, TX of CAN

PM6 RXCAN3 RXCAN4 — — Port M I/O, RX of CAN3, RX of CAN

PM5 TXCAN2 TXCAN0 TXCAN4 SCK0
Port M I/O, TX of CAN2, CAN0,
CAN4, SCK of SPI0

PM4 RXCAN2 RXCAN0 RXCAN4 MOSI0
Port M I/O, RX of CAN2, CAN0,
CAN4, MOSI of SPI0

PM3 TXCAN1 TXCAN0 — SS0
Port M I/O, TX of CAN1, CAN0, SS
of SPI0

PM2 RXCAN1 RXCAN0 — MISO0
Port M I/O, RX of CAN1, CAN0,
MISO of SPI0

PM1 TXCAN0 TXB — — Port M I/O, TX of CAN0, RX of BDLC

PM0 RXCAN0 RXB — — Port M I/O, RX of CAN0, RX of BDLC

PP7 KWP7 PWM7 SCK2 —

VDDX
PERP/
PPSP

Disabled

Port P I/O, Interrupt, Channel 7 of
PWM, SCK of SPI2

PP6 KWP6 PWM6 SS2 —
Port P I/O, Interrupt, Channel 6 of
PWM, SS of SPI2

PP5 KWP5 PWM5 MOSI2 —
Port P I/O, Interrupt, Channel 5 of
PWM, MOSI of SPI2

PP4 KWP4 PWM4 MISO2 —
Port P I/O, Interrupt, Channel 4 of
PWM, MISO2 of SPI2

PP3 KWP3 PWM3 SS1 —
Port P I/O, Interrupt, Channel 3 of
PWM, SS of SPI1

PP2 KWP2 PWM2 SCK1 —
Port P I/O, Interrupt, Channel 2 of
PWM, SCK of SPI1

PP1 KWP1 PWM1 MOSI1 —
Port P I/O, Interrupt, Channel 1 of
PWM, MOSI of SPI1

PP0 KWP0 PWM0 MISO1 —
Port P I/O, Interrupt, Channel 0 of
PWM, MISO2 of SPI1

in Name
unct. 1

Pin Name
Funct. 2

Pin Name
Funct. 3

Pin Name
Funct. 4

Pin Name
Funct. 5

Power
Supply

Internal Pull
Resistor

Description
CTRL Reset

State
54

MC9S12DP512 Device Guide V01.25

P
F

2.3 Detailed Signal Descriptions

2.3.1 EXTAL, XTAL — Oscillator Pins

EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived
from the EXTAL input frequency. XTAL is the crystal output.

2.3.2 RESET — External Reset Pin

An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up
state, and an output when an internal MCU function causes a reset.

2.3.3 TEST — Test Pin

This input only pin is reserved for test.

NOTE: The TEST pin must be tied to VSS in all applications.

2.3.4 VREGEN — Voltage Regulator Enable Pin

This input only pin enables or disables the on-chip voltage regulator.

PS7 SS0 — — —

VDDX
PERS/
PPSS

Up

Port S I/O, SS of SPI0

PS6 SCK0 — — — Port S I/O, SCK of SPI0

PS5 MOSI0 — — — Port S I/O, MOSI of SPI0

PS4 MISO0 — — — Port S I/O, MISO of SPI0

PS3 TXD1 — — — Port S I/O, TXD of SCI1

PS2 RXD1 — — — Port S I/O, RXD of SCI1

PS1 TXD0 — — — Port S I/O, TXD of SCI0

PS0 RXD0 — — — Port S I/O, RXD of SCI0

PT[7:0] IOC[7:0] — — — VDDX
PERT/
PPST

Disabled Port T I/O, Timer channels

in Name
unct. 1

Pin Name
Funct. 2

Pin Name
Funct. 3

Pin Name
Funct. 4

Pin Name
Funct. 5

Power
Supply

Internal Pull
Resistor

Description
CTRL Reset

State
55

MC9S12DP512 Device Guide V01.25
2.3.5 XFC — PLL Loop Filter Pin

PLL loop filter. Please ask your Motorola representative for the interactive application note to compute
PLL loop filter elements. Any current leakage on this pin must be avoided.

Figure 2-2 PLL Loop Filter Connections

2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin

The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug
communication. In MCU expanded modes of operation when instruction tagging is on, an input low on
this pin during the falling edge of E-clock tags the high half of the instruction word being read into the
instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is
latched to the MODC bit at the rising edge of RESET. This pin has a permanently enabled pull-up device.

2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1

PAD15 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD1. It
can act as an external trigger input for the ATD1.

2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins of ATD1

PAD14 - PAD08 are general purpose input pins and analog inputs AN[6:0] of the analog to digital
converter ATD1.

2.3.9 PAD7 / AN07 / ETRIG0 — Port AD Input Pin of ATD0

PAD7 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD0. It can
act as an external trigger input for the ATD0.

2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0

PAD06 - PAD00 are general purpose input pins and analog inputs AN[6:0] of the analog to digital
converter ATD0.

MCU

XFC

R0

CS

CP

VDDPLLVDDPLL
56

MC9S12DP512 Device Guide V01.25
2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins

PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.

2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins

PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are
used for the multiplexed external address and data bus.

2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC
signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal
will assert when the CPU is not using the bus.
The XCLKS is an input signal which controls whether a crystal in combination with the internal Colpitts
(low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this
pin is latched at the rising edge of RESET. If the input is a logic low the EXTAL pin is configured for an
external clock drive or a Pierce Oscillator. If input is a logic high a Colpitts oscillator circuit is configured
on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left
floating, the default configuration is a Colpitts oscillator circuit on EXTAL and XTAL.

Figure 2-3 Colpitts Oscillator Connections (PE7=1)

MCU

C2

EXTAL

XTAL

Crystal or

VSSPLL

ceramic resonator
C1

CDC *

* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal

bias conditions and recommended capacitor value CDC.
 Please contact the crystal manufacturer for crystal DC
57

MC9S12DP512 Device Guide V01.25
Figure 2-4 Pierce Oscillator Connections (PE7=0)

Figure 2-5 External Clock Connections (PE7=0)

2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODB bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active
when RESET is low.

2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset.
The state of this pin is latched to the MODA bit at the rising edge of RESET. This pin is shared with the
instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active
when RESET is low.

2.3.16 PE4 / ECLK — Port E I/O Pin 4

PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK.
ECLK can be used as a timing reference.

MCU

EXTAL

XTAL
RS

*

RB

VSSPLL

Crystal or
ceramic resonator

C2

C1

* Rs can be zero (shorted) when used with higher frequency crystals.
Refer to manufacturer’s data.

MCU

EXTAL

XTAL

CMOS-COMPATIBLE
EXTERNAL OSCILLATOR

not connected

(VDDPLL-Level)
58

MC9S12DP512 Device Guide V01.25
2.3.17 PE3 / LSTRB / TAGLO — Port E I/O Pin 3

PE3 is a general purpose input or output pin. In MCU expanded modes of operation, LSTRB can be used
for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on,
TAGLO is used to tag the low half of the instruction word being read into the instruction queue.

2.3.18 PE2 / R/W — Port E I/O Pin 2

PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the
read/write output signal for the external bus. It indicates the direction of data on the external bus.

2.3.19 PE1 / IRQ — Port E Input Pin 1

PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.20 PE0 / XIRQ — Port E Input Pin 0

PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of
applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.21 PH7 / KWH7 / SS2 — Port H I/O Pin 7

PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
2 (SPI2).

2.3.22 PH6 / KWH6 / SCK2 — Port H I/O Pin 6

PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
2 (SPI2).

2.3.23 PH5 / KWH5 / MOSI2 — Port H I/O Pin 5

PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 2 (SPI2).

2.3.24 PH4 / KWH4 / MISO2 — Port H I/O Pin 2

PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 2 (SPI2).
59

MC9S12DP512 Device Guide V01.25
2.3.25 PH3 / KWH3 / SS1 — Port H I/O Pin 3

PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as slave select pin SS of the Serial Peripheral Interface
1 (SPI1).

2.3.26 PH2 / KWH2 / SCK1 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as serial clock pin SCK of the Serial Peripheral Interface
1 (SPI1).

2.3.27 PH1 / KWH1 / MOSI1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master output (during master mode) or slave input
pin (during slave mode) MOSI of the Serial Peripheral Interface 1 (SPI1).

2.3.28 PH0 / KWH0 / MISO1 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as master input (during master mode) or slave output
(during slave mode) pin MISO of the Serial Peripheral Interface 1 (SPI1).

2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 — PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the transmit pin TXCAN for the Motorola Scalable
Controller Area Network controller 0 or 4 (CAN0 or CAN4) or the serial clock pin SCL of the IIC module.

2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 — PORT J I/O Pin 6

PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as the receive pin RXCAN for the Motorola Scalable
Controller Area Network controller 0 or 4 (CAN 0 or CAN4) or the serial data pin SDA of the IIC module.

2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]

PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt
causing the MCU to exit STOP or WAIT mode.

2.3.32 PK7 / ECS / ROMCTL — Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used
as the emulation chip select output (ECS). During MCU normal expanded modes of operation, this pin is
60

MC9S12DP512 Device Guide V01.25
used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of RESET,
the state of this pin is latched to the ROMON bit.

2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]

PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins
provide the expanded address XADDR[19:14] for the external bus.

2.3.34 PM7 / TXCAN3 / TXCAN4 — Port M I/O Pin 7

PM7 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 3 or 4 (CAN3 or CAN4).

2.3.35 PM6 / RXCAN3 / RXCAN4 — Port M I/O Pin 6

PM6 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 3 or 4 (CAN3 or CAN4).

2.3.36 PM5 / TXCAN2 / TXCAN0 / TXCAN4 / SCK0 — Port M I/O Pin 5

PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 2, 0 or 4 (CAN2, CAN0 or CAN4). It can be
configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

2.3.37 PM4 / RXCAN2 / RXCAN0 / RXCAN4/ MOSI0 — Port M I/O Pin 4

PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 2, 0 or 4 (CAN2, CAN0 or CAN4). It can be
configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for
the Serial Peripheral Interface 0 (SPI0).

2.3.38 PM3 / TXCAN1 / TXCAN0 / SS0 — Port M I/O Pin 3

PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as
the slave select pin SS of the Serial Peripheral Interface 0 (SPI0).

2.3.39 PM2 / RXCAN1 / RXCAN0 / MISO0 — Port M I/O Pin 2

PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controllers 1 or 0 (CAN1 or CAN0). It can be configured as
the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial
Peripheral Interface 0 (SPI0).
61

MC9S12DP512 Device Guide V01.25
2.3.40 PM1 / TXCAN0 / TXB — Port M I/O Pin 1

PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin
TXB of the BDLC.

2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0

PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the
Motorola Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin
RXB of the BDLC.

2.3.42 PP7 / KWP7 / PWM7 / SCK2 — Port P I/O Pin 7

PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output or
an input for the PWM emergency shutdown. It can be configured as serial clock pin SCK of the Serial
Peripheral Interface 2 (SPI2).

2.3.43 PP6 / KWP6 / PWM6 / SS2 — Port P I/O Pin 6

PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 2 (SPI2).

2.3.44 PP5 / KWP5 / PWM5 / MOSI2 — Port P I/O Pin 5

PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 2 (SPI2).

2.3.45 PP4 / KWP4 / PWM4 / MISO2 — Port P I/O Pin 4

PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 2 (SPI2).

2.3.46 PP3 / KWP3 / PWM3 / SS1 — Port P I/O Pin 3

PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output. It
can be configured as slave select pin SS of the Serial Peripheral Interface 1 (SPI1).
62

MC9S12DP512 Device Guide V01.25
2.3.47 PP2 / KWP2 / PWM2 / SCK1 — Port P I/O Pin 2

PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output. It
can be configured as serial clock pin SCK of the Serial Peripheral Interface 1 (SPI1).

2.3.48 PP1 / KWP1 / PWM1 / MOSI1 — Port P I/O Pin 1

PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output. It
can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of
the Serial Peripheral Interface 1 (SPI1).

2.3.49 PP0 / KWP0 / PWM0 / MISO1 — Port P I/O Pin 0

PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU
to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output. It
can be configured as master input (during master mode) or slave output (during slave mode) pin MISO of
the Serial Peripheral Interface 1 (SPI1).

2.3.50 PS7 / SS0 — Port S I/O Pin 7

PS6 is a general purpose input or output pin. It can be configured as the slave select pin SS of the Serial
Peripheral Interface 0 (SPI0).

2.3.51 PS6 / SCK0 — Port S I/O Pin 6

PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial
Peripheral Interface 0 (SPI0).

2.3.52 PS5 / MOSI0 — Port S I/O Pin 5

PS5 is a general purpose input or output pin. It can be configured as master output (during master mode)
or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).

2.3.53 PS4 / MISO0 — Port S I/O Pin 4

PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or
slave output pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).

2.3.54 PS3 / TXD1 — Port S I/O Pin 3

PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 1 (SCI1).
63

MC9S12DP512 Device Guide V01.25
2.3.55 PS2 / RXD1 — Port S I/O Pin 2

PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 1 (SCI1).

2.3.56 PS1 / TXD0 — Port S I/O Pin 1

PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial
Communication Interface 0 (SCI0).

2.3.57 PS0 / RXD0 — Port S I/O Pin 0

PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial
Communication Interface 0 (SCI0).

2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]

PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output
compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).

2.4 Power Supply Pins

MC9S12DP512 power and ground pins are described below.

Table 2-2 MC9S12DP512 Power and Ground Connection Summary

Mnemonic
Pin Number Nominal

Voltage Description
112-pin QFP

VDD1, 2 13, 65 2.5 V
Internal power and ground generated by internal regulator

VSS1, 2 14, 66 0V

VDDR 41 5.0 V External power and ground, supply to pin drivers and internal voltage
regulator.VSSR 40 0 V

VDDX 107 5.0 V
External power and ground, supply to pin drivers.

VSSX 106 0 V

VDDA 83 5.0 V Operating voltage and ground for the analog-to-digital converters and
the reference for the internal voltage regulator, allows the supply
voltage to the A/D to be bypassed independently.VSSA 86 0 V

VRL 85 0 V
Reference voltages for the analog-to-digital converter.

VRH 84 5.0 V

VDDPLL 43 2.5 V Provides operating voltage and ground for the Phased-Locked Loop.
This allows the supply voltage to the PLL to be bypassed
independently. Internal power and ground generated by internal
regulator.

VSSPLL 45 0 V

VREGEN 97 5V Internal Voltage Regulator enable/disable
64

MC9S12DP512 Device Guide V01.25
NOTE: All VSS pins must be connected together in the application.

2.4.1 VDDX,VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration
current demands on the power supply, use bypass capacitors with high-frequency characteristics and place
them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are
loaded.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & Internal Voltage
Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal
transitions place high, short-duration current demands on the power supply, use bypass capacitors with
high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements
depend on how heavily the MCU pins are loaded.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high,
short-duration current demands on the power supply, use bypass capacitors with high-frequency
characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the
internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is
turned off, if VREGEN is tied to ground.

NOTE: No load allowed except for bypass capacitors.

2.4.4 VDDA, VSSA — Power Supply Pins for ATD and VREG

VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the analog to
digital converter. It also provides the reference for the internal voltage regulator. This allows the supply
voltage to the ATD and the reference voltage to be bypassed independently.

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins

VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL

Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the
supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by
the internal voltage regulator.

NOTE: No load allowed except for bypass capacitors.
65

MC9S12DP512 Device Guide V01.25
2.4.7 VREGEN — On Chip Voltage Regulator Enable

Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be
supplied externally.
66

MC9S12DP512 Device Guide V01.25
Section 3 System Clock Description

3.1 Overview

The Clock and Reset Generator provides the internal clock signals for the core and all peripheral modules.
Figure 3-1 shows the clock connections from the CRG to all modules.

Consult the CRG Block Guide and OSC Block Guide for details on clock generation.

Figure 3-1 Clock Connections

CRG Bus Clock

Core Clock

EXTAL

XTAL

Oscillator Clock

HCS12 CORE

IIC

RAM

SCI0, SCI1

PWM

ATD0, 1

EEPROM

Flash

ECT

BDLC

SPI0, 1, 2

CAN0, 1, 2, 3, 4

PIM

BDM

CPUMEBI

MMCINT

BKP

OSC
67

MC9S12DP512 Device Guide V01.25
68

MC9S12DP512 Device Guide V01.25
Section 4 Modes of Operation

4.1 Overview

Eight possible modes determine the operating configuration of the MC9S12DP512. Each mode has an
associated default memory map and external bus configuration controlled by a further pin.

Three low power modes exist for the device (Section 4.4 Low Power Modes).

4.2 Chip Configuration Summary

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during
reset (Table 4-1). The MODC, MODB, and MODA bits in the MODE register show the current operating
mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA
pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting
of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the
memory map. ROMON = 1 means the Flash is visible in the memory map. The state of the ROMCTL pin
is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface (MEBI)
Block Guide.

Table 4-1 Mode Selection

BKGD =
MODC

PE6 =
MODB

PE5 =
MODA

PK7 =
ROMCTL

ROMON
Bit Mode Description

0 0 0 X 1
Special Single Chip, BDM allowed and ACTIVE. BDM is
allowed in all other modes but a serial command is
required to make BDM active.

0 0 1
0 1

Emulation Expanded Narrow, BDM allowed
1 0

0 1 0 X 0 Special Test (Expanded Wide), BDM allowed

0 1 1
0 1

Emulation Expanded Wide, BDM allowed
1 0

1 0 0 X 1 Normal Single Chip, BDM allowed

1 0 1
0 0

Normal Expanded Narrow, BDM allowed
1 1

1 1 0 X 1
Peripheral; BDM allowed but bus operations would cause
bus conflicts (must not be used)

1 1 1
0 0

Normal Expanded Wide, BDM allowed
1 1
69

MC9S12DP512 Device Guide V01.25
4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the
memory contents. This feature allows:

• Protection of the contents of FLASH,

• Protection of the contents of EEPROM,

• Operation in single-chip mode,

• Operation from external memory with internal FLASH and EEPROM disabled.

The user must be reminded that part of the security must lie with the user’s code. An extreme example
would be user’s code that dumps the contents of the internal program. This code would defeat the purpose
of security. At the same time the user may also wish to put a back door in the user’s program. An example
of this is the user downloads a key through the SCI which allows access to a programming routine that
updates parameters stored in EEPROM.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by
programming the security bits located in the FLASH module. These non-volatile bits will keep the part
secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was
not secured with the exception of BDM operation. The BDM operation will be blocked.

Table 4-2 Clock Selection Based on PE7

PE7 = XCLKS Description
1 Colpitts Oscillator selected

0 Pierce Oscillator/external clock selected

Table 4-3 Voltage Regulator VREGEN

VREGEN Description
1 Internal Voltage Regulator enabled

0
Internal Voltage Regulator disabled, VDD1,2 and
VDDPLL must be supplied externally with 2.5V
70

MC9S12DP512 Device Guide V01.25
4.3.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished
by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM
operations will be blocked.

4.3.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be
done through an external program in expanded mode or via a sequence of BDM commands. Unsecuring
is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details..

Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode.
This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program
completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally
done through the BDM, but the user could also change to expanded mode (by writing the mode bits
through the BDM) and jumping to an external program (again through BDM commands). Note that if the
part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be
secured again.

4.4 Low Power Modes

The microcontroller features three main low power modes. Consult the respective Block Guide for
information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of
information about the clock system is the Clock and Reset Generator Block Guide (CRG).

4.4.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static
mode. Wake up from this mode can be done via reset or external interrupts.

4.4.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running
and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are
turned off. This mode consumes more current than the full STOP mode, but the wake up time from this
mode is significantly shorter.

4.4.3 Wait

This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute
instructions. The internal CPU signals (address and databus) will be fully static. All peripherals stay active.
For further power consumption the peripherals can individually turn off their local clocks.
71

MC9S12DP512 Device Guide V01.25
4.4.4 Run

Although this is not a low power mode, unused peripheral modules should not be enabled in order to save
power.
72

MC9S12DP512 Device Guide V01.25
Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the CPU12 Reference Manual for information on resets and
interrupts.

5.2 Vectors

5.2.1 Vector Table

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address Interrupt Source CCR
Mask Local Enable HPRIO Value

to Elevate
$FFFE, $FFFF Reset None None –

$FFFC, $FFFD Clock Monitor fail reset None PLLCTL (CME, SCME) –

$FFFA, $FFFB COP failure reset None COP rate select –

$FFF8, $FFF9 Unimplemented instruction trap None None –

$FFF6, $FFF7 SWI None None –

$FFF4, $FFF5 XIRQ X-Bit None –

$FFF2, $FFF3 IRQ I-Bit IRQCR (IRQEN) $F2

$FFF0, $FFF1 Real Time Interrupt I-Bit CRGINT (RTIE) $F0

$FFEE, $FFEF Enhanced Capture Timer channel 0 I-Bit TIE (C0I) $EE

$FFEC, $FFED Enhanced Capture Timer channel 1 I-Bit TIE (C1I) $EC

$FFEA, $FFEB Enhanced Capture Timer channel 2 I-Bit TIE (C2I) $EA

$FFE8, $FFE9 Enhanced Capture Timer channel 3 I-Bit TIE (C3I) $E8

$FFE6, $FFE7 Enhanced Capture Timer channel 4 I-Bit TIE (C4I) $E6

$FFE4, $FFE5 Enhanced Capture Timer channel 5 I-Bit TIE (C5I) $E4

$FFE2, $FFE3 Enhanced Capture Timer channel 6 I-Bit TIE (C6I) $E2

$FFE0, $FFE1 Enhanced Capture Timer channel 7 I-Bit TIE (C7I) $E0

$FFDE, $FFDF Enhanced Capture Timer overflow I-Bit TSRC2 (TOI) $DE

$FFDC, $FFDD Pulse accumulator A overflow I-Bit PACTL (PAOVI) $DC

$FFDA, $FFDB Pulse accumulator input edge I-Bit PACTL (PAI) $DA

$FFD8, $FFD9 SPI0 I-Bit SPICR1 (SPIE, SPTIE) $D8

$FFD6, $FFD7 SCI0 I-Bit
SCICR2

(TIE, TCIE, RIE, ILIE)
$D6

$FFD4, $FFD5 SCI1 I-Bit
SCICR2

(TIE, TCIE, RIE, ILIE)
$D4

$FFD2, $FFD3 ATD0 I-Bit ATDCTL2 (ASCIE) $D2

$FFD0, $FFD1 ATD1 I-Bit ATDCTL2 (ASCIE) $D0

$FFCE, $FFCF Port J I-Bit
PIEJ

(PIEJ7, PIEJ6, PIEJ1, PIEJ0)
$CE

$FFCC, $FFCD Port H I-Bit PIEH (PIEH7-0) $CC
73

MC9S12DP512 Device Guide V01.25
5.3 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the
respective module Block Guides for register reset states.

5.3.1 I/O pins

Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin
configuration of port A, B, E and K out of reset.

Refer to the PIM Block Guide for reset configurations of all peripheral module ports.

$FFCA, $FFCB Modulus Down Counter underflow I-Bit MCCTL (MCZI) $CA

$FFC8, $FFC9 Pulse Accumulator B Overflow I-Bit PBCTL (PBOVI) $C8

$FFC6, $FFC7 CRG PLL lock I-Bit CRGINT (LOCKIE) $C6

$FFC4, $FFC5 CRG Self Clock Mode I-Bit CRGINT (SCMIE) $C4

$FFC2, $FFC3 BDLC I-Bit DLCBCR1 (IE) $C2

$FFC0, $FFC1 IIC Bus I-Bit IBCR (IBIE) $C0

$FFBE, $FFBF SPI1 I-Bit SPICR1 (SPIE, SPTIE) $BE

$FFBC, $FFBD SPI2 I-Bit SPICR1 (SPIE, SPTIE) $BC

$FFBA, $FFBB EEPROM I-Bit ECNFG (CCIE, CBEIE) $BA

$FFB8, $FFB9 FLASH I-Bit FCNFG (CCIE, CBEIE) $B8

$FFB6, $FFB7 CAN0 wake-up I-Bit CANRIER (WUPIE) $B6

$FFB4, $FFB5 CAN0 errors I-Bit CANRIER (CSCIE, OVRIE) $B4

$FFB2, $FFB3 CAN0 receive I-Bit CANRIER (RXFIE) $B2

$FFB0, $FFB1 CAN0 transmit I-Bit CANTIER (TXEIE2-TXEIE0) $B0

$FFAE, $FFAF CAN1 wake-up I-Bit CANRIER (WUPIE) $AE

$FFAC, $FFAD CAN1 errors I-Bit CANRIER (CSCIE, OVRIE) $AC

$FFAA, $FFAB CAN1 receive I-Bit CANRIER (RXFIE) $AA

$FFA8, $FFA9 CAN1 transmit I-Bit CANTIER (TXEIE2-TXEIE0) $A8

$FFA6, $FFA7 CAN2 wake-up I-Bit CANRIER (WUPIE) $A6

$FFA4, $FFA5 CAN2 errors I-Bit CANRIER (CSCIE, OVRIE) $A4

$FFA2, $FFA3 CAN2 receive I-Bit CANRIER (RXFIE) $A2

$FFA0, $FFA1 CAN2 transmit I-Bit CANTIER (TXEIE2-TXEIE0) $A0

$FF9E, $FF9F CAN3 wake-up I-Bit CANRIER (WUPIE) $9E

$FF9C, $FF9D CAN3 errors I-Bit CANRIER (CSCIE, OVRIE) $9C

$FF9A, $FF9B CAN3 receive I-Bit CANRIER (RXFIE) $9A

$FF98, $FF99 CAN3 transmit I-Bit CANTIER (TXEIE2-TXEIE0) $98

$FF96, $FF97 CAN4 wake-up I-Bit CANRIER (WUPIE) $96

$FF94, $FF95 CAN4 errors I-Bit CANRIER (CSCIE, OVRIE) $94

$FF92, $FF93 CAN4 receive I-Bit CANRIER (RXFIE) $92

$FF90, $FF91 CAN4 transmit I-Bit CANTIER (TXEIE2-TXEIE0) $90

$FF8E, $FF8F Port P Interrupt I-Bit PIEP (PIEP7-0) $8E

$FF8C, $FF8D PWM Emergency Shutdown I-Bit PWMSDN (PWMIE) $8C

$FF80 to
$FF8B

Reserved
74

MC9S12DP512 Device Guide V01.25
5.3.2 Memory

Refer to Table 1-1 for locations of the memories depending on the operating mode after reset.

The RAM array is not automatically initialized out of reset.
75

MC9S12DP512 Device Guide V01.25
76

MC9S12DP512 Device Guide V01.25
Section 6 HCS12 Core Block Description

6.1 CPU12 Block Description

Consult the HCS12 CPU Reference Manual for information on the CPU.

6.1.1 Device-specific information

When the HCS12 CPU Reference Manual refers to cycles this is equivalent to Bus Clock periods.
So 1 cycle is equivalent to 1 Bus Clock period.

6.2 HCS12 Module Mapping Control (MMC) Block Description

Consult the MMC Block Guide for information on the HCS12 Module Mapping Control module.

6.2.1 Device-specific information

• INITEE

– Reset state: $01

– Bits EE11-EE15 are "Write once in Normal and Emulation modes and write anytime in Special
modes".

• PPAGE

– Reset state: $00

– Register is "Write anytime in all modes"

6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block
Description

Consult the MEBI Block Guide for information on HCS12 Multiplexed External Bus Interface module.

6.3.1 Device-specific information

• PUCR

– Reset state: $90

6.4 HCS12 Interrupt (INT) Block Description

Consult the INT Block Guide for information on the HCS12 Interrupt module.
77

MC9S12DP512 Device Guide V01.25
6.5 HCS12 Background Debug (BDM) Block Description

Consult the BDM Block Guide for information on the HCS12 Background Debug module.

6.5.1 Device-specific information

When the BDM Block Guide refers to alternate clock this is equivalent to Oscillator Clock.

6.6 HCS12 Breakpoint (BKP) Block Description

Consult the BKP Block Guide for information on the HCS12 Breakpoint module.

Section 7 Clock and Reset Generator (CRG) Block
Description

Consult the CRG Block Guide for information about the Clock and Reset Generator module.

7.1 Device-specific information

The Low Voltage Reset feature of the CRG is not available on this device.

Section 8 Oscillator (OSC) Block Description

8.1 Device-specific information

The XCLKS input signal is active low (see 2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7).

Section 9 Enhanced Capture Timer (ECT) Block
Description

Consult the ECT_16B8C Block Guide for information about the Enhanced Capture Timer module.

When the ECT_16B8C Block Guide refers to freeze mode this is equivalent to active BDM mode.

Section 10 Analog to Digital Converter (ATD) Block
Description
78

MC9S12DP512 Device Guide V01.25
There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DP512.
Consult the ATD_10B8C Block Guide for information about each Analog to Digital Converter module.

When the ATD_10B8C Block Guide refers to freeze mode this is equivalent to active BDM mode.

Section 11 Inter-IC Bus (IIC) Block Description

Consult the IIC Block Guide for information about the Inter-IC Bus module.

Section 12 Serial Communications Interface (SCI) Block
Description

There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DP512
device.

Consult the SCI Block Guide for information about each Serial Communications Interface module.

Section 13 Serial Peripheral Interface (SPI) Block
Description

There are three Serial Peripheral Interfaces (SPI2, SPI1 and SPI0) implemented on MC9S12DP512.

Consult the SPI Block Guide for information about each Serial Peripheral Interface module.

Section 14 J1850 (BDLC) Block Description

Consult the BDLC Block Guide for information about the J1850 module.

Section 15 Pulse Width Modulator (PWM) Block
Description

Consult the PWM_8B6C Block Guide for information about the Pulse Width Modulator module.

When the PWM_8B8C Block Guide refers to freeze mode this is equivalent to active BDM mode.

Section 16 Flash EEPROM 512K Block Description

Consult the FTS512K4 Block Guide for information about the flash module.
79

MC9S12DP512 Device Guide V01.25
The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into
the flash memory of this device during manufacture. This LRAE program will provide greater
programming flexibility to the end users by allowing the device to be programmed directly using CAN or
SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if
not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and
its implementation, please see the S12 LREA Application Note (AN2546/D).

It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE
programmed in the Flash. Exact details of the changeover (i.e. blank to programmed) for each product will
be communicated in advance via GPCN and will be traceable by the customer via datecode marking on
the device.

Please contact Motorola SPS Sales if you have any additional questions.

Section 17 EEPROM 4K Block Description

Consult the EETS4K Block Guide for information about the EEPROM module.

Section 18 RAM Block Description

This module supports single-cycle misaligned word accesses.

Section 19 MSCAN Block Description

There are five MSCAN modules (CAN4, CAN3, CAN2, CAN1 and CAN0) implemented on the
MC9S12DP512.

Consult the MSCAN Block Guide for information about the Motorola Scalable CAN Module.

Section 20 Port Integration Module (PIM) Block Description

Consult the functionally equivalent PIM_9DP256 Block Guide for information about the Port Integration
Module.

Section 21 Voltage Regulator (VREG) Block Description

Consult the VREG Block Guide for information about the dual output linear voltage regulator.
80

MC9S12DP512 Device Guide V01.25
Section 22 Printed Circuit Board Layout Proposal

Table 22-1 Suggested External Component Values

The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the
MCU itself. The following rules must be observed:

• Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the
corresponding pins (C1 – C6).

• Central point of the ground star should be the VSSR pin.

• Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.

• VSSPLL must be directly connected to VSSR.

• Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7,
C8, C11 and Q1 as small as possible.

• Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the
connection area to the MCU.

• Central power input should be fed in at the VDDA/VSSA pins.

Component Purpose Type Value

C1 VDD1 filter cap ceramic X7R 100 … 220nF

C2 VDD2 filter cap ceramic X7R 100 … 220nF

C3 VDDA filter cap ceramic X7R 100nF

C4 VDDR filter cap X7R/tantalum >= 100nF

C5 VDDPLL filter cap ceramic X7R 100nF

C6 VDDX filter cap X7R/tantalum >= 100nF

C7 OSC load cap

C8 OSC load cap

C9 / CS PLL loop filter cap
See PLL specification chapter

C10 / CP PLL loop filter cap

C11 / CDC DC cutoff cap
Colpitts mode only, if recommended by

quartz manufacturer

R1 / R PLL loop filter res See PLL Specification chapter

R2 / RB
Pierce mode only

R3 / RS

Q1 Quartz
81

MC9S12DP512 Device Guide V01.25
Figure 22-1 Recommended PCB Layout for 112LQFP Colpitts Oscillator

C
5

C
4

C1

C
6

C3

C2

C
8

C
7

Q1C
10

C
9

R1

V
D

D
X

VSSX

VDDR

VSSR

VDD1

VSS1

VDD2

VSS2

VDDPLL
VSSPLL

VDDA

VSSA

V
R

E
G

E
N

C
11
82

MC9S12DP512 Device Guide V01.25
Figure 22-2 Recommended PCB Layout for 112LQFP Pierce Oscillator

C
5

C
4

C1

C
6

C3

C2

C
10

C
9

R1

V
D

D
X

VSSX

VDDR

VSSR

VDD1

VSS1

VDD2

VSS2

VDDPLL

VSSPLL

VDDA

VSSA

V
R

E
G

E
N

R2

C
7

R3

C
8

Q1
83

MC9S12DP512 Device Guide V01.25
84

MC9S12DP512 Device Guide V01.25
Appendix A Electrical Characteristics

A.1 General

NOTE: The electrical characteristics given in this section are preliminary and should be
used as a guide only. Values cannot be guaranteed by Motorola and are subject to
change without notice.

This supplement contains the most accurate electrical information for the MC9S12DP512 microcontroller
available at the time of publication. The information should be considered PRELIMINARY and is subject
to change.

This introduction is intended to give an overview on several common topics like power supply, current
injection etc.

A.1.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the
customer a better understanding the following classification is used and the parameters are tagged
accordingly in the tables where appropriate.

NOTE: This classification is shown in the column labeled “C” in the parameter tables
where appropriate.

P:

Those parameters are guaranteed during production testing on each individual device.

C:

Those parameters are achieved by the design characterization by measuring a statistically relevant
sample size across process variations.

T:

Those parameters are achieved by design characterization on a small sample size from typical devices
under typical conditions unless otherwise noted. All values shown in the typical column are within
this category.

D:

Those parameters are derived mainly from simulations.

A.1.2 Power Supply

The MC9S12DP512 utilizes several pins to supply power to the I/O ports, A/D converter, oscillator, PLL
and internal logic.

The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.
85

MC9S12DP512 Device Guide V01.25
The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage
regulator.

VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the
oscillator and the PLL.

VSS1 and VSS2 are internally connected by metal.

VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.

NOTE: In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 5V I/O pins

Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog
inputs, BKGD and the RESET pins.The internal structure of all those pins is identical, however some of
the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down
resistors are disabled permanently.

A.1.3.2 Analog Reference

This group is made up by the VRH and VRL pins.

A.1.3.3 Oscillator

The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.

A.1.3.4 TEST

This pin is used for production testing only.

A.1.3.5 VREGEN

This pin is used to enable the on chip voltage regulator.
86

MC9S12DP512 Device Guide V01.25
A.1.4 Current Injection

Power supply must maintain regulation within operating VDD5 or VDD range during instantaneous and
operating maximum current conditions. If positive injection current (Vin > VDD5) is greater than IDD5, the
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Ensure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima
is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the
device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (e.g., either VSS5 or VDD5).

Table A-1 Absolute Maximum Ratings1

NOTES:
1. Beyond absolute maximum ratings device might be damaged.

Num Rating Symbol Min Max Unit

1 I/O, Regulator and Analog Supply Voltage VDD5 -0.3 6.0 V

2 Digital Logic Supply Voltage 2 VDD -0.3 3.0 V

3 PLL Supply Voltage (2) VDDPLL -0.3 3.0 V

4 Voltage difference VDDX to VDDR and VDDA ∆VDDX -0.3 0.3 V

5 Voltage difference VSSX to VSSR and VSSA ∆VSSX -0.3 0.3 V

6 Digital I/O Input Voltage VIN -0.3 6.0 V

7 Analog Reference VRH, VRL -0.3 6.0 V

8 XFC, EXTAL, XTAL inputs VILV -0.3 3.0 V

9 TEST input VTEST -0.3 10.0 V

10
Instantaneous Maximum Current

Single pin limit for all digital I/O pins 3
I
D -25 +25 mA

11
Instantaneous Maximum Current

Single pin limit for XFC, EXTAL, XTAL4
I
DL -25 +25 mA

12
Instantaneous Maximum Current

Single pin limit for TEST 5
I
DT -0.25 0 mA

13 Storage Temperature Range T
stg – 65 155 °C
87

MC9S12DP512 Device Guide V01.25
A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade
Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body
Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification. Complete DC parametric and functional testing is performed per the applicable device
specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.

2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply.
The absolute maximum ratings apply when the device is powered from an external source.

3. All digital I/O pins are internally clamped to VSSX and VDDX, VSSR and VDDR or VSSA and VDDA.
4. Those pins are internally clamped to VSSPLL and VDDPLL.
5. This pin is clamped low to VSSX, but not clamped high. This pin must be tied low in applications.

Table A-2 ESD and Latch-up Test Conditions

Model Description Symbol Value Unit

Human Body

Series Resistance R1 1500 Ohm

Storage Capacitance C 100 pF

Number of Pulse per pin
positive
negative

-
-
3
3

Machine

Series Resistance R1 0 Ohm

Storage Capacitance C 200 pF

Number of Pulse per pin
positive
negative

-
-
3
3

Latch-up
Minimum input voltage limit -2.5 V

Maximum input voltage limit 7.5 V

Table A-3 ESD and Latch-up Protection Characteristics

Num C Rating Symbol Min Max Unit

1 C Human Body Model (HBM) VHBM 2000 - V

2 C Machine Model (MM) VMM 200 - V

3 C Charge Device Model (CDM) VCDM 500 - V

4 C
Latch-up Current at TA = 125°C
positive
negative

ILAT +100
-100

- mA

5 C
Latch-up Current at TA = 27°C
positive
negative

ILAT +200
-200

- mA
88

MC9S12DP512 Device Guide V01.25
A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions
apply to all the following data.

NOTE: Please refer to the temperature rating of the device (C, V, M) with regards to the
ambient temperature TA and the junction temperature TJ. For power dissipation
calculations refer to Section A.1.8 Power Dissipation and Thermal
Characteristics.

A.1.8 Power Dissipation and Thermal Characteristics

Power dissipation and thermal characteristics are closely related. The user must assure that the maximum
operating junction temperature is not exceeded. The average chip-junction temperature (TJ) in °C can be
obtained from:

Table A-4 Operating Conditions

Rating Symbol Min Typ Max Unit

I/O, Regulator and Analog Supply Voltage VDD5 4.5 5 5.25 V

Digital Logic Supply Voltage 1

NOTES:
1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The

given operating range applies when this regulator is disabled and the device is powered from an external source.

VDD 2.35 2.5 2.75 V

PLL Supply Voltage (1) VDDPLL 2.35 2.5 2.75 V

Voltage Difference VDDX to VDDR and VDDA ∆VDDX -0.1 0 0.1 V

Voltage Difference VSSX to VSSR and VSSA ∆VSSX -0.1 0 0.1 V

Bus Frequency (MC9S12DP512C, V, M) fbus 0.25 2

2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper oper-
ation.

- 25 MHz

MC9S12DP512C

Operating Junction Temperature Range T
J -40 - 100 °C

Operating Ambient Temperature Range 3

3. Please refer to Section A.1.8 Power Dissipation and Thermal Characteristics for more details about the rela-
tion between ambient temperature TA and device junction temperature TJ.

T
A -40 27 85 °C

MC9S12DP512V

Operating Junction Temperature Range T
J -40 - 120 °C

Operating Ambient Temperature Range (3) T
A -40 27 105 °C

MC9S12DP512M

Operating Junction Temperature Range T
J -40 - 140 °C

Operating Ambient Temperature Range (3) T
A -40 27 125 °C
89

MC9S12DP512 Device Guide V01.25
The total power dissipation can be calculated from:

Two cases with internal voltage regulator enabled and disabled must be considered:

1. Internal Voltage Regulator disabled

PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.

For RDSON is valid:

respectively

2. Internal voltage regulator enabled

IDDR is the current shown in Table A-7 and not the overall current flowing into VDDR, which
additionally contains the current flowing into the external loads with output high.

PIO is the sum of all output currents on I/O ports associated with VDDX and VDDR.

TJ TA PD ΘJA•()+=

TJ Junction Temperature, [°C]=

TA Ambient Temperature, [°C]=

PD Total Chip Power Dissipation, [W]=

ΘJA Package Thermal Resistance, [°C/W]=

PD PINT PIO+=

PINT Chip Internal Power Dissipation, [W]=

PINT IDD VDD⋅ IDDPLL VDDPLL⋅ IDDA+ VDDA⋅+=

PIO RDSON
i

∑ IIOi

2⋅=

RDSON

VOL
IOL
------------ for outputs driven low;=

RDSON

VDD5 VOH–

IOH
------------------------------------ for outputs driven high;=

PINT IDDR VDDR⋅ IDDA VDDA⋅+=

PIO RDSON
i

∑ IIOi

2⋅=
90

MC9S12DP512 Device Guide V01.25
A.1.9 I/O Characteristics

This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g.
not all pins feature pull up/down resistances.

Table A-5 Thermal Package Characteristics1

NOTES:
1. The values for thermal resistance are achieved by package simulations

Num C Rating Symbol Min Typ Max Unit

1 T Thermal Resistance LQFP112, single sided PCB2

2. PC Board according to EIA/JEDEC Standard 51-2

θJA - - 54 oC/W

2 T
Thermal Resistance LQFP112, double sided PCB

with 2 internal planes3

3. PC Board according to EIA/JEDEC Standard 51-7

θJA - - 41 oC/W
91

MC9S12DP512 Device Guide V01.25
A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.

Table A-6 5V I/O Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 P Input High Voltage V
IH 0.65*VDD5 - - V

T Input High Voltage VIH - - VDD5 + 0.3 V

2 P Input Low Voltage V
IL - - 0.35*VDD5 V

T Input Low Voltage VIL VSS5 - 0.3 - - V

3 C Input Hysteresis V
HYS - 250 - mV

4 P
Input Leakage Current (pins in high impedance input
mode)
V

in
= V

DD5
or V

SS5

I
in –1 - 1 µA

5 P

Output High Voltage (pins in output mode)
Partial Drive IOH = –2mA

Full Drive IOH = –10mA

V
OH VDD5 – 0.8 - - V

6 P

Output Low Voltage (pins in output mode)
Partial Drive IOL = +2mA

Full Drive IOL = +10mA

V
OL - - 0.8 V

7 P
Internal Pull Up Device Current,
tested at V

IL
 Max. IPUL - - -130 µA

8 C
Internal Pull Up Device Current,
tested at V

IH
 Min. IPUH -10 - - µA

9 P
Internal Pull Down Device Current,
tested at V

IH
 Min. IPDH - - 130 µA

10 C
Internal Pull Down Device Current,
tested at V

IL
 Max. IPDL 10 - - µA

11 D Input Capacitance Cin - 6 - pF

12 T
Injection current1

Single Pin limit
Total Device Limit. Sum of all injected currents

NOTES:
1. Refer to Section A.1.4 Current Injection, for more details

IICS
IICP

-2.5
-25

- 2.5
25

mA

13 P Port H, J, P Interrupt Input Pulse filtered2

2. Parameter only applies in STOP or Pseudo STOP mode.

tPIGN - - 3 µs

14 P Port H, J, P Interrupt Input Pulse passed(2) tPVAL 10 - - µs
92

MC9S12DP512 Device Guide V01.25
A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single
chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in
Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data
and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be
given. A very good estimate is to take the single chip currents and add the currents due to the external
loads.

Table A-7 Supply Current Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 P
Run supply currents

Single Chip, Internal regulator enabled IDD5
- -

65
mA

2 P
P

Wait Supply current
All modules enabled, PLL on

only RTI enabled (1)
IDDW - - 40

5
mA

3

C
P
C
C
P
C
P
C
P

Pseudo Stop Current (RTI and COP disabled) 1, 2

-40°C
27°C
70°C
85°C

 "C" Temp Option 100°C
105°C

 "V" Temp Option 120°C
125°C

 "M" Temp Option 140°C

IDDPS -

370
400
450
550
600
650
800
850
1200

500

1600

2100

5000

µA

4

C
C
C
C
C
C
C

Pseudo Stop Current (RTI and COP enabled) (1), (2)

-40°C
27°C
70°C
85°C

105°C
125°C
140°C

IDDPS -

570
600
650
750
850
1200
1500

- µA

5

C
P
C
C
P
C
P
C
P

Stop Current (2)

-40°C
27°C
70°C
85°C

"C" Temp Option 100°C
105°C

"V" Temp Option 120°C
125°C

"M" Temp Option 140°C

IDDS -

12
25
100
130
160
200
350
400
600

100

1200

1700

5000

µA
93

MC9S12DP512 Device Guide V01.25
NOTES:
1. PLL off
2. At those low power dissipation levels TJ = TA can be assumed
94

MC9S12DP512 Device Guide V01.25
A.2 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

A.2.1 ATD Operating Characteristics

The Table A-8 shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:
VSSA ≤ VRL ≤ VIN ≤ VRH ≤ VDDA. This constraint exists since the sample buffer amplifier can not drive
beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively
be clipped.

A.2.2 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influence on the
accuracy of the ATD.

A.2.2.1 Source Resistance

Due to the input pin leakage current as specified in Table A-6 in conjunction with the source resistance
there will be a voltage drop from the signal source to the ATD input. The maximum source resistance RS

Table A-8 ATD Operating Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 D
Reference Potential

Low
High

VRL
VRH

VSSA
VDDA/2

- VDDA/2
VDDA

V
V

2 C Differential Reference Voltage1

NOTES:
1. Full accuracy is not guaranteed when differential voltage is less than 4.50V

VRH-VRL 4.50 5.00 5.25 V

3 D ATD Clock Frequency fATDCLK 0.5 - 2.0 MHz

4 D

ATD 10-Bit Conversion Period

Clock Cycles2

Conv, Time at 2.0MHz ATD Clock fATDCLK

2. The minimum time assumes a final sample period of 2 ATD clocks cycles while the maximum time assumes a final sample
period of 16 ATD clocks.

NCONV10
TCONV10

14
7

- 28
14

Cycles
µs

5 D

ATD 8-Bit Conversion Period

Clock Cycles(2)

Conv, Time at 2.0MHz ATD Clock fATDCLK

NCONV8
TCONV8

12
6

- 26
13

Cycles
µs

6 D Recovery Time (VDDA=5.0 Volts) tREC - - 20 µs

7 P Reference Supply current 2 ATD blocks on IREF - - 0.750 mA

8 P Reference Supply current 1 ATD block on IREF - - 0.375 mA
95

MC9S12DP512 Device Guide V01.25
specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or
operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source
resistance is allowed.

A.2.2.2 Source Capacitance

When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due
to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input
voltage ≤ 1LSB, then the external filter capacitor, Cf ≥ 1024 * (CINS- CINN).

A.2.2.3 Current Injection

There are two cases to consider.

1. A current is injected into the channel being converted. The channel being stressed has conversion
values of $3FF ($FF in 8-bit mode) for analog inputs greater than VRH and $000 for values less than
VRL unless the current is higher than specified as disruptive condition.

2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this
current is picked up by the channel (coupling ratio K), This additional current impacts the accuracy
of the conversion depending on the source resistance.
The additional input voltage error on the converted channel can be calculated as VERR = K * RS *
IINJ, with IINJ being the sum of the currents injected into the two pins adjacent to the converted
channel.

Table A-9 ATD Electrical Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 C Max input Source Resistance RS - - 1 KΩ

2 T
Total Input Capacitance
Non Sampling
Sampling

CINN
CINS

- - 10
22

pF

3 C Disruptive Analog Input Current INA -2.5 - 2.5 mA

4 C Coupling Ratio positive current injection Kp - - 10-4 A/A

5 C Coupling Ratio negative current injection Kn - - 10-2 A/A
96

MC9S12DP512 Device Guide V01.25
A.2.3 ATD accuracy

Table A-10 specifies the ATD conversion performance excluding any errors due to current injection,
input capacitance and source resistance.

For the following definitions see also Figure A-1.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

Table A-10 ATD Conversion Performance

Conditions are shown in Table A-4 unless otherwise noted
VREF = VRH - VRL = 5.12V. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV

fATDCLK = 2.0MHz

Num C Rating Symbol Min Typ Max Unit

1 P 10-Bit Resolution LSB - 5 - mV

2 P 10-Bit Differential Nonlinearity DNL –1 - 1 Counts

3 P 10-Bit Integral Nonlinearity INL –2.5 ±1.5 2.5 Counts

4 P 10-Bit Absolute Error1

NOTES:
1. These values include the quantization error which is inherently 1/2 count for any A/D converter.

AE -3 ±2.0 3 Counts

5 P 8-Bit Resolution LSB - 20 - mV

6 P 8-Bit Differential Nonlinearity DNL –0.5 - 0.5 Counts

7 P 8-Bit Integral Nonlinearity INL –1.0 ±0.5 1.0 Counts

8 P 8-Bit Absolute Error(1) AE -1.5 ±1.0 1.5 Counts

DNL i()
Vi Vi 1––

1LSB
------------------------ 1–=

INL n() DNL i()
i 1=

n

∑
Vn V0–

1LSB
-------------------- n–= =
97

MC9S12DP512 Device Guide V01.25
Figure A-1 ATD Accuracy Definitions

NOTE: Figure A-1 shows only definitions, for specification values refer to Table A-10.

1

5 Vin

mV

10 15 20 25 30 35 40 5085 5090 5095 5100 5105 5110 5115 51205065 5070 5075 50805060
0

3

2

5

4

7

6

45

$3F7

$3F9

$3F8

$3FB

$3FA

$3FD

$3FC

$3FE

$3FF

$3F4

$3F6

$3F5

8

9

1

2

$FF

$FE

$FD

$3F3

10
-B

it
R

es
ol

ut
io

n

8-
B

it
R

es
ol

ut
io

n

Ideal Transfer Curve

10-Bit Transfer Curve

8-Bit Transfer Curve

5055

10-Bit Absolute Error Boundary

8-Bit Absolute Error Boundary

LSB
Vi-1 Vi

DNL
98

MC9S12DP512 Device Guide V01.25
A.3 NVM, Flash and EEPROM

NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for
both Flash and EEPROM.

A.3.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum
oscillator frequency fNVMOSC is required for performing program or erase operations. The NVM modules
do not have any means to monitor the frequency and will not prevent program or erase operation at
frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at
a lower frequency a full program or erase transition is not assured.

The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator
using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within
the limits specified as fNVMOP.

The minimum program and erase times shown in Table A-11 are calculated for maximum fNVMOP and
maximum fbus. The maximum times are calculated for minimum fNVMOP and a fbus of 2MHz.

A.3.1.1 Single Word Programming

The programming time for single word programming is dependant on the bus frequency as a well as on
the frequency fNVMOP and can be calculated according to the following formula.

A.3.1.2 Row Programming

This applies only to the Flash where up to 64 words in a row can be programmed consecutively by keeping
the command pipeline filled. The time to program a consecutive word can be calculated as:

The time to program a whole row is:

Row programming is more than 2 times faster than single word programming.

A.3.1.3 Sector Erase

Erasing a 1024 byte Flash sector or a 4 byte EEPROM sector takes:

tswpgm 9 1
fNVMOP
---------------------⋅ 25 1

fbus
----------⋅+=

tbwpgm 4 1
fNVMOP
---------------------⋅ 9 1

fbus
----------⋅+=

tbrpgm tswpgm 63 tbwpgm⋅+=

tera 4000 1
fNVMOP
---------------------⋅≈
99

MC9S12DP512 Device Guide V01.25
The setup time can be ignored for this operation.

A.3.1.4 Mass Erase

Erasing a NVM block takes:

The setup time can be ignored for this operation.

A.3.1.5 Blank Check

The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the
first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup
of the command.

Table A-11 NVM Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 D External Oscillator Clock fNVMOSC 0.5 - 50 1

NOTES:
1. Restrictions for oscillator in crystal mode apply!

MHz

2 D Bus frequency for Programming or Erase Operations fNVMBUS 1 - - MHz

3 D Operating Frequency fNVMOP 150 - 200 kHz

4 P Single Word Programming Time tswpgm 46 2

2. Minimum Programming times are achieved under maximum NVM operating frequency fNVMOP and maximum bus frequency
fbus.

- 74.5 3

3. Maximum Erase and Programming times are achieved under particular combinations of fNVMOP and bus frequency fbus.
Refer to formulae in Sections Section A.3.1.1 Single Word Programming- Section A.3.1.4 Mass Erasefor guidance.

µs

5 D Flash Row Programming consecutive word 4

4. Row Programming operations are not applicable to EEPROM

tbwpgm 20.4 (2) - 31 (3) µs

6 D Flash Row Programming Time for 64 Words (4) tbrpgm 1331.2 (2) - 2027.5 (3) µs

7 P Sector Erase Time tera 20 5

5. Minimum Erase times are achieved under maximum NVM operating frequency fNVMOP.

- 26.7 (3) ms

8 P Mass Erase Time tmass 100 (5) - 133 (3) ms

9 D Blank Check Time Flash per block tcheck 11 6

6. Minimum time, if first word in the array is not blank

- 65546 7

7. Maximum time to complete check on an erased block

tcyc

10 D Blank Check Time EEPROM per block tcheck 11 (6) - 2058 (7) tcyc

tmass 20000 1
fNVMOP
---------------------⋅≈

tcheck location tcyc 10 tcyc⋅+⋅≈
100

MC9S12DP512 Device Guide V01.25
A.3.2 NVM Reliability

The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process
monitors and burn-in to screen early life failures.

The program/erase cycle count on the sector is incremented every time a sector or mass erase event is
executed

Table A-12 NVM Reliability Characteristics1

NOTES:
1. TJavg will not exeed 85°C considering a typical temperature profile over the lifetime of a consumer, industrial or automotive

application.

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

Flash Reliability Characteristics

1 C
Data retention after 10,000 program/erase cycles at
an average junction temperature of TJavg ≤ 85°C

tFLRET

15 1002

2. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated
to 25°C using the Arrhenius equation. For additional information on how Freescale defines Typical Data Retention, please
refer to Engineering Bulletin EB618.

—

Years

2 C
Data retention with <100 program/erase cycles at an
average junction temperature TJavg ≤ 85°C 20 1002 —

3 C
Number of program/erase cycles
(–40°C ≤ TJ ≤ 0°C)

nFL

10,000 — —

Cycles

4 C
Number of program/erase cycles
(0°C ≤ TJ ≤ 140°C)

10,000 100,0003

3. Spec table quotes typical endurance evaluated at 25°C for this product family, typical endurance at various temperature can
be estimated using the graph below. For additional information on how Freescale defines Typical Endurance, please refer
to Engineering Bulletin EB619.

—

EEPROM Reliability Characteristics

5 C
Data retention after up to 100,000 program/erase
cycles at an average junction temperature of
TJavg ≤ 85°C tEEPRET

15 1002 —

Years

6 C
Data retention with <100 program/erase cycles at an
average junction temperature TJavg ≤ 85°C 20 1002 —

7 C
Number of program/erase cycles
(–40°C ≤ TJ ≤ 0°C)

nEEP

10,000 — —

Cycles

8 C
Number of program/erase cycles
(0°C < TJ ≤ 140°C)

100,000 300,0003 —
101

MC9S12DP512 Device Guide V01.25
Figure A-2 Typical Endurance vs Temperature

T
yp

ic
al

 E
nd

ur
an

ce
 [

10
3

C
yc

le
s]

Operating Temperature TJ [°C]

0

50

100

150

200

250

300

350

400

450

500

-40 -20 0 20 40 60 80 100 120 140

------ Flash
------ EEPROM
102

MC9S12DP512 Device Guide V01.25
A.4 Voltage Regulator

The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external
DC load is allowed.

Table A-13 Voltage Regulator Recommended Load Capacitances

Rating Symbol Min Typ Max Unit

Load Capacitance on VDD1, 2 CLVDD - 220 - nF

Load Capacitance on VDDPLL CLVDDfcPLL - 220 - nF
103

MC9S12DP512 Device Guide V01.25
104

MC9S12DP512 Device Guide V01.25
A.5 Reset, Oscillator and PLL

This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and
Phase-Locked-Loop (PLL).

A.5.1 Startup

Table A-14 summarizes several startup characteristics explained in this section. Detailed description of
the startup behavior can be found in the Clock and Reset Generator (CRG) Block Guide.

Table A-14 Startup Characteristics

A.5.1.1 POR

The release level VPORR and the assert level VPORA are derived from the VDD Supply. They are also valid
if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check
are started. If after a time tCQOUT no valid oscillation is detected, the MCU will start using the internal self
clock. The fastest startup time possible is given by nuposc.

A.5.1.2 SRAM Data Retention

Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing
code when VDD5 is out of specification limits, the SRAM contents integrity is guaranteed if after the reset
the PORF bit in the CRG Flags Register has not been set.

A.5.1.3 External Reset

When external reset is asserted for a time greater than PWRSTL the CRG module generates an internal
reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an
oscillation before reset.

A.5.1.4 Stop Recovery

Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR
is performed before releasing the clocks to the system.

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 T POR release level VPORR - - 2.07 V

2 T POR assert level VPORA 0.97 - - V

3 D Reset input pulse width, minimum input time PWRSTL 2 - - tosc

4 D Startup from Reset nRST 192 - 196 nosc

5 D Interrupt pulse width, IRQ edge-sensitive mode PWIRQ 20 - - ns

6 D Wait recovery startup time tWRS - - 14 tcyc
105

MC9S12DP512 Device Guide V01.25
A.5.1.5 Pseudo Stop and Wait Recovery

The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in
both modes. The controller can be woken up by internal or external interrupts. After twrs the CPU starts
fetching the interrupt vector.

A.5.2 Oscillator

The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce
oscillator/external clock depends on the XCLKS signal which is sampled during reset. Pierce
oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the
internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP
or oscillator fail. tCQOUT specifies the maximum time before switching to the internal self clock mode after
POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum
oscillator start-up time tUPOSC . The device also features a clock monitor. A Clock Monitor Failure is
asserted if the frequency of the incoming clock signal is below the Assert Frequency fCMFA.

Table A-15 Oscillator Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1a C Crystal oscillator range (Colpitts) fOSC 0.5 - 16 MHz

1b C Crystal oscillator range (Pierce) 1 fOSC 0.5 - 40 MHz

2 P Startup Current iOSC 100 - - µA

3 C Oscillator start-up time (Colpitts) tUPOSC - 82 1003 ms

4 D Clock Quality check time-out tCQOUT 0.45 - 2.5 s

5 P Clock Monitor Failure Assert Frequency fCMFA 50 100 200 KHz

6 P External square wave input frequency 4 fEXT 0.5 - 50 MHz

7 D External square wave pulse width low 4 tEXTL 9.5 - - ns

8 D External square wave pulse width high 4 tEXTH 9.5 - - ns

9 D External square wave rise time 4 tEXTR - - 1 ns

10 D External square wave fall time 4 tEXTF - - 1 ns

11 D Input Capacitance (EXTAL, XTAL pins) CIN - 7 - pF

12 C
DC Operating Bias in Colpitts Configuration on
EXTAL Pin

VDCBIAS - 1.1 - V

13 P EXTAL Pin Input High Voltage 4 VIH,EXTAL 0.75*VDDPLL - - V

T EXTAL Pin Input High Voltage 4 VIH,EXTAL - - VDDPLL + 0.3 V

14 P EXTAL Pin Input Low Voltage 4 VIL,EXTAL - - 0.25*VSSPLL V

T EXTAL Pin Input Low Voltage 4 VIL,EXTAL VSSPLL - 0.3 - - V

15 C EXTAL Pin Input Hysteresis 4 VHYS,EXTAL - 250 - mV
106

MC9S12DP512 Device Guide V01.25
A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL´s Voltage Controlled Oscillator (VCO)
is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Figure A-3 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical
values for K1, f1 and ich from Table A-16.

The grey boxes show the calculation for fVCO = 50MHz and fref = 1MHz. E.g., these frequencies are used
for fOSC = 4MHz and a 25MHz bus clock.

The VCO Gain at the desired VCO frequency is approximated by:

NOTES:
1. Depending on the crystal a damping series resistor might be necessary
2. fosc = 4MHz, C = 22pF.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. Only valid if Pierce oscillator/external clock mode is selected

fosc 1
refdv+1

fref

Phase

Detector

VCO

KV

1
synr+1

fvco

Loop Divider

KΦ

1
2

∆

fcmp

Cs R

Cp

VDDPLL

XFC Pin

KV K1 e

f1 fvco–()
K1 1V⋅-----------------------

⋅= 100– e

60 50–()
100–

⋅= = -90.48MHz/V
107

MC9S12DP512 Device Guide V01.25
The phase detector relationship is given by:

ich is the current in tracking mode.

The loop bandwidth fC should be chosen to fulfill the Gardner’s stability criteria by at least a factor of 10,
typical values are 50. ζ = 0.9 ensures a good transient response.

And finally the frequency relationship is defined as

With the above values the resistance can be calculated. The example is shown for a loop bandwidth
fC=10kHz:

The capacitance Cs can now be calculated as:

The capacitance Cp should be chosen in the range of:

A.5.3.2 Jitter Information

The basic functionality of the PLL is shown in Figure A-3. With each transition of the clock fcmp, the
deviation from the reference clock fref is measured and input voltage to the VCO is adjusted
accordingly.The adjustment is done continuously with no abrupt changes in the clock output frequency.
Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock
jitter. This jitter affects the real minimum and maximum clock periods as illustrated in Figure A-4.

KΦ ich– KV⋅= = 316.7Hz/Ω

fC
2 ζ fref⋅ ⋅

π ζ 1 ζ2
++⎝ ⎠

⎛ ⎞⋅
-- 1

10
------ fC

fref
4 10⋅-------------- ζ 0.9=();<→<

fC < 25kHz

n
fVCO
fref

------------- 2 synr 1+()⋅= = = 50

R
2 π n fC⋅ ⋅ ⋅

KΦ
-----------------------------= = 2*π*50*10kHz/(316.7Hz/Ω)=9.9kΩ=~10kΩ

Cs
2 ζ2⋅

π fC R⋅ ⋅----------------------
0.516
fC R⋅--------------- ζ 0.9=();≈= = 5.19nF =~ 4.7nF

Cs 20⁄ Cp Cs 10⁄≤ ≤ Cp = 470pF
108

MC9S12DP512 Device Guide V01.25
Figure A-4 Jitter Definitions

The relative deviation of tnom is at its maximum for one clock period, and decreases towards zero for larger
number of clock periods (N).

Defining the jitter as:

For N < 100, the following equation is a good fit for the maximum jitter:

Figure A-5 Maximum bus clock jitter approximation

2 3 N-1 N10

tnom

tmax1

tmin1

tmaxN

tminN

J N() max 1
tmax N()
N tnom⋅---------------------– 1

tmin N()
N tnom⋅---------------------–,

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

J N()
j1
N

-------- j2+=

1 5 10 20 N

J(N)
109

MC9S12DP512 Device Guide V01.25
This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the
effect of the jitter to a large extent.

Table A-16 PLL Characteristics
Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 P Self Clock Mode frequency fSCM 1 - 5.5 MHz

2 D VCO locking range fVCO 8 - 50 MHz

3 D
Lock Detector transition from Acquisition to Tracking
mode

|∆trk| 3 - 4 %1

NOTES:
1. % deviation from target frequency

4 D Lock Detection |∆Lock| 0 - 1.5 %(1)

5 D Un-Lock Detection |∆unl| 0.5 - 2.5 %(1)

6 D
Lock Detector transition from Tracking to Acquisition
mode

|∆unt| 6 - 8 %(1)

7 C PLLON Total Stabilization delay (Auto Mode) 2

2. fOSC = 4MHz, fBUS = 25MHz equivalent fVCO = 50MHz: REFDV = #$03, SYNR = #$018, Cs = 4.7nF, Cp = 470pF, Rs =
10KΩ.

tstab - 0.5 - ms

8 D PLLON Acquisition mode stabilization delay (2) tacq - 0.3 - ms

9 D PLLON Tracking mode stabilization delay (2) tal - 0.2 - ms

10 D Fitting parameter VCO loop gain K1 - -100 - MHz/V

11 D Fitting parameter VCO loop frequency f1 - 60 - MHz

12 D Charge pump current acquisition mode | ich | - 38.5 - µA

13 D Charge pump current tracking mode | ich | - 3.5 - µA

14 C Jitter fit parameter 1(2) j1 - - 1.1 %

15 C Jitter fit parameter 2(2) j2 - - 0.13 %
110

MC9S12DP512 Device Guide V01.25
A.6 MSCAN

Table A-17 MSCAN Wake-up Pulse Characteristics

Conditions are shown in Table A-4 unless otherwise noted

Num C Rating Symbol Min Typ Max Unit

1 P MSCAN Wake-up dominant pulse filtered tWUP - - 2 µs

2 P MSCAN Wake-up dominant pulse pass tWUP 5 - - µs
111

MC9S12DP512 Device Guide V01.25
112

MC9S12DP512 Device Guide V01.25
A.7 SPI

This section provides electrical parametrics and ratings for the SPI.

In Table A-18 the measurement conditions are listed.

A.7.1 Master Mode

In Figure A-6 the timing diagram for master mode with transmission format CPHA=0 is depicted.

Figure A-6 SPI Master Timing (CPHA=0)

In Figure A-7 the timing diagram for master mode with transmission format CPHA=1 is depicted.

Table A-18 Measurement Conditions

Description Value Unit
Drive mode full drive mode —

Load capacitance CLOAD,
on all outputs

50 pF

Thresholds for delay
measurement points

(20% / 80%) VDDX V

SCK

(OUTPUT)

SCK

(OUTPUT)

MISO
(INPUT)

MOSI
(OUTPUT)

SS1

(OUTPUT)

1

9

5 6

MSB IN2

BIT 6 . . . 1

LSB IN

MSB OUT2 LSB OUT

BIT 6 . . . 1

11

4

4

2

10

(CPOL = 0)

(CPOL = 1)

313

13

1.if configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

12

12
113

MC9S12DP512 Device Guide V01.25
Figure A-7 SPI Master Timing (CPHA=1)

In Table A-19 the timing characteristics for master mode are listed.

Table A-19 SPI Master Mode Timing Characteristics

Num Characteristic Symbol Unit
Min Typ Max

1 SCK Frequency fsck 1/2048 — 1/2 fbus

1 SCK Period tsck 2 — 2048 tbus

2 Enable Lead Time tlead — 1/2 — tsck

3 Enable Lag Time tlag — 1/2 — tsck

4 Clock (SCK) High or Low Time twsck — 1/2 — tsck

5 Data Setup Time (Inputs) tsu 8 — — ns

6 Data Hold Time (Inputs) thi 8 — — ns

9 Data Valid after SCK Edge tvsck — — 30 ns

10 Data Valid after SS fall (CPHA=0) tvss — — 15 ns

11 Data Hold Time (Outputs) tho 20 — — ns

12 Rise and Fall Time Inputs trfi — — 8 ns

13 Rise and Fall Time Outputs trfo — — 8 ns

SCK

(OUTPUT)

SCK

(OUTPUT)

MISO
(INPUT)

MOSI
(OUTPUT)

1

5 6

MSB IN2

BIT 6 . . . 1

LSB IN

MASTER MSB OUT2 MASTER LSB OUT

BIT 6 . . . 1

44

9

12 13

11

PORT DATA

(CPOL = 0)

(CPOL = 1)

PORT DATA

SS1

(OUTPUT)

2 12 13 3

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
114

MC9S12DP512 Device Guide V01.25
A.7.2 Slave Mode

In Figure A-8 the timing diagram for slave mode with transmission format CPHA=0 is depicted.

Figure A-8 SPI Slave Timing (CPHA=0)

In Figure A-9 the timing diagram for slave mode with transmission format CPHA=1 is depicted.

SCK

(INPUT)

SCK

(INPUT)

MOSI
(INPUT)

MISO
(OUTPUT)

SS
(INPUT)

1

9

5 6

MSB IN

BIT 6 . . . 1

LSB IN

SLAVE MSB SLAVE LSB OUT

BIT 6 . . . 1

11

442

7

(CPOL = 0)

(CPOL = 1)

3

13

NOTE: Not defined!

12

12

11

SEE

13

NOTE

810

see
note
115

MC9S12DP512 Device Guide V01.25
Figure A-9 SPI Slave Timing (CPHA=1)

In Table A-20 the timing characteristics for slave mode are listed.

Table A-20 SPI Slave Mode Timing Characteristics

Num Characteristic Symbol Unit
Min Typ Max

1 SCK Frequency fsck DC — 1/4 fbus

1 SCK Period tsck 4 — tbus

2 Enable Lead Time tlead 4 — — tbus

3 Enable Lag Time tlag 4 — — tbus

4 Clock (SCK) High or Low Time twsck 4 — — tbus

5 Data Setup Time (Inputs) tsu 8 — — ns

6 Data Hold Time (Inputs) thi 8 — — ns

7 Slave Access Time (time to data active) ta — — 20 ns

8 Slave MISO Disable Time tdis — — 22 ns

9 Data Valid after SCK Edge tvsck — — 30 + tbus
1

NOTES:
1. tbus added due to internal synchronization delay

ns

10 Data Valid after SS fall tvss — — 30 + tbus
1 ns

11 Data Hold Time (Outputs) tho 20 — — ns

12 Rise and Fall Time Inputs trfi — — 8 ns

13 Rise and Fall Time Outputs trfo — — 8 ns

SCK

(INPUT)

SCK

(INPUT)

MOSI
(INPUT)

MISO
(OUTPUT)

1

5 6

MSB IN

BIT 6 . . . 1

LSB IN

MSB OUT SLAVE LSB OUT

BIT 6 . . . 1

44

9

12 13

11

(CPOL = 0)

(CPOL = 1)

SS
(INPUT)

2 12 13

3

NOTE: Not defined!

SLAVE

7

8

see
note

∞

116

MC9S12DP512 Device Guide V01.25
A.8 External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in Figure A-10 with the actual timing
values shown on table Table A-21. All major bus signals are included in the diagram. While both a data
write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

A.8.1 General Muxed Bus Timing

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown
assume a balanced load across all outputs.
117

MC9S12DP512 Device Guide V01.25
Figure A-10 General External Bus Timing

Addr/Data
(read)

Addr/Data
(write)

addr datadata

5 10
11

8

166

ECLK

1, 2
3 4

addr datadata

12

159

7

14 13

ECS

2120 22 23

Non-Multiplexed

17 19

LSTRB

29

NOACC

32

IPIPE0
IPIPE1, PE6,5

35

18

27 28

30

33 36

31

34

R/W

24 2625

Addresses

PE4

PA, PB

PA, PB

PK5:0

PK7

PE2

PE3

PE7
118

MC9S12DP512 Device Guide V01.25
Table A-21 Expanded Bus Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF

Num C Rating Symbol Min Typ Max Unit

1 P Frequency of operation (E-clock) fo 0 - 25.0 MHz

2 P Cycle time tcyc 40 - - ns

3 D Pulse width, E low PWEL 19 - - ns

4 D Pulse width, E high1 PWEH 19 - - ns

5 D Address delay time tAD - - 8 ns

6 D Address valid time to E rise (PWEL–tAD) tAV 11 - - ns

7 D Muxed address hold time tMAH 2 - - ns

8 D Address hold to data valid tAHDS 7 - - ns

9 D Data hold to address tDHA 2 - - ns

10 D Read data setup time tDSR 13 - - ns

11 D Read data hold time tDHR 0 - - ns

12 D Write data delay time tDDW - - 7 ns

13 D Write data hold time tDHW 2 - - ns

14 D Write data setup time(1) (PWEH–tDDW) tDSW 12 - - ns

15 D Address access time(1) (tcyc–tAD–tDSR) tACCA 19 - - ns

16 D E high access time(1) (PWEH–tDSR) tACCE 6 - - ns

17 D Non-multiplexed address delay time tNAD - - 6 ns

18 D Non-muxed address valid to E rise (PWEL–tNAD) tNAV 13 - - ns

19 D Non-multiplexed address hold time tNAH 2 - - ns

20 D Chip select delay time tCSD - - 16 ns

21 D Chip select access time(1) (tcyc–tCSD–tDSR) tACCS 11 - - ns

22 D Chip select hold time tCSH 2 - - ns

23 D Chip select negated time tCSN 8 - - ns

24 D Read/write delay time tRWD - - 7 ns

25 D Read/write valid time to E rise (PWEL–tRWD) tRWV 14 - - ns

26 D Read/write hold time tRWH 2 - - ns

27 D Low strobe delay time tLSD - - 7 ns

28 D Low strobe valid time to E rise (PWEL–tLSD) tLSV 14 - - ns

29 D Low strobe hold time tLSH 2 - - ns

30 D NOACC strobe delay time tNOD - - 7 ns

31 D NOACC valid time to E rise (PWEL–tNOD) tNOV 14 - - ns
119

MC9S12DP512 Device Guide V01.25
32 D NOACC hold time tNOH 2 - - ns

33 D IPIPE[1:0] delay time tP0D 2 - 7 ns

34 D IPIPE[1:0] valid time to E rise (PWEL–tP0D) tP0V 11 - - ns

35 D IPIPE[1:0] delay time(1) (PWEH-tP1V) tP1D 2 - 7 ns

36 D IPIPE[1:0] valid time to E fall tP1V 11 - - ns

NOTES:
1. Affected by clock stretch: add N x tcyc where N=0,1,2 or 3, depending on the number of clock stretches.

Table A-21 Expanded Bus Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 50pF

Num C Rating Symbol Min Typ Max Unit
120

MC9S12DP512 Device Guide V01.25
Appendix B Package Information

B.1 General

This section provides the physical dimensions of the MC9S12DP512 packages.
121

MC9S12DP512 Device Guide V01.25
B.2 112-pin LQFP package

Figure B-1 112-pin LQFP mechanical dimensions (case no. 987)

DIM
A

MIN MAX
20.000 BSC

MILLIMETERS

A1 10.000 BSC
B 20.000 BSC

B1 10.000 BSC
C --- 1.600

C1 0.050 0.150
C2 1.350 1.450
D 0.270 0.370
E 0.450 0.750
F 0.270 0.330
G 0.650 BSC
J 0.090 0.170
K 0.500 REF
P 0.325 BSC
R1 0.100 0.200
R2 0.100 0.200
S 22.000 BSC

S1 11.000 BSC
V 22.000 BSC

V1 11.000 BSC
Y 0.250 REF
Z 1.000 REF

AA 0.090 0.160
θ

θ
θ
θ 11 °

11 °
13 °

7 °
13 °

VIEW Y

L-M0.20 NT4X 4X 28 TIPS

PIN 1
IDENT

1

112 85

84

28 57

29 56

B V

V1B1

A1

S1

A

S

VIEW AB

0.10

3

C
C2

θ

2θ0.050

SEATING
PLANE

GAGE PLANE

1θ

θ

VIEW AB

C1

(Z)

(Y)
E

(K)

R2

R1 0.25

J1

VIEW Y

J1

P

G108X

4X

SECTION J1-J1

BASE

ROTATED 90 COUNTERCLOCKWISE°

METAL

J AA

F
D

L-MM0.13 NT

1
2
3

CL

L-M0.20 NT

L

N

M

T

T

112X

X
X=L, M OR N

R

R

NOTES:
1. DIMENSIONING AND TOLERANCING PER

ASME Y14.5M, 1994.
2. DIMENSIONS IN MILLIMETERS.
3. DATUMS L, M AND N TO BE DETERMINED AT

SEATING PLANE, DATUM T.
4. DIMENSIONS S AND V TO BE DETERMINED AT

SEATING PLANE, DATUM T.
5. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION. ALLOWABLE
PROTRUSION IS 0.25 PER SIDE. DIMENSIONS
A AND B INCLUDE MOLD MISMATCH.

6. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL NOT CAUSE THE D
DIMENSION TO EXCEED 0.46.

8 °
3 °
0 °
122

MC9S12DP512 Device Guide V01.25
User Guide End Sheet
123

MC9S12DP512 Device Guide V01.25
FINAL PAGE OF
124

PAGES
124

DOCUMENT NUMBER
S12ATD10B8CV2/D
ATD_10B8C

Block User Guide

V02.12

Original Release Date: 27 OCT 2000
Revised: 28 June 2005

Motorola Inc.
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

ATD_10B8C Block User Guide — V02.12
Revision History

Table 0-1 Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

00.00 27-10-2000 - Initial SRS2 release.

01.00 06-06-2001 - Updated the description of ATDDIEN and PORTAD1 register.

01.10 16-06-2001 - Made SRS2 Compliant

V02.00 20 June 2001 20 June 2001 Reworked whole document to make it more user friendly

V02.01 26 July 2001 -
Added document names
Variable definitions and names have been hidden

V02.02 5 Sept 2001 5 Sept 2001 Corrected sampling phase description, other minor corrections

V02.03 8 Nov 2001 8 Nov 2001 Corrected AWAI bit description

V02.04 16 Jan 2002 16 Jan 2002 Syntax corrections

V02.05 8 Mar 2002 8 Mar 2002 Removed document number from all pages except cover sheet

V02.06 11 Apr 2002 11 Apr 2002 Documented special channel conversion in ATDTEST1 register

V02.07 22 Apr 2002 22 Apr 2002 Corrected Table "Available Result Data Formats"

V02.08 16 Aug 2002 16 Aug 2002 FIFOR flag: corrected clearing mechanism B)

V02.09 23 Aug 2002 23 Aug 2002

Detailed AWAI Bit description.
Functional Description: Detailed and corrected Low power
modes
Table "Available Result Data Formats": Re-corrected

V02.10 21 Feb 2003 21 Feb 2003
Formal corrections on ATDTEST0/1 and ATDDRHx/ATDDRLx
register descriptions

V02.11 24 Mar 2005 24 Mar 2005 Corrected PAD7-0 port description

V02.12 28 June 2005 28 June 2005 Enhanced FIFO bit description
2

ATD_10B8C Block User Guide — V02.12
Table of Contents

Section 1 Introduction

1.1 Overview. .9

1.2 Features .9

1.3 Modes of Operation .9

1.3.1 Conversion modes .9

1.3.2 MCU Operating Modes .9

1.4 Block Diagram .10

Section 2 Signal Description

2.1 Overview. .11

2.2 Detailed Signal Descriptions. .11

2.2.1 AN7 / ETRIG / PAD7 .11

2.2.2 AN6 / PAD6 .11

2.2.3 AN5 / PAD5 .11

2.2.4 AN4 / PAD4 .11

2.2.5 AN3 / PAD3 .11

2.2.6 AN2 / PAD2 .11

2.2.7 AN1 / PAD1 .11

2.2.8 AN0 / PAD0 .11

2.2.9 VRH, VRL. .12

2.2.10 VDDA, VSSA .12

Section 3 Memory Map and Register Definition

3.1 Overview. .13

3.2 Module Memory Map .13

3.3 Register Descriptions .14

3.3.1 Reserved Register (ATDCTL0) .14

3.3.2 Reserved Register (ATDCTL1) .14

3.3.3 ATD Control Register 2 (ATDCTL2). .14

3.3.4 ATD Control Register 3 (ATDCTL3). .16

3.3.5 ATD Control Register 4 (ATDCTL4). .18

3.3.6 ATD Control Register 5 (ATDCTL5). .20

3.3.7 ATD Status Register 0 (ATDSTAT0) .23
3

ATD_10B8C Block User Guide — V02.12
3.3.8 Reserved Register (ATDTEST0) .24

3.3.9 ATD Test Register 1 (ATDTEST1). .24

3.3.10 ATD Status Register 1 (ATDSTAT1) .25

3.3.11 ATD Input Enable Register (ATDDIEN) .26

3.3.12 Port Data Register (PORTAD) .27

3.3.13 ATD Conversion Result Registers (ATDDRHx/ATDDRLx) .27

Section 4 Functional Description

4.1 General. .31

4.2 Analog Sub-block .31

4.2.1 Sample and Hold Machine .31

4.2.2 Analog Input Multiplexer. .31

4.2.3 Sample Buffer Amplifier .31

4.2.4 Analog-to-Digital (A/D) Machine. .31

4.3 Digital Sub-block. .32

4.3.1 External Trigger Input (ETRIG) .32

4.3.2 General Purpose Digital Input Port Operation .33

4.3.3 Low Power Modes .33

Section 5 Resets

5.1 General. .35

Section 6 Interrupts

6.1 General. .37
4

ATD_10B8C Block User Guide — V02.12
List of Figures

Figure 1-1 ATD_10B8C Block Diagram .10

Figure 3-1 Reserved Register (ATDCTL0) .14

Figure 3-2 Reserved Register (ATDCTL1) .14

Figure 3-3 ATD Control Register 2 (ATDCTL2) .15

Figure 3-4 ATD Control Register 3 (ATDCTL3) .16

Figure 3-5 ATD Control Register 4 (ATDCTL4) .18

Figure 3-6 ATD Control Register 5 (ATDCTL5) .21

Figure 3-7 ATD Status Register 0 (ATDSTAT0) .23

Figure 3-8 Reserved Register (ATDTEST0) .24

Figure 3-9 ATD Test Register 1 (ATDTEST1) .25

Figure 3-10 ATD Status Register 1 (ATDSTAT1) .26

Figure 3-11 ATD Input Enable Register (ATDDIEN). .26

Figure 3-12 Port Data Register (PORTAD). .27

Figure 3-13 Left Justified, ATD Conversion Result Register, High Byte (ATDDRxH).28

Figure 3-14 Left Justified, ATD Conversion Result Register, Low Byte (ATDDRxL) 28

Figure 3-15 Right Justified, ATD Conversion Result Register, High Byte (ATDDRxH) 28

Figure 3-16 Right Justified, ATD Conversion Result Register, Low Byte (ATDDRxL)29
5

ATD_10B8C Block User Guide — V02.12
.

6

ATD_10B8C Block User Guide — V02.12
List of Tables

Table 0-1 Revision History .2

Table 3-1 Module Memory Map .13

Table 3-2 External Trigger Configurations .16

Table 3-3 Conversion Sequence Length Coding .17

Table 3-4 ATD Behavior in Freeze Mode (breakpoint) .18

Table 3-5 Sample Time Select. .19

Table 3-6 Clock Prescaler Values .20

Table 3-7 Available Result Data Formats .21

Table 3-8 Left Justified, Signed and Unsigned ATD Output Codes. 22

Table 3-9 Analog Input Channel Select Coding. .22

Table 3-10 Special Channel Select Coding .25

Table 4-1 External Trigger Control Bits .32

Table 6-1 ATD_10B8C Interrupt Vectors .37
7

ATD_10B8C Block User Guide — V02.12
.

8

ATD_10B8C Block User Guide — V02.12
Section 1 Introduction

1.1 Overview

The ATD_10B8C is an 8-channel, 10-bit, multiplexed input successive approximation analog-to-digital
converter. Refer to device electrical specifications for ATD accuracy.

The block is designed to be upwards compatible with the 68HC11 standard 8-bit A/D converter. In
addition, there are new operating modes that are unique to the HC12 design.

1.2 Features

• 8/10 Bit Resolution.

• 7 µsec, 10-Bit Single Conversion Time.

• Sample Buffer Amplifier.

• Programmable Sample Time.

• Left/Right Justified, Signed/Unsigned Result Data.

• External Trigger Control.

• Conversion Completion Interrupt Generation.

• Analog Input Multiplexer for 8 Analog Input Channels.

• Analog/Digital Input Pin Multiplexing.

• 1 to 8 Conversion Sequence Lengths.

• Continuous Conversion Mode.

• Multiple Channel Scans.

1.3 Modes of Operation

1.3.1 Conversion modes

There is software programmable selection between performing single or continuous conversion on a
single channel or multiple channels.

1.3.2 MCU Operating Modes

• Stop Mode
Entering Stop Mode causes all clocks to halt and thus the system is placed in a minimum power
standby mode. This aborts any conversion sequence in progress. During recovery from Stop Mode,
there must be a minimum delay for the Stop Recovery Time tSR before initiating a new ATD
conversion sequence.
9

ATD_10B8C Block User Guide — V02.12
• Wait Mode
Entering Wait Mode the ATD conversion either continues or aborts for low power depending on
the logical value of the AWAIT bit.

• Freeze Mode
In Freeze Mode the ATD_10B8C will behave according to the logical values of the FRZ1 and FRZ0
bits. This is useful for debugging and emulation.

1.4 Block Diagram

Figure 1-1 ATD_10B8C Block Diagram

VRL

AN0 / PAD0

ATD_10B8C

Port AD Data Register

Analog
MUX

Mode and Timing Control

Successive
Approximation
Register (SAR)

Results
ATD 0
ATD 1
ATD 2
ATD 3
ATD 4
ATD 5
ATD 6
ATD 7

and DAC

AN7 / PAD7
AN6 / PAD6
AN5 / PAD5
AN4 / PAD4
AN3 / PAD3
AN2 / PAD2
AN1 / PAD1

Sample & Hold

1
1

VRH

VSSA
VDDA

Conversion
Complete Interrupt

+

-

Comparator

Clock
Prescaler

Bus Clock ATD clock

ATD Input Enable Register
10

ATD_10B8C Block User Guide — V02.12
Section 2 Signal Description

2.1 Overview

The ATD_10B8C has a total of 12 external pins.

2.2 Detailed Signal Descriptions

2.2.1 AN7 / ETRIG / PAD7

This pin serves as the analog input Channel 7. It can be configured to provide an external trigger for the
ATD conversion. It can be configured as digital port pin.

2.2.2 AN6 / PAD6

This pin serves as the analog input Channel 6. It can be configured as digital port pin.

2.2.3 AN5 / PAD5

This pin serves as the analog input Channel 5. It can be configured as digital port pin.

2.2.4 AN4 / PAD4

This pin serves as the analog input Channel 4. It can be configured as digital port pin.

2.2.5 AN3 / PAD3

This pin serves as the analog input Channel 3. It can be configured as digital port pin.

2.2.6 AN2 / PAD2

This pin serves as the analog input Channel 2. It can be configured as digital port pin.

2.2.7 AN1 / PAD1

This pin serves as the analog input Channel 1. It can be configured as digital port pin.

2.2.8 AN0 / PAD0

This pin serves as the analog input Channel 0. It can be configured as digital port pin.
11

ATD_10B8C Block User Guide — V02.12
2.2.9 VRH, VRL

VRH is the high reference voltage and VRL is the low reference voltage for ATD conversion.

2.2.10 VDDA, VSSA

These pins are the power supplies for the analog circuitry of the ATD_10B8C block.
12

ATD_10B8C Block User Guide — V02.12
Section 3 Memory Map and Register Definition

3.1 Overview

This section provides a detailed description of all registers accessible in the ATD_10B8C.

3.2 Module Memory Map

Table 3-1 gives an overview on all ATD_10B8C registers.

NOTE: Register Address = Base Address + Address Offset, where the Base Address is
defined at the MCU level and the Address Offset is defined at the module level.

Table 3-1 Module Memory Map

Address
Offset Use Access

$_00 ATD Control Register 0 (ATDCTL0)1

NOTES:
1. ATDCTL0 is intended for factory test purposes only.

R

$_01 ATD Control Register 1 (ATDCTL1)2

2. ATDCTL1 is intended for factory test purposes only.

R

$_02 ATD Control Register 2 (ATDCTL2) R/W

$_03 ATD Control Register 3 (ATDCTL3) R/W

$_04 ATD Control Register 4 (ATDCTL4) R/W

$_05 ATD Control Register 5 (ATDCTL5) R/W

$_06 ATD Status Register 0 (ATDSTAT0) R/W

$_07 Unimplemented

$_08 ATD Test Register 0 (ATDTEST0)3

3. ATDTEST0 is intended for factory test purposes only.

R

$_09 ATD Test Register 1 (ATDTEST1) R/W

$_0A Unimplemented

$_0B ATD Status Register 1 (ATDSTAT1) R

$_0C Unimplemented

$_0D ATD Input Enable Register (ATDDIEN) R/W

$_0E Unimplemented

$_0F Port Data Register (PORTAD) R

$_10, $_11 ATD Result Register 0 (ATDDR0H, ATDDR0L) R/W

$_12, $_13 ATD Result Register 1 (ATDDR1H, ATDDR1L) R/W

$_14, $_15 ATD Result Register 2 (ATDDR2H, ATDDR2L) R/W

$_16, $_17 ATD Result Register 3 (ATDDR3H, ATDDR3L) R/W

$_18, $_19 ATD Result Register 4 (ATDDR4H, ATDDR4L) R/W

$_1A, $_1B ATD Result Register 5 (ATDDR5H, ATDDR5L) R/W

$_1C, $_1D ATD Result Register 6 (ATDDR6H, ATDDR6L) R/W

$_1E, $_1F ATD Result Register 7 (ATDDR7H, ATDDR7L) R/W
13

ATD_10B8C Block User Guide — V02.12
3.3 Register Descriptions

This section describes in address order all the ATD_10B8C registers and their individual bits.

3.3.1 Reserved Register (ATDCTL0)

Figure 3-1 Reserved Register (ATDCTL0)

Read: always read $00 in normal modes

Write: unimplemented in normal modes

3.3.2 Reserved Register (ATDCTL1)

Figure 3-2 Reserved Register (ATDCTL1)

Read: always read $00 in normal modes

Write: unimplemented in normal modes

NOTE: Writing to this registers when in special modes can alter functionality.

3.3.3 ATD Control Register 2 (ATDCTL2)

This register controls power down, interrupt and external trigger. Writes to this register will abort current
conversion sequence but will not start a new sequence.

$_00

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

$_01

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
14

ATD_10B8C Block User Guide — V02.12
Figure 3-3 ATD Control Register 2 (ATDCTL2)

Read: anytime

Write: anytime

ADPU — ATD Power Up

This bit provides on/off control over the ATD_10B8C block allowing reduced MCU power
consumption. Because analog electronic is turned off when powered down, the ATD requires a
recovery time period after ADPU bit is enabled.

1 = Normal ATD functionality
0 = Power down ATD

AFFC — ATD Fast Flag Clear All
1 = Changes all ATD conversion complete flags to a fast clear sequence. Any access to a result

register will cause the associate CCF flag to clear automatically.
0 = ATD flag clearing operates normally (read the status register ATDSTAT1 before reading the

result register to clear the associate CCF flag).

AWAI — ATD Power Down in Wait Mode

When entering Wait Mode this bit provides on/off control over the ATD_10B8C block allowing
reduced MCU power. Because analog electronic is turned off when powered down, the ATD requires
a recovery time period after exit from Wait mode.

1 = Halt conversion and power down ATD during Wait mode
After exiting Wait mode with an interrupt conversion will resume. But due to the recovery time
the result of this conversion should be ignored.

0 = ATD continues to run in Wait mode

ETRIGLE — External Trigger Level/Edge Control

This bit controls the sensitivity of the external trigger signal. See Table 3-2 for details.

ETRIGP — External Trigger Polarity

This bit controls the polarity of the external trigger signal. See Table 3-2 for details.

$_02

7 6 5 4 3 2 1 0
R

ADPU AFFC AWAI ETRIGLE ETRIGP ETRIGE ASCIE
ASCIF

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
15

ATD_10B8C Block User Guide — V02.12
ETRIGE — External Trigger Mode Enable

This bit enables the external trigger on ATD channel 7. The external trigger allows to synchronize
sample and ATD conversions processes with external events.

1 = Enable external trigger
0 = Disable external trigger

NOTE: The conversion results for the external trigger ATD channel 7 have no meaning
while external trigger mode is enabled.

ASCIE — ATD Sequence Complete Interrupt Enable
1 = ATD Interrupt will be requested whenever ASCIF=1 is set.
0 = ATD Sequence Complete interrupt requests are disabled.

ASCIF — ATD Sequence Complete Interrupt Flag

If ASCIE=1 the ASCIF flag equals the SCF flag (see 3.3.7), else ASCIF reads zero. Writes have no
effect.

1 = ATD sequence complete interrupt pending
0 = No ATD interrupt occurred

3.3.4 ATD Control Register 3 (ATDCTL3)

This register controls the conversion sequence length, FIFO for results registers and behavior in Freeze
Mode. Writes to this register will abort current conversion sequence but will not start a new sequence.

Figure 3-4 ATD Control Register 3 (ATDCTL3)

Read: anytime

Write: anytime

Table 3-2 External Trigger Configurations

ETRIGLE ETRIGP External Trigger
Sensitivity

0 0 falling edge

0 1 rising edge

1 0 low level

1 1 high level

$_03

7 6 5 4 3 2 1 0
R 0

S8C S4C S2C S1C FIFO FRZ1 FRZ0
W

RESET: 0 0 1 0 0 0 0 0

= Unimplemented or Reserved
16

ATD_10B8C Block User Guide — V02.12
S8C, S4C, S2C, S1C — Conversion Sequence Length

These bits control the number of conversions per sequence. Table 3-3 shows all combinations. At
reset, S4C is set to 1 (sequence length is 4). This is to maintain software continuity to HC12 family.

FIFO — Result Register FIFO Mode

If this bit is zero (non-FIFO mode), the A/D conversion results map into the result registers based on
the conversion sequence; the result of the first conversion appears in the first result register, the second
result in the second result register, and so on.

If this bit is one (FIFO mode) the conversion counter is not reset at the beginning or ending of a
conversion sequence; sequential conversion results are placed in consecutive result registers. In a
continuously scanning conversion sequence, the result register counter will wrap around when it
reaches the end of the result register file. The conversion counter value (CC2-0 in ATDSTAT0) can
be used to determine where in the result register file, the current conversion result will be placed.
Aborting a conversion or starting a new conversion by write to an ATDCTL register (ATDCTL5-0)
clears the conversion counter even if FIFO=1. So the first result of a new conversion sequence, started
by writing to ATDCTL5, will always be place in the first result register (ATDDDR0). Intended usage
of FIFO mode is continuos conversion (SCAN=1) or triggered conversion (ETRIG=1).

Which result registers hold valid data can be tracked using the conversion complete flags. Fast flag
clear mode may or may not be useful in a particular application to track valid data.

1 = Conversion results are placed in consecutive result registers (wrap around at end).
0 = Conversion results are placed in the corresponding result register up to the selected sequence

length.

FRZ1, FRZ0 — Background Debug Freeze Enable

When debugging an application, it is useful in many cases to have the ATD pause when a breakpoint
(Freeze Mode) is encountered. These 2 bits determine how the ATD will respond to a breakpoint as
shown in Table 3-4. Leakage onto the storage node and comparator reference capacitors may
compromise the accuracy of an immediately frozen conversion depending on the length of the freeze
period.

Table 3-3 Conversion Sequence Length Coding

S8C S4C S2C S1C Number of Conversions
per Sequence

0 0 0 0 8

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 X X X 8
17

ATD_10B8C Block User Guide — V02.12
3.3.5 ATD Control Register 4 (ATDCTL4)

This register selects the conversion clock frequency, the length of the second phase of the sample time and
the resolution of the A/D conversion (i.e.: 8-bits or 10-bits). Writes to this register will abort current
conversion sequence but will not start a new sequence.

Figure 3-5 ATD Control Register 4 (ATDCTL4)

Read: anytime

Write: anytime

SRES8 — A/D Resolution Select

This bit selects the resolution of A/D conversion results as either 8 or 10 bits. The A/D converter has
an accuracy of 10 bits; however, if low resolution is required, the conversion can be speeded up by
selecting 8-bit resolution.

1 = 8 bit resolution
0 = 10 bit resolution

SMP1, SMP0 — Sample Time Select

These two bits select the length of the second phase of the sample time in units of ATD conversion
clock cycles. Note that the ATD conversion clock period is itself a function of the prescaler value (bits
PRS4-0). The sample time consists of two phases. The first phase is two ATD conversion clock cycles
long and transfers the sample quickly (via the buffer amplifier) onto the A/D machine’s storage node.
The second phase attaches the external analog signal directly to the storage node for final charging and
high accuracy. Table 3-5 lists the lengths available for the second sample phase.

Table 3-4 ATD Behavior in Freeze Mode (breakpoint)

FRZ1 FRZ0 Behavior in Freeze mode
0 0 Continue conversion

0 1 Reserved

1 0 Finish current conversion, then freeze

1 1 Freeze Immediately

$_04

7 6 5 4 3 2 1 0
R

SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0
W

RESET: 0 0 0 0 0 1 0 1

= Unimplemented or Reserved
18

ATD_10B8C Block User Guide — V02.12
PRS4, PRS3, PRS2, PRS1, PRS0 — ATD Clock Prescaler

These 5 bits are the binary value prescaler value PRS. The ATD conversion clock frequency is calculated
as follows:

Note that the maximum ATD conversion clock frequency is half the Bus Clock. The default (after reset)
prescaler value is 5 which results in a default ATD conversion clock frequency that is Bus Clock divided
by 12. Table 3-6 illustrates the divide-by operation and the appropriate range of the Bus Clock.

Table 3-5 Sample Time Select

SMP1 SMP0 Length of 2nd phase of sample time
0 0 2 A/D conversion clock periods

0 1 4 A/D conversion clock periods

1 0 8 A/D conversion clock periods

1 1 16 A/D conversion clock periods

ATDclock
BusClock[]
PRS 1+[]-------------------------------- 0.5×=
19

ATD_10B8C Block User Guide — V02.12
NOTE:

1. Maximum ATD conversion clock frequency is 2MHz. The maximum allowed Bus Clock frequency is shown in this column.
2. Minimum ATD conversion clock frequency is 500KHz. The minimum allowed Bus Clock frequency is shown in this column.

3.3.6 ATD Control Register 5 (ATDCTL5)

This register selects the type of conversion sequence and the analog input channels sampled. Writes to this
register will abort current conversion sequence and start a new conversion sequence.

Table 3-6 Clock Prescaler Values

Prescale Value Total Divisor
 Value Max. Bus Clock1 Min. Bus Clock2

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

divide by 2
divide by 4
divide by 6
divide by 8
divide by 10
divide by 12
divide by 14
divide by 16
divide by 18
divide by 20
divide by 22
divide by 24
divide by 26
divide by 28
divide by 30
divide by 32
divide by 34
divide by 36
divide by 38
divide by 40
divide by 42
divide by 44
divide by 46
divide by 48
divide by 50
divide by 52
divide by 54
divide by 56
divide by 58
divide by 60
divide by 62
divide by 64

4 MHz
8 MHz

12 MHz
16 MHz
20 MHz
24 MHz
28 MHz
32 MHz
36 MHz
40 MHz
44 MHz
48 MHz
52 MHz
56 MHz
60 MHz
64 MHz
68 MHz
72 MHz
76 MHz
80 MHz
84 MHz
88 MHz
92 MHz
96 MHz
100 MHz
104 MHz
108 MHz
112 MHz
116 MHz
120 MHz
124 MHz
128 MHz

1 MHz
2 MHz
3 MHz
4 MHz
5 MHz
6 MHz
7 MHz
8 MHz
9 MHz
10 MHz
11 MHz
12 MHz
13 MHz
14 MHz
15 MHz
16 MHz
17 MHz
18 MHz
19 MHz
20 MHz
21 MHz
22 MHz
23 MHz
24 MHz
25 MHz
26 MHz
27 MHz
28 MHz
29 MHz
30 MHz
31 MHz
32 MHz
20

ATD_10B8C Block User Guide — V02.12
Figure 3-6 ATD Control Register 5 (ATDCTL5)

Read: anytime

Write: anytime

DJM — Result Register Data Justification

This bit controls justification of conversion data in the result registers. See 3.3.13 ATD Conversion
Result Registers (ATDDRHx/ATDDRLx) for details.

1 = Right justified data in the result registers
0 = Left justified data in the result registers

DSGN — Result Register Data Signed or Unsigned Representation

This bit selects between signed and unsigned conversion data representation in the result registers.
Signed data is represented as 2’s complement. Signed data is not available in right justification. See
3.3.13 ATD Conversion Result Registers (ATDDRHx/ATDDRLx) for details.

1 = Signed data representation in the result registers
0 = Unsigned data representation in the result registers

Table 3-7 summarizes the result data formats available and how they are set up using the control bits.

Table 3-8 illustrates the difference between the signed and unsigned, left justified output codes for an
input signal range between 0 and 5.12 Volts.

$_05

7 6 5 4 3 2 1 0
R

DJM DSGN SCAN MULT
0

CC CB CA
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-7 Available Result Data Formats

SRES8 DJM DSGN Result Data Formats
Description and Bus Bit Mapping

1
1
1
0
0
0

0
0
1
0
0
1

0
1
X
0
1
X

8-bit / left justified / unsigned - bits 8-15
8-bit / left justified / signed - bits 8-15

8-bit / right justified / unsigned - bits 0-7
10-bit / left justified / unsigned - bits 6-15
10-bit / left justified / signed - bits 6-15

10-bit / right justified / unsigned - bits 0-9
21

ATD_10B8C Block User Guide — V02.12
SCAN — Continuous Conversion Sequence Mode

This bit selects whether conversion sequences are performed continuously or only once.
1 = Continuous conversion sequences (scan mode)
0 = Single conversion sequence

MULT — Multi-Channel Sample Mode

When MULT is 0, the ATD sequence controller samples only from the specified analog input channel
for an entire conversion sequence. The analog channel is selected by channel selection code (control
bits CC/CB/CA located in ATDCTL5). When MULT is 1, the ATD sequence controller samples
across channels. The number of channels sampled is determined by the sequence length value (S8C,
S4C, S2C, S1C). The first analog channel examined is determined by channel selection code (CC, CB,
CA control bits); subsequent channels sampled in the sequence are determined by incrementing the
channel selection code.

1 = Sample across several channels
0 = Sample only one channel

CC, CB, CA — Analog Input Channel Select Code

These bits select the analog input channel(s) whose signals are sampled and converted to digital codes.
Table 3-9 lists the coding used to select the various analog input channels. In the case of single
channel scans (MULT=0), this selection code specified the channel examined. In the case of
multi-channel scans (MULT=1), this selection code represents the first channel to be examined in the
conversion sequence. Subsequent channels are determined by incrementing channel selection code;
selection codes that reach the maximum value wrap around to the minimum value.

Table 3-8 Left Justified, Signed and Unsigned ATD Output Codes.

Input Signal
Vrl = 0 Volts

Vrh = 5.12 Volts

Signed
8-Bit

 Codes

Unsigned
8-Bit

 Codes

Signed
10-Bit
Codes

Unsigned
10-Bit
Codes

5.120 Volts
5.100
5.080

2.580
2.560
2.540

0.020
0.000

7F
7F
7E

01
00
FF

81
80

FF
FF
FE

81
80
7F

01
00

7FC0
7F00
7E00

0100
0000
FF00

8100
8000

FFC0
FF00
FE00

8100
8000
7F00

0100
0000

Table 3-9 Analog Input Channel Select Coding

CC CB CA Analog Input
Channel

0 0 0 AN0

0 0 1 AN1

0 1 0 AN2

0 1 1 AN3
22

ATD_10B8C Block User Guide — V02.12
3.3.7 ATD Status Register 0 (ATDSTAT0)

This read-only register contains the Sequence Complete Flag, overrun flags for external trigger and FIFO
mode, and the conversion counter.

Figure 3-7 ATD Status Register 0 (ATDSTAT0)

Read: anytime

Write: anytime (No effect on (CC2, CC1, CC0))

SCF — Sequence Complete Flag

This flag is set upon completion of a conversion sequence. If conversion sequences are continuously
performed (SCAN=1), the flag is set after each one is completed. This flag is cleared when one of the
following occurs:
A) Write “1” to SCF
B) Write to ATDCTL5 (a new conversion sequence is started)
C) If AFFC=1 and read of a result register

1 = Conversion sequence has completed
0 = Conversion sequence not completed

ETORF — External Trigger Overrun Flag

While in edge trigger mode (ETRIGLE=0), if additional active edges are detected while a conversion
sequence is in process the overrun flag is set. This flag is cleared when one of the following occurs:
A) Write “1” to ETORF
B) Write to ATDCTL2, ATDCTL3 or ATDCTL4 (a conversion sequence is aborted)
C) Write to ATDCTL5 (a new conversion sequence is started)

1 = External trigger over run error has occurred

1 0 0 AN4

1 0 1 AN5

1 1 0 AN6

1 1 1 AN7

$_06

7 6 5 4 3 2 1 0
R

SCF
0

ETORF FIFOR
0 CC2 CC1 CC0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-9 Analog Input Channel Select Coding

CC CB CA Analog Input
Channel
23

ATD_10B8C Block User Guide — V02.12
0 = No External trigger over run error has occurred

FIFOR - FIFO Over Run Flag.

This bit indicates that a result register has been written to before its associated conversion complete
flag (CCF) has been cleared. This flag is most useful when using the FIFO mode because the flag
potentially indicates that result registers are out of sync with the input channels. However, it is also
practical for non-FIFO modes, and indicates that a result register has been over written before it has
been read (i.e. the old data has been lost). This flag is cleared when one of the following occurs:
A) Write “1” to FIFOR
B) Start a new conversion sequence (write to ATDCTL5 or external trigger)

1 = An over run condition exists
0 = No over run has occurred

CC2, CC1, CC0 — Conversion Counter

These 3 read-only bits are the binary value of the conversion counter. The conversion counter points
to the result register that will receive the result of the current conversion. E.g. CC2=1, CC1=1, CC0=0
indicates that the result of the current conversion will be in ATD Result Register 6. If in non-FIFO
mode (FIFO=0) the conversion counter is initialized to zero at the begin and end of the conversion
sequence. If in FIFO mode (FIFO=1) the register counter is not initialized. The conversion counters
wraps around when its maximum value is reached.
Aborting a conversion or starting a new conversion by write to an ATDCTL register (ATDCTL5-0)
clears the conversion counter even if FIFO=1.

3.3.8 Reserved Register (ATDTEST0)

Figure 3-8 Reserved Register (ATDTEST0)

Read: anytime, returns unpredictable values

Write: anytime in special modes, unimplemented in normal modes

NOTE: Writing to this registers when in special modes can alter functionality.

3.3.9 ATD Test Register 1 (ATDTEST1)

This register contains the SC bit used to enable special channel conversions.

$_08

7 6 5 4 3 2 1 0
R U U U U U U U U
W

RESET: 1 0 0 0 0 0 0 0

= Unimplemented or Reserved
24

ATD_10B8C Block User Guide — V02.12
Figure 3-9 ATD Test Register 1 (ATDTEST1)

Read: anytime, returns unpredictable values for Bit7 and Bit6

Write: anytime

SC - Special Channel Conversion Bit

If this bit is set, then special channel conversion can be selected using CC, CB and CA of ATDCTL5.
Table 3-10 lists the coding.

1 = Special channel conversions enabled
0 = Special channel conversions disabled

NOTE: Always write remaining bits of ATDTEST1 (Bit7 to Bit1) zero when writing SC bit.
Not doing so might result in unpredictable ATD behavior.

3.3.10 ATD Status Register 1 (ATDSTAT1)

This read-only register contains the Conversion Complete Flags.

$_09

7 6 5 4 3 2 1 0
R U U 0 0 0 0 0

SC
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-10 Special Channel Select Coding

SC CC CB CA Analog Input
Channel

1 0 X X Reserved

1 1 0 0 VRH

1 1 0 1 VRL

1 1 1 0 (VRH+VRL) / 2

1 1 1 1 Reserved
25

ATD_10B8C Block User Guide — V02.12
Figure 3-10 ATD Status Register 1 (ATDSTAT1)

Read: anytime

Write: anytime, no effect

CCFx — Conversion Complete Flag x (x=7,6,5,4,3,2,1,0)

A conversion complete flag is set at the end of each conversion in a conversion sequence. The flags
are associated with the conversion position in a sequence (and also the result register number).
Therefore, CCF0 is set when the first conversion in a sequence is complete and the result is available
in result register ATDDR0; CCF1 is set when the second conversion in a sequence is complete and the
result is available in ATDDR1, and so forth. A flag CCFx (x=7,6,5,4,3,2,1,0) is cleared when one of
the following occurs:
A) Write to ATDCTL5 (a new conversion sequence is started)
B) If AFFC=0 and read of ATDSTAT1 followed by read of result register ATDDRx
C) If AFFC=1 and read of result register ATDDRx

1 = Conversion number x has completed, result ready in ATDDRx
0 = Conversion number x not completed

3.3.11 ATD Input Enable Register (ATDDIEN)

Figure 3-11 ATD Input Enable Register (ATDDIEN)

Read: anytime

Write: anytime

IENx — ATD Digital Input Enable on channel x (x= 7, 6, 5, 4, 3, 2, 1, 0)

This bit controls the digital input buffer from the analog input pin (ANx) to PTADx data register.
1 = Enable digital input buffer to PTADx.

$_0B

7 6 5 4 3 2 1 0
R CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

$_0D

7 6 5 4 3 2 1 0
R

IEN7 IEN6 IEN5 IEN4 IEN3 IEN2 IEN1 IEN0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
26

ATD_10B8C Block User Guide — V02.12
0 = Disable digital input buffer to PTADx

NOTE: Setting this bit will enable the corresponding digital input buffer continuously. If
this bit is set while simultaneously using it as an analog port, there is potentially
increased power consumption because the digital input buffer maybe in the linear
region.

3.3.12 Port Data Register (PORTAD)

The digital port pins are shared with the analog A/D inputs AN7-0.

Figure 3-12 Port Data Register (PORTAD)

Read: anytime

Write: anytime, no effect

PTADx — A/D Channel x (ANx) Digital Input (x= 7,6,5,4,3,2,1,0)

If the digital input buffer on the ANx pin is enabled (IENx=1) read returns the logic level on ANx pin
(signal potentials not meeting VIL or VIH specifications will have an indeterminate value)).

If the digital input buffers are disabled (IENx=0), read returns a “1”.

Reset sets all PORTAD bits to “1”.

3.3.13 ATD Conversion Result Registers (ATDDRHx/ATDDRLx)

The A/D conversion results are stored in 8 read-only result registers ATDDRHx/ATDDRLx. The result
data is formatted in the result registers based on two criteria. First there is left and right justification; this
selection is made using the DJM control bit in ATDCTL5. Second there is signed and unsigned data; this
selection is made using the DSGN control bit in ATDCTL5. Signed data is stored in 2’s complement
format and only exists in left justified format. Signed data selected for right justified format is ignored.

Read: anytime

Write: anytime, no effect in normal modes

$_0F

7 6 5 4 3 2 1 0
R PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0
W

RESET: 1 1 1 1 1 1 1 1
Pin

Func-
tion

AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0

= Unimplemented or Reserved
27

ATD_10B8C Block User Guide — V02.12
3.3.13.1 Left Justified Result Data

Figure 3-13 Left Justified, ATD Conversion Result Register, High Byte (ATDDRxH)

Figure 3-14 Left Justified, ATD Conversion Result Register, Low Byte (ATDDRxL)

3.3.13.2 Right Justified Result Data

Figure 3-15 Right Justified, ATD Conversion Result Register, High Byte (ATDDRxH)

$_10 = ATDDR0H, $_12 = ATDDR1H, $_14 = ATDDR2H, $_16 = ATDDR3H
$_18 = ATDDR4H, $_1A = ATDDR5H, $_1C = ATDDR6H, $_1E = ATDDR7H

7 6 5 4 3 2 1 0
R BIT 9 MSB

BIT 7 MSB
BIT 8
BIT 6

BIT 7
BIT 5

BIT 6
BIT 4

BIT 5
BIT 3

BIT 4
BIT 2

BIT 3
BIT 1

BIT 2
BIT 0

10-bit data
8-bit dataW

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

$_11 = ATDDR0L, $_13 = ATDDR1L, $_15 = ATDDR2L, $_17 = ATDDR3L
$_19 = ATDDR4L, $_1B = ATDDR5L, $_1D = ATDDR6L, $_1F = ATDDR7L

7 6 5 4 3 2 1 0
R BIT 1

U
BIT 0

U
0
0

0
0

0
0

0
0

0
0

0
0

10-bit data
8-bit dataW

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

$_10 = ATDDR0H, $_12 = ATDDR1H, $_14 = ATDDR2H, $_16 = ATDDR3H
$_18 = ATDDR4H, $_1A = ATDDR5H, $_1C = ATDDR6H, $_1E = ATDDR7H

7 6 5 4 3 2 1 0
R 0

0
0
0

0
0

0
0

0
0

0
0

BIT 9 MSB
0

BIT 8
0

10-bit data
8-bit dataW

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
28

ATD_10B8C Block User Guide — V02.12
Figure 3-16 Right Justified, ATD Conversion Result Register, Low Byte (ATDDRxL)

$_11 = ATDDR0L, $_13 = ATDDR1L, $_15 = ATDDR2L, $_17 = ATDDR3L
$_19 = ATDDR4L, $_1B = ATDDR5L, $_1D = ATDDR6L, $_1F = ATDDR7L

7 6 5 4 3 2 1 0
R BIT 7

BIT 7 MSB
BIT 6
BIT 6

BIT 5
BIT 5

BIT 4
BIT 4

BIT 3
BIT 3

BIT 2
BIT 2

BIT 1
BIT 1

BIT 0
BIT 0

10-bit data
8-bit dataW

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
29

ATD_10B8C Block User Guide — V02.12
30

ATD_10B8C Block User Guide — V02.12
Section 4 Functional Description

4.1 General

The ATD_10B8C is structured in an analog and a digital sub-block.

4.2 Analog Sub-block

The analog sub-block contains all analog electronics required to perform a single conversion. Separate
power supplies VDDA and VSSA allow to isolate noise of other MCU circuitry from the analog sub-block.

4.2.1 Sample and Hold Machine

The Sample and Hold (S/H) Machine accepts analog signals from the external surroundings and stores
them as capacitor charge on a storage node.

The sample process uses a two stage approach. During the first stage, the sample amplifier is used to
quickly charge the storage node.The second stage connects the input directly to the storage node to
complete the sample for high accuracy.

When not sampling, the sample and hold machine disables its own clocks. The analog electronics still draw
their quiescent current. The power down (ADPU) bit must be set to disable both the digital clocks and the
analog power consumption.

The input analog signals are unipolar and must fall within the potential range of VSSA to VDDA.

4.2.2 Analog Input Multiplexer

The analog input multiplexer connects one of the 8 external analog input channels to the sample and hold
machine.

4.2.3 Sample Buffer Amplifier

The sample amplifier is used to buffer the input analog signal so that the storage node can be quickly
charged to the sample potential.

4.2.4 Analog-to-Digital (A/D) Machine

The A/D Machine performs analog to digital conversions. The resolution is program selectable at either 8
or 10 bits. The A/D machine uses a successive approximation architecture. It functions by comparing the
stored analog sample potential with a series of digitally generated analog potentials. By following a binary
search algorithm, the A/D machine locates the approximating potential that is nearest to the sampled
potential.
31

ATD_10B8C Block User Guide — V02.12
When not converting the A/D machine disables its own clocks. The analog electronics still draws
quiescent current. The power down (ADPU) bit must be set to disable both the digital clocks and the
analog power consumption.

Only analog input signals within the potential range of VRL to VRH (A/D reference potentials) will result
in a non-railed digital output codes.

4.3 Digital Sub-block

This subsection explains some of the digital features in more detail. See register descriptions for all details.

4.3.1 External Trigger Input (ETRIG)

The external trigger feature allows the user to synchronize ATD conversions to the external environment
events rather than relying on software to signal the ATD module when ATD conversions are to take place.
The input signal (ATD channel 7) is programmable to be edge or level sensitive with polarity control.
Table 4-1 gives a brief description of the different combinations of control bits and their affect on the
external trigger function.

During a conversion, if additional active edges are detected the overrun error flag ETORF is set.

In either level or edge triggered modes, the first conversion begins when the trigger is received. In both
cases, the maximum latency time is one Bus Clock cycle plus any skew or delay introduced by the trigger
circuitry.

NOTE: The conversion results for the external trigger ATD channel 7 have no meaning
while external trigger mode is enabled.

Table 4-1 External Trigger Control Bits

ETRIGLE ETRIGP ETRIGE SCAN Description

X X 0 0
Ignores external trigger. Performs one
conversion sequence and stops.

X X 0 1
Ignores external trigger. Performs
continuous conversion sequences.

0 0 1 X
Falling edge triggered. Performs one
conversion sequence per trigger.

0 1 1 X
Rising edge triggered. Performs one
conversion sequence per trigger.

1 0 1 X
Trigger active low. Performs
continuous conversions while trigger
is active.

1 1 1 X
Trigger active high. Performs
continuous conversions while trigger
is active.
32

ATD_10B8C Block User Guide — V02.12
Once ETRIGE is enabled, conversions cannot be started by a write to ATDCTL5, but rather must be
triggered externally.

If the level mode is active and the external trigger both de-asserts and re-asserts itself during a conversion
sequence, this does not constitute an overrun; therefore, the flag is not set. If the trigger is left asserted in
level mode while a sequence is completing, another sequence will be triggered immediately.

4.3.2 General Purpose Digital Input Port Operation

The input channel pins can be multiplexed between analog and digital data. As analog inputs, they are
multiplexed and sampled to supply signals to the A/D converter. As digital inputs, they supply external
input data that can be accessed through the digital port register PORTAD (input-only).

The analog/digital multiplex operation is performed in the input pads. The input pad is always connected
to the analog inputs of the ATD_10B8C. The input pad signal is buffered to the digital port registers. This
buffer can be turned on or off with the ATDDIEN register. This is important so that the buffer does not
draw excess current when analog potentials are presented at its input.

4.3.3 Low Power Modes

The ATD_10B8C can be configured for lower MCU power consumption in 3 different ways:

• Stop Mode: This halts A/D conversion. Exit from Stop mode will resume A/D conversion, But due
to the recovery time the result of this conversion should be ignored.

• Wait Mode with AWAI=1: This halts A/D conversion. Exit from Wait mode will resume A/D
conversion, but due to the recovery time the result of this conversion should be ignored.

• Writing ADPU=0 (Note that all ATD registers remain accessible.): This aborts any A/D conversion
in progress.

Note that the reset value for the ADPU bit is zero. Therefore, when this module is reset, it is reset into the
power down state.
33

ATD_10B8C Block User Guide — V02.12
34

ATD_10B8C Block User Guide — V02.12
Section 5 Resets

5.1 General

At reset the ATD_10B8C is in a power down state. The reset state of each individual bit is listed within
the Register Description section (see Section 3 Memory Map and Register Definition) which details the
registers and their bit-field.
35

ATD_10B8C Block User Guide — V02.12
36

ATD_10B8C Block User Guide — V02.12
Section 6 Interrupts

6.1 General

The interrupt requested by the ATD_10B8C is listed in Table 6-1. Refer to MCU specification for related
vector address and priority.

See register descriptions for further details.

Table 6-1 ATD_10B8C Interrupt Vectors

Interrupt Source CCR
Mask Local Enable

Sequence Complete
Interrupt

I bit ASCIE in ATDCTL2
37

ATD_10B8C Block User Guide — V02.12
38

ATD_10B8C Block User Guide — V02.12
User Guide End Sheet
39

ATD_10B8C Block User Guide — V02.12
FINAL PAGE OF
40

PAGES
40

DOCUMENT NUMBER
S12BDLC_BG
BDLC

Block Guide

V01.03

Original Release Date:19 JAN 2001
Revised: July 19, 2001

Motorola, Inc
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

Block Guide — S12BDLC_BG V01.03
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

V01.00 04/20/2001 01/19/2001 Original Release

V01.01 06/12/2001 06/13/2001
Corrected formal issues w/paragraph formats, cross
references and master pages.

V01.02 06/13/2001 06/14/2001

Removed references to internal signals
Moved initialization chap. in ’RESETS’ to functional descrip
Removed redundant references in the Interrupts section
Updated the Interrupts table
Changed some explanations to bullets

V01.03 07/19/2001
Document names have been added
Names and Variable defenitions have been hidden
2

Block Guide — S12BDLC_BG V01.03
Table of Contents

Section 1 Introduction

1.1 Overview. .11

1.2 Features .11

1.3 Modes of Operation .11

1.4 Block Diagram .16

Section 2 Signal Description

2.1 Overview. .19

2.2 Detailed Signal Descriptions. .19

2.2.1 TXB - BDLC Transmit Pin .19

2.2.2 RXB - BDLC Receive Pin. .19

Section 3 Memory Map and Registers

3.1 Overview. .21

3.2 Module Memory Map .21

3.3 Register Descriptions .21

3.3.1 BDLC Control Register 1 (DLCBCR1) .21

3.3.2 BDLC State Vector Register (DLCBSVR) .23

3.3.3 BDLC Control Register 2 (DLCBCR2) .25

3.3.4 BDLC Data Register (DLCBDR) .31

3.3.5 BDLC Analog Round Trip Delay Register (DLCBARD) .32

3.3.6 BDLC Rate Select Register (DLCBRSR) .33

3.3.7 BDLC Control Register (DLCSCR) .35

3.3.8 BDLC Status Register (DLCBSTAT) .35

Section 4 Functional Description

4.1 General. .37

4.1.1 J1850 Frame Format .37

4.1.2 J1850 VPW Symbols .39

4.1.3 J1850 VPW Valid/Invalid Bits & Symbols. .41

4.1.4 J1850 Bus Errors .50

4.2 Mux Interface .53

4.2.1 Mux Interface - Rx Digital Filter .53
3

Block Guide — S12BDLC_BG V01.03
4.3 Protocol Handler. .55

4.3.1 Protocol Architecture .55

4.4 Transmitting A Message .58

4.4.1 BDLC Transmission Control Bits .58

4.4.2 Transmitting Exceptions. .60

4.4.3 Aborting a Transmission .61

4.5 Receiving A Message .62

4.5.1 BDLC Reception Control Bits. .63

4.5.2 Receiving a Message with the BDLC module .63

4.5.3 Filtering Received Messages .64

4.5.4 Receiving Exceptions. .64

4.6 Transmitting An In-Frame Response (IFR) .67

4.6.1 IFR Types Supported by the BDLC module. .67

4.6.2 BDLC IFR Transmit Control Bits .68

4.6.3 Transmit Single Byte IFR .69

4.6.4 Transmit Multi-Byte IFR 1 .69

4.6.5 Transmit Multi-Byte IFR 0 .70

4.6.6 Transmitting An IFR with the BDLC module .70

4.6.7 Transmitting IFR Exceptions .76

4.7 Receiving An In-Frame Response (IFR) .78

4.7.1 Receiving an IFR with the BDLC module. .78

4.7.2 Receiving IFR Exceptions .79

4.8 Special BDLC Module Operations .80

4.8.1 Transmitting Or Receiving A Block Mode Message. .80

4.8.2 Receiving A Message In 4X Mode .80

4.9 BDLC Module Initialization .81

4.9.1 Initialization Sequence .82

4.9.2 Initializing the Configuration Bits .82

4.9.3 Exiting Loopback Mode and Enabling the BDLC module .83

4.9.4 Enabling BDLC Interrupts .83

Section 5 Resets

5.1 General. .87

Section 6 Interrupts

6.1 General. .89
4

Block Guide — S12BDLC_BG V01.03
Appendix A Electrical Specifications
5

Block Guide — S12BDLC_BG V01.03
6

Block Guide — S12BDLC_BG V01.03
List of Tables

Table 3-1 Module Memory Map .21

Table 3-2 Interrupt Summary .23

Table 3-3 Transmit In-Frame Response Control Bit Priority Encoding 27

Table 3-4 BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment 33

Table 3-5 BDLC Rate Selection for Binary Frequencies [CLKS = 1]34

Table 3-6 BDLC Rate Selection for Integer Frequencies [CLKS = 0] 35

Table 4-1 BDLC Transmitter VPW Symbol Timing for Integer Frequencies 42

Table 4-2 BDLC Transmitter VPW Symbol Timing for Binary Frequencies43

Table 4-3 BDLC Receiver VPW Symbol Timing for Integer Frequencies 43

Table 4-4 BDLC Receiver VPW Symbol Timing for Binary Frequencies44

Table 4-5 BDLC Receiver VPW 4X Symbol Timing for Integer Frequencies.44

Table 4-6 BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies44

Table 4-7 BDLC module J1850 Error Summary .52

Table 4-8 IFR Control Bit Priority Encoding .69

Table 6-1 Interrupt Summary .89
7

Block Guide — S12BDLC_BG V01.03
8

Block Guide — S12BDLC_BG V01.03
List of Figures

Figure 1-1 BDLC Operating Modes State Diagram. .12

Figure 1-2 BDLC Block Diagram. .16

Figure 3-1 BDLC Control Register 1 .21

Figure 3-2 BDLC State Vector Register .23

Figure 3-3 BDLC Control Register 2 .25

Figure 3-4 Types of In-Frame Response .28

Figure 3-5 BDLC Data Register .31

Figure 3-6 BDLC Analog Round Trip Delay Register .32

Figure 3-7 BDLC Rate Select Register .34

Figure 3-8 BDLC Control Register .35

Figure 3-9 BDLC Status Register .36

Figure 4-1 J1850 Bus Message Format (VPW) .37

Figure 4-2 J1850 VPW Symbols .40

Figure 4-3 J1850 VPW Passive Symbols .46

Figure 4-4 J1850 VPW EOF and IFS Symbols .47

Figure 4-5 J1850 VPW Active Symbols .48

Figure 4-6 J1850 VPW BREAK Symbol .49

Figure 4-7 J1850 VPW Bitwise Arbitrations .50

Figure 4-8 BDLC Module Rx Digital Filter Block Diagram. .54

Figure 4-9 BDLC Protocol Handler Outline .56

Figure 4-10 Basic BDLC Transmit Flowchart .62

Figure 4-11 Basic BDLC Receive Flowchart. .66

Figure 4-12 Transmitting A Type 1 IFR. .72

Figure 4-13 Transmitting A Type 2 IFR. .74

Figure 4-14 Transmitting A Type 3 IFR. .77

Figure 4-15 Receiving An IFR With the BDLC module .79

Figure 4-16 Basic BDLC Module Transmit Flowchart .81

Figure 4-17 Basic BDLC Module Initialization Flowchart .85
9

Block Guide — S12BDLC_BG V01.03
10

Block Guide — S12BDLC_BG V01.03

sages

rforms

50
ork

ledge
 to the

le for

, and
Section 1 Introduction

1.1 Overview

The BDLC module is a serial communication module which allows the user to send and receive mes
across a Society of Automotive Engineers (SAE) J1850 serial communication network. The user’s
software handles each transmitted or received message on a byte-by-byte basis, while the BDLC pe
all of the network access, arbitration, message framing and error detection duties.

It is recommended that the reader be familiar with the operation and requirements of the SAE J18
protocol as described in the document “SAE Standard J1850 Class B Data Communications Netw
Interface” prior to proceeding with this specification.

The BDLC module is designed in a modular structure for use as an IP block. A general working know
of the IP Bus signals and bus control is assumed in the writing of this document. For details, refer
SRS IP Bus specifications.

1.2 Features

Features of the BDLC module include the following:

• SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatib
Low-Speed (≤ 125 Kbps) Serial Data Communications in Automotive Applications

• 10.4 Kbps Variable Pulse Width (VPW) Bit Format

• Digital Noise Filter

• Digital Loopback Mode

• 4X Receive Mode, 41.6 Kbps, Supported

• Block Mode Receive and Transmit Supported

• Collision Detection

• Hardware Cyclical Redundancy Check (CRC) Generation and Checking

• Dedicated Register for Symbol Timing Adjustments

• IP Bus Interface

• In-Frame Response (IFR) Types 0, 1, 2, and 3 Supported

• Power-Saving Stop and Wait Modes with Automatic Wakeup on Network Activity

• Polling and CPU Interrupt Generation with Vector Lookup Available

1.3 Modes of Operation

• The BDLC module has 6 main modes of operation which interact with the power supplies, pins
the rest of the MCU as shown below.
11

Block Guide — S12BDLC_BG V01.03

g

 V
Figure 1-1 BDLC Operating Modes State Diagram

• Power Off

This mode is entered from the Reset mode whenever the BDLC module supply voltage Vdddrops
below its minimum specified value for the BDLC module to guarantee operation. The BDLC
module will be placed in the Reset mode by a system Low Voltage Reset (LVR) before bein
powered down. In this mode, the pin input and output specifications are not guaranteed.

• Reset

This mode is entered from the Power Off mode whenever the BDLC module supply voltagedd
rises above its minimum specified value (Vdd(MIN)) and some MCU reset source is asserted. To
prevent the BDLC from entering an unknown state, the internal MCU reset is asserted while

Vdd > Vdd(Min.) and

Power Off

Reset

BDLC Stop

Run

Vdd ≤ Vdd(Min.)

STOP instruction or

(from any mode)

BDLC Wait

Network activity or

(WAIT instruction and WCM=1)
(WAIT instruction and WCM=0)

Any MCU reset source asserted No MCU reset source asserted

Any MCU reset source asserted

Network activity or
other MCU wake-up other MCU wake-up

BDLCE set in DLCSCR register

BDLC

BDLCE cleared in DLCSCR register

Disabled
12

Block Guide — S12BDLC_BG V01.03

on as

ck is
eset

d. It is

re left

ister
some

MCU
locks

U
red.
ork
f the
rity

un.
m
e
r of
de

U
 the
y

an
powering up the BDLC module. BDLC Reset mode is also entered from any other mode as so
one of the MCU’s possible reset sources (e.g. LVR, POR, COP watchdog, Reset pin etc.) is
asserted.

In this mode, the internal BDLC module voltage references are operative, Vdd is supplied to the
internal circuits, which are held in their reset state and the internal BDLC module system clo
running. Registers will assume their reset condition. Outputs are held in their programmed R
state, inputs and network activity are ignored.

• BDLC Disabled

This mode is entered from the Reset mode after all MCU reset sources are no longer asserte
entered from the Run mode whenever the BDLCE bit in the DLCSCR register is cleared.

In this mode the mux interface clock (fbdlc) is stopped to conserve power and allow the BDLC
module to be configured for proper operation on the J1850 bus. The IP bus interface clocks a
running in this mode to allow access to all BDLC module registers for initialization.

• Run

This mode is entered from the BDLC Disabled mode when the BDLCE bit in the DLCSCR reg
is set. It is entered from the BDLC Wait mode whenever activity is sensed on the J1850 bus or
other MCU source wakes the CPU out of Wait mode.

It is entered from the BDLC Stop mode whenever network activity is sensed or some other
source wakes the CPU out of Stop mode. Messages will not be received properly until the c
have stabilized and the CPU is also in the Run mode.

• BDLC Wait (Core Specific)

This power conserving mode is automatically entered from the Run mode whenever the CP
executes a WAIT instruction and if the WCM bit in the DLCBCR1 register is previously clea
In this mode, the BDLC module internal clocks continue to run. Any activity on the J1850 netw
will cause the BDLC module to exit BDLC Wait mode and generate an unmaskable interrupt o
CPU. This wakeup interrupt state is reflected in the DLCBSVR, encoded as the highest prio
interrupt. This interrupt can be cleared by the CPU with a read of the DLCBSVR.

– Wakeup from BDLC Wait with CPU in WAIT

If the CPU executes the WAIT instruction and the BDLC module enters the WAIT mode
(WCM = 0), the clocks to the BDLC module as well as the clocks in the MCU continue to r
Therefore, the message which wakes up the BDLC module from WAIT and the CPU fro
WAIT mode will also be received correctly by the BDLC module. This is because all of th
required clocks continue to run in the BDLC module in WAIT mode.The wakeup behavio
the BDLC module applies regardless of whether the BDLC module is in normal or 4X mo
when the WAIT instruction is executed.

• BDLC Stop (Core Specific)

This power conserving mode is automatically entered from the Run mode whenever the CP
executes a STOP instruction, or if the CPU executes a WAIT instruction and the WCM bit in
DLCBCR1 register is previously set. In this mode, the BDLC internal clocks are stopped. An
activity on the network will cause the BDLC module to exit BDLC Stop mode and generate
13

Block Guide — S12BDLC_BG V01.03

ad of
e the
PU)
low.

when

 the
and
e
the

CM
un.
AIT

ired
curs.

ault
ding
from
tput
sive

3.3

LC
r write
s in
unmaskable interrupt of the CPU. This wakeup interrupt state is reflected in the DLCBSVR,
encoded as the highest priority interrupt. This interrupt can be cleared by the CPU with a re
the DLCBSVR. Depending upon which low-power mode instruction the CPU executes to caus
BDLC module to enter BDLC Stop, the message which wakes up the BDLC module (and the C
may or may not be received. There are two different possibilities, both of which is described be
These descriptions apply regardless of whether the BDLC module is in normal or 4X mode
the STOP or WAIT instruction is executed.

– Wakeup from BDLC Stop with CPU in STOP

When the CPU executes the STOP instruction, all clocks in the MCU, including clocks to
BDLC module, are turned off. Therefore, the message which wakes up the BDLC module
the CPU from STOP mode will not be received. This is due primarily to the amount of tim
required for the MCU’s oscillator to stabilize before the clocks can be applied internally to
other MCU modules, including the BDLC module.

– Wakeup from BDLC Stop with CPU in WAIT

If the CPU executes the WAIT instruction and the BDLC module enters the Stop mode (W
= 1), the clocks to the BDLC module are turned off, but the clocks in the MCU continue to r
Therefore, the message which wakes up the BDLC module from Stop and the CPU from W
mode will be received correctly by the BDLC module. This is because very little time is requ
for the CPU to turn the clocks to the BDLC module back on once the wakeup interrupt oc

NOTE: While the BDLC module will correctly receive a message which arrives when the
BDLC module is in Stop mode or Wait mode and the MCU is in WAIT mode, if the
user enters this mode while a message is being received, the data in the message
will become corrupted. This is due to the steps required for the BDLC module to
resume operation upon exiting Stop mode or Wait mode, and its subsequent
resynchronization with the SAE J1850 bus.

• Digital Loopback

When a bus fault has been detected, the digital loopback mode is used to determine if the f
condition is caused by failure in the node’s internal circuits or elsewhere in the network, inclu
the node’s analog physical interface. In this mode, the input to the digital filter is disconnected
the receive pin input (RXB). The input to the digital filter is then connected to the transmitter ou
to form the loopback connection. The transmit pin (TXB) is negated and will always drive a pas
state onto the bus. Digital loopback mode is entered by setting the DLOOP bit in Section 3.
BDLC Control Register 2 (DLCBCR2).

• Normal and Emulation Mode Operation (Core Specific)

The BDLC module operates in the same manner in all Normal and Emulation Modes. All BD
module registers can be read and written except those that are reserved, unimplemented, o
once. The user must be careful not to unintentionally write a register when using 16-bit write
order to avoid unexpected BDLC module behavior.

• Special Mode Operation (Core Specific)
14

Block Guide — S12BDLC_BG V01.03

is

on of
Some aspects of BDLC module operation can be modified in special test mode. This mode
reserved for internal use only.

• Low Power Options (Core Specific)

The BDLC module can save power in Disabled, Wait, and Stop modes. A complete descripti
what the BDLC module does while in a low power mode can be found inSection 1.3 Modes of
Operation.
15

Block Guide — S12BDLC_BG V01.03
1.4 Block Diagram

Figure 1-2 BDLC Block Diagram

BCR1 BSVR BCR2 BDR BARD

CPU INTERFACE

88

TX Shadow Register RX Shadow Register

TX Shift Register RX Shift Register

Protocol State Machine

To CPU

Control/ Status
TX Data RX Data

8
TX Data

8 RX Data

Control/ Status
TX Data RX Data

Symbol Encoder/Decoder

RX Digital
Filter

Loopback
Multiplexer

RX Data

RX Data

RX Data

RXBTXB

TX Data

To Physical Interface

CPU Interface

Protocol Handler

MUX Interface

bus clock

bus clock

bus clock
16

Block Guide — S12BDLC_BG V01.03

eived
ing and
terface
ping,
Figure 1-2 shows the organization of the BDLC module. The Buffers provide storage for data rec
and data to be transmitted onto the J1850 bus. The Protocol Handler is responsible for the encod
decoding of data bits and special message symbols during transmission and reception. The MUX In
provides the link between the BDLC digital section and the analog Physical Interface. The wave sha
driving and digitizing of data is performed by the Physical Interface.

NOTE: The Physical Interface is not implemented in the BDLC module and must be
provided externally.

The main functional blocks of the BDLC module are explained in greater detail in
the following sections.

Use of the BDLC module in message networking fully implements the “SAE
Standard J1850 Class B Data Communication Network Interface” specification.
17

Block Guide — S12BDLC_BG V01.03
18

Block Guide — S12BDLC_BG V01.03
Section 2 Signal Description

2.1 Overview

The BDLC module has a total of 2 external pins.

2.2 Detailed Signal Descriptions

2.2.1 TXB - BDLC Transmit Pin

The TXB pin serves as the transmit output channel for the BDLC module.

2.2.2 RXB - BDLC Receive Pin

The RXB pin serves as the receive input channel for the BDLC module.
19

Block Guide — S12BDLC_BG V01.03
20

Block Guide — S12BDLC_BG V01.03

r.
Section 3 Memory Map and Registers

3.1 Overview

This section provides a detailed description of all memory and registers accessible to the end use

3.2 Module Memory Map

3.3 Register Descriptions

3.3.1 BDLC Control Register 1 (DLCBCR1)

This register is used to configure and control the BDLC module.

Figure 3-1 BDLC Control Register 1

READ: any time

WRITE: IMSG, IE, and WCM any time.

CLKS write once in normal and emulation modes.

CLKS bit has modified functionality in special test mode.

Writes to unimplemented bits 5-2 are ignored.

Table 3-1 Module Memory Map

Address Use Access

Base + $_00 BDLC Control Register 1 (DLCBCR1) R/W

Base + $_01 BDLC State Vector Register (DLCBSVR) R/W

Base + $_02 BDLC Control Register 2 (DLCBCR2) R/W

Base + $_03 BDLC Data Register (DLCBDR) R/W

Base + $_04 BDLC Analog RoundTrip Delay Register (DLCBARD) R/W

Base + $_05 BDLC Rate Select Register (DLCBRSR) R/W

Base + $_06 BDLC Control Register (DLCSCR) R/W

Base + $_07 BDLC Status Register (DLCBSTAT) R/W

Register Offset: $_00

7 6 5 4 3 2 1 0
R

IMSG CLKS
0 0 0 0

IE WCM
W

RESET: 1 1 0 0 0 0 0 0

= Unimplemented or Reserved
21

Block Guide — S12BDLC_BG V01.03

new

ribed
lear
tate
 a

mbol

p
to be
for a

LKS
576

nd

ill be
tions
may

tate

 a
IMSG — Ignore Message (Bit 7)

This bit allows the CPU to ignore messages by disabling updates of the DLCBSVR register until a
Start of Frame (SOF) or a BREAK symbol is detected. BDLC module transmitter and receiver
operation are unaffected by the state of the IMSG bit.

1 = Disable DLCBSVR Updates. When set, all BDLC interrupt sources (exceptions are desc
below) will be prevented from updating DLCBSVR status bits. Setting IMSG does not c
pending interrupt flags, the behavior of which will still be as described in Section BDLC S
Vector Register (DLCBSVR). If this bit is set while the BDLC is receiving or transmitting
message, state vector register updates will be inhibited for the rest of the message.

0 = Enable DLCBSVR Updates. This bit is automatically cleared by the reception of a SOF sy
or a BREAK symbol. It will then allow updates of the state vector register to occur.

There are two situations in which interrupts will not be masked by the IMSG bit: when a wakeu
interrupt occurs; and when a receiver error occurs which causes a byte pending transmission
flushed from the transmit shadow register. See Section 3.3.4 BDLC Data Register (DLCBDR)
description of the conditions which cause a pending transmission to be flushed.

CLKS — Clock Select (Bit 6)

The nominal BDLC operating frequency (mux interface clock frequency - fbdlc) must always be
1.048576 MHz or 1 MHz in order for J1850 bus communications to take place properly. The C
register bit is provided to allow the user to indicate to the BDLC module which frequency (1.048
MHz or 1 MHz) is used so that each symbol time can be automatically adjusted.

The CLKS bit is a write once bit. All writes to this bit will be ignored after the first one.
1 = Binary frequency (1.048576 MHz) is used for fbdlc.
0 = Integer frequency (1 MHz) is used. for fbdlc

Section 4.1.3 J1850 VPW Valid/Invalid Bits & Symbols on page 41 describes the transmitter a
receiver VPW symbol timing for integer and binary frequencies.

IE — Interrupt Enable (Bit 1)

This bit determines whether the BDLC module will generate CPU interrupt requests. It doesnot affect
CPU interrupt requests when exiting the BDLC module Stop or Wait modes. Interrupt requests w
maintained until all of the interrupt request sources are cleared, by performing the specified ac
upon the BDLC module’s registers. Interrupts that were pending at the time that this bit is cleared
be lost.

1 = Enable interrupt requests from BDLC module
0 = Disable interrupt requests from BDLC module

If the programmer does not wish to use the interrupt capability of the BDLC module, the BDLC S
Vector Register (DLCBSVR) can be polled periodically by the programmer to determine BDLC
module states. Refer to Section 3.3.2 BDLC State Vector Register (DLCBSVR) on page 23 for
description of DLCBSVR register and how to clear interrupt requests.
22

Block Guide — S12BDLC_BG V01.03

ribed
ing
re

terrupts
LC

rrupt
ware.
WCM — Wait Clock Mode (Bit 0)(Provided CPU has Low Power Mode Options)

This bit determines how the BDLC module responds when the CPU enters WAIT mode. As desc
in Section 1.3 Modes of Operation on page 11, the BDLC module can respond by either enter
BDLC_STOP mode, where all internal clocks are stopped, or entering BDLC_WAIT mode whe
internal clocks are allowed to run.

1 = Stop BDLC internal clocks during CPU wait mode (BDLC_STOP)
0 = Run BDLC internal clocks during CPU wait mode (BDLC_WAIT)

3.3.2 BDLC State Vector Register (DLCBSVR)

This register is provided to substantially decrease the CPU overhead associated with servicing in
while under operation of a MUX protocol. It provides a index offset that is directly related to the BD
module’s current state, which can be used with a user supplied jump table to rapidly enter an inte
service routine. This eliminates the need for the user to maintain a duplicate state machine in soft

Figure 3-2 BDLC State Vector Register

READ: any time

WRITE: ignored

I[3:0] — Interrupt State Vector (Bits 5- 2)

These bits indicate the source of the interrupt request that is currently pending.

Register Offset: $_01

7 6 5 4 3 2 1 0
R 0 0 I3 I2 I1 I0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-2 Interrupt Summary

BSVR I3 I2 I1 I0 Interrupt Source Priority
$00 0 0 0 0 No Interrupts Pending 0 (Lowest)

$04 0 0 0 1 Received EOF 1

$08 0 0 1 0 Received IFR byte 2

$0C 0 0 1 1 Rx data register full 3

$10 0 1 0 0 Tx data register empty 4

$14 0 1 0 1 Loss of arbitration 5

$18 0 1 1 0 CRC error 6

$1C 0 1 1 1 Symbol invalid or out of range 7

$20 1 0 0 0 Wakeup 8 (Highest)
23

Block Guide — S12BDLC_BG V01.03

. Once
lso
ntil all

odes

s to
 a

s to
rates
OF

will not

rned
DLC

ine if
or free,

 the

Data

FR is
The state encoding of the interrupt sources mean that only one interrupt source is dealt with at a time
the highest priority interrupt source is dealt with, if another interrupt event of a lower priority has a
occurred, the value corresponding to that interrupt source appears in the BSVR. This continues u
BDLC interrupt sources have been dealt with and all bits in the BSVR are cleared.

• Wakeup

The BDLC has two different power-conserving modes, stop and wait. Wakeup from these m
is described below.

• Wakeup from BDLC Wait with CPU in Wait

If the CPU executes a WAIT instruction and the BDLC enters the BDLC wait mode, the clock
the BDLC as well as the clocks in the MCU continue to run. The message which generates
Wake-up interrupt of the BDLC and the CPU will be received correctly.

• Wakeup from BDLC Stop with CPU in Wait

If the CPU executes a WAIT instruction and the BDLC enters the BDLC stop mode, the clock
the BDLC are turned off, but the clocks in the MCU continue to run. The message which gene
a Wake-up interrupt of the BDLC and the CPU will be received correctly. To ensure this, the E
following the last message appearing on the bus must be received; otherwise, the message
be received correctly.

• Wakeup from BDLC Stop with CPU in Stop

 If the CPU executes a STOP all clocks to the BDLC as well as the clocks in the MCU are tu
off including clocks to the BDLC. The message which generates a Wake-up interrupt of the B
and the CPU will not be received correctly.

• Symbol Invalid or Out of Range

• CRC Error

The Cyclical Redundancy Check Byte is used by the receiver(s) of each message to determ
any errors have occurred during the transmission of the message. If the message is not err
the CRC error status is shown in the BSVR.

• Loss of Arbitration

The Loss of Arbitration status is entered when a loss of arbitration occurs while the BDLC is
transmitting onto the bus.

• Tx Data Register Empty

The Tx Data Register Empty (TDRE) Byte is used to tell when data has been unloaded from
BDLC Data Register (BDR).

• Rx Data Register Full

The Rx Data Register Full (RDRF) Byte is used to tell when data has been loaded in the BDLC
Register (BDR).

• Received IFR Byte

The BDLC can transmit and receive all four types of in-frame responses. As each byte of an I
received, the BSVR indicates this by setting this state.
24

Block Guide — S12BDLC_BG V01.03

rs, the

er put

affect

t. After
me

us to
y

ed to
s the
the
 be
ical
• Received EOF

When a 280us passive period on the bus is received, it signifies an EOF. Whenever this occu
EOF flag is set.

• No Interrupts Pending

This interrupt cannot generate an interrupt of the CPU.

3.3.3 BDLC Control Register 2 (DLCBCR2)

This register controls transmitter operations of the BDLC module.

Figure 3-3 BDLC Control Register 2

READ: any time

WRITE: any time

SMRST— State Machine Reset (Bit 7)

The programmer can use this bit to reset the BDLC state machines to an initial state after the us
the off-chip analog transceiver in loop back mode.

1 = Setting SMRST arms the state machine reset generation logic. Setting SMRST does not
BDLC module behavior in any way.

0 = Clearing SMRST after it has been set will cause the generation of a state machine rese
SMRST is cleared, the BDLC requires the bus to be idle for a minimum of an End of Fra
symbol (EOF) time before allowing the reception of a message. The BDLC requires the b
be idle for a minimum of an Inter-Frame Separator symbol (IFS) time before allowing an
message to be transmitted.

DLOOP— Digital Loopback Mode (Bit 6)

This bit determines the source to which the input of the digital filter is connected and can be us
isolate bus fault conditions. If a fault condition has been detected on the bus, this control bit allow
programmer to disconnect the digital filter from input from the receive pin (RXB) and connect it to
transmit output to the pin (TXB). In this configuration, data sent from the transmit buffer should
reflected back into the receive buffer. If no faults exist in the digital block, the fault is in the phys
interface block or elsewhere on the J1850 bus.

Register Offset: $_02

7 6 5 4 3 2 1 0
R

SMRST DLOOP RX4XE NBFS TEOD TSIFR TMIFR1 TMIFR0
W

RESET: 0 1 0 0 0 0 0 0
25

Block Guide — S12BDLC_BG V01.03

ow
n

tput
ck
 to
bol

e idle
o be

ceive
tic or

EAK

it and
C

e of

(IFR)
of an

(IFR)
of an

will

for
 will
gister
DLC
1 = When set, digital filter input is connected to the transmitter output. The BDLC module is n
in Digital Loopback Mode of operation. The transmit pin (TXB) is driven low and not drive
by the transmitter output.

0 = When cleared, digital filter input is connected to receive pin (RXB) and the transmitter ou
is connected to the transmit pin (TXB). The BDLC module is taken out of Digital Loopba
Mode and can now drive and receive from the J1850 bus normally. After writing DLOOP
zero, the BDLC module requires the bus to be idle for a minimum of an End of Frame sym
time before allowing a reception of a message. The BDLC module requires the bus to b
for a minimum of an Inter-Frame Separator symbol time before allowing any message t
transmitted.

NOTE: The DLOOP bit is a fault condition aid and should never be altered after the
DLCBDR is loaded for transmission. Changing DLOOP during a transmission may
cause corrupted data to be transmitted onto the J1850 network.

RX4XE — Receive 4X Enable (Bit 5)

This bit determines if the BDLC operates at normal transmit and receive speed (10.4 kbps) or re
only at 41.6 kbps. This feature is useful for fast download of data into a J1850 node for diagnos
factory programming of the node.

1 = When set, the BDLC module is put in 4X (41.6 kbps) receive only operation.
0 = When cleared, the BDLC module transmits and receives at 10.4 kbps. Reception of a BR

symbol automatically clears this bit and sets the symbol invalid or out of range flag
(DLCBSVR = $1C).

The effect of 4X receive operation on receive symbol timing boundaries is described in Transm
Receive Symbol Timing Specifications.The RX4XE bit is not affected by entry or exit from BDL
stop or wait modes.

NBFS— Normalization Bit Format Select (Bit 4)

This bit controls the format of the Normalization Bit (NB). SAE J1850 strongly encourages the us
an active long: ‘0’ for In-Frame Responses containing CRC and active short, ‘1’ for In-Frame
Responses without CRC.

1 = NB that is received or transmitted is a ‘0’ when the response part of an In-Frame Response
ends with a CRC byte. NB that is received or transmitted is a ‘1’ when the response part
In-Frame Response (IFR) does not end with a CRC byte.

0 = NB that is received or transmitted is a ‘1’ when the response part of an In-Frame Response
ends with a CRC byte. NB that is received or transmitted is a ‘0’ when the response part
In-Frame Response (IFR) does not end with a CRC byte.

TEOD— Transmit End of Data (Bit 3)

This bit is set by the programmer to indicate the end of a message being sent by the BDLC. It
append an 8-bit CRC after completing transmission of the current byte in the Tx Shift Register
followed by the EOD symbol. If the transmit shadow register (refer to Rx & Tx Shadow Registers
a description of the transmit shadow register) is full when TEOD is set, the CRC byte and EOD
be transmitted after the current byte in the Tx Shift Register and the byte in the Tx Shadow Re
have been transmitted. Once TEOD is set, the transmit data register empty flag (TDRE) in the B
26

Block Guide — S12BDLC_BG V01.03

lso
nded

oss
EOD
s of

ot set
three
wn

written

. The
 is to
ssage
sive;

n bit is
State Vector Register (DLCBSVR) is cleared to allow lower priority interrupts to occur. This bit is a
used to end an IFR. Bits TSIFR, TMIFR1, and TMIFR0 determine whether a CRC byte is appe
before EOD transmission for IFRs.

1 = Transmit EOD symbol.
0 = The TEOD bit will be automatically cleared after the first CRC bit is sent, or if an error or l

of arbitration is detected on the bus. When TEOD is used to end an IFR transmission, T
is cleared when the BDLC receives back a valid EOD symbol, or an error condition or los
arbitration occurs.

TSIFR, TMIFR1, TMIFR0— Transmit In-Frame Response Control (Bits 2-0)

These three bits control the type of In-Frame Response being sent. The programmer should n
more than one of these control bits to a one at any given time. However, if more than one of these
control bits are set to one, the priority encoding logic will force the internal register bits to a kno
value as shown in the following table. But, when these bits are read, they will be the same as
earlier. For instance, if “011” is written to TSIFR, TMIFR1, TMIFR0, then internally, they’ll be
encoded as “010”. However, when these bits are later read back, it’ll still be “011”.

The BDLC supports the In-frame Response (IFR) feature of J1850 by setting these bits correctly
four types of J1850 IFR are shown in Figure 3-4. The purpose of the in-frame response modes
allow single or multiple nodes to acknowledge receipt of the data by responding to a received me
after they have seen the EOD symbol. For VPW modulation, the first bit of the IFR is always pas
therefore, an active normalization bit must be generated by the responder and sent prior to its
ID/address byte. When there are multiple responders on the J1850 bus, only one normalizatio
sent which assists all other transmitting nodes to sync their responses.

Table 3-3 Transmit In-Frame Response Control Bit Priority Encoding

WRITE READ ACTUAL (internal register)

TSIFR TMIFR1 TMIFR0 TSIFR TMIFR1 TMIFR0 TSIFR TMIFR1 TMIFR0

0 0 0 0 0 0 0 0 0

1 X X 1 X X 1 0 0

0 1 X 0 1 X 0 1 0

0 0 1 0 0 1 0 0 1
27

Block Guide — S12BDLC_BG V01.03

as a
f the

bol
n bit

tes

 is
smits
or no
IFR or
OD

byte
pts
Figure 3-4 Types of In-Frame Response

TSIFR— Transmit Single Byte IFR with no CRC (Type 1 or 2)

This bit is used to request the BDLC to transmit the byte in the BDLC Data Register (DLCBDR)
single byte IFR with no CRC. Typically, the byte transmitted is a unique identifier or address o
transmitting (responding) node.

1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD sym
has been received the BDLC module will attempt to transmit the appropriate normalizatio
followed by the byte in the DLCBDR.

0 = The TSIFR bit will be automatically cleared once the EOD following one or more IFR by
has been received or an error is detected on the bus.

The user must set the TSIFR bit before the EOF following the main part of the message frame
received, or no IFR transmit attempts will be made for the current message. If another node tran
an IFR to this message, the user must set the TSIFR bit before the normalization bit is received
IFR transmit attempts will be made for the message. If another node does transmit a successful
a reception error occurs, the TSIFR bit will be cleared. If not, the IFR will be transmitted after the E
of the next received message.

If a loss of arbitration occurs when the BDLC module attempts transmission, after the IFR byte
winning arbitration completes transmission, the BDLC module will again attempt to transmit the
in the DLCBDR (with no normalization bit). The BDLC module will continue transmission attem
until an error is detected on the bus, or TEOD is set by the CPU, or the BDLC transmission is
successful.

NOTE: Setting the TEOD bit before transmission of the IFR byte will direct the BDLC to
make only one attempt at transmitting the byte.

S
O

F Header Data Field CRC

E
O

D

Type 0 - No IFR

Header Data Field CRC

E
O

D

Type 3 - Multiple Bytes From a Single Responder (with or without CRC)

Header Data Field CRC

E
O

D

Type 1 - Single Byte From a Single Responder (without CRC)

Header Data Field CRC

E
O

D

Type 2 - Single Byte From Multiple Responders (without CRC)

ID1 ID n

IFR Data Field CRC

NB

NB

NB

ID

S
O

F
S

O
F

S
O

F

E
O

F

E
O

D
E

O
F

E
O

D
E

O
F

E
O

D
E

O
F

28

Block Guide — S12BDLC_BG V01.03

 byte

the
are

bol
n bit
en

bus,

l be
nable
mer
f the
ntrol
te in
rtion

mer
been
en set

e is
smits
ed or
ful IFR
the

ing
lly
itted.

valid
If loss of arbitration occurs in the last bit of the IFR byte, two additional ‘1’ bitswill not be sent out
because the BDLC will attempt to retransmit the byte in the transmit shift register after the IFR
winning arbitration completes transmission.

TMIFR1 — Transmit Multiple Byte IFR with CRC (Type 3)

This bit requests the BDLC module to transmit the byte in the BDLC Data Register (DLCBDR) as
first byte of a multiple byte IFR with CRC or as a single byte IFR with CRC.Response IFR bytes
still subject to J1850 message length maximums.

1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD sym
has been received, the BDLC module will attempt to transmit the appropriate normalizatio
followed by IFR bytes.The programmer should set TEOD after the last IFR byte has be
written into DLCBDR register. After TEOD has been set and the last IFR byte has been
transmitted, the CRC byte is transmitted.

0 = The TMIFR1 bit will be automatically cleared once the BDLC module has successfully
transmitted the CRC byte and EOD symbol, by the detection of an error on the multiplex
a transmitter underrun, or loss of arbitration.

After the byte in the DLCBDR has been loaded into the transmit shift register, the TDRE flag wil
set in the DLCBSVR register, similar to the main message transmit sequence. If the interrupt e
bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module is generated.The program
should then load the next byte of the IFR into the DLCBDR for transmission. When the last byte o
IFR has been loaded into the DLCBDR, the programmer should set the TEOD bit in the BDLC co
register 2 (DLCBCR2). This will instruct the BDLC module to transmit a CRC byte once the by
the DLCBDR is transmitted, and then transmit an EOD symbol, indicating the end of the IFR po
of the message frame.

However, if the programmer wishes to transmit a single byte followed by a CRC byte, the program
should load the byte into the DLCBDR and then set the TMIFR1 bit before the EOD symbol has
received. Once the TDRE flag is set and interrupt occurs (if enabled), the programmer should th
the TEOD bit in DLCBCR2. This will result in the byte in the DLCBDR being the only byte
transmitted before the IFR CRC byte.

The user must set the TMIFR1 bit before the EOF following the main part of the message fram
received, or no IFR transmit attempts will be made for the current message. If another node tran
an IFR to this message, the user must set the TMIFR1 bit before the normalization bit is receiv
no IFR transmit attempts will be made for the message. If another node does transmit a success
or a reception error occurs, the TMIFR1 bit will be cleared. If not, the IFR will be transmitted after
EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by the programmer not writ
another byte to the DLCBDR following the TDRE flag being set) the BDLC module will automatica
disable the transmitter after the byte currently in the shifter plus two extra 1-bits have been transm
The receiver will pick this up as an framing error and relay it in the State Vector Register as an in
symbol error. The TMIFR1 bit will also be cleared.
29

Block Guide — S12BDLC_BG V01.03

RC,

te in
(a

ject

bol
n bit
en
tted

itter

l be
nable
mer
f the
CR2
tion

te into
DRE

e is
smits
ed or
ful IFR
the

ing
lly
itted.

valid
If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR with C
the BDLC module will go to the loss of arbitration state, set the appropriate flag and cease
transmission. The TMIFR1 bit will be cleared and no attempt will be made to retransmit the by
the DLCBDR. If loss of arbitration occurs in the last bit of the IFR byte, two additional one bits
passive long followed by an active short)will be sent out.

NOTE: The extra logic 1s are an enhancement to the J1850 protocol which forces a byte
boundary condition fault. This is helpful in preventing noise on the J1850 bus from
corrupting a message.

TMIFR0 — Transmit Multiple Byte IFR with no CRC (Type 3)

This bit is used to request the BDLC module to transmit the byte in the BDLC Data Register
(DLCBDR) as the first byte of a multiple byte IFR without CRC. Response IFR bytes are still sub
to J1850 message length maximums.

1 = If this bit is set prior to a valid EOD being received with no CRC error, once the EOD sym
has been received the BDLC module will attempt to transmit the appropriate normalizatio
followed by IFR bytes. The programmer should set TEOD after the last IFR byte has be
written into DLCBDR register. After TEOD has been set, the last IFR byte to be transmi
will be the last byte which was written into the DLCBDR register.

0 = The TMIFR0 bit will be automatically cleared once the BDLC module has successfully
transmitted the EOD symbol, by the detection of an error on the multiplex bus, a transm
underrun, or loss of arbitration.

After the byte in the DLCBDR has been loaded into the transmit shift register, the TDRE flag wil
set in the DLCBSVR register, similar to the main message transmit sequence. If the interrupt e
bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module is generated. The program
should then load the next byte of the IFR into the DLCBDR for transmission. When the last byte o
IFR has been loaded into the DLCBDR, the programmer should set the TEOD bit in the DLCB
register. This will instruct the BDLC to transmit an EOD symbol, indicating the end of the IFR por
of the message frame. The BDLC module will not append a CRC.

However, if the programmer wishes to transmit a single byte, the programmer should load the by
the DLCBDR and then set the TMIFR0 bit before the EOD symbol has been received. Once the T
flag is set and interrupt occurs (if enabled), the programmer should then set the TEOD bit in
DLCBCR2. This will result in the byte in the DLCBDR being the only byte transmitted.

The user must set the TMIFR0 bit before the EOF following the main part of the message fram
received, or no IFR transmit attempts will be made for the current message. If another node tran
an IFR to this message, the user must set the TMIFR0 bit before the normalization bit is receiv
no IFR transmit attempts will be made for the message. If another node does transmit a success
or a reception error occurs, the TMIFR0 bit will be cleared. If not, the IFR will be transmitted after
EOD of the next received message.

If a transmitter underrun error occurs during transmission (caused by the programmer not writ
another byte to the DLCBDR following the TDRE flag being set) the BDLC module will automatica
disable the transmitter after the byte currently in the shifter plus two extra 1-bits have been transm
The receiver will pick this up as an framing error and relay it in the State Vector Register as an in
symbol error. The TMIFR0 bit will also be cleared.
30

Block Guide — S12BDLC_BG V01.03

C,

te in
(a

odule.

ister
is

d data
upt
s.

gister.
e
ter has
xt byte

ve shift
IFR

eived.
ar the
If a loss of arbitration occurs when the BDLC module is transmitting a multiple byte IFR without CR
the BDLC module will go to the loss of arbitration state, set the appropriate flag and cease
transmission. The TMIFR0 bit will be cleared and no attempt will be made to retransmit the by
the DLCBDR. If loss of arbitration occurs in the last bit of the IFR byte, two additional one bits
passive long followed by an active short)will be sent out.

NOTE: The extra logic 1s are an enhancement to the J1850 protocol which forces a byte
boundary condition fault. This is helpful in preventing noise on the J1850 bus from
corrupting a message.

3.3.4 BDLC Data Register (DLCBDR)

This register is used to pass the data to be transmitted to the J1850 bus from the CPU to the BDLC m
It is also used to pass data received from the J1850 bus to the CPU.

Figure 3-5 BDLC Data Register

READ: any time

WRITE: any time

D7:D0— Receive/Transmit Data (Bits 7 - 0)

While transmitting, each data byte (after the first one) should be written only after a “Tx Data Reg
Empty” (TDRE) interrupt has occurred, or the DLCBSVR register has been polled indicating th
condition.

Data read from this register will be the last data byte received from the J1850 bus. This receive
should only be read after a “Rx Data Register Full” (RDRF) or “Received IFR byte” (RXIFR) interr
has occurred or the DLCBSVR register has been polled indicating either of these two condition

The DLCBDR register is double buffered via a transmit shadow register and a receive shadow re
After the byte in the transmit shift register has been transmitted, the byte currently stored in th
transmit shadow register is loaded into the transmit shift register. Once the transmit shift regis
shifted the first bit out, the TDRE flag is set, and the shadow register is ready to accept the ne
of data.

The receive shadow register works similarly. Once a complete byte has been received, the recei
register stores the newly received byte into the receive shadow register. The RDRF flag (or RX
flag if the received byte is part of an IFR) is set to indicate that a new byte of data has been rec
The programmer has one BDLC module byte reception time to read the shadow register and cle
RDRF or RXIFR flag before the shadow register is overwritten by the newly received byte.

Register Offset: $_03

7 6 5 4 3 2 1 0
R

D7 D6 D5 D4 D3 D2 D1 D0
W

RESET: 0 0 0 0 0 0 0 0
31

Block Guide — S12BDLC_BG V01.03

s that
til the

the

ing
gister
 error
ol is
error

to the
ble
halted

up as

ys of

ome
to the
If the user writes the first byte of a message to be transmitted to the DLCBDR and then determine
a different message should be transmitted, the user can write a new byte to the DLCBDR up un
transmission begins.This new byte will replace the original byte in the DLCBDR.

From the time a byte is written to the DLCBDR until it is transferred to the transmit shift register,
transmit shadow register is considered full and the byte pending transmission. If one of the IFR
transmission control bits (TSIFR, TMIFR1, or TMIFR0 in DLCBCR2) is also set, the byte is pend
transmission as an IFR. A byte pending transmission will be flushed from the transmit shadow re
and the transmission canceled if one of the following occurs: a loss of arbitration or transmitter
on the byte currently being transmitted; a symbol error, framing error, bus fault, or BREAK symb
received. If the byte pending transmission is an IFR byte, the reception of a message with a CRC
will also cause the byte in the transmit shadow register to be flushed.

To abort an in-progress transmission, the programmer should simply stop loading more data in
BDR. This will cause a transmitter underrun error and the BDLC module will automatically disa
the transmitter on the next non-byte boundary. This means that the earliest a transmission can be
is after at least one byte (plus two extra 1-bits) has been transmitted. The receiver will pick this
an error and relay it in the State Vector Register as an invalid symbol error.

3.3.5 BDLC Analog Round Trip Delay Register (DLCBARD)

This register is used to program the BDLC module so that it compensates for the round trip dela
different external transceivers. Also the polarity of the receive pin (RXB) is set in this register.

Figure 3-6 BDLC Analog Round Trip Delay Register

READ: any time

WRITE: write once in normal and emulation modes.

Register functionality modified in special test mode.

Writes to unimplemented bits 7, 5, 4 are ignored.

RXPOL— Receive Pin Polarity (Bit 6)

The Receive pin Polarity bit is used to select the polarity of incoming signal on the receive pin. S
external analog transceiver inverts the receive signal from the J1850 bus before feeding back
digital receive pin.

Register Offset: $_04

7 6 5 4 3 2 1 0
R 0

RXPOL
0 0

BO3 BO2 BO1 BO0
W

RESET: 0 1 0 0 0 1 1 1

= Unimplemented
32

Block Guide — S12BDLC_BG V01.03

d in

the
lock
elay
ndtrip
1 = Select normal/true polarity; true non-inverted signal from J1850 bus, i.e., the external
transceiver does not invert the receive signal.

0 = Select inverted polarity, where external transceiver inverts the receive signal.

BO3-BO0— BDLC Analog Roundtrip Delay Offset Field (Bits 3-0)

BO[3:0] adjust the transmitted symbol timings to account for the differing roundtrip delays foun
different SAE J1850 analog transceivers. The allowable delay range is from 9ms to 24ms, with a
nominal target of 16ms (reset value). Refer to Table 3-4 for the BO[3:0] values corresponding to
expected transceiver delays and the resultant transmitter timing adjustment (in mux interface c
periods (tbdlc)). Refer to the analog transceiver device specification for the expected roundtrip d
through both the transmitter and the receiver. The sum of these two delays makes up the total rou
delay value.

3.3.6 BDLC Rate Select Register (DLCBRSR)

This register determines the divider prescaler value for the mux interface clock (fbdlc).

Table 3-4 BARD Values vs. Transceiver Delay and Transmitter Timing Adjustment

BARD Offset Bits
(BO3,BO2,BO1,BO0)

Corresponding Expected
Transceiver’s delays (µs)

Transmitter Symbol Timing
Adjustment (tbdlc)1

0000 9 9

0001 10 10

0010 11 11

0011 12 12

0100 13 13

0101 14 14

0110 15 15

0111 16 16

1000 17 17

1001 18 18

1010 19 19

1011 20 20

1100 21 21

1101 22 22

1110 23 23

1111 24 24

NOTE:
1. The transmitter symbol timing adjustment is the same for binary and integer bus frequencies.
33

Block Guide — S12BDLC_BG V01.03

to

uency.
alues
Figure 3-7 BDLC Rate Select Register

READ: any time

WRITE: write once in normal and emulation modes.

Register functionality modified in special test mode.

Writes to unimplemented bits 7, 6 are ignored.

NOTE: After writing to the divide rate register, the divide counter will start counting ONLY
after the next access to the BDLC register space. E.g. write the module enable bit
after writing to the divide rate register.

R5-R0— Rate Select (Bits 5-0)

These bits determine the amount by which the frequency of the system clock signal is divided
generate the MUX Interface clock (fbdlc) which defines the basic timing resolution of the MUX
Interface. The value programmed into these bits is dependent on the chosen system clock freq
See Table 3-5 and Table 3-6 for example rate selects for different bus frequencies. All divisor v
from divide by 1 to divide by 64 are possible, but are not shown in the tables.

NOTE: Although the maximum divider is 64, a divider which will generate a 1 MHz or
1.048576 MHzfbdlc must be selected in order for J1850 communications to occur.

Register Offset: $_05

7 6 5 4 3 2 1 0
R 0 0

R5 R4 R3 R2 R1 R0
W Unimplemented

RESET: 0 0 0 0 0 0 0 0

= Unimplemented

Table 3-5 BDLC Rate Selection for Binary Frequencies [CLKS = 1]

IP bus clock frequency R[5:0] division fbdlc

fCLOCK=1.048576 MHz $00 1 1.048576 MHz

fCLOCK=2.09715 MHz $01 2 1.048576 MHz

fCLOCK=3.14573 MHz $02 3 1.048576 MHz

fCLOCK=4.19430 MHz $03 4 1.048576 MHz

fCLOCK=8.38861 MHz $07 8 1.048576 MHz

fCLOCK=10.48576 MHz $09 10 1.048576 MHz

fCLOCK=67.10886 MHz $3F 64 1.048576 MHz
34

Block Guide — S12BDLC_BG V01.03

ns

g.
3.3.7 BDLC Control Register (DLCSCR)

The following register enables the BLDC module.

Figure 3-8 BDLC Control Register

READ: any time

WRITE: any time

BDLCE — BDLC Enable (Bit 4)

This bit serves as a mux interface clock (fbdlc) enable/disable for power savings.
1 = The mux interface clock (fbdlc) and BDLC module are enabled to allow J1850 communicatio

to take place.
0 = The mux interface clock (fbdlc) is disabled, shutting down the BDLC module for power savin

Bus clocks are still running allowing registers to be accessed.

3.3.8 BDLC Status Register (DLCBSTAT)

This register Indicates the status of the BLDC module.

Table 3-6 BDLC Rate Selection for Integer Frequencies [CLKS = 0]

IP bus clock frequency R[5:0] division fbdlc

fCLOCK=1.00000 MHz $00 1 1.000000 MHz

fCLOCK=2.00000 MHz $01 2 1.000000 MHz

fCLOCK=3.00000 MHz $02 3 1.000000 MHz

fCLOCK=4.00000 MHz $03 4 1.000000 MHz

fCLOCK=8.00000 MHz $07 8 1.000000 MHz

fCLOCK=10.00000 MHz $09 10 1.000000 MHz

fCLOCK=64.00000 MHz $3F 64 1.000000 MHz

Register Offset: $_06

7 6 5 4 3 2 1 0
R 0 0 0

BDLCE
0 0 0 0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented
35

Block Guide — S12BDLC_BG V01.03
Figure 3-9 BDLC Status Register

READ: any time

WRITE: ignored in normal and emulation modes

Register functionality is modified in special test mode.

IDLE Idle (Bit 0)

This bit indicates when the BDLC module is idle.
1 = BDLC module has received IFS and no data is being transmitted or received.
0 = BDLC module is either transmitting or receiving data.

NOTE: BDLC module is only idle after receiving IFS. The IDLE bit is 0 during reset since
the BDLC module needs to wait for an IFS before becoming idle. Noise on the bus
will be filtered and the IDLE bit will remain unchanged.

Register Offset: $_07

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 IDLE
W Unimplemented Reserved Unimplemented

RESET: 0 0 0 0 0 0 0 0

= Unimplemented
36

Block Guide — S12BDLC_BG V01.03

sages

rforms

E
t below.

g SOF,

his
symbol

te, and

a byte,
ssage is
Section 4 Functional Description

4.1 General

The BDLC module is a serial communication module which allows the user to send and receive mes
across a Society of Automotive Engineers (SAE) J1850 serial communication network. The user’s
software handles each transmitted or received message on a byte-by-byte basis, while the BDLC pe
all of the network access, arbitration, message framing and error detection duties.

4.1.1 J1850 Frame Format

As noted above and inSection 1.2 Features on page 11, the BDLC module communicates across an SA
J1850 network. As such, all messages transmitted on the J1850 bus are structured using the forma
The following sections describe this format and it’s meanings.

Figure 4-1 J1850 Bus Message Format (VPW)

SAE J1850 states that each message has a maximum length of 101 bit times or 12 bytes (excludin
EOD, NB and EOF).

• SOF - Start of Frame Symbol

All messages transmitted onto the J1850 bus must begin with an long active SOF symbol. T
indicates to any listeners on the J1850 bus the start of a new message transmission. The SOF
is not used in the CRC calculation.

• Data - In Message Data Bytes

The data bytes contained in the message include the message priority/type, message I.D. by
any actual data being transmitted to the receiving node. See SAE J1850 - Class B Data
Communications Network Interface, for more information about 1 and 3 Byte Headers.

Messages transmitted by the BDLC module onto the J1850 bus must contain at least one dat
and therefore can be as short as one data byte and one CRC byte. Each data byte in the me
8 bits in length, transmitted MSB to LSB.

• CRC - Cyclical Redundancy Check Byte

SOF

E
O
D EOF

Priority Message
Datan CRC IFR

I
F
SIdle IdleID (Data1)(Data0)

Optional
37

Block Guide — S12BDLC_BG V01.03

during
ny
ges it

essed
s the

er.

uding
ssage

e this

 of a
of the

f

s the
mitted
e EOF

tween
owing

bol time
SOF,

ng of
ent
This byte is used by the receiver(s) of each message to determine if any errors have occurred
the transmission of the message. The BDLC calculates the CRC byte and appends it onto a
messages transmitted onto the J1850 bus, and also performs CRC detection on any messa
receives from the J1850 bus.

CRC generation uses the divisor polynomial X8+X4+X3+X2+1. The remainder polynomial is
initially set to all ones, and then each byte in the message after the SOF symbol is serially proc
through the CRC generation circuitry. The one’s complement of the remainder then become
8-bit CRC byte, which is appended to the message after the data bytes, in MSB to LSB ord

When receiving a message, the BDLC uses the same divisor polynomial. All data bytes, excl
the SOF and EOD symbols, but including the CRC byte, are used to check the CRC. If the me
is error free, the remainder polynomial will equal X7+X6+X2 ($C4), regardless of the data
contained in the message. If the calculated CRC does not equal $C4, the BDLC will recogniz
as a CRC error and set the CRC error flag in the BSVR register.

• EOD - End of Data Symbol

The EOD symbol is a long passive period on the J1850 bus used to signify to any recipients
message that the transmission by the originator has completed. No flag is set upon reception
EOD symbol.

• IFR - In Frame Response Bytes

The IFR section of the J1850 message format is optional. Users desiring further definition o
in-frame response should review the “SAE J1850 Class B Data Communications Network
Interface” specification.

• EOF - End of Frame Symbol

This symbol is a passive period on the J1850 bus, longer than an EOD symbol, which signifie
end of a message. Since an EOF symbol is longer than an EOD symbol, if no response is trans
after an EOD symbol, it becomes an EOF, and the message is assumed to be completed. Th
flag is set upon receiving the EOF symbol.

• IFS - Inter-Frame Separation Symbol

The IFS symbol is a passive period on the J1850 bus which allows proper synchronization be
nodes during continuous message transmission. The IFS symbol is transmitted by a node foll
the completion of the EOF period.

When the last byte of a message has been transmitted onto the J1850 bus, and the EOF sym
has expired, all nodes must then wait for the IFS symbol time to expire before transmitting an
marking the beginning of another message.

However, if the BDLC module is waiting for the IFS period to expire before beginning a
transmission and a rising edge is detected before the IFS time has expired, it will internally
synchronize to that edge.

A rising edge may occur during the IFS period because of varying clock tolerances and loadi
the J1850 bus, causing different nodes to observe the completion of the IFS period at differ
times. Receivers must synchronize to any SOF occurring during an IFS period to allow for
individual clock tolerances.
38

Block Guide — S12BDLC_BG V01.03

 if a
 a
ats

ge in
rror,

ared

Any

time
. Active
bus

re
nd can

ols will
• Break

If the BDLC module is transmitting at the time a BREAK is detected, it treats the BREAK as
transmission error had occurred, and halts transmission.The BDLC module cannot transmit
BREAK symbol. If while receiving a message the BDLC module detects a BREAK symbol, it tre
the BREAK as a reception error and sets the invalid symbol flag. If while receiving a messa
4X mode, the BDLC module detects a BREAK symbol, it treats the BREAK as a reception e
sets BSVR register to $1C, and exits 4X mode.The RX4XE bit in BCR2 is automatically cle
upon reception of the BREAK symbol.

• Idle Bus

An idle condition exists on the bus during any passive period after expiration of the IFS period.
node sensing an idle bus condition can begin transmission immediately.

4.1.2 J1850 VPW Symbols

Variable Pulse Width modulation (VPW) is an encoding technique in which each bit is defined by the
between successive transitions, and by the level of the bus between transitions, active or passive
and passive bits are used alternately. This encoding technique is used to reduced the number of
transitions for a given bit rate. SeeSection 1.2 Features on page 11.

The symbol values shown below are nominal values. Refer to the electrical specification for a mo
complete description of symbol values. Each logic one or logic zero contains a single transition, a
be at either the active or passive level and one of two lengths, either 64µs or 128µs (TNOM at 10.4kbps
baud rate), depending upon the encoding of the previous bit. The SOF, EOD, EOF and IFS symb
always be encoded at an assigned level and length. See Figure 4-2.
39

Block Guide — S12BDLC_BG V01.03

g
W

Figure 4-2 J1850 VPW Symbols

Each message will begin with an SOF symbol, anactive symbol, and therefore each data byte (includin
the CRC byte) will begin with apassive bit, regardless of whether it is a logic one or a logic zero. All VP
bit lengths stated in the following descriptions are typical values at a 10.4kbps bit rate.

• Logic “0”

128µs
Active

Passive
64µsOR

Logic “0”

128µs
Active

Passive
64µsOR

Logic “1”

200µs
Active

Passive

Start of Frame

200µs

End of Data

280µs
Active

Passive

End of Frame

≥ 240µs

Break

(a)

(b)

(c) (d)

(e) (f)

300µs

Active

Passive

Inter-Frame Seperator (IFS)
(g)

EOD EOF
20µs
40

Block Guide — S12BDLC_BG V01.03

128

age

 a

00

fter

f at

allow
bit or

 is
e

A logic zero is defined as either an active to passive transition followed by a passive period 64µs in
length, or a passive to active transition followed by an active period 128µs in length (Figure
4-2(a)).

• Logic “1”

A logic one is defined as either an active to passive transition followed by a passive period µs
in length, or a passive to active transition followed by an active period 64µs in length (Figure
4-2(b)).

• NB - Normalization Bit

The NB symbol has the same property as a logic “1” or a logic “0”.It is only used in IFR mess
responses. This bit is defined as an active bit.

• SOF - Start of Frame Symbol

The SOF symbol is defined as passive to active transition followed by an active period 200µs in
length (Figure 4-2 (c)). This allows the data bytes which follow the SOF symbol to begin with
passive bit, regardless of whether it is a logic one or a logic zero.

• EOD - End of Data Symbol

The EOD symbol is defined as an active to passive transition followed by a passive period 2µs
in length (Figure 4-2 (d)).

• EOF - End of Frame Symbol

The EOF symbol is defined as an active to passive transition followed by a passive period 280µs in
length (Figure 4-2 (e)). If there is no IFR byte transmitted after an EOD symbol is transmitted, a
another 80µs the EOD becomes an EOF, indicating the completion of the message.

• IFS - Inter-Frame Separation Symbol

The IFS symbol is defined as a passive period 300µs in length. The IFS symbol contains no
transition, since when used it always follows an EOF symbol.(Figure 4-2 (g))

• BREAK - Break Signal

The BREAK signal is defined as a passive to active transition followed by an active period o
least 240µs (Figure 4-2 (f)).

• IDLE

An IDLE is defined as a passive period greater than 300µs in length.

4.1.3 J1850 VPW Valid/Invalid Bits & Symbols

The timing tolerances for receiving data bits and symbols from the J1850 bus have been defined to
for variations in oscillator frequencies. In many cases the maximum time allowed to define a data
symbol is equal to the minimum time allowed to define another data bit or symbol.

Since the minimum resolution of the BDLC module for determining what symbol is being received
equal to a single period of the MUX Interface clock, (tbdlc). i.e. the receiver symbol timing boundaries ar
subject to an uncertainty of 1 tbdlcdue to sampling considerations.
41

Block Guide — S12BDLC_BG V01.03

t
onto

tions

tion
 and
ffect
hich
it in

) and
ided

) and
down
e

ration
LKS

lues
ceiver,
 the
being

ymbol
This clock resolution of 1 tbdlc allows the BDLC module to properly differentiate between the differen
bits and symbols, without reducing the valid window for receiving bits and symbols from transmitters
the J1850 bus having varying oscillator frequencies.

• Transmit and Receive Symbol Timing Specifications

Tables 4-1 through 4-6 contain the SAE J1850 transmit and receive symbol timing specifica
for the BDLC module. The units used in these tables are mux interface clock periods (tbdlc). The
mux interface clock is a divided down version of the bus clock input to the module (see Sec
3.3.6 BDLC Rate Select Register (DLCBRSR)). The mux interface clock drives the transmit
receive counters which control symbol generation and identification. The symbol timing in e
during J1850 operations is dependent the state of two control bits: the CLKS bit DLCBCR1, w
indicates whether the bus clock is an integer frequency or a binary frequency; the RX4XE b
DLCBCR2, which is used to select 4X receiver operation.

Tables 4-1 and 4-3 indicate the transmit and receive timing for integer bus frequencies (CLKS = 0
4X receive operation disabled (RX4XE = 0). It is assumed that for integer bus frequencies the div
down mux interface clock frequency will be 1MHz (tbdlc= 1 ms).

Tables 4-2 and 4-4 indicated the transmit and receive timing for binary bus frequencies (CLKS = 1
4X receive operation disabled (RX4XE = 0). It is assumed that for binary bus frequencies the divided
mux interface clock frequency will be 1.048576 MHz (tbdlc= 0.953674 ms). The symbol timing values ar
adjusted to compensate for the shortening of the mux interface clock period.

Tables 4-5 and 4-6 show how the receive symbol timing values are adjusted when 4X receive ope
is enabled (RX4XE = 1) for both integer bus frequencies (CLKS = 0) and binary bus frequencies (C
= 1), respectively.

The values specified in the tables are for the symbols appearing on the SAE J1850 bus. These va
assume the BDLC module is communicating on the SAE J1850 bus using an external analog trans
and that the BDLC module analog roundtrip delay value programed into the DLCBARD register is
appropriate value for the transceiver being used. If these conditions are not met, the symbol timings
measured on the SAE J1850 bus will be significantly affected. For a detailed description of how s
timings are measured on the SAE J1850 bus, refer to the appropriate SAE documents.

Table 4-1 BDLC Transmitter VPW Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Ttvp1 62 64 66 tbdlc

2 Passive Logic 1 Ttvp2 126 128 130 tbdlc

3 Active Logic 0 Ttva1 126 128 130 tbdlc

4 Active Logic 1 Ttva2 62 64 66 tbdlc

5 Start of Frame (SOF) Ttva3 198 200 202 tbdlc

6 End of Data (EOD)1 Ttvp3 162 164 166 tbdlc

7 End of Frame (EOF)1 Ttv4 238 240 242 tbdlc

8 Inter-Frame Separator (IFS)1 Ttv5 298 300 302 tbdlc
42

Block Guide — S12BDLC_BG V01.03
NOTE:
1. The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the

receiver.

Table 4-2 BDLC Transmitter VPW Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Ttvp1 65 67 69 tbdlc

2 Passive Logic 1 Ttvp2 132 134 136 tbdlc

3 Active Logic 0 Ttva1 132 134 136 tbdlc

4 Active Logic 1 Ttva2 65 67 69 tbdlc

5 Start of Frame (SOF) Ttva3 208 210 212 tbdlc

6 End of Data (EOD)1 Ttvp3 170 172 174 tbdlc

7 End of Frame (EOF)1 Ttv4 250 252 254 tbdlc

8 Inter-Frame Separator (IFS)1 Ttv5 313 315 317 tbdlc

NOTE:
1. The transmitter timing for this symbol depends upon the minimum detection time of the symbol by the

receiver.

Table 4-3 BDLC Receiver VPW Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 32 64 95 tbdlc

2 Passive Logic 1 Trvp2 96 128 163 tbdlc

3 Active Logic 0 Trva1 96 128 163 tbdlc

4 Active Logic 1 Trva2 32 64 95 tbdlc

5 Start of Frame (SOF) Trva3 164 200 239 tbdlc

6 End of Data (EOD) Trvp3 164 200 239 tbdlc

7 End of Frame (EOF) Trv4 240 280 299 tbdlc

8 Inter-Frame Separator (IFS) Trv5 300 --- --- tbdlc

9 Break Signal (BREAK) Trv6 240 --- --- tbdlc

NOTE:
The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling

considerations.

Table 4-1 BDLC Transmitter VPW Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit
43

Block Guide — S12BDLC_BG V01.03
Table 4-4 BDLC Receiver VPW Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 34 67 100 tbdlc

2 Passive Logic 1 Trvp2 101 134 171 tbdlc

3 Active Logic 0 Trva1 101 134 171 tbdlc

4 Active Logic 1 Trva2 34 67 100 tbdlc

5 Start of Frame (SOF) Trva3 172 210 251 tbdlc

6 End of Data (EOD) Trvp3 172 210 251 tbdlc

7 End of Frame (EOF) Trv4 252 293 314 tbdlc

8 Inter-Frame Separator (IFS) Trv5 315 --- --- tbdlc

9 Break Signal (BREAK) Trv6 252 --- --- tbdlc

NOTE:
The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling

considerations.

Table 4-5 BDLC Receiver VPW 4X Symbol Timing for Integer Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 8 16 23 tbdlc

2 Passive Logic 1 Trvp2 24 32 40 tbdlc

3 Active Logic 0 Trva1 24 32 40 tbdlc

4 Active Logic 1 Trva2 8 16 23 tbdlc

5 Start of Frame (SOF) Trva3 41 50 59 tbdlc

6 End of Data (EOD) Trvp3 41 50 59 tbdlc

7 End of Frame (EOF) Trv4 60 70 74 tbdlc

8 Inter-Frame Separator (IFS) Trv5 75 --- --- tbdlc

9 Break Signal (BREAK) Trv6 60 --- --- tbdlc

NOTE:
The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling

considerations.

Table 4-6 BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit

1 Passive Logic 0 Trvp1 9 17 25 tbdlc

2 Passive Logic 1 Trvp2 26 34 42 tbdlc

3 Active Logic 0 Trva1 26 34 42 tbdlc
44

Block Guide — S12BDLC_BG V01.03

ive to
The min and max symbol limits shown in the following sections (Invalid Passive Bit - Valid BREAK
Symbol) and figures (Figure 4-3 - Figure 4-6) refer to the values listed in Tables 4-1 through 4-6.

• Invalid Passive Bit

If the passive to active transition beginning the next data bit or symbol occurs between the act
passive transition beginning the current data bit or symbol and Trvp1(Min), the current bit would be
invalid. SeeFigure 4-3 (1).

4 Active Logic 1 Trva2 9 17 25 tbdlc

5 Start of Frame (SOF) Trva3 43 53 62 tbdlc

6 End of Data (EOD) Trvp3 43 53 62 tbdlc

7 End of Frame (EOF) Trv4 63 74 78 tbdlc

8 Inter-Frame Separator (IFS) Trv5 79 --- --- tbdlc

9 Break Signal (BREAK) Trv6 63 --- --- tbdlc

NOTE:
The receiver symbol timing boundaries are subject to an uncertainty of 1 tbdlc due to sampling

considerations.

Table 4-6 BDLC Receiver VPW 4X Symbol Timing for Binary Frequencies

Number Characteristic Symbol Min Typ Max Unit
45

Block Guide — S12BDLC_BG V01.03
Figure 4-3 J1850 VPW Passive Symbols

• Valid Passive Logic Zero

If the passive to active transition beginning the next data bit or symbol occurs between Trvp1(Min)
and Trvp1(Max), the current bit would be considered a logic zero. SeeFigure 4-3 (2).

• Valid Passive Logic One

If the passive to active transition beginning the next data bit or symbol occurs between Trvp2(Min)
and Trvp2(Max), the current bit would be considered a logic one. SeeFigure 4-3 (3).

• Valid EOD Symbol

If the passive to active transition beginning the next data bit or symbol occurs between Trvp3(Min)
and Trvp3(Max), the current symbol would be considered a valid EOD symbol. SeeFigure 4-3 (4).

Trvp1(Min)

Trvp2(Min) Trvp2(Max)

Trvp1(Max)Trvp1(Min)

(1) Invalid Passive

(2) Valid Passive

(3) Valid Passive

64µs

128µs

Trvp3(Min) Trvp3(Max)

(4) Valid EOD
 Symbol

 Logic One

Bit

 Logic Zero

200µs

Active

Passive

Active

Passive

Active

Passive

Active

Passive
46

Block Guide — S12BDLC_BG V01.03

age
l.

er

re
ome
.

EOF
ss.

ccur
may
Figure 4-4 J1850 VPW EOF and IFS Symbols

• Valid EOF & IFS Symbol

In Figure 4-4 (1), if the passive to active transition beginning the SOF symbol of the next mess
occurs between Trv4(Min) and Trv4(Max), the current symbol will be considered a valid EOF symbo

If the passive to active transition beginning the SOF symbol of the next message occurs aft
Trv5(Min), the current symbol will be considered a valid EOF symbol followed by a valid IFS
symbol. SeeFigure 4-4 (2). All nodes must wait until a valid IFS symbol time has expired befo
beginning transmission. However, due to variations in clock frequencies and bus loading, s
nodes may recognize a valid IFS symbol before others, and immediately begin transmitting
Therefore, anytime a node waiting to transmit detects a passive to active transition once a valid
has been detected, it should immediately begin transmission, initiating the arbitration proce

• Idle Bus

If the passive to active transition beginning the SOF symbol of the next message does not o
before Ttv5(Min), the bus is considered to be idle, and any node wishing to transmit a message
do so immediately.

(2) Valid EOF+
 IFS Symbol

280µs

300µs

Trv4(Min) Trv4(Max)

(1) Valid EOF
 Symbol

Active

Passive

Active

Passive
Trv5(Min)
47

Block Guide — S12BDLC_BG V01.03

ssive
Figure 4-5 J1850 VPW Active Symbols

• Invalid Active Bit

If the active to passive transition beginning the next data bit or symbol occurs between the pa
to active transition beginning the current data bit or symbol and Trva2(Min), the current bit would be
invalid. SeeFigure 4-5 (1).

• Valid Active Logic One

If the active to passive transition beginning the next data bit or symbol occurs between Trva2(Min)
and Trva2(Max), the current bit would be considered a logic one. SeeFigure 4-5 (2).

• Valid Active Logic Zero

If the active to passive transition beginning the next data bit or symbol occurs between Trva1(Min)
and Trva1(Max), the current bit would be considered a logic zero. SeeFigure 4-5 (3).

• Valid SOF Symbol

If the active to passive transition beginning the next data bit or symbol occurs between Trva3(Min)
and Trva3(Max), the current symbol would be considered a valid SOF symbol. SeeFigure 4-5 (4).

Trva2(Min)

Trva1(Min) Trva1(Max)

Trva2(Max)Trva2(Min)

(1) Invalid Active

(2) Valid Active

(3) Valid Active

64µs

128µs

Trva3(Min) Trva3(Max)

Bit

 Logic One

 Logic Zero

(4) Valid SOF
 Symbol

200µs

Active

Passive

Active

Passive

Active

Passive

Active

Passive
48

Block Guide — S12BDLC_BG V01.03

bol

g the
tion

e is in
smit
bit

ic zero

aid to

nd
flag
an
lear
Figure 4-6 J1850 VPW BREAK Symbol

• Valid BREAK Symbol

If the next active to passive transition does not occur until after Trv6(Min), the current symbol will
be considered a valid BREAK symbol. A BREAK symbol should be followed by a SOF sym
beginning the next message to be transmitted onto the J1850 bus. SeeFigure 4-6 .

• Message Arbitration

Message arbitration on the J1850 bus is accomplished in a non-destructive manner, allowin
message with the highest priority to be transmitted, while any transmitters which lose arbitra
simply stop transmitting and wait for an idle bus to begin transmitting again.

If the BDLC module wishes to transmit onto the J1850 bus, but detects that another messag
progress, it automatically waits until the bus is idle. However, if multiple nodes begin to tran
in the same synchronization window, message arbitration will occur beginning with the first
after the SOF symbol and continue with each bit thereafter.

The VPW symbols and J1850 bus electrical characteristics are carefully chosen so that a log
(active or passive type) will always dominate over a logic one (active or passive type)
simultaneously transmitted. Hence logic zeroes are said to be ‘dominant’ and logic ones are s
be ‘recessive’.

Whenever a node transmits a recessive bit and detects a dominant bit, it loses arbitration, a
immediately stops transmitting. This is known as ‘bitwise arbitration’.The loss of arbitration
(in DLCBSVR) is set when arbitration is lost. If the interrupt enable bit (IE in DLCBCR1) is set,
interrupt request from the BDLC module is generated. Reading the DLCBSVR register will c
this flag.

(2) Valid BREAK

240µs

Trv6(Min)

Symbol

Active

Passive
49

Block Guide — S12BDLC_BG V01.03

ected,
DLC

extra
 1 bit
alid
C
 the

and
ith
re

e

l error,

ing a

ly
bol is
Figure 4-7 J1850 VPW Bitwise Arbitrations

During arbitration, or even throughout the transmitting message, when an opposite bit is det
transmission is immediately stopped unless it occurs on the 8th bit of a byte. In this case the B
module will automatically append up to two extra 1 bits and then stop transmitting. These two
bits will be arbitrated normally and thus will not interfere with another message. The second
will not be sent if the first loses arbitration. If the BDLC module has lost arbitration to another v
message then the two extra ones will not corrupt the current message. However, if the BDL
module has lost arbitration due to noise on the bus, then the two extra ones will ensure that
current message will be detected and ignored as a noise-corrupted message.

Since a “0” dominates a “1”, the message with the lowest value will have the highest priority,
will always win arbitration, i.e. a message with priority 000 will win arbitration over a message w
priority 011. This method of arbitration will work no matter how many bits of priority encoding a
contained in the message.

4.1.4 J1850 Bus Errors

The BDLC module detects several types of transmit and receive errors which can occur during th
transmission of a message onto the J1850 bus.

• Transmission Error

If the BDLC module is transmitting a message and the message received contains a symbo
a framing error, a bus fault, a BREAK symbol, or a logic ‘1’ symbol when a logic “0” is being
transmitted, this constitutes a transmission error. Receiving a logic ‘0’ symbol when transmitt
logic ‘1’ is considered a loss of arbitration condition (See Message Arbitration) and not a
transmission error. When a transmission error is detected, the BDLC module will immediate
cease transmitting. Further transmission or reception will be disabled until a valid EOF sym

Transmitter A

Transmitter B

J1850 Bus

SOF
Data
Bit 1

Data
Bit 4

Data
Bit 5

“0”

Transmitter A detects
an active state on
the bus, and stops

transmitting

Transmitter B wins

Passive

Active

Passive

Active

Passive

Active

“0”

“0”

“1”

“1”

“1”

Data
Bit 2

“1”

“1”

“1”

Data
Bit 3

“0”

“0”

“0”

“0”

“1”

arbitration and
continues

transmitting
50

Block Guide — S12BDLC_BG V01.03

out of
upt
flag.

 a
C code
types
rrupt
.

ing
fine

rror
LC

e

s
OD

.

d. If
 is

lt.

re
pt to

sage,
driven
(64
ror.

ed in
detected on the J1850 bus. The error condition is reflected by setting the symbol invalid or
range flag in the DLCBSVR register. If the interrupt enable bit (IE in DLCBCR1) is set, an interr
request from the BDLC module is generated. Reading the DLCBSVR register will clear this

• CRC Error

A cyclical redundancy check (CRC) error is detected when the data bytes and CRC byte of
received message are processed, and the CRC calculation result is not equal to $C4.The CR
should detect any single and 2 bit errors, as well as all 8 bit burst errors, and almost all other
of errors. The CRC error flag (in DLCBSVR) is set when a CRC error is detected. If the inte
enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module is generated
Reading the DLCBSVR register will clear this flag.

• Symbol Error

A symbol error is detected when an abnormal (invalid) symbol is detected in a message be
received from the J1850 bus. See sections Invalid Passive Bit and Invalid Active Bit which de
invalid symbols.The symbol invalid or out of range flag (in DLCBSVR) is set when a symbol e
is detected. If the interrupt enable bit (IE in DLCBCR1) is set, an interrupt request from the BD
module is generated. Reading the DLCBSVR register will clear this flag.

• Framing Error

A framing error is detected when a received symbol occurs in an inappropriate location in th
message frame. The following situations result in framing errors:

– An active logic “0” or logic “1” received as the first symbol of the frame.

– An SOF symbol received in any location other than the first symbol of a frame. Erroneou
locations include: Within the data portion of a message or IFR; Immediately following the E
in a message or IFR.

– An EOD symbol received on a non-byte boundary in a message or IFR.

– An active logic “0” or logic “1” received immediately following the EOD at the end of an IFR

The symbol invalid or out of range flag (in DLCBSVR) is set when a framing error is detecte
the interrupt enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module
generated. Reading the DLCBSVR register will clear this flag.

• Bus Fault

If a bus fault occurs, the response of the BDLC module will depend upon the type of bus fau

If the bus is shorted to VDD, the BDLC module will wait for the bus to fall to a passive state befo
it will attempt to transmit a message. As long as the short remains, the BDLC will never attem
transmit a message onto the J1850 bus.

If the bus is shorted to ground, the BDLC module will see an idle bus, begin to transmit the mes
and then detect a transmission error, since the short to ground would not allow the bus to be
to the active (dominant) state. The BDLC module will wait for assertion of the receive pin for
- analog round trip delay) tbdlccycles, after assertion of the transmit pin, before detecting the er
If the transmission is an IFR, the BDLC module will wait for (280 - analog round trip delay) tbdlc
cycles before detecting an error. The “analog round trip delay” is determined by the value stor
the DLCBARD register. The BDLC module will set the symbol invalid or out of range flag (in
51

Block Guide — S12BDLC_BG V01.03

ase,
errupt
.

will

ion

AK

bol
bled
50 bus.
le is

om

Table
DLCBSVR), abort that transmission and wait for the next CPU command to transmit. In this c
the transmitter does not have to wait for an EOF symbol to be received to be enabled. If the int
enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC module is generated
Reading the DLCBSVR register will clear this flag.

In any case, if the bus fault is temporary, as soon as the fault is cleared, the BDLC module
resume normal operation. If the bus fault is permanent, it may result in permanent loss of
communication on the J1850 bus.

• BREAK - Break

Any BDLC transmitting at the time a BREAK is detected will treat the BREAK as if a transmiss
error had occurred, and halt transmission.

If while receiving a message the BDLC module detects a BREAK symbol, it will treat the BRE
as a reception error.

If a BREAK symbol is received while the BDLC module is transmitting or receiving, the sym
invalid or out of range flag (in DLCBSVR) is set. Further transmission/reception will be disa
until the J1850 bus returns to the passive state and a valid EOF symbol is detected on the J18
If the interrupt enable bit (IE in DLCBCR1) is set, an interrupt request from the BDLC modu
generated. Reading the DLCBSVR register will clear this flag.

The BDLC module cannot transmit a BREAK symbol. It can only receive a BREAK symbol fr
the J1850 bus.

• Bus Error Summary

The possible J1850 bus errors and the actions taken by the BDLC module are summarized in
4-7.

Table 4-7 BDLC module J1850 Error Summary

Error Condition BDLC Module Function

Transmission Error

BDLC module will immediately cease transmitting. Further
transmission and reception will be disabled until a valid
EOF symbol is detected. The symbol invalid or out of
range flag will be set and interrupt generated if enabled.

Cyclical Redundancy Check
(CRC) Error

CRC error flag set and interrupt generated if enabled.

Symbol Error

The symbol invalid or out of range flag will be set and
interrupt generated if enabled. Transmission and
reception will be disabled until a valid EOF symbol is
detected.

Framing Error

The symbol invalid or out of range flag will be set and
interrupt generated if enabled. Transmission and
reception will be disabled until a valid EOF symbol is
detected.
52

Block Guide — S12BDLC_BG V01.03

ulses
4.2 Mux Interface

The MUX Interface is responsible for bit encoding/decoding and digital noise filtering between the
Protocol Handler and the Physical Interface. Refer toFigure 1-2 BDLC Block Diagram on page 16.

4.2.1 Mux Interface - Rx Digital Filter

The Receiver section of the BDLC module includes a digital low pass filter to remove narrow noise p
from the incoming message. An outline of the digital filter is shown in Figure 4-8.

Bus short to VDD.

The BDLC module will not transmit until short is corrected
and a valid EOF is detected. Depending upon when short
occurs and is corrected, this error condition may set the
symbol invalid or out of range, crc error, or loss of
arbitration flags.

Bus short to GND.

 Short will be seen as an idle bus by BDLC module. If a
transmission attempt is made before short is corrected,
the symbol invalid or out of range flag will be set and
interrupt generated if enabled. Another transmission can
be initiated as soon as short is corrected.

BREAK symbol reception

If doing so, the BDLC module will immediately cease
transmitting. Symbol invalid or out of range flag set and
interrupt generated if enabled.Transmission and reception
will be disabled until a valid EOF symbol is detected.

Table 4-7 BDLC module J1850 Error Summary

Error Condition BDLC Module Function
53

Block Guide — S12BDLC_BG V01.03

the
RXB
 next

 is
h or

on of
Data
d can

 the
g the

 from

fying

ency
Figure 4-8 BDLC Module Rx Digital Filter Block Diagram

• Operation

The clock for the digital filter is provided by the MUX Interface clock.At each positive edge of
clock signal, the current state of the Receiver input signal from the RXB pad is sampled.The
signal state is used to determine whether the counter should increment or decrement at the
positive edge of the clock signal.

The counter will increment if the input data sample is high but decrement if the input sample
low.The counter will thus progress up towards ‘15’ if, on average, the RXB signal remains hig
progress down towards ‘0’ if, on average, the RXB signal remains low.

When the counter eventually reaches the value ‘15’, the digital filter decides that the conditi
the RXB signal is at a stable logic level one and the Data Latch is set, causing the Filtered Rx
signal to become a logic level one. Furthermore, the counter is prevented from overflowing an
only be decremented from this state.

Alternatively, should the counter eventually reach the value ‘0’, the digital filter decides that
condition of the RXB signal is at a stable logic level zero and the Data Latch is reset, causin
Filtered Rx Data signal to become a logic level zero. Furthermore, the counter is prevented
underflowing and can only be incremented from this state.

The Data Latch will retain its value until the counter next reaches the opposite end point, signi
a definite transition of the RXB signal.

• Performance

The performance of the digital filter is best described in the time domain rather than the frequ
domain.

4-Bit Up/Down Counter

up/down out d q

Filtered
Rx Data Out

MUX Interface Clock

Input
Sync

d q
Rx Data
from
RXB pad

4 Edge &
Count
Comparator
54

Block Guide — S12BDLC_BG V01.03

ears
nding
aken

self.
filter

 an
here

mbol
ol.

ted as

 Data

 Shift
dler
If the signal on the RXB signal transitions, then there will be a delay before that transition app
at the Filtered Rx Data output signal. This delay will be between 15 and 16 clock periods, depe
on where the transition occurs with respect to the sampling points. This ‘filter delay’ must be t
into account when performing message arbitration.

For example, if the frequency of the MUX Interface clock (fbdlc) is 1.0486MHz, then the period
(tbdlc) is 954ns and the maximum filter delay in the absence of noise will be 15.259us.

The effect of random noise on the RXB signal depends on the characteristics of the noise it
Narrow noise pulses on the RXB signal will be completely ignored if they are shorter than the
delay. This provides a degree of low pass filtering.

If noise occurs during a symbol transition, the detection of that transition may be delayed by
amount equal to the length of the noise burst. This is just a reflection of the uncertainty of w
the transition is truly occurring within the noise.

Noise pulses that are wider than the filter delay, but narrower than the shortest allowable sy
length will be detected by the next stage of the BDLC module’s receiver as an invalid symb

Noise pulses that are longer than the shortest allowable symbol length will normally be detec
an invalid symbol or as invalid data when the frame’s CRC is checked.

4.3 Protocol Handler

The Protocol Handler is responsible for framing, collision detection, arbitration, CRC
generation/checking, and error detection. The Protocol Handler conforms to SAE J1850 - Class B
Communications Network Interface. Refer toFigure 1-2 BDLC Block Diagram on page 16

4.3.1 Protocol Architecture

The Protocol Handler contains the State Machine, Rx Shadow Register, Tx Shadow Register, Rx
Register, Tx Shift Register, and Loopback Multiplexer as shown in Figure 4-9 BDLC Protocol Han
Outline. Each block will now be described in more detail.
55

Block Guide — S12BDLC_BG V01.03

ailable
from
mitted
Figure 4-9 BDLC Protocol Handler Outline

• Rx & Tx Shift Registers

The Rx Shift Register gathers received serial data bits from the J1850 bus and makes them av
in parallel form to the Rx Shadow Register. The Tx Shift Register takes data, in parallel form,
the Tx Shadow Register and presents it serially to the State Machine so that it can be trans
onto the J1850 bus.

• Rx & Tx Shadow Registers

Rx Shift Register

To IP Bus Interface & Rx/Tx Buffer’s

State Machine

To Pad Drivers

R
x

D
at

a

T
x

D
at

a

C
on

tr
ol8

Tx Shift Register

T
X

B

D
IG

IT
A

L
F

IL
T

E
R

 IN

C
on

tr
ol

8

Rx Shadow Register Tx Shadow Register

Loopback

RXB

loopback control

TXB

Multiplexer
DLOOP from BCR2

BDLC
56

Block Guide — S12BDLC_BG V01.03

if the
e Rx
t byte
new

 byte
e, the

-9)

tate

’s

kbps)
eive
R2
nored.
rmal

ock

of the

the
efined

o the
is set
any
Immediately after the Rx Shift Register has completed shifting in a byte of data, this data is
transferred to the Rx Shadow Register and RDRF or RXIFR is set and interrupt is generated
interrupt enable bit (IE) in BCR1 is set. After the transfer takes place, this new data byte in th
Shadow Register is available to the CPU, and the Rx Shift Register is ready to shift in the nex
of data. Data in Rx Shadow Register must be retrieved by the CPU before it is overwritten by
data from the Rx Shift Register.

Once the Tx Shift Register has completed its shifting operation for the current byte, the data
in the Tx Shadow Register is loaded into the Tx Shift Register. After this transfer takes plac
Tx Shadow Register is ready to accept new data from the CPU.

• Digital Loopback Multiplexer

The Digital Loopback Multiplexer connects the input of the receive digital filter (See Figure 4
to either the transmit signal out to the pad (TXB) or the receive signal from the pad (RXB),
depending on the state of the DLOOP bit in DLCBCR2 register.

• State Machine

All of the functions associated with performing the protocol are executed or controlled by the S
Machine. The State Machine is responsible for framing, collision detection, arbitration, CRC
generation/checking, and error detection. The following sections describe the BDLC module
actions in a variety of situations.

• 4X Mode

The BDLC module can exist on the same J1850 bus as modules which use a special 4X (41.6
mode of J1850 VPW operation. The BDLC module cannot transmit in 4X mode, but can rec
messages in 4X mode, if the RX4X bit is set in BCR2 register. If the RX4X bit is not set in the BC
register, any 4X message on the J1850 bus is treated as noise by the BDLC module and is ig
Likewise, 4X messages transmitted on the SAE J1850 bus when the BDLC module is in no
mode will be interpreted as noise on the network by the BDLC module.

• Receiving a Message in Block Mode

Although not a part of the SAE J1850 protocol, the BDLC module does allow for a special “Bl
Mode” of operation of the receiver. As far as the BDLC module is concerned, a Block Mode
message is simply a long J1850 frame that contains an indefinite number of data bytes. All
other features of the frame remain the same, including the SOF, CRC, and EOD symbols.

Another node wishing to send a Block Mode transmission must first inform all other nodes on
network that this is about to happen. This is usually accomplished by sending a special pred
message.

• Transmitting a Message in Block Mode

A Block mode message is transmitted inherently by simply loading the bytes one by one int
BDR register until the message is complete. The programmer should wait until the TDRE flag
prior to writing a new byte of data into the BDR register. The BDLC module does not contain
predefined maximum J1850 message length requirement.
57

Block Guide — S12BDLC_BG V01.03

ge
sages

not
ribed in
e

AE
C
TEOD
age is
 bit

o be
ically.
bit
f

itted
 the
.

 is
ule,
to

age to
s
ytes
letes

mit a
ence,
4.4 Transmitting A Message

The design of the BDLC module enables the user to easily handle message reception and messa
transmission separately. This can greatly simplify the communication software, as all received mes
can be handled virtually the same, regardless of their origin.

This chapter will therefore describe only the steps necessary for transmitting a message, and will
address the resulting reception of that message by the BDLC module. Message reception is desc
Section 4.5 Receiving A Message. Later sections will deal with transmitting and receiving In-Fram
Responses on the SAE J1850 bus.

4.4.1 BDLC Transmission Control Bits

There is only one BDLC module control bit which is used when transmitting a message onto the S
J1850 bus. This bit, the Transmit End of Data (TEOD) bit, is set by the user to indicate to the BDL
module that the last byte of that part of the message frame has been loaded into the DLCBDR. The
bit, located in DLCBCR2, is also used when transmitting an In-Frame Response (IFR), but that us
described in Section 4.6 Transmitting An In-Frame Response (IFR) on page 67. Setting the TEOD
indicates to the BDLC module that the last byte written to the BDLC Data Register is the final byte t
transmitted, and that following this byte a CRC byte and EOD symbol should be transmitted automat
Setting the TEOD bit will also inhibit any further TDRE interrupts until TEOD is cleared. The TEOD
will be cleared on the rising edge of the first bit of the transmitted CRC byte, or if an error or loss o
arbitration is detected on the bus.

• BDLC Data Register

The BDLC Data Register is a double-buffered register which is used for handling the transm
and received message bytes.Bytes to be transmitted onto the SAE J1850 bus are written to
DLCBDR, and bytes received from the bus by the BDLC module are read from the DLCBDR
Since this register is double buffered, bytes written into it cannot be read by the CPU. If this
attempted, the byte which is read will be the last byte placed in the DLCBDR by the BDLC mod
not the last byte written to the DLCBDR by the CPU. For an illustration of the DLCBDR, refer
Section 3.3.4 BDLC Data Register (DLCBDR) on page 31.

• Transmitting a Message with the BDLC

To transmit a message using the BDLC module, the user just writes the first byte of the mess
be transmitted into the DLCBDR, initiating the transmission process. When the TDRE statu
appears in the DLCBSVR, the user writes the next byte into the DLCBDR. Once all of the b
have been loaded into the DLCBDR, the user sets the TEOD bit, and the BDLC module comp
the message transmission. What follows is an overview of the basic steps required to trans
message onto an SAE J1850 network using the BDLC module. For an illustration of this sequ
refer to Figure 4-10 Basic BDLC Transmit Flowchart on page 62.

NOTE: Due to the byte-level architecture of the BDLC module, the 12-byte limit on
message length as defined in SAE J1850 must be enforced by the user’s software.
The number of bytes in a message (transmitted or received) has no meaning to the
BDLC module.
58

Block Guide — S12BDLC_BG V01.03

to be

OF)

n be

itted

n sets
R

 as

ted. If
sage

e has
ver,
tine.
– Step 1: Write the First Byte into the DLCBDR

To initiate a message transmission, the CPU simply loads the first byte of the message
transmitted into the DLCBDR. The BDLC module will then perform the necessary bus
acquisition duties to determine when the message transmission can begin.

Once the BDLC module determines that the SAE J1850 bus is free, a Start of Frame (S
symbol will be transmitted, followed by the byte written to the DLCBDR. Once the BDLC
module readies this byte for transmission, the DLCBSVR will reflect that the next byte ca
written to the DLCBDR (TDRE interrupt).

NOTE: If the user writes the first byte of a message to be transmitted to the DLCBDR and
then determines that a different message should be transmitted, the user can write
a new byte to the DLCBDR up until the transmission begins. This new byte will
replace the original byte in the DLCBDR.

– Step 2: When TDRE is Indicated, Write the Next Byte into the DLCBDR

When a TDRE state is reflected in the BSVR, the CPU writes the next byte to be transm
into the BDR. This step is repeated until the last byte to be transmitted is written to the
DLCBDR.

NOTE: Due to the design and operation of the BDLC module, when transmitting a message
the user may write two, or possibly even three of the bytes to be transmitted into the
DLCBDR before the first RDRF interrupt occurs. For this reason, the user should
never use receive interrupts to control the sequencing of bytes to be transmitted.

– Step 3: Write the Last Byte to the DLCBDR and Set TEOD

Once the user has written the last byte to be transmitted into the DLCBDR, the user the
the TEOD bit in DLCBCR2. When the TEOD bit is set, once the byte written to the DLCBD
is transmitted onto the bus, the BDLC module will begin transmitting the 8-bit CRC byte,
specified in SAE J1850. Following the CRC byte, the BDLC module will transmit an EOD
symbol onto the SAE J1850 bus, indicating that this part of the message has been comple
no IFR bytes are transmitted following the EOD, an EOF will be recognized and the mes
will be complete.

Setting the TEOD bit is the last step the CPU needs to take to complete the message
transmission, and no further transmission-related interrupts will occur. Once the messag
been completely received by the BDLC module, an EOF interrupt will be generated. Howe
this is technically a receive function which can be handled by the message reception rou

NOTE: While the TEOD bit is typically set immediately following the write of the last byte
to the BDR, it is also acceptable to wait until a TDRE interrupt is generated before
setting the TEOD bit. While the example flowchart in Figure 4-10 shows the TEOD
bit being set after the write to the BDR, either method is correct. If a TDRE interrupt
is pending, it will be cleared when the TEOD bit is set.
59

Block Guide — S12BDLC_BG V01.03

is can
twork.

850
 in
may

switch

r

bus
as

red
nning.

point
 to
curred.

f the
byte
dule
tted
bol.
nge

tus
F is

iption
4.4.2 Transmitting Exceptions

While this is the basic transmit flow, at times the message transmit process will be interrupted. Th
be due to a loss of arbitration to a higher priority message or due to an error being detected on the ne
For the transmit routine, either of these events can be dealt with in a similar manner.

• Loss of Arbitration

If a loss of arbitration (LOA) occurs while the BDLC module is transmitting onto the SAE J1
bus, the BDLC module will immediately stop transmitting, and a LOA status will be reflected
the DLCBSVR. If the loss of arbitration has occurred on a byte boundary, an RDRF interrupt
also be pending once the LOA interrupt is cleared.

When a loss of arbitration occurs, the J1850 message handling software should immediately
into the receive mode. If the TEOD bit was set, it will be cleared automatically.If another attempt
is to be made to transmit the same message, the user must start the transmit sequence ove
from the beginning of the message.

• Error Detection

Similar to a loss of arbitration, if any error (except a CRC error) is detected on the SAE J1850
during a transmission, the BDLC module will stop transmitting immediately. The byte which w
being transmitted will be discarded, and the “Symbol Invalid or Out of Range” status will be
reflected in the DLCBSVR. As with the loss of arbitration, if the TEOD bit was set, it will be clea
automatically, and any attempt to transmit the same message will have to start from the begi

If a CRC error occurs following a transmission, this will also be reflected in the DLCBSVR.
However, since the CRC error is really a receive error based on the received CRC byte, at this
all bytes of the message will have been transmitted. It is therefore up to the user’s software
determine if another attempt should be made to transmit the message in which the error oc

• Transmitter Underrun

A transmitter underrun can occur when a TDRE interrupt is not serviced in a timely fashion. I
last byte loaded into the DLCBDR is completely transmitted onto the network before the next
is loaded into the BDR, a transmitter underrun will occur. If this does happen, the BDLC mo
will transmit two additional logic ones to ensure that the partial message which was transmi
onto the bus does not end on a byte boundary. This will be followed by an EOD and EOF sym
The only indication to the CPU that an underrun occurred is the Symbol Invalid or Out of Ra
error which will be indicated in the DLCBSVR. As with the other errors, it is up to the user’s
software to determine if another transmission attempt should be made.

• In-Frame Response to a Transmitted Message

If an In-Frame Response (IFR) is received following the transmission of a message, the sta
indicating that an IFR byte has been received will be indicated in the DLCBSVR before an EO
indicated. Refer to Section 4.7 Receiving An In-Frame Response (IFR) on page 78 for a descr
of how to handle the reception of IFR bytes.
60

Block Guide — S12BDLC_BG V01.03

 Since
bort
ecides
essage

the user
cause
ount
BDR
s

4.4.3 Aborting a Transmission

The BDLC module does not have a mechanism designed specifically for aborting a transmission.
the module transmits each message on a byte-by-byte basis, there is little need to implement an a
mechanism. If the user has loaded a byte into the DLCBDR to initiate a message transmission and d
to send a different message, the byte in the DLCBDR can be replaced, right up to the point that the m
transmission begins.

If the user has loaded a byte into the DLCBDR and then decides not to send any message at all,
can let the byte transmit, and when the TDRE interrupt occurs let the transmitter underrun. This will
two extra logic ones followed by an EOF to be transmitted. While this method may require a small am
of bus bandwidth, the need to do this should be very rare. Replacing the byte originally written to the
with $FF will also increase the probability of the transmitter losing arbitration if another node begin
transmitting at the same time, also reducing the bus bandwidth needed.
61

Block Guide — S12BDLC_BG V01.03

 SAE
byte
Figure 4-10 Basic BDLC Transmit Flowchart

4.5 Receiving A Message

The design of the BDLC module makes it especially easy to use for receiving messages off of the
J1850 bus. When the first byte of a message comes in, the DLCBSVR will indicate to the CPU that a

Enter BDLC module Transmit
Routine

Write first message
byte to be transmitted

into DLCBDR

Is DLCBSVR = $00?

Yes

No

Load next byte to be
transmitted into BDR

(clears TDRE)

Is DLCBSVR = $1C?
Yes

No

Is DLCBSVR = $14?
Yes

No

Is DLCBSVR = $10?

Yes

No

(TDRE)

(LOA)

(Invalid Symbol)

Attempt another
Yes

No

transmission?

Is this the last

Yes

No

byte?

A

A

Jump to BDLC module
Receive Routine

Once BDLC module detects
EOF, transmit

Set TEOD bit
in DLCBCR2

attempt is complete

Yes

No

IFR Received? Jump to Receive IFR
Handling Routine

Exit BDLC module Transmit
Routine

B
B

C

C

Go to BDLC module
BREAK/Error Handling

Routine

For interrupt driven systems,
this marks the beginning of the
transmit section of the BDLC
module interrupt service
routine

NOTE: The EOF and CRC Error interrupts
are handled in the BDLC module Receive
Routine
62

Block Guide — S12BDLC_BG V01.03

SVR.
ct this,

r more
page

ssage
SOF
U has

e
e
DLC

age is
ata

CPU

s with
 page

n the
n is
state

ns.

one,
eated.

re
has been received. As each successive byte is received, that will in turn be reflected in the DLCB
When the message is complete and the EOF has been detected on the bus, the DLCBSVR will refle
indicating that the message is complete.

The basic steps required for receiving a message from the SAE J1850 bus are outlined below. Fo
information on receiving IFR bytes, refer to Section 4.7 Receiving An In-Frame Response (IFR) on
78.

4.5.1 BDLC Reception Control Bits

The only control bit which is used for message reception, the IMSG bit, is actually used to prevent me
reception. When the IMSG bit is set BDLC module interrupts of the CPU are inhibited until the next
symbol is received. This allows the BDLC module to ignore the remainder of a message once the CP
determined that it is of no interest. This helps reduce the amount of CPU overhead used to servic
messages received from the SAE J1850 network, since otherwise the BDLC module would requir
attention from the CPU for each byte broadcast on the network. The IMSG bit is cleared when the B
module receives an SOF symbol, or it can also be cleared by the CPU.

NOTE: While the IMSG bit can be used to prevent the CPU from having to service the
BDLC module for every byte transmitted on the SAE J1850 bus,the IMSG bit
should never be used to ignore the BDLC module’s own transmission. Because
setting the IMSG bit prevents all DLCBSVR bits from being updated until an SOF
is received, the user would not receive any further transmit-related interrupts until
another SOF was received, making it very difficult for the CPU to complete the
transmission correctly.

4.5.2 Receiving a Message with the BDLC module

Receiving a message using the BDLC module is extremely straight-forward. As each byte of a mess
received and placed into the DLCBDR, the BDLC module will indicate this to the CPU with an Rx D
Register Full (RDRF) status in the DLCBSVR. When an EOF symbol is received, indicating to the
that the message is complete, this too will be reflected in the DLCBSVR.

Outlined below are the basic steps to be followed for receiving a message from the SAE J1850 bu
the BDLC module. For an illustration of this sequence, refer to Basic BDLC Receive Flowchart on
66.

• Step 1: When RDRF Interrupt Occurs, Retrieve Data Byte

When the first byte of a message following a valid SOF symbol is received that byte is placed i
DLCBDR, and an RDRF state is reflected in the DLCBSVR. No indication of the SOF receptio
made, since the end of the previous message is marked by an EOF indication. The first RDRF
following this EOF indication should allow the user to determine when a new message begi

The RDRF interrupt is cleared when the received byte is read from the DLCBDR. Once this is d
no further CPU intervention is necessary until the next byte is received, and this step is rep

All bytes of the message, including the CRC byte, will be placed into the DLCBDR as they a
received for the CPU to retrieve.
63

Block Guide — S12BDLC_BG V01.03

for a
will

ition
to

ey are

e is

 must
asis,
mplete.
of any

bit can
valid
every

etected
bol

 in a

ext byte
ext
tion
ntire
).

entire
DLC
VR,
le.
• Step 2: When an EOF is Received, the Message is Complete

Once all bytes (including the CRC byte) have been received from the bus, the bus will be idle
time period equal to an EOD symbol. Once the EOD symbol is received, the BDLC module
verify that the CRC byte is correct. If the CRC byte is not correct, this will be reflected in the
DLCBSVR.

If no In-Frame Response bytes are transmitted following the EOD symbol, the EOD will trans
into an EOF symbol. When the EOF is received it will be reflected in the DLCBSVR, indicating
the user that the message is complete. If IFR bytes do follow the first EOD symbol, once th
complete another EOD will be transmitted, followed by an EOF.

Once the EOF state is reflected in the DLCBSVR, this indicates to the user that the messag
complete, and that when another byte is received it is the first byte of a new message.

4.5.3 Filtering Received Messages

No message filtering hardware is included on the BDLC module, so all message filtering functions
be performed in software. Because the BDLC module handles each message on a byte-by-byte b
message filtering can be done as each byte is received, rather than after the entire message is co
This enables the CPU to decide while a message is still in progress whether or not that message is
interest.

At any point during a message, if the CPU determines that the message is of no interest the IMSG
be set. Setting the IMSG bit commands the BDLC module not to update the DLCBSVR until the next
SOF is received. This prevents the CPU from having to service the BDLC module for each byte of
message sent over the network.

4.5.4 Receiving Exceptions

As with a message transmission, this basic message reception flow can be interrupted if errors are d
by the BDLC module. This can occur if an incorrect CRC is detected or if an invalid or out of range sym
appears on the SAE J1850 bus. A problem can also arise if the CPU fails to service the DLCBDR
timely manner during a message reception.

• Receiver Overrun

Once a message byte has been received, the CPU must service the DLCBDR before the n
is received, or the first byte will be lost. If the DLCBDR is not serviced quickly enough, the n
byte received will be written over the previous byte in the DLCBDR. No receiver overrun indica
is made to the CPU. If the CPU fails to service the BDLC module during the reception of an e
message, the byte remaining in the DLCBDR will be last byte received (usually a CRC byte

Once a receiver overrun occurs, there is no way for the CPU to recover the lost byte(s), so the
message should be discarded. To prevent receiver overrun, the user should ensure that a B
RDRF interrupt will be serviced before the next byte can be received. When polling the DLCBS
the user should select a polling interval which will provide timely monitoring of the BDLC modu

• CRC Error
64

Block Guide — S12BDLC_BG V01.03

ce an
n
e bytes

AE
iving
tatus
til
ssage.
.

sage,
the

on of
If a CRC error is detected during a message reception, this will be reflected in the BSVR on
EOD time is recognized by the BDLC module. Since all bytes of the message will have bee
received when this error is detected, it is up to the user to ensure that all the received messag
are discarded.

• Invalid or Out of Range Symbol

If an invalid or out of range symbol, a framing error or a BREAK symbol is detected on the S
J1850 bus during the reception of a message, the BDLC module will immediately stop rece
the message and discard any partially received byte. The “Symbol Invalid or Out of Range” s
will immediately be reflected in the DLCBSVR. Following this the BDLC module will wait un
the bus has been idle for a time period equal to an EOF symbol before receiving another me
As with the CRC error, the user should discard any partially received message if this occurs

• In-Frame Response to a Received Message

As mentioned above, if one or more IFR bytes are received following the reception of a mes
the status indicating the reception of the IFR byte(s) will be indicated in the DLCBSVR before
EOF is indicated. Refer to Receiving An In-Frame Response (IFR) on page 78 for a descripti
how to deal with the reception of IFR bytes.
65

Block Guide — S12BDLC_BG V01.03
Figure 4-11 Basic BDLC Receive Flowchart

Enter BDLC module Receive

Is DLCBSVR

No

Store received byte
(in case of LOA)

Is this message
Yes

No

Is this an IFR
Yes

No

Is DLCBSVR = $04?

No

Yes

(EOF)

reception?

of any interest?

Is this a transmit

Yes

No

reflection?

Yes

A

B

Jump to Receive IFR
Handling Routine

Once BDLC module Detects

Go to BDLC module
BREAK/Error Handling

reception is complete

Yes

No

Is DLCBSVR

Jump to Transmit IFR
Handling Routine

Exit BDLC module Receive
Routine

B

Routine(Error Detected)

(RDRF)

Read byte in DLCBDR

Filter received byte

Set IMSG bit in DLCBCR1Store received byte

Is an IFR to
Yes

No

be transmitted?

B

A

Routine

EOF, message

= $1C/$18?

 = $0C?
66

Block Guide — S12BDLC_BG V01.03

efined
n of

h the
alization
SAE

IFR
lowed
SAE

the
ber of

onse.
me
with

used
the
f the

is type
ivers for
se, all
850

usly,
ion
 lose

e only
ng the
4.6 Transmitting An In-Frame Response (IFR)

The BDLC module can be used to transmit all four types of In-Frame Response (IFR) which are d
in SAE J1850. A very brief definition of each IFR type is given below. For a more detailed descriptio
each, refer the SAE J1850 document.

The explanation regarding IFR support by the BDLC module which assumes the user is familiar wit
use of IFRs as defined in SAE J1850, and understands the message header bit encoding and norm
bit formats which are used with the different types of IFRs. For more information on this, refer to the
J1850 document.

4.6.1 IFR Types Supported by the BDLC module

SAE J1850 defines four distinct types of IFR. The first (and most basic) IFR is Type 0, or no IFR.
types 1, 2 & 3 areeach made up of one or more bytes and, depending upon the type used, may be fol
by a CRC byte. The BDLC module is designed to allow the user to transmit and receive all types of
J1850 IFRs, but only the network framing/error checking/bus acquisition duties are performed by
BDLC module. The user is responsible for determining the type of IFR to be transmitted, the num
retries to be made (if allowed), and the allowable number of bytes to be transmitted.

• IFR Type 0: No Response

The most basic type of IFR is no IFR. The Type 0 IFR, as defined in SAE J1850, is no resp
The EOD and EOF symbols follow directly after the CRC byte at the end of the message fra
being transmitted. This type of IFR is, of course, inherently supported by the BDLC module
no additional user intervention required.

• IFR Type 1: Single Byte from a Single Responder

SAE J1850 defines the Type 1 IFR as a single byte from a single receiver. This type of IFR is
to acknowledge to the transmitter that the message frame was transmitted successfully on
network, and that at least one receiver received it correctly. A Type 1 IFR generally consists o
physical node ID of the receiver responding to the message, with no CRC byte appended. Th
of response is used for Broadcast-type messages, where there may be several intended rece
a message but the transmitter only wants to know that at least one node received it. In this ca
receivers will begin transmitting their node ID following the EOD. Since all nodes on an SAE J1
network have a unique node ID, if multiple nodes begin transmitting their node ID simultaneo
arbitration takes place. The node with the highest priority (lowest value) ID wins this arbitrat
process, and that node’s ID makes up the IFR. No retries are attempted by the nodes which
arbitration during a Type 1 IFR transmission.

A Type 1 IFR can also be used as a response to a physically addressed message, where th
intended receiver is the one which responds. In this case, no arbitration would take place duri
IFR transmission, but the resulting IFR would still consist of a single byte.

• IFR Type 2: Single Byte from Multiple Responders
67

Block Guide — S12BDLC_BG V01.03

ferent
mitted
ype 1

may
type of
 their
gain
ach

ore
itter
ed to

here
e data
ng the
ssed to
ge.

onse.
with
tion

ne of
is sent.
 Table
get
The Type 2 IFR, as defined in SAE J1850, is a series of single bytes, each transmitted by a dif
responder. This IFR type not only acknowledges to the transmitter that the message was trans
successfully, but also reveals which receivers actually received the message. As with the T
IFR, no CRC byte is appended to the end of a Type 2 IFR.

This IFR type is typically used with Function-type messages, where the original transmitter
need to know which nodes actually received the message. The basic difference between this
IFR and the Type 1 IFR is that the nodes which lose arbitration while attempting to transmit
node ID during a Type 2 IFR wait until the byte which wins arbitration is transmitted and then a
attempt to transmit their node ID onto the bus. The result is a series of node IDs, one from e
receiver of the original message.

• IFR Type 3: Multiple Bytes from a Single Responder

The last type of IFR defined by SAE J1850 is the Type 3 IFR. This IFR type consists of one or m
bytes from a single responder. This type of IFR is used to return data to the original transm
within the original message frame. This type of IFR may or may not have a CRC byte append
it.

The Type 3 IFR is typically used with Function Read-type or Function Query-type messages, w
the original transmitter is requesting data from the intended receiver. The node requesting th
transmits the initial portion of the message, and the intended receiver responds by transmitti
desired data in an IFR. In most cases, the original message requiring a Type 3 IFR is addre
one particular node, so no arbitration should take place during the IFR portion of the messa

4.6.2 BDLC IFR Transmit Control Bits

The BDLC module has three bits which are used to control the transmission of an In-Frame Resp
These bits, all located in DLCBCR2, are TSIFR, TMIFR1 and TMIFR0. Each is used in conjunction
the TEOD bit to transmit one of three IFR types defined in SAE J1850. What follows is a brief descrip
of each bit.

Because each of the bits used for transmitting an IFR with the BDLC module is used to transmit a
particular type of IFR, only one bit should be set by the CPU at a time. However, should more than o
these bits get set at one time, a priority encoding scheme is used to determine which type of IFR
This scheme prevents unpredictable operation caused by conflicting signals to the BDLC module.
4-8 illustrates which IFR bit will actually be acted upon by the BDLC module should multiple IFR bits
set at the same time.

NOTE: As with transmitted messages, IFRs transmitted by the BDLC module will also be
received by the BDLC module. For a description of how IFR bytes received by the
BDLC module should be handled, refer to Section 4.7 Receiving An In-Frame
Response (IFR) on page 78.
68

Block Guide — S12BDLC_BG V01.03

nto
pt to
. If

nsmit
er or

eived,
IFR to
itted

en

RC

tion
r that
ten to

ain
e and
R
in a
will
4.6.3 Transmit Single Byte IFR

The Transmit Single Byte IFR (TSIFR) bit in DLCBCR2 is used to transmit Type 1 and Type 2 IFRs o
the SAE J1850 bus. If this bit is set after a byte is loaded into the BDR, the BDLC module will attem
send that byte, preceded by the appropriate Normalization Bit, as a single byte IFR without a CRC
arbitration is lost, the BDLC module will automatically attempt to transmit the byte again (without a
Normalization Bit) as soon as the byte winning arbitration completes transmission. Attempts to tra
the byte will continue until either the byte is successfully transmitted, the TEOD bit is set by the us
an error is detected on the bus.

The user must set the TSIFR bit before the EOD following the main part of the message frame is rec
or no IFR transmit attempts will be made for the current message. If another node does transmit an
this message or a reception error occurs, the TSIFR bit will be cleared. If not, the IFR will be transm
after the EOD of the next received message.

The TSIFR bit will be automatically cleared once the EOD following one or more IFR bytes has be
received or an error is detected on the bus.

4.6.4 Transmit Multi-Byte IFR 1

The Transmit Multi-Byte IFR 1 (TMIFR1) bit is used to transmit an SAE J1850 Type 3 IFR with a C
byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the
DLCBDR, the BDLC module will begin transmitting that byte, preceded by the appropriate Normaliza
Bit, onto the SAE J1850 bus. Once this happens a TDRE interrupt will occur, indicating to the use
the next IFR byte should be loaded into the DLCBDR. When the last byte to be transmitted is writ
the DLCBDR, the user sets the TEOD bit. This will cause a CRC byte and an EOD symbol to be
transmitted following the last IFR byte.

As with the TSIFR bit, the TMIFR1 bit must be set before the EOD symbol is received, or it will rem
cleared and no IFR transmit attempt will be made. The TMIFR1 bit will be cleared once the CRC byt
EOD are transmitted, if an error is detected on the bus, if a loss of arbitration occurs during the IF
transmission or if a transmitter underrun occurs when the user fails to service the TDRE interrupt
timely manner. If a loss of arbitration occurs while the Type 3 IFR is being transmitted, transmission
halt immediately and the loss of arbitration will be indicated in the DLCBSVR.

Table 4-8 IFR Control Bit Priority Encoding

READ/WRITE ACTUAL

TSIFR TMIFR1 TMIFR0 TSIFR TMIFR1 TMIFR0

0 0 0 0 0 0

1 X X 1 0 0

0 1 X 0 1 0

0 0 1 0 0 1
69

Block Guide — S12BDLC_BG V01.03

RC

tion
r that
ten to

the

d, or
the
uring
rrupt
sion

ps
rticular
SAE

both
yte

ts will
Type

R.
e user
ust
4.6.5 Transmit Multi-Byte IFR 0

The Transmit Multi-Byte IFR 0 (TMIFR0) bit is used to transmit an SAE J1850 Type 3 IFR without a C
byte appended. If this bit is set after the user has loaded the first byte of a multi-byte IFR into the
DLCBDR, the BDLC module will begin transmitting that byte, preceded by the appropriate Normaliza
Bit, onto the SAE J1850 bus. Once this happens a TDRE interrupt will occur, indicating to the use
the next IFR byte should be loaded into the DLCBDR. When the last byte to be transmitted is writ
the DLCBDR, the user sets the TEOD bit. This will cause an EOD symbol to be transmitted following
last IFR byte.

As with the TSIFR and TMIFR1 bits, the TMIFR0 bit must be set before the EOD symbol is receive
it will remain cleared and no IFR transmit attempt will be made. The TMIFR0 bit will be cleared once
CRC byte and EOD are transmitted, if an error is detected on the bus, if a loss of arbitration occurs d
the IFR transmission or if a transmitter underrun occurs when the user fails to service the TDRE inte
in a timely manner. If a loss of arbitration occurs while the Type 3 IFR is being transmitted, transmis
will halt immediately and the loss of arbitration will be indicated in the DLCBSVR.

NOTE: The TMIFR0 bit should not be used to transmit a Type 1 IFR. If a loss of arbitration
occurs on the last bit of a byte being transmitted using the TMIFR0 bit, two extra
logic ones will be transmitted to ensure that the IFR will not end on a byte
boundary. This can cause an error in a Type 1 IFR.

4.6.6 Transmitting An IFR with the BDLC module

While the design of the BDLC module makes the transmission of each type of IFR similar, the ste
necessary for sending each will be discussed. Again, a discussion of the bytes making up any pa
IFR is not within the scope of this document. For a more detailed description of the use of IFRs on an
J1850 network, refer to the SAE J1850 document.

• Transmitting a Type 1 IFR

To transmit a Type 1 IFR, the user loads the byte to be transmitted into the DLCBDR and sets
the TSIFR bit and the TEOD bit. This will direct the BDLC module to attempt transmitting the b
written to the DLCBDR one time, preceded by the appropriate Normalization Bit. If the
transmission is not successful, the byte will be discarded and no further transmission attemp
be made. For an illustration of the steps described below, refer to Section 4-12 Transmitting A
1 IFR on page 72.

– Step 1: Load the IFR Byte into the BDR

The user begins initiation of a Type 1 IFR by loading the desired IFR byte into the DLCBD
If a byte has already been written into the DLCBDR for transmission as a new message, th
can simply write the IFR byte to the DLCBDR, replacing the previously written byte. This m
be done before the first EOD symbol is received.

– Step 2: Set the TSIFR and TEOD Bits
70

Block Guide — S12BDLC_BG V01.03

d
pt

or if
smit

ts the
DR
oses
The final step in transmitting a Type 1 IFR with the BDLC module is to set the TSIFR an
TEOD bits in DLCBCR2. Setting both bits will direct the BDLC module to make one attem
at transmitting the byte in the DLCBDR as an IFR. If the byte is transmitted successfully,
an error or loss of arbitration occurs, TEOD and TSIFR will be cleared and no further tran
attempts will be made.

• Transmitting a Type 2 IFR

To transmit a Type 2 IFR, the user loads the byte to be transmitted into the DLCBDR and se
TSIFR bit. Once this is done, the BDLC module will attempt to transmit the byte in the DLCB
as a single byte IFR, preceded by the appropriate Normalization Bit. If the first BDLC module l
arbitration on the first attempt, it will make repeated attempts to transmit this byte until it is
successful, an error occurs or the user sets the TEOD bit.
71

Block Guide — S12BDLC_BG V01.03

 IFR
sion
– Step 1: Load the IFR Byte into the BDR

As with the Type 1 IFR, the user begins initiation of a Type 2 IFR by loading the desired
byte into the DLCBDR. If a byte has already been written into the DLCBDR for transmis
as a new message, the user can simply write the IFR byte to the DLCBDR, replacing the
previously written byte. This must be done before the first EOD symbol is received.

– Step 2: Set the TSIFR Bit

Figure 4-12 Transmitting A Type 1 IFR

Enter Type 1 IFR
Transmit Routine

Is DLCBSVR = $1C?
No

Yes

Load IFR byte
into DLCBDR

(Error Detected)

Set TSIFR and TEOD

Once BDLC module detects,
or EOF, IFR transmit
attempt is complete

Is DLCBSVR = $14?

No

Yes

(LOA)

Exit Type 1 IFR
Transmit Routine

Jump to Receive IFR
Handling Routine

IFR byte is discarded

IFR byte is discarded
72

Block Guide — S12BDLC_BG V01.03

R2.
as
f

e
 the
th

D bit
mpt
ill
r. At
The second step necessary for transmitting a Type 2 IFR is to set the TSIFR bit in DLCBC
Setting this bit will direct the BDLC module to attempt to transmit the byte in the DLCBDR
an IFR until it is successful. If the byte is transmitted successfully, or if an error or loss o
arbitration occurs, TSIFR will be cleared and no further transmit attempts will be made.

– Step 3: If Necessary, Set the TEOD Bit

The third step in transmitting a Type 2 IFR is only necessary if the user wishes to halt th
transmission attempts. This may be necessary if the BDLC module’s attempt to transmit
byte loaded into the DLCBDR continually loses arbitration, and the overall message leng
approaches the 12-byte limit as defined in SAE J1850.

If it becomes necessary to halt the IFR transmission attempts, the user simply sets the TEO
in BCR2. If the BDLC module is between transmission attempts, it will make one more atte
to transmit the IFR byte. If it is transmitting the byte when TEOD is set, the BDLC module w
continue the transmission until it is successful or it loses arbitration to another transmitte
this point it will then discard the byte and make no more transmit attempts.

NOTE: When transmitting a Type 2 IFR, the user should monitor the number of IFR bytes
received to ensure that the overall message length does not exceed the 12-byte limit
for the length of SAE J1850 messages. The user should set the TEOD bit when the
11th byte is received, which will prevent the 12-byte limit from being exceeded.
73

Block Guide — S12BDLC_BG V01.03
Figure 4-13 Transmitting A Type 2 IFR

• Transmitting a Type 3 IFR

Enter Type 2 IFR
Transmit Routine

Is DLCBSVR = $1C?
No

Yes

Load IFR byte
into DLCBDR

(Error Detected)

Set TSIFR in DLCBCR2

Once BDLC module detects,
or EOF, IFR transmit
attempt is complete

Is DLCBSVR = $14?

No

Yes

(LOA)

Exit Type 1 IFR
Transmit Routine

Jump to Receive IFR
Handling Routine

IFR byte is discarded IFR byte is discarded

Was this the last
No

Yes

 transmit attempt?
Was the 11th No

Yes

msg byte received?

Set TEOD in DLCBCR2

Jump to Receive IFR
Handling Routine
74

Block Guide — S12BDLC_BG V01.03

ting
ets the
 is

iption
r to

g the
for
DR,

 in

the
IFR0

tion
e

e
last

EOD
 is
Transmitting a Type 3 IFR, with or without a CRC byte, is done in a fashion similar to transmit
a message frame. The user loads the first byte to be transmitted into the DLCBDR and then s
appropriate TMIFR bit, depending upon whether a CRC byte is desired. When the last byte
written to the BDR, the TEOD bit is set, and a CRC byte (if desired) and an EOD are then
transmitted. Because the two versions of the Type 3 IFR are transmitted identically, the descr
which follows will discuss both. For an illustration of the Type 3 IFR transmit sequence, refe
Figure 4-14 Transmitting A Type 3 IFR on page 77.

– Step 1: Load the First IFR Byte into the DLCBDR

The user begins initiation of a Type 3 IFR, as with each of the other IFR types, by loadin
desired IFR byte into the DLCBDR. If a byte has already been written into the DLCBDR
transmission as a new message, the user can simply write the first IFR byte to the DLCB
replacing the previously written byte. This must be done before the first EOD symbol is
received.

– Step 2: Set the TMIFR Bit

The second step necessary for transmitting a Type 3 IFR is to set the desired TMIFR bit
DLCBCR2, depending upon whether or not a CRC is desired. As previously described in
Section 4.6.2 BDLC IFR Transmit Control Bits on page 68, the TMIFR1 bit should be set if
user requires a CRC byte to be appended following the last byte of the Type 3 IFR, and TM
if no CRC byte is required.

Setting the TMIFR1 or TMIFR0 bit will direct the BDLC module to transmit the byte in the
BDR as the first byte of a single or multi-byte IFR preceded by the appropriate Normaliza
Bit. Once this has occurred, the DLCBSVR will reflect that the next byte of the IFR can b
written to the DLCBDR (TDRE interrupt).

NOTE: The user must set the TMIFR1 or TMIFR0 bit before the EOD following the main
part of the message frame is received, or no IFR transmit attempts will be made for
the current message. If another node does transmit an IFR to this message or a
reception error occurs, the TMIFR1 or TMIFR0 bit will be cleared. If not, the IFR
will be transmitted after the EOD of the next received message.

– Step 3: When TDRE is Indicated, Write the Next IFR Byte into the DLCBDR

When a TDRE state is reflected in the DLCBSVR, the CPU writes the next IFR byte to b
transmitted into the DLCBDR, clearing the TDRE interrupt. This step is repeated until the
IFR byte to be transmitted is written to the DLCBDR.

NOTE: As when transmitting a message, when transmitting a Type 3 IFR the user may write
two, or possibly even three of the bytes to be transmitted into the DLCBDR before
the first RxIFR interrupt occurs. For this reason, the user should never use receive
IFR byte interrupts to control the sequencing of IFR bytes to be transmitted.

– Step 4: Write the Last IFR Byte into the DLCBDR and Set TEOD

Once the last IFR byte to be transmitted is written to the DLCBDR, the CPU then sets the T
bit in DLCBCR2. Once the TEOD bit is set, after the last IFR byte written to the DLCBDR
transmitted onto the bus, if the TMIFR1 bit has been set the BDLC module will begin
75

Block Guide — S12BDLC_BG V01.03

 IFR
d

IFR
be

 an
red,
rror.

alid or
RE
cess,
transmitting the CRC byte, followed by an EOD. If the TMIFR0 bit has been set, the last
byte will immediately be followed by the transmission of an EOD. Following the EOD, an
EOF will be recognized and the message will be complete.

If at any time during the transmission of a Type 3 IFR a loss of arbitration occurs, the TM
bit which is set and the TEOD bit (if set) will be cleared, any IFR byte being transmitted will
discarded and the loss of arbitration state will be reflected in the DLCBSVR. Likewise, if
error is detected during the transmission of a Type 3 IFR the IFR control bits will be clea
the byte being transmitted will be discarded and the DLCBSVR will reflect the detected e

NOTE: If the Type 3 IFR being transmitted is made up of a single byte, the appropriate
TMIFR bit and the TEOD bit can be set at the same time. The BDLC module will
then treat that byte as both the first and last IFR byte to be sent.

4.6.7 Transmitting IFR Exceptions

This basic IFR transmitting flow can be interrupted for the same reasons as a normal message
transmission. The IFR transmit process can be adversely affected due to a loss of arbitration, an Inv
Out of Range Symbol, or due to a transmitter underrun caused by the CPU failing to service a TD
interrupt in a timely fashion. For a description of how these exceptions can affect the IFR transmit pro
refer to Section 4.4.2 Transmitting Exceptions on page 60.
76

Block Guide — S12BDLC_BG V01.03
Figure 4-14 Transmitting A Type 3 IFR

Enter Type 3 IFR
Transmit Routine

Set desired
TMIFR bit in DLCBCR2

Is DLCBSVR = $00?
Yes

No

Load next byte to be
transmitted into DLCBDR

(clears TDRE)

Is DLCBSVR = $1C?
Yes

No

Is DLCBSVR = $14?
Yes

No

Is DLCBSVR = $10?

Yes

No

(TDRE)

(LOA)

(Invalid Symbol)

Is this the last

Yes

No

byte?

A

A

Jump to IFR
Receive Routine

Once BDLC module detects
EOF, IFR transmit

Set TEOD bit
in DLCBCR2

attempt is complete

Exit Type 3 IFR
Transmit Routine

B

B
Abandon IFR

transmit attempt

For interrupt driven systems,
this marks the beginning of the
transmit Type 3 IFR section of
the BDLC module interrupt
service routine

NOTE: The EOF and CRC Error interrupts
are handled in the IFR Receive Routine

Write first IFR
byte to be transmitted

into DLCBDR

Set TEOD bit in Only one byte to
Yes

No

transmit?DLCBCR2
77

Block Guide — S12BDLC_BG V01.03

e. As
 the
 to

es

 does,
SVR.

5

 the
ion
nd the

is is
step is
laced

s will
ill
byte

 the
 the
4.7 Receiving An In-Frame Response (IFR)

Receiving an In-Frame Response with the BDLC module is very similar to receiving a message fram
each byte of an IFR is received, the DLCBSVR will indicate this to the CPU. An EOF indication in
DLCBSVR indicates that the IFR (and message) is complete. Also, the IMSG bit can also be used
command the BDLC module to mask any further network activity from the CPU, including IFR byt
being received, until the next valid SOF is received.

NOTE: As with a message transmission, the IMSG bit should never be used to ignore the
BDLC module’s own IFR transmissions. This is again due to the DLCBSVR bits
being inhibited from updating until IMSG is cleared, preventing the CPU from
detecting any IFR-related state changes which may be of interest.

4.7.1 Receiving an IFR with the BDLC module

Receiving an IFR from the SAE J1850 bus requires the same procedure that receiving a message
except that as each byte is received the Received IFR Byte (RxIFR) state is indicated in the DLCB
All other actions are the same. For an illustration of the steps described below, refer to Figure 4-1
Receiving An IFR With the BDLC module on page 79.

• Step 1: When RxIFR Interrupt Occurs, Retrieve IFR Byte

When the first byte of an IFR following a valid EOD symbol is received that byte is placed in
DLCBDR, and an RxIFR state is reflected in the DLCBSVR. No indication of the EOD recept
in made, since the RxIFR state will indicate that the main portion of the message has ended a
IFR portion has begun.

The RxIFR interrupt is cleared when the received IFR byte is read from the DLCBDR. Once th
done, no further CPU intervention is necessary until the next IFR byte is received, and this
repeated. As with a message reception, all bytes of the IFR, including the CRC byte, will be p
into the DLCBDR as they are received for the CPU to retrieve.

• When an EOF is Received, the IFR (and Message) is Complete

Once all IFR bytes (including the possible CRC byte) have been received from the bus, the bu
again be idle for a time period equal to an EOD symbol. Following this, the BDLC module w
determine whether or not the last byte of the IFR is a CRC byte, and if so verify that the CRC
is correct. If the CRC byte is not correct, this will be reflected in the DLCBSVR.

After an additional period of time the EOD symbol will transition into an EOF symbol. When
EOF is received it will be reflected in the DLCBSVR, indicating to the user that the IFR, and
message, is complete.
78

Block Guide — S12BDLC_BG V01.03

on. The
ymbol

hion.
.

Figure 4-15 Receiving An IFR With the BDLC module

4.7.2 Receiving IFR Exceptions

This basic IFR receiving flow can be interrupted for the same reasons as a normal message recepti
IFR receiving process can be adversely affected due to a CRC error, an Invalid or Out of Range S
or due to a receiver overrun caused by the CPU failing to service an RxIFR interrupt in a timely fas

Enter IFR Receive
Routine

Is DLCBSVR = $1C/$18?

No

Store received IFR byte
(in case of LOA)

Is this IFR
Yes

No

Is DLCBSVR = $04?

No

Yes

(EOF)

of any interest?

Is this an IFR

Yes

No

xmit reflection?

Yes

A

B

Once BDLC module Detects
EOF, IFR

Discard received
IFR bytes

reception is complete

Yes

No

Is DLCBSVR = $08?

Exit IFR Receive
Routine

B

(Error Detected)

(RxIFR)
Read byte in DLCBDR

Filter received IFR byte

Set IMSG bit in DLCBCR1

Store received IFR byte

B

A

79

Block Guide — S12BDLC_BG V01.03

.5.4

pability
e user
 in a
ficial.
SAE

ed
t will
ol bits,
age.

st be
and the

oss the
bove)
large

Pulse
ws

ed. By
sage

t be
ule is
not
bit,
For a description of how these exceptions can affect the IFR receiving process, refer to Section 4
Receiving Exceptions on page 64.

4.8 Special BDLC Module Operations

There are a few special operations which the BDLC module can perform. What follows is a brief
description of each of these functions and when they might be used.

4.8.1 Transmitting Or Receiving A Block Mode Message

The BDLC module, because it handles each message on a byte-by-byte basis, has the inherent ca
of handling messages any number of bytes in length. While during normal operation this requires th
to carefully monitor message lengths to ensure compliance with SAE J1850 message limits, often
production or diagnostic environment messages which exceed the SAE J1850 limits can be bene
This is especially true when large amounts of configuration data need to be downloaded over the
J1850 network.

Because of the BDLC module’s architecture, it can both transmit and receive messages of unlimit
length. The CRC calculations, both for transmitting and receiving, are not limited to eight bytes, bu
instead be calculated and verified using all bytes in the message, regardless of the number. All contr
including TEOD and IMSG, also work in an identical manner, regardless of the length of the mess

To transmit or receive these “Block Mode” messages, no extra BDLC module control functions mu
performed. The user simply transmits or receives as many bytes as desired in one message frame,
BDLC module will operate just as if a message of normal length was being used.

4.8.2 Receiving A Message In 4X Mode

In a diagnostic or production environment large amounts of data may need to be downloaded acr
network to a component or module. This data is often sent in a large “Block Mode” message (see a
which violates the SAE J1850 limit for message length. In order to speed up the downloading of these
blocks of data, they are sometimes transmitted at four times (4X) the normal bit rate for the Variable
Width modulation version of SAE J1850. This higher speed transmission, nominally 41.6kbps, allo
these large blocks to be transmitted much more quickly.

The BDLC module is designed to receive (but not transmit) messages transmitted at this higher spe
setting the RX4XE bit in DLCBCR2, the user can command the BDLC module to receive any mes
sent over the network at a 4X rate.

If the BDLC module is placed in this 4X mode, messages transmitted at the normal bit rate will no
received correctly. Likewise, 4X messages transmitted on the SAE J1850 bus when the BDLC mod
in normal mode will be interpreted as noise on the network by the BDLC module. The RX4XE bit is
affected by entry or exit from BDLC module stop or wait modes. For more information on the RX4XE
refer to Section • 4X Mode on page 57.
80

Block Guide — S12BDLC_BG V01.03

eive
Figure 4-16 Basic BDLC Module Transmit Flowchart

4.9 BDLC Module Initialization

This section includes sample flows for initializing the BDLC module and using it to transmit and rec
messages.

Enter BDLC module Transmit
Routine

Write first message
byte to be transmitted

into DLCBDR

Is DLCBSVR = $00?

Yes

No

Load next byte to be
transmitted into BDR

(clears TDRE)

Is DLCBSVR = $1C?
Yes

No

Is DLCBSVR = $14?
Yes

No

Is DLCBSVR = $10?

Yes

No

(TDRE)

(LOA)

(Invalid Symbol)

Attempt another
Yes

No

transmission?

Is this the last

Yes

No

byte?

A

A

Jump to BDLC module
Receive Routine

Once BDLC module detects
EOF, transmit

Set TEOD bit
in DLCBCR2

attempt is complete

Yes

No

IFR Received? Jump to Receive IFR
Handling Routine

Exit BDLC module Transmit
Routine

B
B

C

C

Go to BDLC module
BREAK/Error Handling

Routine

For interrupt driven systems,
this marks the beginning of the
transmit section of the BDLC
module interrupt service
routine

NOTE: The EOF and CRC Error interrupts
are handled in the BDLC module Receive
Routine
81

Block Guide — S12BDLC_BG V01.03

. The
 from
nce

f SAE
the

ired

uch

user
k tests.

tion
e

into
mux

ly.

into
alog
as a
s
d

he

ts of
ne to
has
4.9.1 Initialization Sequence

To initialize the BDLC module, the user should first write the desired data to the configuration bits
BDLC module should then be taken out of digital and analog loopback mode and enabled. Exiting
loopback mode will entail change of state indications in the DLCBSVR which must be dealt with. O
this is complete, CPU interrupts can be enabled (if desired), and then the BDLC module is capable o
J1850 serial network communication. For an illustration of the sequence necessary for initializing
BDLC module, refer to Figure 4-17 Basic BDLC Module Initialization Flowchart on page 85.

4.9.2 Initializing the Configuration Bits

The first step necessary for initializing the BDLC module following an MCU reset is to write the des
values to each of the BDLC module control registers. This is best done by storing predetermined
initialization values directly into these registers. The following description outlines a basic flow for
initializing the BDLC module. This basic flow does not detail more elaborate initialization routines, s
as performing digital and analog loopback tests before enabling the BDLC module for SAE J1850
communication. However, from the following descriptions and the BDLC module specification, the
should be able to develop routines for performing various diagnostic procedures such as loopbac

• Step 1 - Initialize DLCBARD

Begin initialization of the configuration bits by writing the desired analog transceiver configura
data into the DLCBARD register. Following this write to DLCBARD, all of these bits will becom
read only.

• Step 2- Initialize DLCBRSR

The next step in BDLC module initialization is to write the desired bus clock divisor minus one
the DLCBRSR register. The divisor should be chosen to generate a 1 MHz or 1.048576 MHz
interface clock (fbdlc). Following this write to DLCBRSR, all of these bits will become read on

• Step 3- Initialize DLCBCR2

The next step in BDLC module initialization should be writing the configuration bits into the
DLCBCR2 register. This initialization description assumes that the BDLC module will be put
normal mode (not 4X mode), and that the BDLC module should not yet exit either digital or an
loopback mode. Therefore, this step should write SMRST and DLOOP as logic ones, RX4XE
logic zero, write NBFS to the desired level, and write TEOD, TSIFR, TMIFR1 and TMIFR0 a
logic zeros. These last four bits MUST be written as logic zeros in order to prevent undesire
operation of the BDLC module.

• Step 4- Initialize DLCBCR1

The next step in BDLC module initialization is to write the configuration bits in DLCBCR1. T
CLKS bit should be written to its desired values at this time, following which it will become
read-only. The IE bit should be written as a logic zero at this time so BDLC module interrup
the CPU will remain masked for the time being. The IMSG bit should be written as a logic o
prevent any receive events from setting the DLCBSVR until a valid SOF (or BREAK) symbol
been received by the BDLC module.
82

Block Guide — S12BDLC_BG V01.03

en out
etting

igital
This

ital
g the

ssage
odule
te the

rrupt

hen
le

sired.

tions
pts are
odes
clear

d be
4.9.3 Exiting Loopback Mode and Enabling the BDLC module

Once the configuration bits have been written to the desired values, the BDLC module should be tak
of loopback and connected to the SAE J1850 bus. This is done by clearing the DLOOP bit and then s
the BDLCE bit in the DLCSCR.

• Step 5- Perform Loopback Tests (optional)

Once the BDLC module is configured for desired operation, the user may wish to perform d
and/or analog loopback tests to determine the integrity of the link to the SAE J1850 network.
would involve leaving the DLOOP bit (DLCBCR2) set, setting the BDLCE bit, preforming the
desired loopback tests and finally exiting digital loopback mode by clearing DLOOP in the
DLCBCR2.

• Step 6- Exit Loopback Mode and enable the BDLC module

If loopback mode tests are not to be preformed the BDLC module can be removed from dig
loopback mode by clearing the DLOOP bit. The BDLC module can then be enabled by settin
BDLCE bit in the DLCSCR.

Once DLOOP is cleared and BDLCE is set, the BDLC module is ready for SAE J1850
communication. However, to ensure that the BDLC module does not attempt to receive a me
already in progress or to transmit a message while another device is transmitting, the BDLC m
must first observe an EOF symbol on the bus before the receiver will be activated. To activa
transmitter, the BDLC module will need to observe an Inter-Frame Separator symbol.

4.9.4 Enabling BDLC Interrupts

The final step in readying the BDLC module for proper communication is to clear any pending inte
sources and then, if desired, enable BDLC module interrupts of the CPU.

• Step 7- Clear Pending BDLC Interrupts

In order to ensure that the BDLC module does not immediately generate a CPU interrupt w
interrupts are enabled, the user should read the DLCBSVR to determine if any BDLC modu
interrupt sources are pending before setting the IE bit in the BCR1. If the BSVR reads as a
%00000000, no interrupts are pending and the user is free to enable BDLC interrupts, if de

If the DLCBSVR indicates that an interrupt is pending, the user should perform whatever ac
are necessary to clear the interrupt source before enabling the interrupts. Whether any interru
pending will depend primarily upon how much time passes between the exit from loopback m
and enabling the BDLC module and the enabling of interrupts. It is a good practice to always
any source of interrupts before enabling interrupts on any MCU subsystem.

If any interrupts are pending (DLCBSVR not %00000000), then each interrupt source shoul
dealt with accordingly. Once all of the interrupt sources have been dealt with, the DLCBSVR
should read %00000000, and the user is then free to enable BDLC interrupts.

• Step 8- Enable BDLC Interrupts
83

Block Guide — S12BDLC_BG V01.03

This
dy
st be
 with
The last step in initializing the BDLC module is to enable interrupts to the CPU, if so desired.
is done by simply setting the IE bit in the DLCBCR1. Following this, the BDLC module is rea
for operating in interrupt mode. If the user chooses not to enable interrupts, the DLCBSVR mu
polled periodically to ensure that state changes in the BDLC module are detected and dealt
appropriately.
84

Block Guide — S12BDLC_BG V01.03
BDLC module enters Run mode
from Reset mode

Write desired config.
data into DLCBARD

Write desired config.
data into DLCBCR1

Read DLCBSVR

Write desired config.
data into DLCBCR2

Set IE bit in DLCBCR1
to enable interrupts

Proceed to remaining
MCU initialization

Figure 4-17 Basic BDLC Module Initialization Flowchart

Is DLCBSVR = $00?

Yes

No

Process pending
BDLC interrupt

Perform Digital and
Analog Loopback mode

tests

Exit Loopback mode
by clearing

DLOOP

Enable BDLC module by
setting BDLCE bit in

 DLCSCR

Preform
Loopback Tests

Exit Loopback mode
by clearing
DLOOP

Enable BDLC module by
setting BDLCE bit in

 DLCSCR

Write desired divisor - 1
into DLCBRSR
85

Block Guide — S12BDLC_BG V01.03
86

Block Guide — S12BDLC_BG V01.03
Section 5 Resets

5.1 General

The reset state of each individual bit is listed withinSection 3 Memory Map and Registerswhich details
the registers and their bit-fields.
87

Block Guide — S12BDLC_BG V01.03
88

Block Guide — S12BDLC_BG V01.03

 state
Section 6 Interrupts

6.1 General

Each change in status of the BDLC is encoded into the BDLC state vector register, (BSVR). Each
reflected in the BSVR can generate a CPU interrupt through theipi_bdlc_int output, if the BDLC
interrupts are enabled (IE = 1 in BCR1 Control register)

Table 6-1 shows this interrupt information foripi_bdlc_int.

Refer to3.3.2 for a listing of the interrupt sources.

Table 6-1 Interrupt Summary

Interrupt Interrupt Source Priority
ipi_bdlc_int Refer to table below determined at chip-level
89

Block Guide — S12BDLC_BG V01.03
90

Block Guide — S12BDLC_BG V01.03
Appendix A Electrical Specifications

N/A
91

Block Guide — S12BDLC_BG V01.03
92

Block Guide — S12BDLC_BG V01.03
User Guide End Sheet
93

Block Guide — S12BDLC_BG V01.03
FINAL PAGE OF
94

PAGES
94

MOTOROLA.COM/SEMICONDUCTORS

HCS12
Microcontrollers

S12BDMV4/D
Rev. 4.05

Background Debug
Module (BDM) V4

10/2004

Block Guide — S12BDM V4

2

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2003

Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

4.05 10/04/2004 10/04/2004
Added information for reserved register, which was added to
solve MUCts entry "Possible manipulation of return address
when exiting BDM active mode.".

+.1 11/15/2002 11/15/2002
A soft reset of the BDM and disable of the ACK function has
been added during low power modes.

10/31/2002 10/31/2002

Creation of block user guide from core user guide version 1.5
(Feb. 28, 2002). Changes include: updating format and adding
a clock source table. The feature bullets were updated to more
clearly show the differences from BDM2 - the predecessor of
BDM3. Spell check now passes if conditional tags are turned
off.

4.02 2/4/2003 2/4/2003 Original release

Block Guide — S12BDM V4
Table of Contents

List of Figures

Figure 1-1 BDM Block Diagram . 5

Figure 3-1 BDM Status Register (BDMSTS). 12

Figure 3-2 BDM CCR Holding Register (BDMCCR) . 15

Figure 3-3 BDM Internal Register Position (BDMINR) . 15

Figure 4-1 BDM Command Structure . 22

Figure 4-2 BDM Host-to-Target Serial Bit Timing . 23

Figure 4-3 BDM Target-to-Host Serial Bit Timing (Logic 1) . 24

Figure 4-4 BDM Target-to-Host Serial Bit Timing (Logic 0) . 25

Figure 4-5 Target Acknowledge Pulse (ACK) . 26

Figure 4-6 Handshake Protocol at Command Level . 26

Figure 4-7 ACK Abort Procedure at the Command Level . 28

Figure 4-8 ACK Pulse and SYNC Request Conflict . 29

List of Tables

Table 3-1 BDM Register Map Summary . 11

Table 3-2 BDM Clock Sources. 14

Table 4-1 Hardware Commands . 19

Table 4-2 Firmware Commands. 20

Table 4-3 Tag Pin Function . 32

Section 1 Introduction to Background Debug Module V4 (BDMV4)

1.1 Overview. 5

1.2 Features . 5

1.3 Modes of Operation . 6

1.3.1 Regular Run Modes . 6

1.3.2 Secure Mode Operation . 6

1.3.3 Low-Power Modes . 7

Section 2 External Signal Description

2.1 Overview. 9

2.2 Detailed Signal Descriptions. 9
3

Block Guide — S12BDM V4
2.2.1 Background Interface Pin (BKGD) . 9

2.2.2 High Byte Instruction Tagging Pin (TAGHI) . 9

2.2.3 Low Byte Instruction Tagging Pin (TAGLO) . 9

Section 3 Memory Map/Register Definition

3.1 BDM Status Register . 12

3.2 BDM CCR Holding Register . 15

3.3 BDM Internal Register Position Register . 15

Section 4 Functional Description

4.1 Security. 17

4.2 Enabling and Activating BDM. 17

4.3 BDM Hardware Commands . 18

4.4 Standard BDM Firmware Commands. 20

4.5 BDM Command Structure . 21

4.6 BDM Serial Interface . 22

4.7 Serial Interface Hardware Handshake Protocol . 25

4.8 Hardware Handshake Abort Procedure . 27

4.9 SYNC — Request Timed Reference Pulse . 30

4.10 Instruction Tracing . 31

4.11 Instruction Tagging . 32

4.12 Serial Communication Time-out . 32
4

Block Guide — S12BDM V4

S12

ne

le
hake
ternal

ation
Section 1 Introduction to Background Debug Module V4
(BDMV4)

This section describes the functionality of the Background Debug Module (BDM) sub-block of the HC
Core Platform.

A block diagram of the BDM is shown inFigure 1-1 .

Figure 1-1 BDM Block Diagram

1.1 Overview

The Background Debug Module (BDM) sub-block is a single-wire, background debug system
implemented in on-chip hardware for minimal CPU intervention. All interfacing with the BDM is do
via the BKGD pin.

BDMV4 has enhanced capability for maintaining synchronization between the target and host whi
allowing more flexibility in clock rates. This includes a sync signal to show the clock rate and a hands
signal to indicate when an operation is complete. The system is backwards compatible with older ex
interfaces.

1.2 Features

• Single-wire communication with host development system

• BDMV4 (and BDM2): Enhanced capability for allowing more flexibility in clock rates

• BDMV4: SYNC command to determine communication rate

• BDMV4: GO_UNTIL command

• BDMV4: Hardware handshake protocol to increase the performance of the serial communic

• Active out of reset in special single-chip mode

ENBDM

SDV

16-BIT SHIFT REGISTER
BKGD

CLOCKS

DATA

ADDRESS

HOST
SYSTEM

BUS INTERFACE
AND

CONTROL LOGIC

INSTRUCTION DECODE
AND EXECUTION

STANDARD BDM
FIRMWARE

LOOKUP TABLE
CLKSW

BDMACT

ENTAG

TRACE
5

Block Guide — S12BDM V4

le-Chip

cuted.
 during

ower

llows

ed

gular
owing
• Nine hardware commands using free cycles, if available, for minimal CPU intervention

• Hardware commands not requiring active BDM

• 15 firmware commands execute from the standard BDM firmware lookup table

• Instruction tagging capability

• Software control of BDM operation during wait mode

• Software selectable clocks

• When secured, hardware commands are allowed to access the register space in Special Sing
mode, if the FLASH and EEPROM erase tests fail.

1.3 Modes of Operation

BDM is available in all operating modes but must be enabled before firmware commands are exe
Some system peripherals may have a control bit which allows suspending the peripheral function
background debug mode.

1.3.1 Regular Run Modes

All of these operations refer to the part in run mode. The BDM does not provide controls to conserve p
during run mode.

• Normal Operation

General operation of the BDM is available and operates the same in all normal modes.

• Special single-chip mode

In special single-chip mode, background operation is enabled and active out of reset. This a
programming a system with blank memory.

• Special peripheral mode

BDM is enabled and active immediately out of reset. BDM can be disabled by clearing the
BDMACT bit in the BDM status (BDMSTS) register. The BDM serial system should not be us
in special peripheral mode.

• Emulation Modes

General operation of the BDM is available and operates the same as in normal modes.

1.3.2 Secure Mode Operation

If the part is in secure mode, the operation of the BDM is reduced to a small subset of it’s re
run mode operation. Secure operation prevents access to FLASH or EEPROM other than all
erasure.
6

Block Guide — S12BDM V4

DM
 soft

ange

ed and
BDM
bled.
1.3.3 Low-Power Modes

• Wait Mode

The BDM cannot be used in wait mode if the system disables the clocks to the BDM.

There is a clearing mechanism associated with the WAIT instruction when the clocks to the B
(CPU core platform) are disabled. As the clocks restart from wait mode, the BDM receives a
reset (clearing any command in progress) and the ACK function will be disabled. This is a ch
from previous BDM modules.

• Stop Mode

The BDM is completely shutdown in stop mode.

There is a clearing mechanism associated with the STOP instruction. STOP must be enabl
the part must go into stop mode for this to occur. As the clocks restart from stop mode, the
receives a soft reset (clearing any command in progress) and the ACK function will be disa
This is a change from previous BDM modules.
7

Block Guide — S12BDM V4
8

Block Guide — S12BDM V4

used
lock

ional

nd
and

lling
ction

e is
ord
Section 2 External Signal Description

2.1 Overview

A single-wire interface pin is used to communicate with the BDM system. Two additional pins are
for instruction tagging. These pins are part of the Multiplexed External Bus Interface (MEBI) sub-b
and all interfacing between the MEBI and BDM is done within the Core interface boundary. Funct
descriptions of the pins are provided below for completeness.

• BKGD — Background interface pin

• TAGHI — High byte instruction tagging pin

• TAGLO — Low byte instruction tagging pin

• BKGD andTAGHI share the same pin.

• TAGLO andLSTRB share the same pin.

NOTE: Generally these pins are shared as described, but it is best to check the chip
description to make certain. All chips at the time of this writing have followed this
pin sharing scheme.

2.2 Detailed Signal Descriptions

2.2.1 Background Interface Pin (BKGD)

Debugging control logic communicates with external devices serially via the single-wire backgrou
interface pin (BKGD). During reset, this pin is a mode select input which selects between normal
special modes of operation. After reset, this pin becomes the dedicated serial interface pin for the
background debug mode.

2.2.2 High Byte Instruction Tagging Pin (TAGHI)

This pin is used to tag the high byte of an instruction. When instruction tagging is on, a logic 0 at the fa
edge of the external clock (ECLK) tags the high half of the instruction word being read into the instru
queue.

2.2.3 Low Byte Instruction Tagging Pin (TAGLO)

This pin is used to tag the low byte of an instruction. When instruction tagging is on and low strob
enabled, a logic 0 at the falling edge of the external clock (ECLK) tags the low half of the instruction w
being read into the instruction queue.
9

Block Guide — S12BDM V4
10

Block Guide — S12BDM V4
Section 3 Memory Map/Register Definition

A summary of the registers associated with the BDM is shown inTable 3-1 . Registers are accessed by
host-driven communications to the BDM hardware using READ_BD and WRITE_BD commands.
Detailed descriptions of the registers and associated bits are given in the subsections that follow..

Table 3-1 BDM Register Map Summary

 Address
Register

Name
Bit 7 6 5 4 3 2 1 Bit 0

$FF00 Reserved
Read: X X X X X X 0 0

Write:

$FF01 BDMSTS
Read:

ENBDM
BDMACT

ENTAG
SDV TRACE

CLKSW
UNSEC 0

Write:

$FF02 Reserved
Read: X X X X X X X X

Write:

$FF03 Reserved
Read: X X X X X X X X

Write:

$FF04 Reserved
Read: X X X X X X X X

Write:

$FF05 Reserved
Read: X X X X X X X X

Write:

$FF06 BDMCCR
Read:

CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0
Write:

$FF07 BDMINR
Read: 0 REG14 REG13 REG12 REG11 0 0 0

Write:

$FF08 Reserved
Read: 0 0 0 0 0 0 0 0

Write:

$FF09 Reserved
Read: 0 0 0 0 0 0 0 0

Write:

 = Unimplemented, Reserved = Implemented (do not alter)

X = Indeterminate 0 = Always read zero
11

Block Guide — S12BDM V4

 by

nds.

s,
DM

nds
3.1 BDM Status Register

Figure 3-1 BDM Status Register (BDMSTS)

Read: All modes through BDM operation

Write: All modes but subject to the following:

– BDMACT can only be set by BDM hardware upon entry into BDM. It can only be cleared
the standard BDM firmware lookup table upon exit from BDM active mode.

– CLKSW can only be written via BDM hardware or standard BDM firmware write comma

– All other bits, while writable via BDM hardware or standard BDM firmware write command
should only be altered by the BDM hardware or standard firmware lookup table as part of B
command execution.

– ENBDM should only be set via a BDM hardware command if the BDM firmware comma
are needed. (This does not apply in Special Single-Chip Mode).

$FF0A Reserved
Read: X X X X X X X X

Write:

$FF0B Reserved
Read: X X X X X X X X

Write:

Register address $FF01

7 6 5 4 3 2 1 0

R
ENBDM

BDMACT
ENTAG

SDV TRACE
CLKSW

UNSEC 0

W

Reset:

Special single-chip mode: 1 1 0 0 0 0 0 0

Special peripheral mode: 0 1 0 0 0 0 0 0

All other modes: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved = Implemented (do not alter)

Table 3-1 BDM Register Map Summary

 Address
Register

Name
Bit 7 6 5 4 3 2 1 Bit 0

 = Unimplemented, Reserved = Implemented (do not alter)

X = Indeterminate 0 = Always read zero
12

Block Guide — S12BDM V4

ive to
DM

abled

M

e tag

art of a
. It is
e

ong
e next
ENBDM — Enable BDM

This bit controls whether the BDM is enabled or disabled. When enabled, BDM can be made act
allow firmware commands to be executed. When disabled, BDM cannot be made active but B
hardware commands are still allowed.

1 = BDM enabled
0 = BDM disabled

NOTE: ENBDM is set by the firmware immediately out of reset in special single-chip mode.
In secure mode, this bit will not be set by the firmware until after the EEPROM and
FLASH erase verify tests are complete.

BDMACT — BDM active status

This bit becomes set upon entering BDM. The standard BDM firmware lookup table is then en
and put into the memory map. BDMACT is cleared by a carefully timed store instruction in the
standard BDM firmware as part of the exit sequence to return to user code and remove the BD
memory from the map.

1 = BDM active
0 = BDM not active

ENTAG — Tagging enable

This bit indicates whether instruction tagging in enabled or disabled. It is set when the TAGGO
command is executed and cleared when BDM is entered. The serial system is disabled and th
function enabled 16 cycles after this bit is written. BDM cannot process serial commands while
tagging is active.

1 = Tagging enabled
0 = Tagging not enabled or BDM active

SDV — Shift data valid

This bit is set and cleared by the BDM hardware. It is set after data has been transmitted as p
firmware read command or after data has been received as part of a firmware write command
cleared when the next BDM command has been received or BDM is exited. SDV is used by th
standard BDM firmware to control program flow execution.

1 = Data phase of command is complete
0 = Data phase of command not complete

TRACE — TRACE1 BDM firmware command is being executed

This bit gets set when a BDM TRACE1 firmware command is first recognized. It will stay set as l
as continuous back-to-back TRACE1 commands are executed. This bit will get cleared when th
command that is not a TRACE1 command is recognized.

1 = TRACE1 command is being executed
0 = TRACE1 command is not being executed
13

Block Guide — S12BDM V4

e
he
BDM

lect

gets
lookup
able.

are
the
the
CLKSW — Clock switch

The CLKSW bit controls which clock the BDM operates with. It is only writable from a hardwar
BDM command. A 150 cycle delay at the clock speed that is active during the data portion of t
command will occur before the new clock source is guaranteed to be active. The start of the next
command uses the new clock for timing subsequent BDM communications.

Table 3-2 shows the resulting BDM clock source based on the CLKSW and the PLLSEL (Pll se
from the clock and reset generator) bits.

NOTE: The BDM alternate clock source can only be selected when CLKSW = 0 and
PLLSEL = 1. The BDM serial interface is now fully synchronized to the alternate
clock source, when enabled. This eliminates frequency restriction on the alternate
clock which was required on previous versions. Refer to the device specification to
determine which clock connects to the alternate clock source input.

NOTE: If the acknowledge function is turned on, changing the CLKSW bit will cause the
ACK to be at the new rate for the write command which changes it.

UNSEC — Unsecure

This bit is only writable in special single-chip mode from the BDM secure firmware and always
reset to zero. It is in a zero state as secure mode is entered so that the secure BDM firmware
table is enabled and put into the memory map along with the standard BDM firmware lookup t

The secure BDM firmware lookup table verifies that the on-chip EEPROM and FLASH EEPROM
erased. This being the case, the UNSEC bit is set and the BDM program jumps to the start of
standard BDM firmware lookup table and the secure BDM firmware lookup table is turned off. If
erase test fails, the UNSEC bit will not be asserted.

1 = System is in a unsecured mode
0 = System is in a secured mode

NOTE: When UNSEC is set, security is off and the user can change the state of the secure
bits in the on-chip FLASH EEPROM. Note that if the user does not change the state
of the bits to “unsecured” mode, the system will be secured again when it is next
taken out of reset.

Table 3-2 BDM Clock Sources

PLLSEL CLKSW BDMCLK

0 0 Bus clock

0 1 Bus clock

1 0
Alternate clock (refer to the device specification to determine
the alternate clock source)

1 1 Bus clock dependent on the PLL
14

Block Guide — S12BDM V4

nts of
BDM

atable
ny
3.2 BDM CCR Holding Register

Figure 3-2 BDM CCR Holding Register (BDMCCR)

Read: All modes

Write: All modes

NOTE: When BDM is made active, the CPU stores the value of the CCR register in the
BDMCCR register. However, out of special single-chip reset, the BDMCCR is set
to $D8 and not $D0 which is the reset value of the CCR register.

When entering background debug mode, the BDM CCR holding register is used to save the conte
the condition code register of the user’s program. It is also used for temporary storage in the standard
firmware mode. The BDM CCR holding register can be written to modify the CCR value.

3.3 BDM Internal Register Position Register

Figure 3-3 BDM Internal Register Position (BDMINR)

Read: All modes

Write: Never

REG14–REG11 — Internal register map position

These four bits show the state of the upper five bits of the base address for the system’s reloc
register block. BDMINR is a shadow of the INITRG register which maps the register block to a
2K byte space within the first 32K bytes of the 64K byte address space.

Register address $FF06

7 6 5 4 3 2 1 0

R
CCR7 CCR6 CCR5 CCR4 CCR3 CCR2 CCR1 CCR0

W

Reset: 0 0 0 0 0 0 0 0

Register address $FF07

7 6 5 4 3 2 1 0

R 0 REG14 REG13 REG12 REG11 0 0 0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
15

Block Guide — S12BDM V4
16

Block Guide — S12BDM V4

re two

ive

debug

(PC).

s
he

mware
able.
his
DM

f the
ting
nabled,
the
tests,

vated

e

Section 4 Functional Description

The BDM receives and executes commands from a host via a single wire serial interface. There a
types of BDM commands, namely, hardware commands and firmware commands.

Hardware commands are used to read and write target system memory locations and to enter act
background debug mode, see4.3 BDM Hardware Commands . Target system memory includes all
memory that is accessible by the CPU.

Firmware commands are used to read and write CPU resources and to exit from active background
mode, see4.4 Standard BDM Firmware Commands . The CPU resources referred to are the
accumulator (D), X index register (X), Y index register (Y), stack pointer (SP), and program counter

Hardware commands can be executed at any time and in any mode excluding a few exceptions a
highlighted, see4.3 BDM Hardware Commands . Firmware commands can only be executed when t
system is in active background debug mode (BDM).

4.1 Security

If the user resets into special single-chip mode with the system secured, a secured mode BDM fir
lookup table is brought into the map overlapping a portion of the standard BDM firmware lookup t
The secure BDM firmware verifies that the on-chip EEPROM and FLASH EEPROM are erased. T
being the case, the UNSEC bit will get set. The BDM program jumps to the start of the standard B
firmware and the secured mode BDM firmware is turned off and all BDM commands are allowed. I
EEPROM or FLASH do not verify as erased, the BDM firmware sets the ENBDM bit, without asser
UNSEC, and the firmware enters a loop. This causes the BDM hardware commands to become e
but does not enable the firmware commands. This allows the BDM hardware to be used to erase
EEPROM and FLASH. After execution of the secure firmware, regardless of the results of the erase
the CPU registers, INITEE and PPAGE, will no longer be in their reset state.

4.2 Enabling and Activating BDM

The system must be in active BDM to execute standard BDM firmware commands. BDM can be acti
only after being enabled. BDM is enabled by setting the ENBDM bit in the BDM status (BDMSTS)
register. The ENBDM bit is set by writing to the BDM status (BDMSTS) register, via the single-wir
interface, using a hardware command such as WRITE_BD_BYTE.
17

Block Guide — S12BDM V4

ng the

of the

ses
egisters
ams.

ive
U such
.

tem to
 a

ss does
PU

ation
wever,
h the
After being enabled, BDM is activated by one of the following(1):

• Hardware BACKGROUND command

• BDM external instruction tagging mechanism

• CPU BGND instruction

• Breakpoint sub-block’s force or tag mechanism(2)

When BDM is activated, the CPU finishes executing the current instruction and then begins executi
firmware in the standard BDM firmware lookup table. When BDM is activated by the breakpoint
sub-block, the type of breakpoint used determines if BDM becomes active before or after execution
next instruction.

NOTE: If an attempt is made to activate BDM before being enabled, the CPU resumes
normal instruction execution after a brief delay. If BDM is not enabled, any
hardware BACKGROUND commands issued are ignored by the BDM and the CPU
is not delayed.

In active BDM, the BDM registers and standard BDM firmware lookup table are mapped to addres
$FF00 to $FFFF. BDM registers are mapped to addresses $FF00 to $FF07. The BDM uses these r
which are readable anytime by the BDM. However, these registers are not readable by user progr

4.3 BDM Hardware Commands

Hardware commands are used to read and write target system memory locations and to enter act
background debug mode. Target system memory includes all memory that is accessible by the CP
as on-chip RAM, EEPROM, FLASH EEPROM, I/O and control registers, and all external memory

Hardware commands are executed with minimal or no CPU intervention and do not require the sys
be in active BDM for execution, although, they can still be executed in this mode. When executing
hardware command, the BDM sub-block waits for a free CPU bus cycle so that the background acce
not disturb the running application program. If a free cycle is not found within 128 clock cycles, the C
is momentarily frozen so that the BDM can steal a cycle. When the BDM finds a free cycle, the oper
does not intrude on normal CPU operation provided that it can be completed in a single cycle. Ho
if an operation requires multiple cycles the CPU is frozen until the operation is complete, even thoug
BDM found a free cycle.

The BDM hardware commands are listed inTable 4-1 .

NOTES:
1. BDM is enabled and active immediately out of special single-chip reset.
2. This method is only available on systems that have a a Breakpoint or a Debug sub-block.
18

Block Guide — S12BDM V4

tions
 To
ces are
NOTE:
If enabled, ACK will occur when data is ready for transmission for all BDM READ commands and will occur after the write
is complete for all BDM WRITE commands.

The READ_BD and WRITE_BD commands allow access to the BDM register locations. These loca
are not normally in the system memory map but share addresses with the application in memory.
distinguish between physical memory locations that share the same address, BDM memory resour
enabled just for the READ_BD and WRITE_BD access cycle. This allows the BDM to access BDM
locations unobtrusively, even if the addresses conflict with the application memory map.

Table 4-1 Hardware Commands

Command
Opcode
 (hex)

Data Description

BACKGROUND 90 None
Enter background mode if firmware is enabled. If enabled,
an ACK will be issued when the part enters active background
mode.

ACK_ENABLE D5 None
Enable Handshake. Issues an ACK pulse after the command
is executed.

ACK_DISABLE D6 None
Disable Handshake. This command does not issue an
ACK pulse.

READ_BD_BYTE E4
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table
in map. Odd address data on low byte; even address data on
high byte.

READ_BD_WORD EC
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table
in map. Must be aligned access.

READ_BYTE E0
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table
out of map. Odd address data on low byte; even address data
on high byte.

READ_WORD E8
16-bit address
16-bit data out

Read from memory with standard BDM firmware lookup table
out of map. Must be aligned access.

WRITE_BD_BYTE C4
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in
map. Odd address data on low byte; even address data on
high byte.

WRITE_BD_WORD CC
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table in
map. Must be aligned access.

WRITE_BYTE C0
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out
of map. Odd address data on low byte; even address data on
high byte.

WRITE_WORD C8
16-bit address
16-bit data in

Write to memory with standard BDM firmware lookup table out
of map. Must be aligned access.
19

Block Guide — S12BDM V4

 active

DM
.

come
 BDM
re
4.4 Standard BDM Firmware Commands

Firmware commands are used to access and manipulate CPU resources. The system must be in
BDM to execute standard BDM firmware commands, see4.2 Enabling and Activating BDM . Normal
instruction execution is suspended while the CPU executes the firmware located in the standard B
firmware lookup table. The hardware command BACKGROUND is the usual way to activate BDM

As the system enters active BDM, the standard BDM firmware lookup table and BDM registers be
visible in the on-chip memory map at $FF00–$FFFF, and the CPU begins executing the standard
firmware. The standard BDM firmware watches for serial commands and executes them as they a
received.

The firmware commands are shown inTable 4-2 .

Table 4-2 Firmware Commands

Command 1

NOTES:
1. If enabled, ACK will occur when data is ready for transmission for all BDM READ commands and will occur after the write

is complete for all BDM WRITE commands.

Opcode
(hex)

Data Description

READ_NEXT 62 16-bit data out Increment X by 2 (X = X + 2), then read word X points to.

READ_PC 63 16-bit data out Read program counter.

READ_D 64 16-bit data out Read D accumulator.

READ_X 65 16-bit data out Read X index register.

READ_Y 66 16-bit data out Read Y index register.

READ_SP 67 16-bit data out Read stack pointer.

WRITE_NEXT 42 16-bit data in
Increment X by 2 (X = X + 2), then write word to location
pointed to by X.

WRITE_PC 43 16-bit data in Write program counter.

WRITE_D 44 16-bit data in Write D accumulator.

WRITE_X 45 16-bit data in Write X index register.

WRITE_Y 46 16-bit data in Write Y index register.

WRITE_SP 47 16-bit data in Write stack pointer.

GO 08 none
Go to user program. If enabled, ACK will occur when
leaving active background mode.

GO_UNTIL2

2. Both WAIT (with clocks to the S12 CPU core disabled) and STOP disable the ACK function. The GO_UNTIL command
will not get an Acknowledge if one of these two CPU instructions occurs before the "UNTIL" instruction. This can be a prob-
lem for any instruction that uses ACK, but GO_UNTIL is a lot more difficult for the development tool to time-out.

0C none
Go to user program. If enabled, ACK will occur upon
returning to active background mode.

TRACE1 10 none
Execute one user instruction then return to active BDM. If
enabled, ACK will occur upon returning to active
background mode.

TAGGO 18 none
Enable tagging and go to user program. There is no ACK
pulse related to this command.
20

Block Guide — S12BDM V4

d/or a
e byte

g the
 in the
 wait
d. This
cycle
 for a

 extra 7
ycles),

data to

a to be
er

g any
kup
ersely
4.5 BDM Command Structure

Hardware and firmware BDM commands start with an 8-bit opcode followed by a 16-bit address an
16-bit data word depending on the command. All the read commands return 16 bits of data despite th
or word implication in the command name.

NOTE: 8-bit reads return 16-bits of data, of which, only one byte will contain valid data. If
reading an even address, the valid data will appear in the MSB. If reading an odd
address, the valid data will appear in the LSB.

NOTE: 16-bit misaligned reads and writes are not allowed. If attempted, the BDM will
ignore the least significant bit of the address and will assume an even address from
the remaining bits.

For hardware data read commands, the external host must wait 150 bus clock cycles after sendin
address before attempting to obtain the read data. This is to be certain that valid data is available
BDM shift register, ready to be shifted out. For hardware write commands, the external host must
150 bus clock cycles after sending the data to be written before attempting to send a new comman
is to avoid disturbing the BDM shift register before the write has been completed. The 150 bus clock
delay in both cases includes the maximum 128 cycle delay that can be incurred as the BDM waits
free cycle before stealing a cycle.

For firmware read commands, the external host should wait 44 bus clock cycles after sending the
command opcode and before attempting to obtain the read data. This includes the potential of an
cycles when the access is external with a narrow bus access (+1 cycle) and / or a stretch (+1, 2, or 3 c
(7 cycles could be needed if both occur). The 44 cycle wait allows enough time for the requested
be made available in the BDM shift register, ready to be shifted out.

NOTE: This timing has increased from previous BDM modules due to the new capability in
which the BDM serial interface can potentially run faster than the bus. On previous
BDM modules this extra time could be hidden within the serial time.

For firmware write commands, the external host must wait 32 bus clock cycles after sending the dat
written before attempting to send a new command. This is to avoid disturbing the BDM shift regist
before the write has been completed.

The external host should wait 64 bus clock cycles after a TRACE1 or GO command before startin
new serial command. This is to allow the CPU to exit gracefully from the standard BDM firmware loo
table and resume execution of the user code. Disturbing the BDM shift register prematurely may adv
affect the exit from the standard BDM firmware lookup table.

NOTE: If the bus rate of the target processor is unknown or could be changing, it is
recommended that the ACK (acknowledge function) be used to indicate when an
operation is complete. When using ACK, the delay times are automated.
21

Block Guide — S12BDM V4

ght bit
idles

ode
comes

 see
n.

ge on
ta is
s per

 at all
ically
rovide
Figure 4-1 represents the BDM command structure. The command blocks illustrate a series of ei
times starting with a falling edge. The bar across the top of the blocks indicates that the BKGD line
in the high state. The time for an 8-bit command is 8× 16 target clock cycles.(1)

Figure 4-1 BDM Command Structure

4.6 BDM Serial Interface

The BDM communicates with external devices serially via the BKGD pin. During reset, this pin is a m
select input which selects between normal and special modes of operation. After reset, this pin be
the dedicated serial interface pin for the BDM.

The BDM serial interface is timed using the clock selected by the CLKSW bit in the status register
3.1 BDM Status Register . This clock will be referred to as the target clock in the following explanatio

The BDM serial interface uses a clocking scheme in which the external host generates a falling ed
the BKGD pin to indicate the start of each bit time. This falling edge is sent for every bit whether da
transmitted or received. Data is transferred most significant bit (MSB) first at 16 target clock cycle
bit. The interface times out if 512 clock cycles occur between falling edges from the host.

The BKGD pin is a pseudo open-drain pin and has an weak on-chip active pull-up that is enabled
times. It is assumed that there is an external pull-up and that drivers connected to BKGD do not typ
drive the high level. Since R-C rise time could be unacceptably long, the target system and host p

NOTES:
1. Target clock cycles are cycles measured using the target MCU’s serial clock rate. See 4.6 BDM Serial Interface and

3.1 BDM Status Register for information on how serial clock rate is selected.

HARDWARE

HARDWARE

FIRMWARE

FIRMWARE

GO,

44-BC

BC = BUS CLOCK CYCLES

COMMAND ADDRESS

150-BC
DELAY

NEXT

DELAY

8 BITS
AT ∼16 TC/BIT

16 BITS
AT ∼16 TC/BIT

16 BITS
AT ∼16 TC/BIT

COMMAND ADDRESS DATA
NEXT

DATAREAD

WRITE

READ

WRITE

TRACE

COMMAND
NEXT

COMMAND DATA

64-BC
DELAY

NEXT

COMMAND

150-BC
DELAY

32-BC
DELAY

COMMAND

COMMAND

COMMAND

COMMANDDATA

NEXT
COMMAND

TC = TARGET CLOCK CYCLES
22

Block Guide — S12BDM V4

e host

ince
l clock
ile the
cycle
very bit

of a
m the
e. Ten

ic
ic 1

driven
brief driven-high (speedup) pulses to drive BKGD to a logic 1. The source of this speedup pulse is th
for transmit cases and the target for receive cases.

The timing for host-to-target is shown inFigure 4-2 and that of target-to-host inFigure 4-3 and
Figure 4-4 . All four cases begin when the host drives the BKGD pin low to generate a falling edge. S
the host and target are operating from separate clocks, it can take the target system up to one ful
cycle to recognize this edge. The target measures delays from this perceived start of the bit time wh
host measures delays from the point it actually drove BKGD low to start the bit up to one target clock
earlier. Synchronization between the host and target is established in this manner at the start of e
time.

Figure 4-2 shows an external host transmitting a logic 1 and transmitting a logic 0 to the BKGD pin
target system. The host is asynchronous to the target, so there is up to a one clock-cycle delay fro
host-generated falling edge to where the target recognizes this edge as the beginning of the bit tim
target clock cycles later, the target senses the bit level on the BKGD pin. Internal glitch detect log
requires the pin be driven high no later that eight target clock cycles after the falling edge for a log
transmission.

Since the host drives the high speedup pulses in these two cases, the rising edges look like digitally
signals.

Figure 4-2 BDM Host-to-Target Serial Bit Timing

EARLIEST
START OF
NEXT BIT

TARGET SENSES BIT

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

CLOCK
TARGET SYSTEM

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED
START OF BIT TIME
23

Block Guide — S12BDM V4

t

ds the
must
fter the
fter it
The receive cases are more complicated.Figure 4-3 shows the host receiving a logic 1 from the targe
system. Since the host is asynchronous to the target, there is up to one clock-cycle delay from the
host-generated falling edge on BKGD to the perceived start of the bit time in the target. The host hol
BKGD pin low long enough for the target to recognize it (at least two target clock cycles). The host
release the low drive before the target drives a brief high speedup pulse seven target clock cycles a
perceived start of the bit time. The host should sample the bit level about 10 target clock cycles a
started the bit time.

Figure 4-3 BDM Target-to-Host Serial Bit Timing (Logic 1)

HIGH-IMPEDANCE

EARLIEST
START OF
NEXT BIT

R-C RISE

10 CYCLES

10 CYCLES

HOST SAMPLES
BKGD PIN

PERCEIVED
START OF BIT TIME

BKGD PIN

CLOCK
TARGET SYSTEM

HOST
DRIVE TO
BKGD PIN

TARGET SYSTEM
SPEEDUP

PULSE

HIGH-IMPEDANCE

HIGH-IMPEDANCE
24

Block Guide — S12BDM V4

arget,
he bit
arget
ives
tarting

BDM
ful to
ted by

cycles
e

essfully
 by a
issued
.
a read
and
l
e the
ulse.
, since
ry slow
Figure 4-4 shows the host receiving a logic 0 from the target. Since the host is asynchronous to the t
there is up to a one clock-cycle delay from the host-generated falling edge on BKGD to the start of t
time as perceived by the target. The host initiates the bit time but the target finishes it. Since the t
wants the host to receive a logic 0, it drives the BKGD pin low for 13 target clock cycles then briefly dr
it high to speed up the rising edge. The host samples the bit level about 10 target clock cycles after s
the bit time.

Figure 4-4 BDM Target-to-Host Serial Bit Timing (Logic 0)

4.7 Serial Interface Hardware Handshake Protocol

BDM commands that require CPU execution are ultimately treated at the MCU bus rate. Since the
clock source can be asynchronously related to the bus frequency, when CLKSW = 0, it is very help
provide a handshake protocol in which the host could determine when an issued command is execu
the CPU. The alternative is to always wait the amount of time equal to the appropriate number of
at the slowest possible rate the clock could be running. This sub-section will describe the hardwar
handshake protocol.

The hardware handshake protocol signals to the host controller when an issued command was succ
executed by the target. This protocol is implemented by a 16 serial clock cycle low pulse followed
brief speedup pulse in the BKGD pin. This pulse is generated by the target MCU when a command,
by the host, has been successfully executed (seeFigure 4-5). This pulse is referred to as the ACK pulse
After the ACK pulse has finished: the host can start the bit retrieval if the last issued command was
command, or start a new command if the last command was a write command or a control comm
(BACKGROUND, GO, GO_UNTIL or TRACE1). The ACK pulse is not issued earlier than 32 seria
clock cycles after the BDM command was issued. The end of the BDM command is assumed to b
16th tick of the last bit. This minimum delay assures enough time for the host to perceive the ACK p
Note also that, there is no upper limit for the delay between the command and the related ACK pulse
the command execution depends upon the CPU bus frequency, which in some cases could be ve

EARLIEST
START OF
NEXT BIT

CLOCK
TARGET SYS.

HOST
DRIVE TO
BKGD PIN

BKGD PIN

PERCEIVED
START OF BIT TIME

10 CYCLES

10 CYCLES

HOST SAMPLES
BKGD PIN

TARGET SYS.
DRIVE AND

SPEEDUP PULSE

SPEEDUP PULSE

HIGH-IMPEDANCE
25

Block Guide — S12BDM V4

ners,
e serial

TE
y the
abbed
, the
ieved.
n the
ddress
compared to the serial communication rate. This protocol allows a great flexibility for the POD desig
since it does not rely on any accurate time measurement or short response time to any event in th
communication.

Figure 4-5 Target Acknowledge Pulse (ACK)

NOTE: If the ACK pulse was issued by the target, the host assumes the previous command
was executed. If the CPU enters WAIT or STOP prior to executing a hardware
command, the ACK pulse will not be issued meaning that the BDM command was
not executed. After entering wait or stop mode, the BDM command is no longer
pending.

Figure 4-6 shows the ACK handshake protocol in a command level timing diagram. The READ_BY
instruction is used as an example. First, the 8-bit instruction opcode is sent by the host, followed b
address of the memory location to be read. The target BDM decodes the instruction. A bus cycle is gr
(free or stolen) by the BDM and it executes the READ_BYTE operation. Having retrieved the data
BDM issues an ACK pulse to the host controller, indicating that the addressed byte is ready to be retr
After detecting the ACK pulse, the host initiates the byte retrieval process. Note that data is sent i
form of a word and the host needs to determine which is the appropriate byte based on whether the a
was odd or even.

Figure 4-6 Handshake Protocol at Command Level

16 CYCLES

BDM CLOCK
(TARGET MCU)

TARGET
TRANSMITS

PULSEACK

HIGH-IMPEDANCE

BKGD PIN

MINIMUM DELAY
FROM THE BDM COMMAND

32 CYCLES

EARLIEST
START OF
NEXT BIT

SPEEDUP PULSE

16th TICK OF THE
LAST COMMAD BIT

HIGH-IMPEDANCE

READ_BYTE

BDM ISSUES THE

BKGD PIN BYTE ADDRESS

BDM EXECUTES THE
READ_BYTE COMMAND

HOST TARGET

HOSTTARGET

BDM DECODES
THE COMMAND

ACK PULSE (OUT OF SCALE)

HOST TARGET

(2) BYTES ARE
RETRIEVED

NEW BDM
COMMAND
26

Block Guide — S12BDM V4

ce
ware
st
in.

able to
d that

the
eans

rt the
e a

issued
iving
g a
tocol,
d

lse in
and.
abort
to be
mand

here
ive the
. If the
t pulse
host and
short
Differently from the normal bit transfer (where the host initiates the transmission), the serial interfa
ACK handshake pulse is initiated by the target MCU by issuing a negedge in the BKGD pin. The hard
handshake protocol inFigure 4-5 specifies the timing when the BKGD pin is being driven, so the ho
should follow this timing constraint in order to avoid the risk of an electrical conflict in the BKGD p

NOTE: The only place the BKGD pin can have an electrical conflict is when one side is
driving low and the other side is issuing a speedup pulse (high). Other “highs” are
pulled rather than driven. However, at low rates the time of the speedup pulse can
become lengthy and so the potential conflict time becomes longer as well.

The ACK handshake protocol does not support nested ACK pulses. If a BDM command is not
acknowledge by an ACK pulse, the host needs to abort the pending command first in order to be
issue a new BDM command. When the CPU enters WAIT or STOP while the host issues a comman
requires CPU execution (e.g., WRITE_BYTE), the target discards the incoming command due to
WAIT or STOP being detected. Therefore, the command is not acknowledged by the target, which m
that the ACK pulse will not be issued in this case. After a certain time the host should decide to abo
ACK sequence in order to be free to issue a new command. Therefore, the protocol should provid
mechanism in which a command, and therefore a pending ACK, could be aborted.

NOTE: Differently from a regular BDM command, the ACK pulse does not provide a time
out. This means that in the case of a WAIT or STOP instruction being executed, the
ACK would be prevented from being issued. If not aborted, the ACK would remain
pending indefinitely. See the handshake abort procedure described in
4.8 Hardware Handshake Abort Procedure .

4.8 Hardware Handshake Abort Procedure

The abort procedure is based on the SYNC command. In order to abort a command, which had not
the corresponding ACK pulse, the host controller should generate a low pulse in the BKGD pin by dr
it low for at least 128 serial clock cycles and then driving it high for one serial clock cycle, providin
speedup pulse. By detecting this long low pulse in the BKGD pin, the target executes the SYNC pro
see4.9 SYNC — Request Timed Reference Pulse , and assumes that the pending command an
therefore the related ACK pulse, are being aborted. Therefore, after the SYNC protocol has been
completed the host is free to issue new BDM commands.

Although it is not recommended, the host could abort a pending BDM command by issuing a low pu
the BKGD pin shorter than 128 serial clock cycles, which will not be interpreted as the SYNC comm
The ACK is actually aborted when a negedge is perceived by the target in the BKGD pin. The short
pulse should have at least 4 clock cycles keeping the BKGD pin low, in order to allow the negedge
detected by the target. In this case, the target will not execute the SYNC protocol but the pending com
will be aborted along with the ACK pulse. The potential problem with this abort procedure is when t
is a conflict between the ACK pulse and the short abort pulse. In this case, the target may not perce
abort pulse. The worst case is when the pending command is a read command (i.e., READ_BYTE)
abort pulse is not perceived by the target the host will attempt to send a new command after the abor
was issued, while the target expects the host to retrieve the accessed memory byte. In this case,
target will run out of synchronism. However, if the command to be aborted is not a read command the
27

Block Guide — S12BDM V4

he abort

mand)
 SYNC
der to

TE
mputer.

uld
mode.
being

n this
is not
abort pulse could be used. After a command is aborted the target assumes the next negedge, after t
pulse, is the first bit of a new BDM command.

NOTE: The details about the short abort pulse are being provided only as a reference for
the reader to better understand the BDM internal behavior. It is not recommended
that this procedure be used in a real application.

Since the host knows the target serial clock frequency, the SYNC command (used to abort a com
does not need to consider the lower possible target frequency. In this case, the host could issue a
very close to the 128 serial clock cycles length. Providing a small overhead on the pulse length in or
assure the SYNC pulse will not be misinterpreted by the target. See4.9 SYNC — Request Timed
Reference Pulse .

Figure 4-7 shows a SYNC command being issued after a READ_BYTE, which aborts the READ_BY
command. Note that, after the command is aborted a new command could be issued by the host co

Figure 4-7 ACK Abort Procedure at the Command Level

NOTE: Figure 4-7 does not represent the signals in a true timing scale

Figure 4-8 shows a conflict between the ACK pulse and the SYNC request pulse. This conflict co
occur if a POD device is connected to the target BKGD pin and the target is already in debug active
Consider that the target CPU is executing a pending BDM command at the exact moment the POD is
connected to the BKGD pin. In this case, an ACK pulse is issued along with the SYNC command. I
case, there is an electrical conflict between the ACK speedup pulse and the SYNC pulse. Since this
a probable situation, the protocol does not prevent this conflict from happening.

READ_BYTE READ_STATUSBKGD PIN MEMORY ADDRESS NEW BDM COMMAND

NEW BDM COMMAND

HOST TARGET HOST TARGET HOST TARGET

SYNC RESPONSE
FROM THE TARGET
(OUT OF SCALE)

BDM DECODE
AND STARTS TO EXECUTES

THE READ_BYTE CMD

READ_BYTE CMD IS ABORTED
BY THE SYNC REQUEST

(OUT OF SCALE)
28

Block Guide — S12BDM V4

BLE
 not
rt the
 need

ulse
s the

orst

s then
ata
e. See
Figure 4-8 ACK Pulse and SYNC Request Conflict

NOTE: This information is being provided so that the MCU integrator will be aware that
such a conflict could eventually occur.

The hardware handshake protocol is enabled by the ACK_ENABLE and disabled by the ACK_DISA
BDM commands. This provides backwards compatibility with the existing POD devices which are
able to execute the hardware handshake protocol. It also allows for new POD devices, that suppo
hardware handshake protocol, to freely communicate with the target device. If desired, without the
for waiting for the ACK pulse.

The commands are described as follows:

• ACK_ENABLE — enables the hardware handshake protocol. The target will issue the ACK p
when a CPU command is executed by the CPU. The ACK_ENABLE command itself also ha
ACK pulse as a response.

• ACK_DISABLE — disables the ACK pulse protocol. In this case, the host needs to use the w
case delay time at the appropriate places in the protocol.

The default state of the BDM after reset is hardware handshake protocol disabled.

All the read commands will ACK (if enabled) when the data bus cycle has completed and the data i
ready for reading out by the BKGD serial pin. All the write commands will ACK (if enabled) after the d
has been received by the BDM through the BKGD serial pin and when the data bus cycle is complet
4.3 BDM Hardware Commands and4.4 Standard BDM Firmware Commands for more
information on the BDM commands.

BDM CLOCK
(TARGET MCU)

TARGET MCU
DRIVES TO

BKGD PIN

BKGD PIN

16 CYCLES

SPEEDUP PULSE

HIGH-IMPEDANCE

HOST
DRIVES SYNC
TO BKGD PIN

ACK PULSE

HOST SYNC REQUEST PULSE

AT LEAST 128 CYCLES

ELECTRICAL CONFLICT
HOST AND
TARGET DRIVE
TO BKGD PIN
29

Block Guide — S12BDM V4

uld be
lse is

hake
ued. In
id

mand.

ulse

this
e GO
ses the
which
lated

mode
could

ction

 the
nse to

tion
r the

ically
The ACK_ENABLE sends an ACK pulse when the command has been completed. This feature co
used by the host to evaluate if the target supports the hardware handshake protocol. If an ACK pu
issued in response to this command, the host knows that the target supports the hardware hands
protocol. If the target does not support the hardware handshake protocol the ACK pulse is not iss
this case, the ACK_ENABLE command is ignored by the target since it is not recognized as a val
command.

The BACKGROUND command will issue an ACK pulse when the CPU changes from normal to
background mode. The ACK pulse related to this command could be aborted using the SYNC com

The GO command will issue an ACK pulse when the CPU exits from background mode. The ACK p
related to this command could be aborted using the SYNC command.

The GO_UNTIL command is equivalent to a GO command with exception that the ACK pulse, in
case, is issued when the CPU enters into background mode. This command is an alternative to th
command and should be used when the host wants to trace if a breakpoint match occurs and cau
CPU to enter active background mode. Note that the ACK is issued whenever the CPU enters BDM,
could be caused by a Breakpoint match or by a BGND instruction being executed. The ACK pulse re
to this command could be aborted using the SYNC command.

The TRACE1 command has the related ACK pulse issued when the CPU enters background active
after one instruction of the application program is executed. The ACK pulse related to this command
be aborted using the SYNC command.

The TAGGO command will not issue an ACK pulse since this would interfere with the tagging fun
shared on the same pin.

4.9 SYNC — Request Timed Reference Pulse

The SYNC command is unlike other BDM commands because the host does not necessarily know
correct communication speed to use for BDM communications until after it has analyzed the respo
the SYNC command. To issue a SYNC command, the host should perform the following steps:

1. Drive the BKGD pin low for at least 128 cycles at the lowest possible BDM serial communica
frequency (the lowest serial communication frequency is determined by the crystal oscillator o
clock chosen by CLKSW.)

2. Drive BKGD high for a brief speedup pulse to get a fast rise time (this speedup pulse is typ
one cycle of the host clock.)

3. Remove all drive to the BKGD pin so it reverts to high impedance.

4. Listen to the BKGD pin for the sync response pulse.
30

Block Guide — S12BDM V4

t speed
speed
 speed

ved is
ter the

BDM

ly the
t be
ay not

rced to
If the
ing or

rs but
nter
Upon detecting the SYNC request from the host, the target performs the following steps:

1. Discards any incomplete command received or bit retrieved.

2. Waits for BKGD to return to a logic one.

3. Delays 16 cycles to allow the host to stop driving the high speedup pulse.

4. Drives BKGD low for 128 cycles at the current BDM serial communication frequency.

5. Drives a one-cycle high speedup pulse to force a fast rise time on BKGD.

6. Removes all drive to the BKGD pin so it reverts to high impedance.

The host measures the low time of this 128 cycle SYNC response pulse and determines the correc
for subsequent BDM communications. Typically, the host can determine the correct communication
within a few percent of the actual target speed and the communication protocol can easily tolerate
errors of several percent.

As soon as the SYNC request is detected by the target, any partially received command or bit retrie
discarded. This is referred to as a soft-reset, equivalent to a time-out in the serial communication. Af
SYNC response, the target will consider the next negedge (issued by the host) as the start of a new
command or the start of new SYNC request.

Another use of the SYNC command pulse is to abort a pending ACK pulse. The behavior is exact
same as in a regular SYNC command. Note that one of the possible causes for a command to no
acknowledged by the target is a host-target synchronization problem. In this case, the command m
have been understood by the target and so an ACK response pulse will not be issued.

4.10 Instruction Tracing

When a TRACE1 command is issued to the BDM in active BDM, the CPU exits the standard BDM
firmware and executes a single instruction in the user code. Once this has occurred, the CPU is fo
return to the standard BDM firmware and the BDM is active and ready to receive a new command.
TRACE1 command is issued again, the next user instruction will be executed. This facilitates stepp
tracing through the user code one instruction at a time.

If an interrupt is pending when a TRACE1 command is issued, the interrupt stacking operation occu
no user instruction is executed. Once back in standard BDM firmware execution, the program cou
points to the first instruction in the interrupt service routine.
31

Block Guide — S12BDM V4

e
stop the
on is
.

ruction.

 state
he fall
ow

s and

n. If
mand
 the
 any

ted as
edge
clock
fecting
4.11 Instruction Tagging

The instruction queue and cycle-by-cycle CPU activity are reconstructible in real time or from trac
history that is captured by a logic analyzer. However, the reconstructed queue cannot be used to
CPU at a specific instruction. This is because execution already has begun by the time an operati
visible outside the system. A separate instruction tagging mechanism is provided for this purpose

The tag follows program information as it advances through the instruction queue. When a tagged
instruction reaches the head of the queue, the CPU enters active BDM rather than executing the inst

NOTE: Tagging is disabled when BDM becomes active and BDM serial commands are not
processed while tagging is active.

Executing the BDM TAGGO command configures two system pins for tagging. TheTAGLO signal
shares a pin with theLSTRB signal, and theTAGHI signal shares a pin with the BKGD signal.

Table 4-3 shows the functions of the two tagging pins. The pins operate independently, that is the
of one pin does not affect the function of the other. The presence of logic level 0 on either pin at t
of the external clock (ECLK) performs the indicated function. High tagging is allowed in all modes. L
tagging is allowed only when low strobe is enabled (LSTRB is allowed only in wide expanded mode
emulation expanded narrow mode).

4.12 Serial Communication Time-out

The host initiates a host-to-target serial transmission by generating a falling edge on the BKGD pi
BKGD is kept low for more than 128 target clock cycles, the target understands that a SYNC com
was issued. In this case, the target will keep waiting for a rising edge on BKGD in order to answer
SYNC request pulse. If the rising edge is not detected, the target will keep waiting forever without
time-out limit.

Consider now the case where the host returns BKGD to logic one before 128 cycles. This is interpre
a valid bit transmission, and not as a SYNC request. The target will keep waiting for another falling
marking the start of a new bit. If, however, a new falling edge is not detected by the target within 512
cycles since the last falling edge, a time-out occurs and the current command is discarded without af
memory or the operating mode of the MCU. This is referred to as a soft-reset.

Table 4-3 Tag Pin Function

TAGHI TAGLO Tag

1 1 No tag

1 0 Low byte

0 1 High byte

0 0 Both bytes
32

Block Guide — S12BDM V4

t will
ut has

der the
se, the
rieved
ake
ore, the
issued
s
s to
 After
gedge
.

 out in
cles is
etrieved
 be

e target
If a read command is issued but the data is not retrieved within 512 serial clock cycles, a soft-rese
occur causing the command to be disregarded. The data is not available for retrieval after the time-o
occurred. This is the expected behavior if the handshake protocol is not enabled. However, consi
behavior where the BDC is running in a frequency much greater than the CPU frequency. In this ca
command could time out before the data is ready to be retrieved. In order to allow the data to be ret
even with a large clock frequency mismatch (between BDC and CPU) when the hardware handsh
protocol is enabled, the time out between a read command and the data retrieval is disabled. Theref
host could wait for more then 512 serial clock cycles and still be able to retrieve the data from an
read command. However, once the handshake pulse (ACK pulse) is issued, the time-out feature i
re-activated, meaning that the target will time out after 512 clock cycles. Therefore, the host need
retrieve the data within a 512 serial clock cycles time frame after the ACK pulse had been issued.
that period, the read command is discarded and the data is no longer available for retrieval. Any ne
in the BKGD pin after the time-out period is considered to be a new command or a SYNC request

Note that whenever a partially issued command, or partially retrieved data, has occurred the time
the serial communication is active. This means that if a time frame higher than 512 serial clock cy
observed between two consecutive negative edges and the command being issued or data being r
is not complete, a soft-reset will occur causing the partially received command or data retrieved to
disregarded. The next negedge in the BKGD pin, after a soft-reset has occurred, is considered by th
as the start of a new BDC command, or the start of a SYNC request pulse.
33

Block Guide — S12BDM V4
S12BDMV4/D
Rev. 4.02
34

Block Guide — S12BDM V4
2/2003
35

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

Block Guide — S12BDM V4
37

Block Guide — S12BDM V4
38

Block Guide — S12BDM V4
39

Block Guide — S12BDM V4
40

Block Guide — S12BDM V4
41

Block Guide — S12BDM V4
42

Block Guide — S12BDM V4
43

Block Guide — S12BDM V4
44

Block Guide — S12BDM V4
45

Block Guide — S12BDM V4
46

Block Guide — S12BDM V4
47

Block Guide — S12BDM V4
48

Block Guide — S12BDM V4
49

Block Guide — S12BDM V4
50

Block Guide — S12BDM V4
51

Block Guide — S12BDM V4
52

Block Guide — S12BDM V4
53

Block Guide — S12BDM V4
54

Block Guide — S12BDM V4
55

Block Guide — S12BDM V4
56

MOTOROLA.COM/SEMICONDUCTORS

HCS12
Microcontrollers

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

S12BKPV1/D
Rev. 1.02

Breakpoint (BKP)
Module V1

Block User Guide

5/2003

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1

2

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2003

Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

1.02 5/1/2003 5/1/2003 John Langan Original release

B
lock G

uide —
 S

12B
K

P
 V

1

TROLLED COPY" IN RED

T
able of C

ontents
PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CON

3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1
List of Figures

Figure 1-1 Breakpoint Block Diagram . 6

Figure 3-1 Breakpoint Register Summary. 11

Figure 3-2 Breakpoint Control Register 0 (BKPCT0) . 12

Figure 3-3 Breakpoint Control Register 1 (BKPCT1) . 13

Figure 3-4 Breakpoint First Address Expansion Register (BKP0X) 15

Figure 3-5 Breakpoint First Address High Byte Register (BKP0H) 16

Figure 3-6 Breakpoint First Address Low Byte Register (BKP0L). 16

Figure 3-7 Breakpoint Second Address Expansion Register (BKP1X) 17

Figure 3-8 Breakpoint Data High Byte Register (BKP1H). 17

Figure 3-9 Breakpoint Data Low Byte Register (BKP1L) . 18

List of Tables

Table 2-1 External System Pins Associated With Breakpoint and MEBI. 9

Table 3-1 Breakpoint Mask Bits for First Address . 13

Table 3-2 Breakpoint Mask Bits for Second Address (Dual Mode) 14

Table 3-3 Breakpoint Mask Bits for Data Breakpoints (Full Mode) 14

Section 1 Introduction: Breakpoint (BKP) Module

1.1 Overview. 1

1.2 Features . 3

1.3 Modes of Operation . 3

Section 2 External Signal Description

Section 3 Memory Map/Register Definition

3.1 Breakpoint Control Register 0 (BKPCT0) . 8

3.2 Breakpoint Control Register 1 (BKPCT1) . 9

3.3 Breakpoint First Address Expansion Register (BKP0X) . 11

3.4 Breakpoint First Address High Byte Register (BKP0H) . 12

3.5 Breakpoint First Address Low Byte Register (BKP0L) . 12

3.6 Breakpoint Second Address Expansion Register (BKP1X) 13

3.7 Breakpoint Data (Second Address) High Byte Register (BKP1H) 13

3.8 Breakpoint Data (Second Address) Low Byte Register (BKP1L) 14
4

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Section 4 Functional Description

4.1 Modes of Operation . 15

4.1.1 Dual Address Mode . 15

4.1.2 Full Breakpoint Mode . 15

4.2 Breakpoint Priority . 16
5

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12B

K
P

 V
1

6

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

tform.

nsists
quired
g high,
nals

debug
gisters.
rrupt

uction
ction
is not

llows
ed.
Section 1 Introduction: Breakpoint (BKP) Module

This section describes the functionality of the Breakpoint (BKP) sub-block of the HCS12 Core Pla

A block diagram of the Breakpoint sub-block is shown inFigure 1-1 . The Breakpoint contains three main
sub-blocks: the Register Block, the Compare Block, and the Control Block. The Register Block co
of the eight registers that make up the Breakpoint register space. The Compare Block performs all re
address and data signal comparisons. The Control Block generates the signals for the CPU for the ta
tag low, force SWI, and force BDM functions. In addition, it generates the register read and write sig
and the comparator block enable signals.

NOTE: There is a two-cycle latency for address compares and for forces, a two-cycle
latency for write data compares, and a three-cycle latency for read data compares.

1.1 Overview

The Breakpoint sub-block of the Core Platform provides for hardware breakpoints that are used to
software on the CPU by comparing actual address and data values to predetermine data in setup re
A successful comparison will place the CPU in Background Debug Mode or initiate a software inte
(SWI). The choice between Background Debug Mode and SWI is software selectable.

There are two types of breakpoints, forced and tagged. Forced breakpoints occur at the next instr
boundary if a match occurs and tagged breakpoints allow for breaking just before a specific instru
executes. Tagged breakpoints will only occur on addresses of program fetches. Tagging on data
allowed; however, if this occurs nothing will happen within the BKP.

The range function of the BKP allows breaking within a 256-byte address range. The page function a
breaking within expanded memory. In data matching operations, 8-bit or 16-bit data can be match
Forced breakpoints are mainly used on a read or a write cycle, but can be used on any bus cycle.
1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1
Figure 1-1 Breakpoint Block Diagram

COMPARATOR

COMPARE BLOCK

REGISTER BLOCK

COMPARATOR

COMPARATOR

COMPARATOR

COMPARATOR

COMPARATOR

EXPANSION ADDRESSES

EXPANSION ADDRESSES

ADDRESS HIGH

ADDRESS LOW

DATA HIGH

DATA LOW

ADDRESS HIGH

ADDRESS LOW

COMPARATOR

COMPARATOR

READ DATA HIGH

READ DATA LOW

.

CLOCKS AND BKP CONTROL
CONTROL SIGNALS SIGNALS

CONTROL BLOCK
BREAKPOINT MODES

AND GENERATION OF SWI,
FORCE BDM, AND TAGS

EXPANSION ADDRESS

ADDRESS

WRITE DATA

READ DATA

R
EA

D
/W

R
IT

E
C

O
N

TR
O

L

C
O

N
TR

O
L

BI
TS

C
O

N
TR

O
L

SI
G

N
AL

S

R
ES

U
LT

S
SI

G
N

AL
S

BKP0H

BKP0L

BKP0X

BKPCT0

BKP1X

BKPCT1

BKP1L

BKP1H

WRITE

BKP READ
DATA BUS

DATA BUS

DATA/ADDRESS
HIGH MUX

DATA/ADDRESS
LOW MUX
2

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

ter
1.2 Features

• Full or Dual Breakpoint Mode

– Compare on address and data (Full)

– Compare on either of two addresses (Dual)

• BDM or SWI Breakpoint

– Enter BDM on breakpoint (BDM)

– Execute SWI on breakpoint (SWI)

• Tagged or Forced Breakpoint

– Break just before a specific instruction will begin execution (TAG)

– Break on the first instruction boundary after a match occurs (Force)

• Single, Range, or Page address compares

– Compare on address (Single)

– Compare on address 256 byte (Range)

– Compare on any 16K Page (Page)

• Compare address on read or write on forced breakpoints

• High and/or low byte data compares

1.3 Modes of Operation

The Breakpoint sub-block contains two modes of operation:

1. Dual Address Mode, where a match on either of two addresses will cause the system to en
Background Debug Mode or initiate a Software Interrupt (SWI).

2. Full Breakpoint Mode, where a match on address and data will cause the system to enter
Background Debug Mode or initiate a Software Interrupt (SWI).
3

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12B

K
P

 V
1

4

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

kpoint
Section 2 External Signal Description

The breakpoint sub-module relies on the external bus interface (generally the MEBI) when the brea
is matching on the external bus.

The tag pins inTable 2-1 (part of the MEBI) may also be a part of the breakpoint operation.

Table 2-1 External System Pins Associated With Breakpoint and MEBI

Pin Name Pin Functions Description

BKGD/MODC/
TAGHI

TAGHI
When instruction tagging is on, a 0 at the falling edge of PE4/ECLK tags the high

half of the instruction word being read into the instruction queue.

PE3/LSTRB/
TAGLO

TAGLO
In expanded wide mode or emulation narrow modes, when instruction tagging is

on and low strobe is enabled, a 0 at the falling edge of PE4/ECLK tags the low
half of the instruction word being read into the instruction queue.
5

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12B

K
P

 V
1

6

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
Section 3 Memory Map/Register Definition

A summary of the registers associated with the Breakpoint sub-block is shown inFigure 3-1 . Detailed
descriptions of the registers and bits are given in the subsections that follow.

Figure 3-1 Breakpoint Register Summary

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0028 BKPCT0
Read

BKEN BKFULL BKBDM BKTAG
0 0 0 0

Write

$0029 BKPCT1
Read

BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
Write

$002A BKP0X
Read 0 0

BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0
Write

$002B BKP0H
Read

Bit 15 14 13 12 11 10 9 Bit 8
Write

$002C BKP0L
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

$002D BKP1X
Read 0 0

BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0
Write

$002E BKP1H
Read

Bit 15 14 13 12 11 10 9 Bit 8
Write

$002F BKP1L
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

= Unimplemented X = Indeterminate
7

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1

AG

M) or

e) or
a tagged
3.1 Breakpoint Control Register 0 (BKPCT0)

Read: anytime

Write: anytime

Figure 3-2 Breakpoint Control Register 0 (BKPCT0)

This register is used to set the breakpoint modes.

BKEN — Breakpoint Enable

This bit enables the module
0 = Breakpoints disabled
1 = Breakpoints enabled, breakpoint mode is determined by bits BKFULL, BKBDM, and BKT

BKFULL — Full Breakpoint Mode Enable

This bit controls whether the breakpoint module is in Dual Mode or Full Mode
0 = Dual Address Mode enabled
1 = Full Breakpoint Mode enabled

BKBDM — Breakpoint Background Debug Mode Enable

This bit determines if the breakpoint causes the system to enter Background Debug Mode (BD
initiate a Software Interrupt (SWI)

0 = Go to Software Interrupt on a compare
1 = Go to BDM on a compare

BKTAG — Breakpoint on Tag

This bit controls whether the breakpoint will cause a break on the next instruction boundary (forc
on a match that will be an executable opcode (tagged). Non-executed opcodes cannot cause
breakpoint

0 = On match, break at the next instruction boundary (force)
1 = On match, break if the match is an instruction that will be executed (tagged)

Register address $0028

7 6 5 4 3 2 1 0
R

BKEN BKFULL BKBDM BKTAG
0 0 0 0

W
Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
8

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

 low

ompare

ased

der and

is only
KP0X
3.2 Breakpoint Control Register 1 (BKPCT1)

Read: anytime

Write: anytime

Figure 3-3 Breakpoint Control Register 1 (BKPCT1)

This register is used to configure the functionality of the Breakpoint sub-block within the Core.

BK0MBH:BK0MBL — Breakpoint Mask High Byte and Low Byte for First Address

In Dual or Full Mode, these bits may be used to mask (disable) the comparison of the high and
bytes of the first address breakpoint. The functionality is as given inTable 3-1 below

The x:0 case is for a Full Address Compare. When a program page is selected, the full address c
will be based on bits for a 20-bit compare. The registers used for the compare are {BKP0X[5:0],
BKP0H[5:0], BKP0L[7:0]}. When a program page is not selected, the full address compare will be b
on bits for a 16-bit compare. The registers used for the compare are {BKP0H[7:0], BKP0L[7:0]}.

The 1:0 case is not sensible because it would ignore the high order address and compare the low or
expansion addresses. Logic forces this case to compare all address lines (effectively ignoring the
BK0MBH control bit).

The 1:1 case is useful for triggering a breakpoint on any access to a particular expansion page. Th
makes sense if a program page is being accessed so that the breakpoint trigger will occur only if B
compares.

Register address $0029

7 6 5 4 3 2 1 0
R

BK0MBH BK0MBL BK1MBH BK1MBL BK0RWE BK0RW BK1RWE BK1RW
W

Reset: 0 0 0 0 0 0 0 0

Table 3-1 Breakpoint Mask Bits for First Address

BK0MBH:BK0MBL Address Compare BKP0X BKP0H BKP0L

x:0 Full address compare Yes(1)

NOTES:
1. If page is selected.

Yes Yes

0:1 256 byte address range Yes(1) Yes No

1:1 16K byte address range Yes(1) No No
9

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1

 bytes

ompare

ased

der and

is only
KP1X

of the
BK1MBH:BK1MBL — Breakpoint Mask High Byte and Low Byte of Data (Second Address)

In Dual Mode, these bits may be used to mask (disable) the comparison of the high and/or low
of the second address breakpoint. The functionality is as given inTable 3-2 .

The x:0 case is for a Full Address Compare. When a program page is selected, the full address c
will be based on bits for a 20-bit compare. The registers used for the compare are {BKP1X[5:0],
BKP1H[5:0], BKP1L[7:0]}. When a program page is not selected, the full address compare will be b
on bits for a 16-bit compare. The registers used for the compare are {BKP1H[7:0], BKP1L[7:0]}.

The 1:0 case is not sensible because it would ignore the high order address and compare the low or
expansion addresses. Logic forces this case to compare all address lines (effectively ignoring the
BK1MBH control bit).

The 1:1 case is useful for triggering a breakpoint on any access to a particular expansion page. Th
makes sense if a program page is being accessed so that the breakpoint trigger will occur only if B
compares.

In Full Mode, these bits may be used to mask (disable) the comparison of the high and/or low bytes
data breakpoint. The functionality is as given inTable 3-3 .

Table 3-2 Breakpoint Mask Bits for Second Address (Dual Mode)

BK1MBH:BK1MBL Address Compare BKP1X BKP1H BKP1L

x:0 Full address compare Yes(1)

NOTES:
1. If page is selected.

Yes Yes

0:1 256 byte address range Yes(1) Yes No

1:1 16K byte address range Yes(1) No No

Table 3-3 Breakpoint Mask Bits for Data Breakpoints (Full Mode)

BK1MBH:BK1MBL Data Compare BKP1X BKP1H BKP1L

0:0 High and low byte compare No(1)

NOTES:
1. Expansion addresses for breakpoint 1 are not available in this mode.

Yes Yes

0:1 High byte No(1) Yes No

1:0 Low byte No(1) No Yes

1:1 No compare No(1) No No
10

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

ed

oint.

h
nd is

s

BK0RWE — R/W Compare Enable

Enables the comparison of the R/W signal for first address breakpoint. This bit is not useful in tagg
breakpoints.

0 = R/W is not used in the comparisons
1 = R/W is used in comparisons

BK0RW — R/W Compare Value

When BK0RWE = 1, this bit determines the type of bus cycle to match on first address breakp
When BK0RWE = 0, this bit has no effect.

0 = Write cycle will be matched
1 = Read cycle will be matched

BK1RWE — R/W Compare Enable

In Dual Mode, this bit enables the comparison of the R/W signal to further specify what causes a matc
for the second address breakpoint. This bit is not useful on tagged breakpoints or in Full Mode a
therefore a don’t care.

0 = R/W is not used in comparisons
1 = R/W is used in comparisons

BK1RW — R/W Compare Value

When BK1RWE = 1, this bit determines the type of bus cycle to match on the second address
breakpoint.When BK1RWE = 0, this bit has no effect.

0 = Write cycle will be matched
1 = Read cycle will be matched

3.3 Breakpoint First Address Expansion Register (BKP0X)

Read: anytime

Write: anytime

Figure 3-4 Breakpoint First Address Expansion Register (BKP0X)

This register contains the data to be matched against expansion address lines for the first addres
breakpoint when a page is selected.

BK0V[5:0] — Value of first breakpoint address to be matched in memory expansion space.

Register address $002A

7 6 5 4 3 2 1 0
R 0 0

BK0V5 BK0V4 BK0V3 BK0V2 BK0V1 BK0V0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
11

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1
3.4 Breakpoint First Address High Byte Register (BKP0H)

Read: anytime

Write: anytime

Figure 3-5 Breakpoint First Address High Byte Register (BKP0H)

This register is used to set the breakpoint when compared against the high byte of the address.

3.5 Breakpoint First Address Low Byte Register (BKP0L)

Read: anytime

Write: anytime

Figure 3-6 Breakpoint First Address Low Byte Register (BKP0L)

This register is used to set the breakpoint when compared against the low byte of the address.

Register address $002B

7 6 5 4 3 2 1 0
R

Bit 15 14 13 12 11 10 9 Bit 8
W

Reset: 0 0 0 0 0 0 0 0

Register address $002C

7 6 5 4 3 2 1 0
R

Bit 7 6 5 4 3 2 1 Bit 0
W

Reset: 0 0 0 0 0 0 0 0
12

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

second

 this
3.6 Breakpoint Second Address Expansion Register (BKP1X)

Read: anytime

Write: anytime

Figure 3-7 Breakpoint Second Address Expansion Register (BKP1X)

In Dual Mode, this register contains the data to be matched against expansion address lines for the
address breakpoint when a page is selected. In Full Mode, this register is not used.

BK1V[5:0] — Value of first breakpoint address to be matched in memory expansion space.

3.7 Breakpoint Data (Second Address) High Byte Register (BKP1H)

Read: anytime

Write: anytime

Figure 3-8 Breakpoint Data High Byte Register (BKP1H)

In Dual Mode, this register is used to compare against the high order address lines. In Full Mode,
register is used to compare against the high order data lines.

Register address $002D

7 6 5 4 3 2 1 0
R 0 0

BK1V5 BK1V4 BK1V3 BK1V2 BK1V1 BK1V0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address $002E

7 6 5 4 3 2 1 0
R

Bit 15 14 13 12 11 10 9 Bit 8
W

Reset: 0 0 0 0 0 0 0 0
13

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1

his
3.8 Breakpoint Data (Second Address) Low Byte Register (BKP1L)

Read: anytime

Write: anytime

Figure 3-9 Breakpoint Data Low Byte Register (BKP1L)

In Dual Mode, this register is used to compare against the low order address lines. In Full Mode, t
register is used to compare against the low order data lines.

Register address $002F

7 6 5 4 3 2 1 0
R

Bit 7 6 5 4 3 2 1 Bit 0
W

Reset: 0 0 0 0 0 0 0 0
14

Block Guide — S12BKP V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

int
points
g just
lace the

s is

use the
f the
e a

The
 is a
bytes,

 the

cessful
state
ts

If the
ts in
t, or is
e high
r the
Section 4 Functional Description

The Breakpoint sub-block supports two modes of operation: Dual Address Mode and Full Breakpo
Mode. Within each of these modes, forced or tagged breakpoint types can be used. Forced break
occur at the next instruction boundary if a match occurs and tagged breakpoints allow for breakin
before a specific instruction executes. The action taken upon a successful match can be to either p
CPU in Background Debug Mode or to initiate a software interrupt.

4.1 Modes of Operation

The Breakpoint can operate in Dual Address Mode or Full Breakpoint Mode. Each of these mode
discussed in the subsections below.

4.1.1 Dual Address Mode

When Dual Address Mode is enabled, two address breakpoints can be set. Each breakpoint can ca
system to enter Background Debug Mode or to initiate a software interrupt based upon the state o
BKBDM bit in the BKPCT0 Register being logic one or logic zero, respectively. BDM requests hav
higher priority than SWI requests. No data breakpoints are allowed in this mode.

The BKTAG bit in the BKPCT0 register selects whether the breakpoint mode is forced or tagged.
BKxMBH:L bits in the BKPCT1 register select whether or not the breakpoint is matched exactly or
range breakpoint. They also select whether the address is matched on the high byte, low byte, both
and/or memory expansion. The BKxRW and BKxRWE bits in the BKPCT1 register select whether
type of bus cycle to match is a read, write, or both when performing forced breakpoints.

4.1.2 Full Breakpoint Mode

Full Breakpoint Mode requires a match on address and data for a breakpoint to occur. Upon a suc
match, the system will enter Background Debug Mode or initiate a software interrupt based upon the
of the BKBDM bit in the BKPCT0 Register being logic one or logic zero, respectively. BDM reques
have a higher priority than SWI requests. R/W matches are also allowed in this mode.

The BKTAG bit in the BKPCT0 register selects whether the breakpoint mode is forced or tagged.
BKTAG bit is set in BKPCT0, then only address is matched, and data is ignored. The BK0MBH:L bi
the BKPCT1 register select whether or not the breakpoint is matched exactly, is a range breakpoin
in page space. The BK1MBH:L bits in the BKPCT1 register select whether the data is matched on th
byte, low byte, or both bytes. The BK0RW and BK0RWE bits in the BKPCT1 register select whethe
type of bus cycle to match is a read or a write when performing forced breakpoints. BK1RW and
BK1RWE bits in the BKPCT1 register are not used in Full Breakpoint Mode.
15

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12BKP V1

PU
de,

ts

lock.
4.2 Breakpoint Priority

Breakpoint operation is first determined by the state of BDM. If BDM is already active, meaning the C
is executing out of BDM firmware, Breakpoints are not allowed. In addition, while in BDM trace mo
tagging into BDM is not allowed. If BDM is not active, the Breakpoint will give priority to BDM reques
over SWI requests. This condition applies to both forced and tagged breakpoints.

In all cases, BDM related breakpoints will have priority over those generated by the Breakpoint sub-b
This priority includes breakpoints enabled by theTAGLO andTAGHI external pins of the system that
interface with the BDM directly and whose signal information passes through and is used by the
Breakpoint sub-block.

NOTE: BDM should not be entered from a breakpoint unless the BKEN bit is set in the
BDM. Even if the ENABLE bit in the BDM is negated, the CPU actually executes
the BDM firmware code. It checks the ENABLE and returns if enable is not set. If
the BDM is not serviced by the monitor then the breakpoint would be re-asserted
when the BDM returns to normal CPU flow.

There is no hardware to enforce restriction of breakpoint operation if the BDM is
not enabled.
16

TROLLED COPY" IN RED

B
lock G

uide —
 S

12B
K

P
 V

1

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CON

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
 HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

S12BKPV1/D
Rev. 1.02
5/2003

Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

MOTOROLA.COM/SEMICONDUCTORS

HCS12
Microcontrollers

S12CPUV2/D
Rev. 0

S12CPUV2

Reference Manual

7/2003

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2003

S12CPUV2
Reference Manual

To provide the most up-to-date information, the revision of our documents on the
World Wide Web will be the most current. Your printed copy may be an earlier
revision. To verify you have the latest information available, refer to:

http://motorola.com/semiconductors

The following revision history table summarizes changes contained in this
document. For your convenience, the page number designators have been linked
to the appropriate location.
S12CPUV2 Reference Manual

MOTOROLA 3

Revision History
Revision History

Date
Revision

Level
Description

Page
Number(s)

July,
2003

0 Initial release N/A
Reference Manual S12CPUV2

4 Revision History MOTOROLA

Reference Manual — S12CPUV2

List of Sections
Revision History 4
List of Sections 5
Table of Contents 7
List of Figures 15
List of Tables 17

Section 1. Introduction .19

Section 2. Overview .25

Section 3. Addressing Modes .33

Section 4. Instruction Queue .51

Section 5. Instruction Set Overview 59

Section 6. Instruction Glossary .91

Section 7. Exception Processing.315

Section 8. Instruction Queue .327

Section 9. Fuzzy Logic Support341

Appendix A. Instruction Reference381

Appendix B. M68HC11 to CPU12 Upgrade Path.409

Appendix C. High-Level Language Support431
Index 439
S12CPUV2 Reference Manual

MOTOROLA List of Sections 5

List of Sections
Reference Manual S12CPUV2

6 List of Sections MOTOROLA

Reference Manual — S12CPUV2

Table of Contents
Revision History 4
List of Sections 5
Table of Contents 7
List of Figures 15
List of Tables 17

Section 1. Introduction
1.1 Introduction .19

1.2 Features .19

1.3 Symbols and Notation. .20
1.3.1 Abbreviations for System Resources20
1.3.2 Memory and Addressing .21
1.3.3 Operators .22
1.3.4 Definitions. .23

Section 2. Overview
2.1 Introduction .25

2.2 Programming Model .25
2.2.1 Accumulators .26
2.2.2 Index Registers .26
2.2.3 Stack Pointer .26
2.2.4 Program Counter .27
2.2.5 Condition Code Register .27
2.2.5.1 S Control Bi t .28
2.2.5.2 X Mask Bit .29
2.2.5.3 H Status Bit. .29
2.2.5.4 I Mask Bit .30
2.2.5.5 N Status Bit. .30
2.2.5.6 Z Status Bit .30
2.2.5.7 V Status Bit .31
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 7

Table of Contents
2.2.5.8 C Status Bit. .31

2.3 Data Types .31

2.4 Memory Organization .32

2.5 Instruction Queue .32

Section 3. Addressing Modes
3.1 Introduction .33

3.2 Mode Summary .33

3.3 Effective Address .33

3.4 Inherent Addressing Mode .35

3.5 Immediate Addressing Mode .35

3.6 Direct Addressing Mode .36

3.7 Extended Addressing Mode .37

3.8 Relative Addressing Mode .37

3.9 Indexed Addressing Modes .38
3.9.1 5-Bit Constant Offset Indexed Addressing41
3.9.2 9-Bit Constant Offset Indexed Addressing41
3.9.3 16-Bit Constant Offset Indexed Addressing42
3.9.4 16-Bit Constant Indirect Indexed Addressing42
3.9.5 Auto Pre/Post Decrement/Increment Indexed Addressing. .43
3.9.6 Accumulator Offset Indexed Addressing 44
3.9.7 Accumulator D Indirect Indexed Addressing 45

3.10 Instructions Using Multiple Modes .45
3.10.1 Move Instructions .45
3.10.2 Bit Manipulation Instructions .47

3.11 Addressing More than 64 Kbytes .48

Section 4. Instruction Queue
4.1 Introduction .51

4.2 Queue Description .51
4.2.1 Original M68HC12 Queue Implementation 52
4.2.2 HCS12 Queue Implementation .52

4.3 Data Movement in the Queue. .52
4.3.1 No Movement .53
Reference Manual S12CPUV2

8 Table of Contents MOTOROLA

Table of Contents
4.3.2 Latch Data from Bus (Applies Only to the M68HC12 Queue
Implementation)53
4.3.3 Advance and Load from Data Bus53
4.3.4 Advance and Load from Buffer (Applies Only to M68HC12
Queue Implementation)53

4.4 Changes in Execution Flow .53
4.4.1 Exceptions .54
4.4.2 Subroutines .54
4.4.3 Branches .55
4.4.3.1 Short Branches .56
4.4.3.2 Long Branches. .56
4.4.3.3 Bit Condition Branches. .57
4.4.3.4 Loop Primitives. .57
4.4.4 Jumps. .58

Section 5. Instruction Set Overview
5.1 Introduction .59

5.2 Instruction Set Description .59

5.3 Load and Store Instructions .60

5.4 Transfer and Exchange Instructions .61

5.5 Move Instructions .62

5.6 Addition and Subtraction Instructions .63

5.7 Binary-Coded Decimal Instructions .64

5.8 Decrement and Increment Instructions.65

5.9 Compare and Test Instructions. .66

5.10 Boolean Logic Instructions .67

5.11 Clear, Complement, and Negate Instructions.68

5.12 Multiplication and Division Instructions69

5.13 Bit Test and Manipulation Instructions70

5.14 Shift and Rotate Instructions. .71

5.15 Fuzzy Logic Instructions .72
5.15.1 Fuzzy Logic Membership Instruction72
5.15.2 Fuzzy Logic Rule Evaluation Instructions.72
5.15.3 Fuzzy Logic Weighted Average Instruction 73
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 9

Table of Contents
5.16 Maximum and Minimum Instructions .75

5.17 Multiply and Accumulate Instruction .76

5.18 Table Interpolation Instructions. .76

5.19 Branch Instructions .77
5.19.1 Short Branch Instructions .78
5.19.2 Long Branch Instructions .79
5.19.3 Bit Condition Branch Instructions .80

5.20 Loop Primitive Instructions .81

5.21 Jump and Subroutine Instructions .82

5.22 Interrupt Instructions .83

5.23 Index Manipulation Instructions .85

5.24 Stacking Instructions. .86

5.25 Pointer and Index Calculation Instructions87

5.26 Condition Code Instructions .88

5.27 Stop and Wait Instructions .89

5.28 Background Mode and Null Operations90

Section 6. Instruction Glossary
6.1 Introduction .91

6.2 Glossary Information. .92

6.3 Condition Code Changes .93

6.4 Object Code Notation .94

6.5 Source Forms .95

6.6 Cycle-by-Cycle Execution. .98

6.7 Glossary .103

Section 7. Exception Processing
7.1 Introduction .315

7.2 Types of Exceptions .315

7.3 Exception Priority .316

7.4 Resets. .318
7.4.1 Power-On Reset. .318
Reference Manual S12CPUV2

10 Table of Contents MOTOROLA

Table of Contents
7.4.2 External Reset .318
7.4.3 COP Reset .319
7.4.4 Clock Monitor Reset .319

7.5 Interrupts. .319
7.5.1 Non-Maskable Interrupt Request (XIRQ)319
7.5.2 Maskable Interrupts .320
7.5.3 Interrupt Recognition .320
7.5.4 External Interrupts .321
7.5.5 Return-from-Interrupt Instruction (RTI)321

7.6 Unimplemented Opcode Trap. .322

7.7 Software Interrupt Instruction (SWI) .322

7.8 Exception Processing Flow. .323
7.8.1 Vector Fetch .323
7.8.2 Reset Exception Processing .323
7.8.3 Interrupt and Unimplemented Opcode Trap Exception Pro-
cessing 325

Section 8. Instruction Queue
8.1 Introduction .327

8.2 External Reconstruction of the Queue327

8.3 Instruction Queue Status Signals .328
8.3.1 HCS12 Timing Detail .329
8.3.2 M68HC12 Timing Detail .329
8.3.3 Null (Code 0:0). .331
8.3.4 LAT — Latch Data from Bus (Code 0:1)331
8.3.5 ALD — Advance and Load from Data Bus (Code 1:0) .331
8.3.6 ALL — Advance and Load from Latch (Code 1:1).331
8.3.7 INT — Interrupt Sequence Start (Code 0:1) 331
8.3.8 SEV — Start Instruction on Even Address (Code 1:0) .332
8.3.9 SOD — Start Instruction on Odd Address (Code 1:1). .332

8.4 Queue Reconstruction (for HCS12) .332
8.4.1 Queue Reconstruction Registers (for HCS12)333
8.4.1.1 fetch_add Register. .333
8.4.1.2 st1_add, st1_dat Registers .333
8.4.1.3 st2_add, st2_dat Registers .333
8.4.1.4 st3_add, st3_dat Registers .334
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 11

Table of Contents
8.4.2 Reconstruction Algorithm (for HCS12)334

8.5 Queue Reconstruction (for M68HC12)335
8.5.1 Queue Reconstruction Registers (for M68HC12).336
8.5.1.1 in_add, in_dat Registers .336
8.5.1.2 fetch_add, fetch_dat Registers.336
8.5.1.3 st1_add, st1_dat Registers .336
8.5.1.4 st2_add, st2_dat Registers .336
8.5.2 Reconstruction Algorithm (for M68HC12) 337
8.5.2.1 LAT Decoding. .337
8.5.2.2 ALD Decoding .338
8.5.2.3 ALL Decoding. .338

8.6 Instruction Tagging .339

Section 9. Fuzzy Logic Support
9.1 Introduction .341

9.2 Fuzzy Logic Basics .342
9.2.1 Fuzzification (MEM) .344
9.2.2 Rule Evaluation (REV and REVW).346
9.2.3 Defuzzification (WAV) .348

9.3 Example Inference Kernel .349

9.4 MEM Instruction Details .351
9.4.1 Membership Function Definitions .351
9.4.2 Abnormal Membership Function Definitions.353
9.4.2.1 Abnormal Membership Function Case 1355
9.4.2.2 Abnormal Membership Function Case 2356
9.4.2.3 Abnormal Membership Function Case 3356

9.5 REV and REVW Instruction Details .357
9.5.1 Unweighted Rule Evaluation (REV)357
9.5.1.1 Set Up Prior to Executing REV 357
9.5.1.2 Interrupt Details .359
9.5.1.3 Cycle-by-Cycle Details for REV359
9.5.2 Weighted Rule Evaluation (REVW)363
9.5.2.1 Set Up Prior to Executing REVW.363
9.5.2.2 Interrupt Details .365
9.5.2.3 Cycle-by-Cycle Details for REVW365

9.6 WAV Instruction Details .368
Reference Manual S12CPUV2

12 Table of Contents MOTOROLA

Table of Contents
9.6.1 Set Up Prior to Executing WAV .369
9.6.2 WAV Interrupt Details. .369
9.6.3 Cycle-by-Cycle Details for WAV and wavr370

9.7 Custom Fuzzy Logic Programming. .374
9.7.1 Fuzzification Variations .374
9.7.2 Rule Evaluation Variations .377
9.7.3 Defuzzification Variations .378

Appendix A. Instruction Reference
A.1 Introduction .381

A.2 Stack and Memory Layout .382

A.3 Interrupt Vector Locations. .382

A.4 Notation Used in Instruction Set Summary.383

A.5 Hexadecimal to Decimal Conversion408

A.6 Decimal to Hexadecimal Conversion408

Appendix B. M68HC11 to CPU12 Upgrade Path
B.1 Introduction .409

B.2 CPU12 Design Goals .409

B.3 Source Code Compatibility .410

B.4 Programmer’s Model and Stacking. .413

B.5 True 16-Bit Architecture .413
B.5.1 Bus Structures .413
B.5.2 Instruction Queue .414
B.5.3 Stack Function .415

B.6 Improved Indexing .417
B.6.1 Constant Offset Indexing .418
B.6.2 Auto-Increment Indexing .419
B.6.3 Accumulator Offset Indexing .420
B.6.4 Indirect Indexing .420

B.7 Improved Performance .421
B.7.1 Reduced Cycle Counts. .421
B.7.2 Fast Math .421
B.7.3 Code Size Reduction .422
S12CPUV2 Reference Manual

MOTOROLA Table of Contents 13

Table of Contents
B.8 Additional Functions .423
B.8.1 Memory-to-Memory Moves .426
B.8.2 Universal Transfer and Exchange 426
B.8.3 Loop Construct .427
B.8.4 Long Branches .427
B.8.5 Minimum and Maximum Instructions427
B.8.6 Fuzzy Logic Support. .428
B.8.7 Table Lookup and Interpolation .428
B.8.8 Extended Bit Manipulation .429
B.8.9 Push and Pull D and CCR .429
B.8.10 Compare SP. .429
B.8.11 Support for Memory Expansion .430

Appendix C. High-Level Language Support
C.1 Introduction .431

C.2 Data Types .431

C.3 Parameters and Variables .432
C.3.1 Register Pushes and Pulls .432
C.3.2 Allocating and Deallocating Stack Space.433
C.3.3 Frame Pointer. .433

C.4 Increment and Decrement Operators434

C.5 Higher Math Functions .434

C.6 Conditional If Constructs. .435

C.7 Case and Switch Statements .435

C.8 Pointers. .436

C.9 Function Calls .436

C.10 Instruction Set Orthogonality .437
Index 439
Reference Manual S12CPUV2

14 Table of Contents MOTOROLA

Reference Manual — S12CPUV2

List of Figures
Figure Title Page

2-1 . Programming Model .25

6-1 . Example Glossary Page .92
7-1 . Exception Processing Flow Diagram324

8-1 . Queue Status Signal Timing (HCS12) 329

8-2 . Queue Status Signal Timing (M68HC12)330
8-3 . Reset Sequence for HCS12 .335
8-4 . Reset Sequence for M68HC12. .338

8-5 . Tag Input Timing. .339

9-1 . Block Diagram of a Fuzzy Logic System 343

9-2 . Fuzzification Using Membership Functions 345
9-3 . Fuzzy Inference Engine .349
9-4 . Defining a Normal Membership Function352

9-5 . MEM Instruction Flow Diagram. .354

9-6 . Abnormal Membership Function Case 1 355

9-7 . Abnormal Membership Function Case 2 356

9-8 . Abnormal Membership Function Case 3 356
9-9 . REV Instruction Flow Diagram .360
9-10 . REVW Instruction Flow Diagram .367
9-11 . WAV and wavr Instruction Flow Diagram (for HCS12)372
9-12 . WAV and wavr Instruction Flow Diagram (for M68HC12) . .373
9-13 . Endpoint Table Handling .376
A-1 . Programming Model .381
S12CPUV2 Reference Manual

MOTOROLA List of Figures 15

List of Figures
Reference Manual S12CPUV2

16 List of Figures MOTOROLA

Reference Manual — S12CPUV2

List of Tables
Table Title Page

Table Title Page

3-1 . M68HC12 Addressing Mode Summary 34
3-2 . Summary of Indexed Operations .40
3-3 . PC Offsets for MOVE Instructions (M68HC12 Only) 46
5-1 . Load and Store Instructions .60
5-2 . Transfer and Exchange Instructions.62
5-3 . Move Instructions .62
5-4 . Addition and Subtraction Instructions63
5-5 . BCD Instructions. .64
5-6 . Decrement and Increment Instructions.65
5-7 . Compare and Test Instructions .66
5-8 . Boolean Logic Instructions .67
5-9 . Clear, Complement, and Negate Instructions.68
5-10 . Multiplication and Division Instructions.69
5-11 . Bit Test and Manipulation Instructions70
5-12 . Shift and Rotate Instructions .71
5-13 . Fuzzy Logic Instructions .73
5-14 . Minimum and Maximum Instructions 75
5-15 . Multiply and Accumulate Instructions76
5-16 . Table Interpolation Instructions .77
5-17 . Short Branch Instructions .78
5-18 . Long Branch Instructions .79
5-19 . Bit Condition Branch Instructions .80
5-20 . Loop Primitive Instructions .81
5-21 . Jump and Subroutine Instructions .83
5-22 . Interrupt Instructions. .84
5-23 . Index Manipulation Instructions .85
5-24 . Stacking Instructions .86
5-25 . Pointer and Index Calculation Instructions87
S12CPUV2 Reference Manual

MOTOROLA List of Tables 17

List of Tables
5-26 . Condition Code Instructions .88
5-27 . Stop and Wait Instructions .89
5-28 . Background Mode and Null Operation Instructions 90
7-1 . CPU12 Exception Vector Map .316
7-2 . Stacking Order on Entry to Interrupts321
8-1 . IPIPE1 and IPIPE0 Decoding (HCS12 and M68HC12) . . .330
8-2 . Tag Pin Function .339
A-1 . Instruction Set Summary .387
A-2 . CPU12 Opcode Map .401
A-3 . Indexed Addressing Mode Postbyte Encoding (xb)403
A-4 . Indexed Addressing Mode Summary404
A-5 . Transfer and Exchange Postbyte Encoding405
A-6 . Loop Primitive Postbyte Encoding (lb)406
A-7 . Branch/Complementary Branch .406
A-8 . Hexadecimal to ASCII Conversion407
A-9 . Hexadecimal to/from Decimal Conversion408
B-1 . Translated M68HC11 Mnemonics 410
B-2 . Instructions with Smaller Object Code412
B-3 . Comparison of Math Instruction Speeds 422
B-4 . New M68HC12 Instructions .424
Reference Manual S12CPUV2

18 List of Tables MOTOROLA

Reference Manual — S12CPUV2

Section 1. Introduction
1.1 Introduction

This manual describes the features and operation of the core (central
processing unit, or CPU, and development support functions) used in all
HCS12 microcontrollers. For reference, information is provided for the
M68HC12.

1.2 Features

The CPU12 is a high-speed, 16-bit processing unit that has a
programming model identical to that of the industry standard M68HC11
central processor unit (CPU). The CPU12 instruction set is a proper
superset of the M68HC11 instruction set, and M68HC11 source code is
accepted by CPU12 assemblers with no changes.

• Full 16-bit data paths supports efficient arithmetic operation and
high-speed math execution

• Supports instructions with odd byte counts, including many
single-byte instructions. This allows much more efficient use of
ROM space.

• An instruction queue buffers program information so the CPU has
immediate access to at least three bytes of machine code at the
start of every instruction.

• Extensive set of indexed addressing capabilities, including:

– Using the stack pointer as an indexing register in all indexed
operations

– Using the program counter as an indexing register in all but
auto increment/decrement mode

– Accumulator offsets using A, B, or D accumulators

– Automatic index predecrement, preincrement, postdecrement,
and postincrement (by –8 to +8)
S12CPUV2 Reference Manual

MOTOROLA Introduction 19

Introduction
1.3 Symbols and Notation

The symbols and notation shown here are used throughout the manual.
More specialized notation that applies only to the instruction glossary or
instruction set summary are described at the beginning of those
sections.

1.3.1 Abbreviations for System Resources

A — Accumulator A
B — Accumulator B
D — Double accumulator D (A : B)
X — Index register X
Y — Index register Y
SP — Stack pointer
PC — Program counter
CCR — Condition code register

S — STOP instruction control bit
X — Non-maskable interrupt control bit
H — Half-carry status bit
I — Maskable interrupt control bit
N — Negative status bit
Z — Zero status bit
V — Two’s complement overflow status bit
C — Carry/Borrow status bit
Reference Manual S12CPUV2

20 Introduction MOTOROLA

Introduction
Symbols and Notation
1.3.2 Memory and Addressing

M — 8-bit memory location pointed to by the effective
address of the instruction

M : M+1 — 16-bit memory location. Consists of the contents of the
location pointed to by the effective address
concatenated with the contents of the location at the
next higher memory address. The most significant byte
is at location M.

M~M+3
M(Y)~M(Y+3)

— 32-bit memory location. Consists of the contents of the
effective address of the instruction concatenated with
the contents of the next three higher memory locations.
The most significant byte is at location M or M(Y).

M(X) — Memory locations pointed to by index register X
M(SP) — Memory locations pointed to by the stack pointer
M(Y+3) — Memory locations pointed to by index register Y plus 3
PPAGE — Program overlay page (bank) number for extended

memory (>64 Kbytes).
Page — Program overlay page
XH — High-order byte
XL — Low-order byte
() — Content of register or memory location
$ — Hexadecimal value
% — Binary value
S12CPUV2 Reference Manual

MOTOROLA Introduction 21

Introduction
1.3.3 Operators

+ — Addition

– — Subtraction

• — Logical AND

+ — Logical OR (inclusive)

⊕ — Logical exclusive OR

× — Multiplication

÷ — Division

M — Negation. One’s complement (invert each bit of M)

: — Concatenate
Example: A : B means the 16-bit value formed by concatenat-
ing 8-bit accumulator A with 8-bit accumulator B.
A is in the high-order position.

⇒ — Transfer
Example: (A) ⇒ M means the content of accumulator A is
transferred to memory location M.

⇔ — Exchange
Example: D ⇔ X means exchange the contents of D with
those of X.
Reference Manual S12CPUV2

22 Introduction MOTOROLA

Introduction
Symbols and Notation
1.3.4 Definitions

Logic level 1 is the voltage that corresponds to the true (1) state.

Logic level 0 is the voltage that corresponds to the false (0) state.

Set refers specifically to establishing logic level 1 on a bit or bits.

Cleared refers specifically to establishing logic level 0 on a bit or bits.

Asserted means that a signal is in active logic state. An active low signal
changes from logic level 1 to logic level 0 when asserted, and an
active high signal changes from logic level 0 to logic level 1.

Negated means that an asserted signal changes logic state. An active
low signal changes from logic level 0 to logic level 1 when negated,
and an active high signal changes from logic level 1 to logic level 0.

ADDR is the mnemonic for address bus.

DATA is the mnemonic for data bus.

LSB means least significant bit or bits.

MSB means most significant bit or bits.

LSW means least significant word or words.

MSW means most significant word or words.

A specific bit location within a range is referred to by mnemonic and
number. For example, A7 is bit 7 of accumulator A.

A range of bit locations is referred to by mnemonic and the numbers
that define the range. For example, DATA[15:8] form the high byte of
the data bus.
S12CPUV2 Reference Manual

MOTOROLA Introduction 23

Introduction
Reference Manual S12CPUV2

24 Introduction MOTOROLA

Reference Manual — S12CPUV2

Section 2. Overview
2.1 Introduction

This section describes the CPU12 programming model, register set, the
data types used, and basic memory organization.

2.2 Programming Model

The CPU12 programming model, shown in Figure 2-1 , is the same as
that of the M68HC11 CPU. The CPU has two 8-bit general-purpose
accumulators (A and B) that can be concatenated into a single 16-bit
accumulator (D) for certain instructions. It also has:

• Two index registers (X and Y)

• 16-bit stack pointer (SP)

• 16-bit program counter (PC)

• 8-bit condition code register (CCR)

Figure 2-1. Programming Model

7

15

15

15

15

15

D

IX

IY

SP

PC

A B

NS X H I Z V C

0

0

0

0

0

0

70

CONDITION CODE REGISTER

8-BIT ACCUMULATORS A AND B

16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

OR
S12CPUV2 Reference Manual

MOTOROLA Overview 25

Overview
2.2.1 Accumulators

General-purpose 8-bit accumulators A and B are used to hold operands
and results of operations. Some instructions treat the combination of
these two 8-bit accumulators (A : B) as a 16-bit double accumulator (D).

Most operations can use accumulator A or B interchangeably. However,
there are a few exceptions. Add, subtract, and compare instructions
involving both A and B (ABA, SBA, and CBA) only operate in one
direction, so it is important to make certain the correct operand is in the
correct accumulator. The decimal adjust accumulator A (DAA)
instruction is used after binary-coded decimal (BCD) arithmetic
operations. There is no equivalent instruction to adjust accumulator B.

2.2.2 Index Registers

16-bit index registers X and Y are used for indexed addressing. In the
indexed addressing modes, the contents of an index register are added
to 5-bit, 9-bit, or 16-bit constants or to the content of an accumulator to
form the effective address of the instruction operand. The second index
register is especially useful for moves and in cases where operands from
two separate tables are used in a calculation.

2.2.3 Stack Pointer

The CPU12 supports an automatic program stack. The stack is used to
save system context during subroutine calls and interrupts and can also
be used for temporary data storage. The stack can be located anywhere
in the standard 64-Kbyte address space and can grow to any size up to
the total amount of memory available in the system.

The stack pointer (SP) holds the 16-bit address of the last stack location
used. Normally, the SP is initialized by one of the first instructions in an
application program. The stack grows downward from the address
pointed to by the SP. Each time a byte is pushed onto the stack, the
stack pointer is automatically decremented, and each time a byte is
pulled from the stack, the stack pointer is automatically incremented.

When a subroutine is called, the address of the instruction following the
calling instruction is automatically calculated and pushed onto the stack.
Normally, a return-from-subroutine (RTS) or a return-from-call (RTC)
Reference Manual S12CPUV2

26 Overview MOTOROLA

Overview
Programming Model
instruction is executed at the end of a subroutine. The return instruction
loads the program counter with the previously stacked return address
and execution continues at that address.

When an interrupt occurs, the current instruction finishes execution. The
address of the next instruction is calculated and pushed onto the stack,
all the CPU registers are pushed onto the stack, the program counter is
loaded with the address pointed to by the interrupt vector, and execution
continues at that address. The stacked registers are referred to as an
interrupt stack frame. The CPU12 stack frame is the same as that of the
M68HC11.

NOTE: These instructions can be interrupted, and they resume execution once
the interrupt has been serviced:

• REV (fuzzy logic rule evaluation)
• REVW (fuzzy logic rule evaluation (weighted))
• WAV (weighted average)

2.2.4 Program Counter

The program counter (PC) is a 16-bit register that holds the address of
the next instruction to be executed. It is automatically incremented each
time an instruction is fetched.

2.2.5 Condition Code Register

The condition code register (CCR), named for its five status indicators,
contains:

• Five status indicators

• Two interrupt masking bits

• STOP instruction control bit
S12CPUV2 Reference Manual

MOTOROLA Overview 27

Overview
The status bits reflect the results of CPU operation as it executes
instructions. The five flags are:

• Half carry (H)

• Negative (N)

• Zero (Z)

• Overflow (V)

• Carry/borrow (C)

The half-carry flag is used only for BCD arithmetic operations. The N, Z,
V, and C status bits allow for branching based on the results of a
previous operation.

In some architectures, only a few instructions affect condition codes, so
that multiple instructions must be executed in order to load and test a
variable. Since most CPU12 instructions automatically update condition
codes, it is rarely necessary to execute an extra instruction for this
purpose. The challenge in using the CPU12 lies in finding instructions
that do not alter the condition codes. The most important of these
instructions are pushes, pulls, transfers, and exchanges.

It is always a good idea to refer to an instruction set summary (see
Appendix A. Instruction Reference) to check which condition codes
are affected by a particular instruction.

The following paragraphs describe normal uses of the condition codes.
There are other, more specialized uses. For instance, the C status bit is
used to enable weighted fuzzy logic rule evaluation. Specialized usages
are described in the relevant portions of this manual and in Section 6.
Instruction Glossary .

2.2.5.1 S Control Bit

Clearing the S bit enables the STOP instruction. Execution of a STOP
instruction normally causes the on-chip oscillator to stop. This may be
undesirable in some applications. If the CPU encounters a STOP
instruction while the S bit is set, it is treated like a no-operation (NOP)
instruction and continues to the next instruction. Reset sets the S bit.
Reference Manual S12CPUV2

28 Overview MOTOROLA

Overview
Programming Model
2.2.5.2 X Mask Bit

The XIRQ input is an updated version of the NMI input found on earlier
generations of MCUs. Non-maskable interrupts are typically used to deal
with major system failures, such as loss of power. However, enabling
non-maskable interrupts before a system is fully powered and initialized
can lead to spurious interrupts. The X bit provides a mechanism for
enabling non-maskable interrupts after a system is stable.

By default, the X bit is set to 1 during reset. As long as the X bit remains
set, interrupt service requests made via the XIRQ pin are not
recognized. An instruction must clear the X bit to enable non-maskable
interrupt service requests made via the XIRQ pin. Once the X bit has
been cleared to 0, software cannot reset it to 1 by writing to the CCR.
The X bit is not affected by maskable interrupts.

When an XIRQ interrupt occurs after non-maskable interrupts are
enabled, both the X bit and the I bit are set automatically to prevent other
interrupts from being recognized during the interrupt service routine. The
mask bits are set after the registers are stacked, but before the interrupt
vector is fetched.

Normally, a return-from-interrupt (RTI) instruction at the end of the
interrupt service routine restores register values that were present
before the interrupt occurred. Since the CCR is stacked before the X bit
is set, the RTI normally clears the X bit, and thus re-enables
non-maskable interrupts. While it is possible to manipulate the stacked
value of X so that X is set after an RTI, there is no software method to
reset X (and disable XIRQ) once X has been cleared.

2.2.5.3 H Status Bit

The H bit indicates a carry from accumulator A bit 3 during an addition
operation. The DAA instruction uses the value of the H bit to adjust a
result in accumulator A to correct BCD format. H is updated only by the
add accumulator A to accumulator B (ABA), add without carry (ADD),
and add with carry (ADC) instructions.
S12CPUV2 Reference Manual

MOTOROLA Overview 29

Overview
2.2.5.4 I Mask Bit

The I bit enables and disables maskable interrupt sources. By default,
the I bit is set to 1 during reset. An instruction must clear the I bit to
enable maskable interrupts. While the I bit is set, maskable interrupts
can become pending and are remembered, but operation continues
uninterrupted until the I bit is cleared.

When an interrupt occurs after interrupts are enabled, the I bit is
automatically set to prevent other maskable interrupts during the
interrupt service routine. The I bit is set after the registers are stacked,
but before the first instruction in the interrupt service routine is executed.

Normally, an RTI instruction at the end of the interrupt service routine
restores register values that were present before the interrupt occurred.
Since the CCR is stacked before the I bit is set, the RTI normally clears
the I bit, and thus re-enables interrupts. Interrupts can be re-enabled by
clearing the I bit within the service routine, but implementing a nested
interrupt management scheme requires great care and seldom improves
system performance.

2.2.5.5 N Status Bit

The N bit shows the state of the MSB of the result. N is most commonly
used in two’s complement arithmetic, where the MSB of a negative
number is 1 and the MSB of a positive number is 0, but it has other uses.
For instance, if the MSB of a register or memory location is used as a
status flag, the user can test status by loading an accumulator.

2.2.5.6 Z Status Bit

The Z bit is set when all the bits of the result are 0s. Compare
instructions perform an internal implied subtraction, and the condition
codes, including Z, reflect the results of that subtraction. The increment
index register X (INX), decrement index register X (DEX), increment
index register Y (INY), and decrement index register Y (DEY)
instructions affect the Z bit and no other condition flags. These
operations can only determine = (equal) and ≠ (not equal).
Reference Manual S12CPUV2

30 Overview MOTOROLA

Overview
Data Types
2.2.5.7 V Status Bit

The V bit is set when two’s complement overflow occurs as a result of an
operation.

2.2.5.8 C Status Bit

The C bit is set when a carry occurs during addition or a borrow occurs
during subtraction. The C bit also acts as an error flag for multiply and
divide operations. Shift and rotate instructions operate through the C bit
to facilitate multiple-word shifts.

2.3 Data Types

The CPU12 uses these types of data:

• Bits

• 5-bit signed integers

• 8-bit signed and unsigned integers

• 8-bit, 2-digit binary-coded decimal numbers

• 9-bit signed integers

• 16-bit signed and unsigned integers

• 16-bit effective addresses

• 32-bit signed and unsigned integers

Negative integers are represented in two’s complement form.

Five-bit and 9-bit signed integers are used only as offsets for indexed
addressing modes.

Sixteen-bit effective addresses are formed during addressing mode
computations.

Thirty-two-bit integer dividends are used by extended division
instructions. Extended multiply and extended multiply-and-accumulate
instructions produce 32-bit products.
S12CPUV2 Reference Manual

MOTOROLA Overview 31

Overview
2.4 Memory Organization

The standard CPU12 address space is 64 Kbytes. Some M68HC12
devices support a paged memory expansion scheme that increases the
standard space by means of predefined windows in address space. The
CPU12 has special instructions that support use of expanded memory.

Eight-bit values can be stored at any odd or even byte address in
available memory.

Sixteen-bit values are stored in memory as two consecutive bytes; the
high byte occupies the lowest address, but need not be aligned to an
even boundary.

Thirty-two-bit values are stored in memory as four consecutive bytes; the
high byte occupies the lowest address, but need not be aligned to an
even boundary.

All input/output (I/O) and all on-chip peripherals are memory-mapped.
No special instruction syntax is required to access these addresses.
On-chip registers and memory typically are grouped in blocks which can
be relocated within the standard 64-Kbyte address space. Refer to
device documentation for specific information.

2.5 Instruction Queue

The CPU12 uses an instruction queue to buffer program information.
The mechanism is called a queue rather than a pipeline because a
typical pipelined CPU executes more than one instruction at the same
time, while the CPU12 always finishes executing an instruction before
beginning to execute another. Refer to Section 4. Instruction Queue
for more information.
Reference Manual S12CPUV2

32 Overview MOTOROLA

Reference Manual — S12CPUV2

Section 3. Addressing Modes
3.1 Introduction

Addressing modes determine how the central processor unit (CPU)
accesses memory locations to be operated upon. This section discusses
the various modes and how they are used.

3.2 Mode Summary

Addressing modes are an implicit part of CPU12 instructions. Refer to
Appendix A. Instruction Reference for the modes used by each
instruction. All CPU12 addressing modes are shown in Table 3-1 .

The CPU12 uses all M68HC11 modes as well as new forms of indexed
addressing. Differences between M68HC11 and M68HC12 indexed
modes are described in 3.9 Indexed Addressing Modes . Instructions
that use more than one mode are discussed in 3.10 Instructions Using
Multiple Modes .

3.3 Effective Address

Each addressing mode except inherent mode generates a 16-bit
effective address which is used during the memory reference portion of
the instruction. Effective address computations do not require extra
execution cycles.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 33

Addressing Modes
Table 3-1. M68HC12 Addressing Mode Summary

Addressing Mode Source Format Abbreviation Description

Inherent
INST

(no externally
supplied operands)

INH Operands (if any) are in CPU registers

Immediate
INST #opr8i

or
INST #opr16i

IMM
Operand is included in instruction stream

8- or 16-bit size implied by context

Direct INST opr8a DIR
Operand is the lower 8 bits of an address

in the range $0000–$00FF

Extended INST opr16a EXT Operand is a 16-bit address

Relative
INST rel8

or
INST rel16

REL
An 8-bit or 16-bit relative offset from the current pc

is supplied in the instruction

Indexed
(5-bit offset)

INST oprx5,xysp IDX
5-bit signed constant offset

from X, Y, SP, or PC

Indexed
(pre-decrement)

INST oprx3,–xys IDX Auto pre-decrement x, y, or sp by 1 ~ 8

Indexed
(pre-increment)

INST oprx3,+xys IDX Auto pre-increment x, y, or sp by 1 ~ 8

Indexed
(post-decrement)

INST oprx3,xys– IDX Auto post-decrement x, y, or sp by 1 ~ 8

Indexed
(post-increment)

INST oprx3,xys+ IDX Auto post-increment x, y, or sp by 1 ~ 8

Indexed
(accumulator offset)

INST abd,xysp IDX
Indexed with 8-bit (A or B) or 16-bit (D)

accumulator offset from X, Y, SP, or PC

Indexed
(9-bit offset)

INST oprx9,xysp IDX1
9-bit signed constant offset from X, Y, SP, or PC

(lower 8 bits of offset in one extension byte)

Indexed
(16-bit offset)

INST oprx16,xysp IDX2
16-bit constant offset from X, Y, SP, or PC

(16-bit offset in two extension bytes)

Indexed-Indirect
(16-bit offset)

INST [oprx16,xysp] [IDX2]
Pointer to operand is found at...

16-bit constant offset from X, Y, SP, or PC
(16-bit offset in two extension bytes)

Indexed-Indirect
(D accumulator offset)

INST [D,xysp] [D,IDX]
Pointer to operand is found at...

X, Y, SP, or PC plus the value in D
Reference Manual S12CPUV2

34 Addressing Modes MOTOROLA

Addressing Modes
Inherent Addressing Mode
3.4 Inherent Addressing Mode

Instructions that use this addressing mode either have no operands or
all operands are in internal CPU registers. In either case, the CPU does
not need to access any memory locations to complete the instruction.

Examples:
NOP ;this instruction has no operands
INX ;operand is a CPU register

3.5 Immediate Addressing Mode

Operands for immediate mode instructions are included in the instruction
stream and are fetched into the instruction queue one 16-bit word at a
time during normal program fetch cycles. Since program data is read into
the instruction queue several cycles before it is needed, when an
immediate addressing mode operand is called for by an instruction, it is
already present in the instruction queue.

The pound symbol (#) is used to indicate an immediate addressing mode
operand. One common programming error is to accidentally omit the #
symbol. This causes the assembler to misinterpret the expression that
follows it as an address rather than explicitly provided data. For
example, LDAA #$55 means to load the immediate value $55 into the A
accumulator, while LDAA $55 means to load the value from address
$0055 into the A accumulator. Without the # symbol, the instruction is
erroneously interpreted as a direct addressing mode instruction.

Examples:
LDAA #$55
LDX #$1234
LDY #$67

These are common examples of 8-bit and 16-bit immediate addressing
modes. The size of the immediate operand is implied by the instruction
context. In the third example, the instruction implies a 16-bit immediate
value but only an 8-bit value is supplied. In this case the assembler will
generate the 16-bit value $0067 because the CPU expects a 16-bit value
in the instruction stream.

Example:
BRSET FOO,#$03,THERE
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 35

Addressing Modes
In this example, extended addressing mode is used to access the
operand FOO, immediate addressing mode is used to access the mask
value $03, and relative addressing mode is used to identify the
destination address of a branch in case the branch-taken conditions are
met. BRSET is listed as an extended mode instruction even though
immediate and relative modes are also used.

3.6 Direct Addressing Mode

This addressing mode is sometimes called zero-page addressing
because it is used to access operands in the address range $0000
through $00FF. Since these addresses always begin with $00, only the
eight low-order bits of the address need to be included in the instruction,
which saves program space and execution time. A system can be
optimized by placing the most commonly accessed data in this area of
memory. The eight low-order bits of the operand address are supplied
with the instruction, and the eight high-order bits of the address are
assumed to be 0.

Example:
LDAA $55

This is a basic example of direct addressing. The value $55 is taken to
be the low-order half of an address in the range $0000 through $00FF.
The high order half of the address is assumed to be 0. During execution
of this instruction, the CPU combines the value $55 from the instruction
with the assumed value of $00 to form the address $0055, which is then
used to access the data to be loaded into accumulator A.

Example:
LDX $20

In this example, the value $20 is combined with the assumed value of
$00 to form the address $0020. Since the LDX instruction requires a
16-bit value, a 16-bit word of data is read from addresses $0020 and
$0021. After execution of this instruction, the X index register will have
the value from address $0020 in its high-order half and the value from
address $0021 in its low-order half.
Reference Manual S12CPUV2

36 Addressing Modes MOTOROLA

Addressing Modes
Extended Addressing Mode
3.7 Extended Addressing Mode

In this addressing mode, the full 16-bit address of the memory location
to be operated on is provided in the instruction. This addressing mode
can be used to access any location in the 64-Kbyte memory map.

Example:
LDAA $F03B

This is a basic example of extended addressing. The value from address
$F03B is loaded into the A accumulator.

3.8 Relative Addressing Mode

The relative addressing mode is used only by branch instructions. Short
and long conditional branch instructions use relative addressing mode
exclusively, but branching versions of bit manipulation instructions
(branch if bits set (BRSET) and branch if bits cleared (BRCLR)) use
multiple addressing modes, including relative mode. Refer to
3.10 Instructions Using Multiple Modes for more information.

Short branch instructions consist of an 8-bit opcode and a signed 8-bit
offset contained in the byte that follows the opcode. Long branch
instructions consist of an 8-bit prebyte, an 8-bit opcode, and a signed
16-bit offset contained in the two bytes that follow the opcode.

Each conditional branch instruction tests certain status bits in the
condition code register. If the bits are in a specified state, the offset is
added to the address of the next memory location after the offset to form
an effective address, and execution continues at that address. If the bits
are not in the specified state, execution continues with the instruction
immediately following the branch instruction.

Bit-condition branches test whether bits in a memory byte are in a
specific state. Various addressing modes can be used to access the
memory location. An 8-bit mask operand is used to test the bits. If each
bit in memory that corresponds to a 1 in the mask is either set (BRSET)
or clear (BRCLR), an 8-bit offset is added to the address of the next
memory location after the offset to form an effective address, and
execution continues at that address. If all the bits in memory that
correspond to a 1 in the mask are not in the specified state, execution
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 37

Addressing Modes
continues with the instruction immediately following the branch
instruction.

8-bit, 9-bit, and 16-bit offsets are signed two’s complement numbers to
support branching upward and downward in memory. The numeric
range of short branch offset values is $80 (–128) to $7F (127). Loop
primitive instructions support a 9-bit offset which allows a range of
$100 (–256) to $0FF (255). The numeric range of long branch offset
values is $8000 (–32,768) to $7FFF (32,767). If the offset is 0, the CPU
executes the instruction immediately following the branch instruction,
regardless of the test involved.

Since the offset is at the end of a branch instruction, using a negative
offset value can cause the program counter (PC) to point to the opcode
and initiate a loop. For instance, a branch always (BRA) instruction
consists of two bytes, so using an offset of $FE sets up an infinite loop;
the same is true of a long branch always (LBRA) instruction with an
offset of $FFFC.

An offset that points to the opcode can cause a bit-condition branch to
repeat execution until the specified bit condition is satisfied. Since
bit-condition branches can consist of four, five, or six bytes depending
on the addressing mode used to access the byte in memory, the offset
value that sets up a loop can vary. For instance, using an offset of $FC
with a BRCLR that accesses memory using an 8-bit indexed postbyte
sets up a loop that executes until all the bits in the specified memory byte
that correspond to 1s in the mask byte are cleared.

3.9 Indexed Addressing Modes

The CPU12 uses redefined versions of M68HC11 indexed modes that
reduce execution time and eliminate code size penalties for using the Y
index register. In most cases, CPU12 code size for indexed operations
is the same or is smaller than that for the M68HC11. Execution time is
shorter in all cases. Execution time improvements are due to both a
reduced number of cycles for all indexed instructions and to faster
system clock speed.
Reference Manual S12CPUV2

38 Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes
The indexed addressing scheme uses a postbyte plus zero, one, or two
extension bytes after the instruction opcode. The postbyte and
extensions do the following tasks:

1. Specify which index register is used

2. Determine whether a value in an accumulator is used as an offset

3. Enable automatic pre- or post-increment or pre- or
post-decrement

4. Specify size of increment or decrement

5. Specify use of 5-, 9-, or 16-bit signed offsets

This approach eliminates the differences between X and Y register use
while dramatically enhancing the indexed addressing capabilities.

Major advantages of the CPU12 indexed addressing scheme are:

• The stack pointer can be used as an index register in all indexed
operations.

• The program counter can be used as an index register in all but
autoincrement and autodecrement modes.

• A, B, or D accumulators can be used for accumulator offsets.

• Automatic pre- or post-increment or pre- or post-decrement by –8
to +8

• A choice of 5-, 9-, or 16-bit signed constant offsets

• Use of two new indexed-indirect modes:

– Indexed-indirect mode with 16-bit offset

– Indexed-indirect mode with accumulator D offset

Table 3-2 is a summary of indexed addressing mode capabilities and a
description of postbyte encoding. The postbyte is noted as xb in
instruction descriptions. Detailed descriptions of the indexed addressing
mode variations follow the table.

All indexed addressing modes use a 16-bit CPU register and additional
information to create an effective address. In most cases the effective
address specifies the memory location affected by the operation. In
some variations of indexed addressing, the effective address specifies
the location of a value that points to the memory location affected by the
operation.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 39

Addressing Modes
Indexed addressing mode instructions use a postbyte to specify index
registers (X and Y), stack pointer (SP), or program counter (PC) as the
base index register and to further classify the way the effective address
is formed. A special group of instructions cause this calculated effective
address to be loaded into an index register for further calculations:

• Load stack pointer with effective address (LEAS)

• Load X with effective address (LEAX)

• Load Y with effective address (LEAY)

Table 3-2. Summary of Indexed Operations

Postbyte
Code (xb)

Source
Code

Syntax

Comments
rr; 00 = X, 01 = Y, 10 = SP, 11 = PC

rr0nnnnn
,r

n,r
–n,r

5-bit constant offset n = –16 to +15
r can specify X, Y, SP, or PC

111rr0zs
n,r

–n,r

Constant offset (9- or 16-bit signed)
z- 0 = 9-bit with sign in LSB of postbyte(s) –256 ≤ n ≤ 255

1 = 16-bit –32,768 ≤ n ≤ 65,535
if z = s = 1, 16-bit offset indexed-indirect (see below)
r can specify X, Y, SP, or PC

111rr011 [n,r]
16-bit offset indexed-indirect

rr can specify X, Y, SP, or PC –32,768 ≤ n ≤ 65,535

rr1pnnnn
n,–r n,+r

n,r–
n,r+

Auto predecrement , preincrement , postdecrement , or postincrement ;
p = pre-(0) or post-(1), n = –8 to –1, +1 to +8
r can specify X, Y, or SP (PC not a valid choice)

+8 = 0111
…
+1 = 0000
–1 = 1111
…
–8 = 1000

111rr1aa
A,r
B,r
D,r

Accumulator offset (unsigned 8-bit or 16-bit)
aa-00 = A
01 = B
10 = D (16-bit)
11 = see accumulator D offset indexed-indirect
r can specify X, Y, SP, or PC

111rr111 [D,r]
Accumulator D offset indexed-indirect

r can specify X, Y, SP, or PC
Reference Manual S12CPUV2

40 Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes
3.9.1 5-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 5-bit signed offset which is
included in the instruction postbyte. This short offset is added to the base
index register (X, Y, SP, or PC) to form the effective address of the
memory location that will be affected by the instruction. This gives a
range of –16 through +15 from the value in the base index register.
Although other indexed addressing modes allow 9- or 16-bit offsets,
those modes also require additional extension bytes in the instruction for
this extra information. The majority of indexed instructions in real
programs use offsets that fit in the shortest 5-bit form of indexed
addressing.

Examples:
LDAA 0,X
STAB –8,Y

For these examples, assume X has a value of $1000 and Y has a value
of $2000 before execution. The 5-bit constant offset mode does not
change the value in the index register, so X will still be $1000 and Y will
still be $2000 after execution of these instructions. In the first example,
A will be loaded with the value from address $1000. In the second
example, the value from the B accumulator will be stored at address
$1FF8 ($2000 –$8).

3.9.2 9-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 9-bit signed offset which is added
to the base index register (X, Y, SP, or PC) to form the effective address
of the memory location affected by the instruction. This gives a range of
–256 through +255 from the value in the base index register. The most
significant bit (sign bit) of the offset is included in the instruction postbyte
and the remaining eight bits are provided as an extension byte after the
instruction postbyte in the instruction flow.

Examples:
LDAA $FF,X
LDAB –20,Y

For these examples, assume X is $1000 and Y is $2000 before
execution of these instructions.

NOTE: These instructions do not alter the index registers so they will still be
$1000 and $2000, respectively, after the instructions.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 41

Addressing Modes
The first instruction will load A with the value from address $10FF and
the second instruction will load B with the value from address $1FEC.

This variation of the indexed addressing mode in the CPU12 is similar to
the M68HC11 indexed addressing mode, but is functionally enhanced.
The M68HC11 CPU provides for unsigned 8-bit constant offset indexing
from X or Y, and use of Y requires an extra instruction byte and thus, an
extra execution cycle. The 9-bit signed offset used in the CPU12 covers
the same range of positive offsets as the M68HC11, and adds negative
offset capability. The CPU12 can use X, Y, SP, or PC as the base index
register.

3.9.3 16-Bit Constant Offset Indexed Addressing

This indexed addressing mode uses a 16-bit offset which is added to the
base index register (X, Y, SP, or PC) to form the effective address of the
memory location affected by the instruction. This allows access to any
address in the 64-Kbyte address space. Since the address bus and the
offset are both 16 bits, it does not matter whether the offset value is
considered to be a signed or an unsigned value ($FFFF may be thought
of as +65,535 or as –1). The 16-bit offset is provided as two extension
bytes after the instruction postbyte in the instruction flow.

3.9.4 16-Bit Constant Indirect Indexed Addressing

This indexed addressing mode adds a 16-bit instruction-supplied offset
to the base index register to form the address of a memory location that
contains a pointer to the memory location affected by the instruction. The
instruction itself does not point to the address of the memory location to
be acted upon, but rather to the location of a pointer to the address to be
acted on. The square brackets distinguish this addressing mode from
16-bit constant offset indexing.

Example:

LDAA [10,X]

In this example, X holds the base address of a table of pointers. Assume
that X has an initial value of $1000, and that the value $2000 is stored at
addresses $100A and $100B. The instruction first adds the value 10 to
the value in X to form the address $100A. Next, an address pointer
($2000) is fetched from memory at $100A. Then, the value stored in
location $2000 is read and loaded into the A accumulator.
Reference Manual S12CPUV2

42 Addressing Modes MOTOROLA

Addressing Modes
Indexed Addressing Modes
3.9.5 Auto Pre/Post Decrement/Increment Indexed Addressing

This indexed addressing mode provides four ways to automatically
change the value in a base index register as a part of instruction
execution. The index register can be incremented or decremented by an
integer value either before or after indexing takes place. The base index
register may be X, Y, or SP. (Auto-modify modes would not make sense
on PC.)

Pre-decrement and pre-increment versions of the addressing mode
adjust the value of the index register before accessing the memory
location affected by the instruction — the index register retains the
changed value after the instruction executes. Post-decrement and
post-increment versions of the addressing mode use the initial value in
the index register to access the memory location affected by the
instruction, then change the value of the index register.

The CPU12 allows the index register to be incremented or decremented
by any integer value in the ranges –8 through –1 or 1 through 8. The
value need not be related to the size of the operand for the current
instruction. These instructions can be used to incorporate an index
adjustment into an existing instruction rather than using an additional
instruction and increasing execution time. This addressing mode is also
used to perform operations on a series of data structures in memory.

When an LEAS, LEAX, or LEAY instruction is executed using this
addressing mode, and the operation modifies the index register that is
being loaded, the final value in the register is the value that would have
been used to access a memory operand. (Premodification is seen in the
result but postmodification is not.)

Examples:
STAA 1, –SP ;equivalent to PSHA
STX 2, –SP ;equivalent to PSHX
LDX 2,SP+ ;equivalent to PULX
LDAA 1,SP+ ;equivalent to PULA

For a “last-used” type of stack like the CPU12 stack, these four
examples are equivalent to common push and pull instructions.

For a “next-available” stack like the M68HC11 stack, push A onto stack
(PSHA) is equivalent to store accumulator A (STAA) 1,SP– and pull A
from stack (PULA) is equivalent to load accumulator A (LDAA) 1,+SP.
However, in the M68HC11, 16-bit operations like push register X onto
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 43

Addressing Modes
stack (PSHX) and pull register X from stack (PULX) require multiple
instructions to decrement the SP by one, then store X, then decrement
SP by one again.

In the STAA 1,–SP example, the stack pointer is pre-decremented by
one and then A is stored to the address contained in the stack pointer.
Similarly the LDX 2,SP+ first loads X from the address in the stack
pointer, then post-increments SP by two.

Example:
MOVW 2,X+,4,+Y

This example demonstrates how to work with data structures larger than
bytes and words. With this instruction in a program loop, it is possible to
move words of data from a list having one word per entry into a second
table that has four bytes per table element. In this example the source
pointer is updated after the data is read from memory (post-increment)
while the destination pointer is updated before it is used to access
memory (pre-increment).

3.9.6 Accumulator Offset Indexed Addressing

In this indexed addressing mode, the effective address is the sum of the
values in the base index register and an unsigned offset in one of the
accumulators. The value in the index register itself is not changed. The
index register can be X, Y, SP, or PC and the accumulator can be either
of the 8-bit accumulators (A or B) or the 16-bit D accumulator.

Example:

LDAA B,X

This instruction internally adds B to X to form the address from which A
will be loaded. B and X are not changed by this instruction. This example
is similar to the following 2-instruction combination in an M68HC11.

Examples:

ABX
LDAA 0,X

However, this 2-instruction sequence alters the index register. If this
sequence was part of a loop where B changed on each pass, the index
register would have to be reloaded with the reference value on each loop
pass. The use of LDAA B,X is more efficient in the CPU12.
Reference Manual S12CPUV2

44 Addressing Modes MOTOROLA

Addressing Modes
Instructions Using Multiple Modes
3.9.7 Accumulator D Indirect Indexed Addressing

This indexed addressing mode adds the value in the D accumulator to
the value in the base index register to form the address of a memory
location that contains a pointer to the memory location affected by the
instruction. The instruction operand does not point to the address of the
memory location to be acted upon, but rather to the location of a pointer
to the address to be acted upon. The square brackets distinguish this
addressing mode from D accumulator offset indexing.

Examples:
JMP [D,PC]
GO1 DC.W PLACE1
GO2 DC.W PLACE2
GO3 DC.W PLACE3

This example is a computed GOTO. The values beginning at GO1 are
addresses of potential destinations of the jump (JMP) instruction. At the
time the JMP [D,PC] instruction is executed, PC points to the address
GO1, and D holds one of the values $0000, $0002, or $0004
(determined by the program some time before the JMP).

Assume that the value in D is $0002. The JMP instruction adds the
values in D and PC to form the address of GO2. Next the CPU reads the
address PLACE2 from memory at GO2 and jumps to PLACE2. The
locations of PLACE1 through PLACE3 were known at the time of
program assembly but the destination of the JMP depends upon the
value in D computed during program execution.

3.10 Instructions Using Multiple Modes

Several CPU12 instructions use more than one addressing mode in the
course of execution.

3.10.1 Move Instructions

Move instructions use separate addressing modes to access the source
and destination of a move. There are move variations for all practical
combinations of immediate, extended, and indexed addressing modes.

The only combinations of addressing modes that are not allowed are
those with an immediate mode destination (the operand of an immediate
mode instruction is data, not an address). For indexed moves, the
reference index register may be X, Y, SP, or PC.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 45

Addressing Modes
Move instructions do not support indirect modes, 9-bit, or 16-bit offset
modes requiring extra extension bytes. There are special considerations
when using PC-relative addressing with move instructions. The original
M68HC12 implemented the instruction queue slightly differently than the
newer HCS12. In the older M68HC12 implementation, the CPU did not
maintain a pointer to the start of the instruction after the current
instruction (what the user thinks of as the PC value during execution).
This caused an offset for PC-relative move instructions.

PC-relative addressing uses the address of the location immediately
following the last byte of object code for the current instruction as a
reference point. The CPU12 normally corrects for queue offset and for
instruction alignment so that queue operation is transparent to the user.
However, in the original M68HC12, move instructions pose three special
problems:

• Some moves use an indexed source and an indexed destination.

• Some moves have object code that is too long to fit in the queue
all at one time, so the PC value changes during execution.

• All moves do not have the indexed postbyte as the last byte of
object code.

These cases are not handled by automatic queue pointer maintenance,
but it is still possible to use PC-relative indexing with move instructions
by providing for PC offsets in source code.

Table 3-3 shows PC offsets from the location immediately following the
current instruction by addressing mode.

Table 3-3. PC Offsets for MOVE Instructions (M68HC12 Only)

MOVE Instruction Addressing Modes Offset Value

MOVB

IMM ⇒ IDX +1

EXT ⇒ IDX +2

IDX ⇒ EXT –2

IDX ⇒ IDX
–1 for first operand

+1 for second operand

MOVW

IMM ⇒ IDX +2

EXT ⇒ IDX +2

IDX ⇒ EXT –2

IDX ⇒ IDX
–1 for first operand

+1 for second operand
Reference Manual S12CPUV2

46 Addressing Modes MOTOROLA

Addressing Modes
Instructions Using Multiple Modes
Example:
1000 18 09 C2 20 00 MOVB $2000 2,PC

Moves a byte of data from $2000 to $1009

The expected location of the PC = $1005. The offset = +2.
[1005 + 2 (for 2,PC) + 2 (for correction) = 1009]

$18 is the page pre-byte, 09 is the MOVB opcode for ext-idx, C2 is the
indexed postbyte for 2,PC (without correction).

The Motorola MCUasm assembler produces corrected object code for
PC-relative moves (18 09 C0 20 00 for the example shown).

NOTE: Instead of assembling the 2,PC as C2, the correction has been applied
to make it C0. Check whether an assembler makes the correction before
using PC-relative moves.

On the newer HCS12, the instruction queue was implemented such that
an internal pointer, to the start of the next instruction, is always available.
On the HCS12, PC-relative move instructions work as expected without
any offset adjustment. Although this is different from the original
M68HC12, it is unlikely to be a problem because PC-relative indexing is
rarely, if ever, used with move instructions.

3.10.2 Bit Manipulation Instructions

Bit manipulation instructions use either a combination of two or a
combination of three addressing modes.

The clear bits in memory (BCLR) and set bits in memory (BSET)
instructions use an 8-bit mask to determine which bits in a memory byte
are to be changed. The mask must be supplied with the instruction as an
immediate mode value. The memory location to be modified can be
specified by means of direct, extended, or indexed addressing modes.

The branch if bits cleared (BRCLR) and branch if bits set (BRSET)
instructions use an 8-bit mask to test the states of bits in a memory byte.
The mask is supplied with the instruction as an immediate mode value.
The memory location to be tested is specified by means of direct,
extended, or indexed addressing modes. Relative addressing mode is
used to determine the branch address. A signed 8-bit offset must be
supplied with the instruction.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 47

Addressing Modes
3.11 Addressing More than 64 Kbytes

Some M68HC12 devices incorporate hardware that supports
addressing a larger memory space than the standard 64 Kbytes. The
expanded memory system uses fast on-chip logic to implement a
transparent bank-switching scheme.

Increased code efficiency is the greatest advantage of using a switching
scheme instead of a large linear address space. In systems with large
linear address spaces, instructions require more bits of information to
address a memory location, and CPU overhead is greater. Other
advantages include the ability to change the size of system memory and
the ability to use various types of external memory.

However, the add-on bank switching schemes used in other
microcontrollers have known weaknesses. These include the cost of
external glue logic, increased programming overhead to change banks,
and the need to disable interrupts while banks are switched.

The M68HC12 system requires no external glue logic. Bank switching
overhead is reduced by implementing control logic in the MCU.
Interrupts do not need to be disabled during switching because switching
tasks are incorporated in special instructions that greatly simplify
program access to extended memory.

MCUs with expanded memory treat the 16 Kbytes of memory space
from $8000 to $BFFF as a program memory window.
Expanded-memory architecture includes an 8-bit program page register
(PPAGE), which allows up to 256 16-Kbyte program memory pages to
be switched into and out of the program memory window. This provides
for up to 4 Megabytes of paged program memory.

The CPU12 instruction set includes call subroutine in expanded memory
(CALL) and return from call (RTC) instructions, which greatly simplify the
use of expanded memory space. These instructions also execute
correctly on devices that do not have expanded-memory addressing
capability, thus providing for portable code.

The CALL instruction is similar to the jump-to-subroutine (JSR)
instruction. When CALL is executed, the current value in PPAGE is
pushed onto the stack with a return address, and a new
instruction-supplied value is written to PPAGE. This value selects the
page the called subroutine resides upon and can be considered part of
Reference Manual S12CPUV2

48 Addressing Modes MOTOROLA

Addressing Modes
Addressing More than 64 Kbytes
the effective address. For all addressing mode variations except indexed
indirect modes, the new page value is provided by an immediate
operand in the instruction. For indexed indirect variations of CALL, a
pointer specifies memory locations where the new page value and the
address of the called subroutine are stored. Use of indirect addressing
for both the page value and the address within the page frees the
program from keeping track of explicit values for either address.

The RTC instruction restores the saved program page value and the
return address from the stack. This causes execution to resume at the
next instruction after the original CALL instruction.
S12CPUV2 Reference Manual

MOTOROLA Addressing Modes 49

Addressing Modes
Reference Manual S12CPUV2

50 Addressing Modes MOTOROLA

Reference Manual — S12CPUV2

Section 4. Instruction Queue
4.1 Introduction

The CPU12 uses an instruction queue to increase execution speed.
This section describes queue operation during normal program
execution and changes in execution flow. These concepts augment the
descriptions of instructions and cycle-by-cycle instruction execution in
subsequent sections, but it is important to note that queue operation is
automatic, and generally transparent to the user.

The material in this section is general. Section 6. Instruction Glossary
contains detailed information concerning cycle-by-cycle execution of
each instruction. Section 8. Instruction Queue contains detailed
information about tracking queue operation and instruction execution.

4.2 Queue Description

The fetching mechanism in the CPU12 is best described as a queue
rather than as a pipeline. Queue logic fetches program information and
positions it for execution, but instructions are executed sequentially. A
typical pipelined central processor unit (CPU) can execute more than
one instruction at the same time, but interactions between the prefetch
and execution mechanisms can make tracking and debugging difficult.
The CPU12 thus gains the advantages of independent fetches, yet
maintains a straightforward relationship between bus and execution
cycles.

Each instruction refills the queue by fetching the same number of bytes
that the instruction uses. Program information is fetched in aligned 16-bit
words. Each program fetch (P) indicates that two bytes need to be
replaced in the instruction queue. Each optional fetch (O) indicates that
only one byte needs to be replaced. For example, an instruction
composed of five bytes does two program fetches and one optional
fetch. If the first byte of the five-byte instruction was even-aligned, the
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 51

Instruction Queue
optional fetch is converted into a free cycle. If the first byte was
odd-aligned, the optional fetch is executed as a program fetch.

Two external pins, IPIPE[1:0], provide time-multiplexed information
about data movement in the queue and instruction execution. Decoding
and use of these signals is discussed in Section 8. Instruction Queue .

4.2.1 Original M68HC12 Queue Implementation

There are two 16-bit queue stages and one 16-bit buffer. Program
information is fetched in aligned 16-bit words. Unless buffering is
required, program information is first queued into stage 1, then
advanced to stage 2 for execution.

At least two words of program information are available to the CPU when
execution begins. The first byte of object code is in either the even or odd
half of the word in stage 2, and at least two more bytes of object code
are in the queue.

The buffer is used when a program word arrives before the queue can
advance. This occurs during execution of single-byte and odd-aligned
instructions. For instance, the queue cannot advance after an aligned,
single-byte instruction is executed, because the first byte of the next
instruction is also in stage 2. In these cases, information is latched into
the buffer until the queue can advance.

4.2.2 HCS12 Queue Implementation

There are three 16-bit stages in the instruction queue. Instructions enter
the queue at stage 1 and shift out of stage 3 as the CPU executes
instructions and fetches new ones into stage 1. Each byte in the queue
is selectable. An opcode prediction algorithm determines the location of
the next opcode in the instruction queue.

4.3 Data Movement in the Queue

All queue operations are combinations of four basic queue movement
cycles. Descriptions of each of these cycles follows. Queue movement
cycles are only one factor in instruction execution time and should not be
confused with bus cycles.
Reference Manual S12CPUV2

52 Instruction Queue MOTOROLA

Instruction Queue
Changes in Execution Flow
4.3.1 No Movement

There is no data movement in the instruction queue during the cycle.
This occurs during execution of instructions that must perform a number
of internal operations, such as division instructions.

4.3.2 Latch Data from Bus (Applies Only to the M68HC12 Queue Implementation)

All instructions initiate fetches to refill the queue as execution proceeds.
However, a number of conditions, including instruction alignment and
the length of previous instructions, affect when the queue advances. If
the queue is not ready to advance when fetched information arrives, the
information is latched into the buffer. Later, when the queue does
advance, stage 1 is refilled from the buffer. If more than one latch cycle
occurs before the queue advances, the buffer is filled on the first latch
event and subsequent latch events are ignored until the queue
advances.

4.3.3 Advance and Load from Data Bus

The content of queue is advanced by one stage, and stage 1 is loaded
with a word of program information from the data bus. The information
was requested two bus cycles earlier but has only become available this
cycle, due to access delay.

4.3.4 Advance and Load from Buffer (Applies Only to M68HC12 Queue Implementation)

The content of queue stage 1 advances to stage 2, and stage 1 is loaded
with a word of program information from the buffer. The information in
the buffer was latched from the data bus during a previous cycle
because the queue was not ready to advance when it arrived.

4.4 Changes in Execution Flow

During normal instruction execution, queue operations proceed as a
continuous sequence of queue movement cycles. However, situations
arise which call for changes in flow. These changes are categorized as
resets, interrupts, subroutine calls, conditional branches, and jumps.
Generally speaking, resets and interrupts are considered to be related
to events outside the current program context that require special
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 53

Instruction Queue
processing, while subroutine calls, branches, and jumps are considered
to be elements of program structure.

During design, great care is taken to assure that the mechanism that
increases instruction throughput during normal program execution does
not cause bottlenecks during changes of program flow, but internal
queue operation is largely transparent to the user. The following
information is provided to enhance subsequent descriptions of
instruction execution.

4.4.1 Exceptions

Exceptions are events that require processing outside the normal flow of
instruction execution. CPU12 exceptions include five types of
exceptions:

• Reset (including COP, clock monitor, and pin)

• Unimplemented opcode trap

• Software interrupt instruction

• X-bit interrupts

• I-bit interrupts

All exceptions use the same microcode, but the CPU follows different
execution paths for each type of exception.

CPU12 exception handling is designed to minimize the effect of queue
operation on context switching. Thus, an exception vector fetch is the
first part of exception processing, and fetches to refill the queue from the
address pointed to by the vector are interleaved with the stacking
operations that preserve context, so that program access time does not
delay the switch. Refer to Section 7. Exception Processing for detailed
information.

4.4.2 Subroutines

The CPU12 can branch to (BSR), jump to (JSR), or call (CALL)
subroutines. BSR and JSR are used to access subroutines in the normal
64-Kbyte address space. The CALL instruction is intended for use in
MCUs with expanded memory capability.
Reference Manual S12CPUV2

54 Instruction Queue MOTOROLA

Instruction Queue
Changes in Execution Flow
BSR uses relative addressing mode to generate the effective address of
the subroutine, while JSR can use various other addressing modes.
Both instructions calculate a return address, stack the address, then
perform three program word fetches to refill the queue.

Subroutines in the normal 64-Kbyte address space are terminated with
a return-from-subroutine (RTS) instruction. RTS unstacks the return
address, then performs three program word fetches from that address to
refill the queue.

CALL is similar to JSR. MCUs with expanded memory treat 16 Kbytes of
addresses from $8000 to $BFFF as a memory window. An 8-bit PPAGE
register switches memory pages into and out of the window. When CALL
is executed, a return address is calculated, then it and the current
PPAGE value are stacked, and a new instruction-supplied value is
written to PPAGE. The subroutine address is calculated, then three
program word fetches are made from that address to refill the instruction
queue.

The return-from-call (RTC) instruction is used to terminate subroutines
in expanded memory. RTC unstacks the PPAGE value and the return
address, then performs three program word fetches from that address to
refill the queue.

CALL and RTC execute correctly in the normal 64-Kbyte address space,
thus providing for portable code. However, since extra execution cycles
are required, routinely substituting CALL/RTC for JSR/RTS is not
recommended.

4.4.3 Branches

Branch instructions cause execution flow to change when specific
pre-conditions exist. The CPU12 instruction set includes:

• Short conditional branches

• Long conditional branches

• Bit-condition branches

Types and conditions of branch instructions are described in
5.19 Branch Instructions . All branch instructions affect the queue
similarly, but there are differences in overall cycle counts between the
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 55

Instruction Queue
various types. Loop primitive instructions are a special type of branch
instruction used to implement counter-based loops.

Branch instructions have two execution cases:

• The branch condition is satisfied, and a change of flow takes
place.

• The branch condition is not satisfied, and no change of flow
occurs.

4.4.3.1 Short Branches

The “not-taken” case for short branches is simple. Since the instruction
consists of a single word containing both an opcode and an 8-bit offset,
the queue advances, another program word is fetched, and execution
continues with the next instruction.

The “taken” case for short branches requires that the queue be refilled
so that execution can continue at a new address. First, the effective
address of the destination is calculated using the relative offset in the
instruction. Then, the address is loaded into the program counter, and
the CPU performs three program word fetches at the new address to
refill the instruction queue.

4.4.3.2 Long Branches

The “not-taken” case for all long branches requires three cycles, while
the “taken” case requires four cycles. This is due to differences in the
amount of program information needed to fill the queue.

Long branch instructions begin with a $18 prebyte which indicates that
the opcode is on page 2 of the opcode map. The CPU12 treats the
prebyte as a special one-byte instruction. If the prebyte is not aligned,
the first cycle is used to perform a program word access; if the prebyte
is aligned, the first cycle is used to perform a free cycle. The first cycle
for the prebyte is executed whether or not the branch is taken.

The first cycle of the branch instruction is an optional cycle. Optional
cycles make the effects of byte-sized and misaligned instructions
consistent with those of aligned word-length instructions. Program
information is always fetched as aligned 16-bit words. When an
instruction has an odd number of bytes, and the first byte is not aligned
with an even byte boundary, the optional cycle makes an additional
Reference Manual S12CPUV2

56 Instruction Queue MOTOROLA

Instruction Queue
Changes in Execution Flow
program word access that maintains queue order. In all other cases, the
optional cycle is a free cycle.

In the “not-taken” case, the queue must advance so that execution can
continue with the next instruction. Two cycles are used to refill the
queue. Alignment determines how the second of these cycles is used.

In the “taken” case, the effective address of the branch is calculated
using the 16-bit relative offset contained in the second word of the
instruction. This address is loaded into the program counter, then the
CPU performs three program word fetches at the new address.

4.4.3.3 Bit Condition Branches

Bit condition branch instructions read a location in memory, and branch
if the bits in that location are in a certain state. These instructions can
use direct, extended, or indexed addressing modes. Indexed operations
require varying amounts of information to determine the effective
address, so instruction length varies according to the mode used, which
in turn affects the amount of program information fetched. To shorten
execution time, these branches perform one program word fetch in
anticipation of the “taken” case. The data from this fetch is ignored in the
“not-taken” case. If the branch is taken, the CPU fetches three program
word fetches at the new address to fill the instruction queue.

4.4.3.4 Loop Primitives

The loop primitive instructions test a counter value in a register or
accumulator and branch to an address specified by a 9-bit relative offset
contained in the instruction if a specified condition is met. There are
auto-increment and auto-decrement versions of these instructions. The
test and increment/decrement operations are performed on internal
CPU registers, and require no additional program information. To
shorten execution time, these branches perform one program word fetch
in anticipation of the “taken” case. The data from this fetch is ignored if
the branch is not taken, and the CPU does one program fetch and one
optional fetch to refill the queue1. If the branch is taken, the CPU finishes
refilling the queue with two additional program word fetches at the new
address.

1. In the original M68HC12, the implementation of these two cycles are both program
word fetches.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 57

Instruction Queue
4.4.4 Jumps

Jump (JMP) is the simplest change of flow instruction. JMP can use
extended or indexed addressing. Indexed operations require varying
amounts of information to determine the effective address, so instruction
length varies according to the mode used, which in turn affects the
amount of program information fetched. All forms of JMP perform three
program word fetches at the new address to refill the instruction queue.
Reference Manual S12CPUV2

58 Instruction Queue MOTOROLA

Reference Manual — S12CPUV2

Section 5. Instruction Set Overview
5.1 Introduction

This section contains general information about the central processor
unit (CPU12) instruction set. It is organized into instruction categories
grouped by function.

5.2 Instruction Set Description

CPU12 instructions are a superset of the M68HC11 instruction set. Code
written for an M68HC11 can be reassembled and run on a CPU12 with
no changes. The CPU12 provides expanded functionality and increased
code efficiency. There are two implementations of the CPU12, the
original M68HC12 and the newer HCS12. Both implementations have
the same instruction set, although there are small differences in
cycle-by-cycle access details (the order of some bus cycles changed to
accommodate differences in the way the instruction queue was
implemented). These minor differences are transparent for most users.

In the M68HC12 and HCS12 architecture, all memory and input/output
(I/O) are mapped in a common 64-Kbyte address space
(memory-mapped I/O). This allows the same set of instructions to be
used to access memory, I/O, and control registers. General-purpose
load, store, transfer, exchange, and move instructions facilitate
movement of data to and from memory and peripherals.

The CPU12 has a full set of 8-bit and 16-bit mathematical instructions.
There are instructions for signed and unsigned arithmetic, division, and
multiplication with 8-bit, 16-bit, and some larger operands.

Special arithmetic and logic instructions aid stacking operations,
indexing, binary-coded decimal (BCD) calculation, and condition code
register manipulation. There are also dedicated instructions for multiply
and accumulate operations, table interpolation, and specialized fuzzy
logic operations that involve mathematical calculations.
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 59

Instruction Set Overview
Refer to Section 6. Instruction Glossary for detailed information about
individual instructions. Appendix A. Instruction Reference contains
quick-reference material, including an opcode map and postbyte
encoding for indexed addressing, transfer/exchange instructions, and
loop primitive instructions.

5.3 Load and Store Instructions

Load instructions copy memory content into an accumulator or register.
Memory content is not changed by the operation. Load instructions (but
not LEA_ instructions) affect condition code bits so no separate test
instructions are needed to check the loaded values for negative or 0
conditions.

Store instructions copy the content of a CPU register to memory.
Register/accumulator content is not changed by the operation. Store
instructions automatically update the N and Z condition code bits, which
can eliminate the need for a separate test instruction in some programs.

Table 5-1 is a summary of load and store instructions.

Table 5-1. Load and Store Instructions

Mnemonic Function Operation

Load Instructions

LDAA Load A (M) ⇒ A

LDAB Load B (M) ⇒ B

LDD Load D (M : M + 1) ⇒ (A:B)

LDS Load SP (M : M + 1) ⇒ SPH:SPL

LDX Load index register X (M : M + 1) ⇒ XH:XL

LDY Load index register Y (M : M + 1) ⇒ YH:YL

LEAS Load effective address into SP Effective address ⇒ SP

LEAX Load effective address into X Effective address ⇒ X

LEAY Load effective address into Y Effective address ⇒ Y

Continued on next page
Reference Manual S12CPUV2

60 Instruction Set Overview MOTOROLA

Instruction Set Overview
Transfer and Exchange Instructions
5.4 Transfer and Exchange Instructions

Transfer instructions copy the content of a register or accumulator into
another register or accumulator. Source content is not changed by the
operation. Transfer register to register (TFR) is a universal transfer
instruction, but other mnemonics are accepted for compatibility with the
M68HC11. The transfer A to B (TAB) and transfer B to A (TBA)
instructions affect the N, Z, and V condition code bits in the same way
as M68HC11 instructions. The TFR instruction does not affect the
condition code bits.

The sign extend 8-bit operand (SEX) instruction is a special case of the
universal transfer instruction that is used to sign extend 8-bit two’s
complement numbers so that they can be used in 16-bit operations. The
8-bit number is copied from accumulator A, accumulator B, or the
condition code register to accumulator D, the X index register, the Y
index register, or the stack pointer. All the bits in the upper byte of the
16-bit result are given the value of the most-significant bit (MSB) of the
8-bit number.

Exchange instructions exchange the contents of pairs of registers or
accumulators. When the first operand in an EXG instruction is 8-bits and
the second operand is 16 bits, a zero-extend operation is performed on
the 8-bit register as it is copied into the 16-bit register.

Section 6. Instruction Glossary contains information concerning other
transfers and exchanges between 8- and 16-bit registers.

Table 5-2 is a summary of transfer and exchange instructions.

Store Instructions

STAA Store A (A) ⇒ M

STAB Store B (B) ⇒ M

STD Store D (A) ⇒ M, (B) ⇒ M + 1

STS Store SP (SPH:SPL) ⇒ M : M + 1

STX Store X (XH:XL) ⇒ M : M + 1

STY Store Y (YH:YL) ⇒ M : M + 1

Table 5-1. Load and Store Instructions (Continued)
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 61

Instruction Set Overview
5.5 Move Instructions

Move instructions move (copy) data bytes or words from a source
(M1 or M : M +11) to a destination (M2 or M : M +12) in memory. Six
combinations of immediate, extended, and indexed addressing are
allowed to specify source and destination addresses (IMM ⇒ EXT,
IMM ⇒ IDX, EXT ⇒ EXT, EXT ⇒ IDX, IDX ⇒ EXT, IDX ⇒ IDX).
Addressing mode combinations with immediate for the destination would
not be useful.

Table 5-3 shows byte and word move instructions.

Table 5-2. Transfer and Exchange Instructions

Mnemonic Function Operation

Transfer Instructions

TAB Transfer A to B (A) ⇒ B

TAP Transfer A to CCR (A) ⇒ CCR

TBA Transfer B to A (B) ⇒ A

TFR
Transfer register

to register
(A, B, CCR, D, X, Y, or SP) ⇒

A, B, CCR, D, X, Y, or SP

TPA Transfer CCR to A (CCR) ⇒ A

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

Exchange Instructions

EXG
Exchange register

to register
(A, B, CCR, D, X, Y, or SP) ⇔

(A, B, CCR, D, X, Y, or SP)

XGDX Exchange D with X (D) ⇔ (X)

XGDY Exchange D with Y (D) ⇔ (Y)

Sign Extension Instruction

SEX
Sign extend

8-Bit operand
Sign-extended (A, B, or CCR) ⇒

D, X, Y, or SP

Table 5-3. Move Instructions

Mnemonic Function Operation

MOVB Move byte (8-bit) (M
1
) ⇒ M

2

MOVW Move word (16-bit) (M : M + 1
1
) ⇒ M : M + 12
Reference Manual S12CPUV2

62 Instruction Set Overview MOTOROLA

Instruction Set Overview
Addition and Subtraction Instructions
5.6 Addition and Subtraction Instructions

Signed and unsigned 8- and 16-bit addition can be performed between
registers or between registers and memory. Special instructions support
index calculation. Instructions that add the carry bit in the condition code
register (CCR) facilitate multiple precision computation.

Signed and unsigned 8- and 16-bit subtraction can be performed
between registers or between registers and memory. Special
instructions support index calculation. Instructions that subtract the carry
bit in the CCR facilitate multiple precision computation. Refer to
Table 5-4 for addition and subtraction instructions.

Load effective address (LEAS, LEAX, and LEAY) instructions could also
be considered as specialized addition and subtraction instructions. See
5.25 Pointer and Index Calculation Instructions for more information.

Table 5-4. Addition and Subtraction Instructions

Mnemonic Function Operation

Addition Instructions

ABA Add B to A (A) + (B) ⇒ A

ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

ADCA Add with carry to A (A) + (M) + C ⇒ A

ADCB Add with carry to B (B) + (M) + C ⇒ B

ADDA Add without carry to A (A) + (M) ⇒ A

ADDB Add without carry to B (B) + (M) ⇒ B

ADDD Add to D (A:B) + (M : M + 1) ⇒ A : B

Subtraction Instructions

SBA Subtract B from A (A) – (B) ⇒ A

SBCA Subtract with borrow from A (A) – (M) – C ⇒ A

SBCB Subtract with borrow from B (B) – (M) – C ⇒ B

SUBA Subtract memory from A (A) – (M) ⇒ A

SUBB Subtract memory from B (B) – (M) ⇒ B

SUBD Subtract memory from D (A:B) (D) – (M : M + 1) ⇒ D
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 63

Instruction Set Overview
5.7 Binary-Coded Decimal Instructions

To add binary-coded decimal (BCD) operands, use addition instructions
that set the half-carry bit in the CCR, then adjust the result with the
decimal adjust A (DAA) instruction. Table 5-5 is a summary of
instructions that can be used to perform BCD operations.

Table 5-5. BCD Instructions

Mnemonic Function Operation

ABA Add B to A (A) + (B) ⇒ A

ADCA Add with carry to A (A) + (M) + C ⇒ A

ADCB(1)

1. These instructions are not normally used for BCD operations because, although they affect
H correctly, they do not leave the result in the correct accumulator (A) to be used with the
DAA instruction. Thus additional steps would be needed to adjust the result to correct BCD
form.

Add with carry to B (B) + (M) + C ⇒ B

ADDA(1) Add memory to A (A) + (M) ⇒ A

ADDB Add memory to B (B) + (M) ⇒ B

DAA Decimal adjust A (A)10
Reference Manual S12CPUV2

64 Instruction Set Overview MOTOROLA

Instruction Set Overview
Decrement and Increment Instructions
5.8 Decrement and Increment Instructions

The decrement and increment instructions are optimized 8- and 16-bit
addition and subtraction operations. They are generally used to
implement counters. Because they do not affect the carry bit in the CCR,
they are particularly well suited for loop counters in multiple-precision
computation routines. Refer to 5.20 Loop Primitive Instructions for
information concerning automatic counter branches. Table 5-6 is a
summary of decrement and increment instructions.

Table 5-6. Decrement and Increment Instructions

Mnemonic Function Operation

Decrement Instructions

DEC Decrement memory (M) – $01 ⇒ M

DECA Decrement A (A) – $01 ⇒ A

DECB Decrement B (B) – $01 ⇒ B

DES Decrement SP (SP) – $0001 ⇒ SP

DEX Decrement X (X) – $0001 ⇒ X

DEY Decrement Y (Y) – $0001 ⇒ Y

Increment Instructions

INC Increment memory (M) + $01 ⇒ M

INCA Increment A (A) + $01 ⇒ A

INCB Increment B (B) + $01 ⇒ B

INS Increment SP (SP) + $0001 ⇒ SP

INX Increment X (X) + $0001 ⇒ X

INY Increment Y (Y) + $0001 ⇒ Y
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 65

Instruction Set Overview
5.9 Compare and Test Instructions

Compare and test instructions perform subtraction between a pair of
registers or between a register and memory. The result is not stored, but
condition codes are set by the operation. These instructions are
generally used to establish conditions for branch instructions. In this
architecture, most instructions update condition code bits automatically,
so it is often unnecessary to include separate test or compare
instructions. Table 5-7 is a summary of compare and test instructions.

Table 5-7. Compare and Test Instructions

Mnemonic Function Operation

Compare Instructions

CBA Compare A to B (A) – (B)

CMPA Compare A to memory (A) – (M)

CMPB Compare B to memory (B) – (M)

CPD Compare D to memory (16-bit) (A : B) – (M : M + 1)

CPS Compare SP to memory (16-bit) (SP) – (M : M + 1)

CPX Compare X to memory (16-bit) (X) – (M : M + 1)

CPY Compare Y to memory (16-bit) (Y) – (M : M + 1)

Test Instructions

TST Test memory for zero or minus (M) – $00

TSTA Test A for zero or minus (A) – $00

TSTB Test B for zero or minus (B) – $00
Reference Manual S12CPUV2

66 Instruction Set Overview MOTOROLA

Instruction Set Overview
Boolean Logic Instructions
5.10 Boolean Logic Instructions

The Boolean logic instructions perform a logic operation between an
8-bit accumulator or the CCR and a memory value. AND, OR, and
exclusive OR functions are supported. Table 5-8 summarizes logic
instructions.

Table 5-8. Boolean Logic Instructions

Mnemonic Function Operation

ANDA AND A with memory (A) • (M) ⇒ A

ANDB AND B with memory (B) • (M) ⇒ B

ANDCC AND CCR with memory (clear CCR bits) (CCR) • (M) ⇒ CCR

EORA Exclusive OR A with memory (A) ⊕ (M) ⇒ A

EORB Exclusive OR B with memory (B) ⊕ (M) ⇒ B

ORAA OR A with memory (A) + (M) ⇒ A

ORAB OR B with memory (B) + (M) ⇒ B

ORCC OR CCR with memory (set CCR bits) (CCR) + (M) ⇒ CCR
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 67

Instruction Set Overview
5.11 Clear, Complement, and Negate Instructions

Each of the clear, complement, and negate instructions performs a
specific binary operation on a value in an accumulator or in memory.
Clear operations clear the value to 0, complement operations replace
the value with its one’s complement, and negate operations replace the
value with its two’s complement. Table 5-9 is a summary of clear,
complement, and negate instructions.

Table 5-9. Clear, Complement, and Negate Instructions

Mnemonic Function Operation

CLC Clear C bit in CCR 0 ⇒ C

CLI Clear I bit in CCR 0 ⇒ I

CLR Clear memory $00 ⇒ M

CLRA Clear A $00 ⇒ A

CLRB Clear B $00 ⇒ B

CLV Clear V bit in CCR 0 ⇒ V

COM One’s complement memory $FF – (M) ⇒ M or (M) ⇒ M

COMA One’s complement A $FF – (A) ⇒ A or (A) ⇒ A

COMB One’s complement B $FF – (B) ⇒ B or (B) ⇒ B

NEG Two’s complement memory $00 – (M) ⇒ M or (M) + 1 ⇒ M

NEGA Two’s complement A $00 – (A) ⇒ A or (A) + 1 ⇒ A

NEGB Two’s complement B $00 – (B) ⇒ B or (B) + 1 ⇒ B
Reference Manual S12CPUV2

68 Instruction Set Overview MOTOROLA

Instruction Set Overview
Multiplication and Division Instructions
5.12 Multiplication and Division Instructions

There are instructions for signed and unsigned 8- and 16-bit
multiplication. Eight-bit multiplication operations have a 16-bit product.
Sixteen-bit multiplication operations have 32-bit products.

Integer and fractional division instructions have 16-bit dividend, divisor,
quotient, and remainder. Extended division instructions use a 32-bit
dividend and a 16-bit divisor to produce a 16-bit quotient and a 16-bit
remainder.

Table 5-10 is a summary of multiplication and division instructions.

Table 5-10. Multiplication and Division Instructions

Mnemonic Function Operation

Multiplication Instructions

EMUL 16 by 16 multiply (unsigned) (D) × (Y) ⇒ Y : D

EMULS 16 by 16 multiply (signed) (D) × (Y) ⇒ Y : D

MUL 8 by 8 multiply (unsigned) (A) × (B) ⇒ A : B

Division Instructions

EDIV 32 by 16 divide (unsigned)
(Y : D) ÷ (X) ⇒ Y
Remainder ⇒ D

EDIVS 32 by 16 divide (signed)
(Y : D) ÷ (X) ⇒ Y
Remainder ⇒ D

FDIV 16 by 16 fractional divide
(D) ÷ (X) ⇒ X

Remainder ⇒ D

IDIV 16 by 16 integer divide (unsigned)
(D) ÷ (X) ⇒ X

Remainder ⇒ D

IDIVS 16 by 16 integer divide (signed)
(D) ÷ (X) ⇒ X

Remainder ⇒ D
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 69

Instruction Set Overview
5.13 Bit Test and Manipulation Instructions

The bit test and manipulation operations use a mask value to test or
change the value of individual bits in an accumulator or in memory. Bit
test A (BITA) and bit test B (BITB) provide a convenient means of testing
bits without altering the value of either operand. Table 5-11 is a
summary of bit test and manipulation instructions.

Table 5-11. Bit Test and Manipulation Instructions

Mnemonic Function Operation

BCLR Clear bits in memory (M) • (mm) ⇒ M

BITA Bit test A (A) • (M)

BITB Bit test B (B) • (M)

BSET Set bits in memory (M) + (mm) ⇒ M
Reference Manual S12CPUV2

70 Instruction Set Overview MOTOROLA

Instruction Set Overview
Shift and Rotate Instructions
5.14 Shift and Rotate Instructions

There are shifts and rotates for all accumulators and for memory bytes.
All pass the shifted-out bit through the C status bit to facilitate
multiple-byte operations. Because logical and arithmetic left shifts are
identical, there are no separate logical left shift operations. Logic shift left
(LSL) mnemonics are assembled as arithmetic shift left memory (ASL)
operations. Table 5-12 shows shift and rotate instructions.

Table 5-12. Shift and Rotate Instructions

Mnemonic Function Operation

Logical Shifts

LSL
LSLA
LSLB

Logic shift left memory
Logic shift left A
Logic shift left B

LSLD Logic shift left D

LSR
LSRA
LSRB

Logic shift right memory
Logic shift right A
Logic shift right B

LSRD Logic shift right D

Arithmetic Shifts

ASL
ASLA
ASLB

Arithmetic shift left memory
Arithmetic shift left A
Arithmetic shift left B

ASLD Arithmetic shift left D

ASR
ASRA
ASRB

Arithmetic shift right memory
Arithmetic shift right A
Arithmetic shift right B

Rotates

ROL
ROLA
ROLB

Rotate left memory through carry
Rotate left A through carry
Rotate left B through carry

ROR
RORA
RORB

Rotate right memory through carry
Rotate right A through carry
Rotate right B through carry

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

Cb7 b0

C b7 b0

Cb7 b0
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 71

Instruction Set Overview
5.15 Fuzzy Logic Instructions

The CPU12 instruction set includes instructions that support efficient
processing of fuzzy logic operations. The descriptions of fuzzy logic
instructions given here are functional overviews. Table 5-13
summarizes the fuzzy logic instructions. Refer to Section 9. Fuzzy
Logic Support for detailed discussion.

5.15.1 Fuzzy Logic Membership Instruction

The membership function (MEM) instruction is used during the
fuzzification process. During fuzzification, current system input values
are compared against stored input membership functions to determine
the degree to which each label of each system input is true. This is
accomplished by finding the y value for the current input on a trapezoidal
membership function for each label of each system input. The MEM
instruction performs this calculation for one label of one system input. To
perform the complete fuzzification task for a system, several MEM
instructions must be executed, usually in a program loop structure.

5.15.2 Fuzzy Logic Rule Evaluation Instructions

The MIN-MAX rule evaluation (REV and REVW) instructions perform
MIN-MAX rule evaluations that are central elements of a fuzzy logic
inference program. Fuzzy input values are processed using a list of rules
from the knowledge base to produce a list of fuzzy outputs. The REV
instruction treats all rules as equally important. The REVW instruction
allows each rule to have a separate weighting factor. The two rule
evaluation instructions also differ in the way rules are encoded into the
knowledge base. Because they require a number of cycles to execute,
rule evaluation instructions can be interrupted. Once the interrupt has
been serviced, instruction execution resumes at the point the interrupt
occurred.
Reference Manual S12CPUV2

72 Instruction Set Overview MOTOROLA

Instruction Set Overview
Fuzzy Logic Instructions
5.15.3 Fuzzy Logic Weighted Average Instruction

The weighted average (WAV) instruction computes a sum-of-products
and a sum-of-weights used for defuzzification. To be usable, the fuzzy
outputs produced by rule evaluation must be defuzzified to produce a
single output value which represents the combined effect of all of the
fuzzy outputs. Fuzzy outputs correspond to the labels of a system output
and each is defined by a membership function in the knowledge base.
The CPU12 typically uses singletons for output membership functions
rather than the trapezoidal shapes used for inputs. As with inputs, the
x-axis represents the range of possible values for a system output.
Singleton membership functions consist of the x-axis position for a label
of the system output. Fuzzy outputs correspond to the y-axis height of
the corresponding output membership function. The WAV instruction
calculates the numerator and denominator sums for a weighted average
of the fuzzy outputs. Because WAV requires a number of cycles to
execute, it can be interrupted. The WAVR pseudo-instruction causes
execution to resume at the point where it was interrupted.

Table 5-13. Fuzzy Logic Instructions

Mnemonic Function Operation

MEM
Membership

function

µ (grade) ⇒ M(Y)
(X) + 4 ⇒ X; (Y) + 1 ⇒ Y; A unchanged

if (A) < P1 or (A) > P2, then µ = 0, else
µ = MIN [((A) – P1) × S1, (P2 – (A)) × S2, $FF]

where:
A = current crisp input value

X points to a 4-byte data structure
that describes a trapezoidal membership

function as base intercept
points and slopes (P1, P2, S1, S2)

Y points at fuzzy input (RAM location)

Continued on next page
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 73

Instruction Set Overview
REV
MIN-MAX rule

evaluation

Find smallest rule input (MIN)
Store to rule outputs unless fuzzy output is

larger (MAX)

Rules are unweighted

Each rule input is an 8-bit offset
from a base address in Y

Each rule output is an 8-bit offset
from a base address in Y

$FE separates rule inputs from rule outputs
$FF terminates the rule list

REV can be interrupted

REVW
MIN-MAX rule

evaluation

Find smallest rule input (MIN)
Multiply by a rule weighting factor (optional)
Store to rule outputs unless fuzzy output is

larger (MAX)

Each rule input is the 16-bit address
of a fuzzy input

Each rule output is the 16-bit address
of a fuzzy output

Address $FFFE separates rule inputs
from rule outputs

$FFFF terminates the rule list
Weights are 8-bit values in a separate table

REVW can be interrupted

WAV

Calculates numerator
(sum of products)
and denominator
(sum of weights)

for weighted average
calculation

Results are placed in
correct registers

for EDIV immediately
after WAV

WAVR
Resumes execution
of interrupted WAV

instruction

Recover immediate results from stack
rather than initializing them to 0.

Table 5-13. Fuzzy Logic Instructions (Continued)

Mnemonic Function Operation

SiFi
i 1=

B

∑ Y:D⇒

Fi
i 1=

B

∑ X⇒
Reference Manual S12CPUV2

74 Instruction Set Overview MOTOROLA

Instruction Set Overview
Maximum and Minimum Instructions
5.16 Maximum and Minimum Instructions

The maximum (MAX) and minimum (MIN) instructions are used to make
comparisons between an accumulator and a memory location. These
instructions can be used for linear programming operations, such as
simplex-method optimization, or for fuzzification.

MAX and MIN instructions use accumulator A to perform 8-bit
comparisons, while EMAX and EMIN instructions use accumulator D to
perform 16-bit comparisons. The result (maximum or minimum value)
can be stored in the accumulator (EMAXD, EMIND, MAXA, MINA) or the
memory address (EMAXM, EMINM, MAXM, MINM).

Table 5-14 is a summary of minimum and maximum instructions.

Table 5-14. Minimum and Maximum Instructions

Mnemonic Function Operation

Minimum Instructions

EMIND
MIN of two unsigned 16-bit values

result to accumulator
MIN ((D), (M : M + 1)) ⇒ D

EMINM
MIN of two unsigned 16-bit values

result to memory
MIN ((D), (M : M + 1)) ⇒ M : M+1

MINA
MIN of two unsigned 8-bit values

result to accumulator
MIN ((A), (M)) ⇒ A

MINM
MIN of two unsigned 8-bit values

result to memory
MIN ((A), (M)) ⇒ M

Maximum Instructions

EMAXD
MAX of two unsigned 16-bit values

result to accumulator
MAX ((D), (M : M + 1)) ⇒ D

EMAXM
MAX of two unsigned 16-bit values

result to memory
MAX ((D), (M : M + 1)) ⇒ M : M + 1

MAXA
MAX of two unsigned 8-bit values

result to accumulator
MAX ((A), (M)) ⇒ A

MAXM
MAX of two unsigned 8-bit values

result to memory
MAX ((A), (M)) ⇒ M
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 75

Instruction Set Overview
5.17 Multiply and Accumulate Instruction

The multiply and accumulate (EMACS) instruction multiplies two 16-bit
operands stored in memory and accumulates the 32-bit result in a third
memory location. EMACS can be used to implement simple digital filters
and defuzzification routines that use 16-bit operands. The WAV
instruction incorporates an 8- to 16-bit multiply and accumulate
operation that obtains a numerator for the weighted average calculation.
The EMACS instruction can automate this portion of the averaging
operation when 16-bit operands are used. Table 5-15 shows the
EMACS instruction.

5.18 Table Interpolation Instructions

The table interpolation instructions (TBL and ETBL) interpolate values
from tables stored in memory. Any function that can be represented as
a series of linear equations can be represented by a table of appropriate
size. Interpolation can be used for many purposes, including tabular
fuzzy logic membership functions. TBL uses 8-bit table entries and
returns an 8-bit result; ETBL uses 16-bit table entries and returns a
16-bit result. Use of indexed addressing mode provides great flexibility
in structuring tables.

Consider each of the successive values stored in a table to be y-values
for the endpoint of a line segment. The value in the B accumulator before
instruction execution begins represents the change in x from the
beginning of the line segment to the lookup point divided by total change
in x from the beginning to the end of the line segment. B is treated as an
8-bit binary fraction with radix point left of the MSB, so each line segment
is effectively divided into 256 smaller segments. During instruction
execution, the change in y between the beginning and end of the
segment (a signed byte for TBL or a signed word for ETBL) is multiplied
by the content of the B accumulator to obtain an intermediate delta-y
term. The result (stored in the A accumulator by TBL, and in the D

Table 5-15. Multiply and Accumulate Instructions

Mnemonic Function Operation

EMACS
Multiply and accumulate (signed)

16 bit by 16 bit ⇒ 32 bit
((M(X):M(X+1)) × (M(Y):M(Y+1)))
+ (M ~ M + 3) ⇒ M ~ M + 3
Reference Manual S12CPUV2

76 Instruction Set Overview MOTOROLA

Instruction Set Overview
Branch Instructions
accumulator by ETBL) is the y-value of the beginning point plus the
signed intermediate delta-y value. Table 5-16 shows the table
interpolation instructions.

5.19 Branch Instructions

Branch instructions cause a sequence to change when specific
conditions exist. The CPU12 uses three kinds of branch instructions.
These are short branches, long branches, and bit condition branches.

Branch instructions can also be classified by the type of condition that
must be satisfied in order for a branch to be taken. Some instructions
belong to more than one classification. For example:

• Unary branch instructions always execute.

• Simple branches are taken when a specific bit in the condition
code register is in a specific state as a result of a previous
operation.

• Unsigned branches are taken when comparison or test of
unsigned quantities results in a specific combination of condition
code register bits.

• Signed branches are taken when comparison or test of signed
quantities results in a specific combination of condition code
register bits.

Table 5-16. Table Interpolation Instructions

Mnemonic Function Operation

ETBL

16-bit table lookup
and interpolate

(no indirect addressing
modes allowed)

(M : M + 1) + [(B) × ((M + 2 : M + 3)
– (M : M + 1))] ⇒ D

Initialize B, and index before ETBL.
<ea> points to the first table entry (M : M + 1)

B is fractional part of lookup value

TBL

8-bit table lookup
and interpolate

(no indirect addressing
modes allowed)

(M) + [(B) × ((M + 1) – (M))] ⇒ A
Initialize B, and index before TBL.

<ea> points to the first 8-bit table entry (M)
B is fractional part of lookup value.
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 77

Instruction Set Overview
5.19.1 Short Branch Instructions

Short branch instructions operate this way: When a specified condition
is met, a signed 8-bit offset is added to the value in the program counter.
Program execution continues at the new address.

The numeric range of short branch offset values is $80 (–128) to $7F
(127) from the address of the next memory location after the offset value.

Table 5-17 is a summary of the short branch instructions.

Table 5-17. Short Branch Instructions

Mnemonic Function Equation or Operation

Unary Branches

BRA Branch always 1 = 1

BRN Branch never 1 = 0

Simple Branches

BCC Branch if carry clear C = 0

BCS Branch if carry set C = 1

BEQ Branch if equal Z = 1

BMI Branch if minus N = 1

BNE Branch if not equal Z = 0

BPL Branch if plus N = 0

BVC Branch if overflow clear V = 0

BVS Branch if overflow set V = 1

Unsigned Branches

Relation

BHI Branch if higher R > M C + Z = 0

BHS Branch if higher or same R ≥ M C = 0

BLO Branch if lower R < M C = 1

BLS Branch if lower or same R ≤ M C + Z = 1

Signed Branches

BGE Branch if greater than or equal R ≥ M N ⊕ V = 0

BGT Branch if greater than R > M Z + (N ⊕ V) = 0

BLE Branch if less than or equal R ≤ M Z + (N ⊕ V) = 1

BLT Branch if less than R < M N ⊕ V = 1
Reference Manual S12CPUV2

78 Instruction Set Overview MOTOROLA

Instruction Set Overview
Branch Instructions
5.19.2 Long Branch Instructions

Long branch instructions operate this way: When a specified condition is
met, a signed 16-bit offset is added to the value in the program counter.
Program execution continues at the new address. Long branches are
used when large displacements between decision-making steps are
necessary.

The numeric range of long branch offset values is $8000 (–32,768) to
$7FFF (32,767) from the address of the next memory location after the
offset value. This permits branching from any location in the standard
64-Kbyte address map to any other location in the 64-Kbyte map.

Table 5-18 is a summary of the long branch instructions.

Table 5-18. Long Branch Instructions
Mnemonic Function Equation or Operation

Unary Branches

LBRA Long branch always 1 = 1

LBRN Long branch never 1 = 0

Simple Branches

LBCC Long branch if carry clear C = 0

LBCS Long branch if carry set C = 1

LBEQ Long branch if equal Z = 1

LBMI Long branch if minus N = 1

LBNE Long branch if not equal Z = 0

LBPL Long branch if plus N = 0

LBVC Long branch if overflow clear V = 0

LBVS Long branch if overflow set V = 1

Unsigned Branches

LBHI Long branch if higher C + Z = 0

LBHS Long branch if higher or same C = 0

LBLO Long branch if lower Z = 1

LBLS Long branch if lower or same C + Z = 1

Signed Branches

LBGE Long branch if greater than or equal N ⊕ V = 0

LBGT Long branch if greater than Z + (N ⊕ V) = 0

LBLE Long branch if less than or equal Z + (N ⊕ V) = 1

LBLT Long branch if less than N ⊕ V = 1
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 79

Instruction Set Overview
5.19.3 Bit Condition Branch Instructions

The bit condition branches are taken when bits in a memory byte are in
a specific state. A mask operand is used to test the location. If all bits in
that location that correspond to ones in the mask are set (BRSET) or
cleared (BRCLR), the branch is taken.

The numeric range of 8-bit offset values is $80 (–128) to $7F (127)
from the address of the next memory location after the offset value.

Table 5-19 is a summary of bit condition branches.

Table 5-19. Bit Condition Branch Instructions

Mnemonic Function Equation or Operation

BRCLR Branch if selected bits clear (M) • (mm) = 0

BRSET Branch if selected bits set (M) • (mm) = 0
Reference Manual S12CPUV2

80 Instruction Set Overview MOTOROLA

Instruction Set Overview
Loop Primitive Instructions
5.20 Loop Primitive Instructions

The loop primitives can also be thought of as counter branches. The
instructions test a counter value in a register or accumulator (A, B, D, X,
Y, or SP) for zero or non-zero value as a branch condition. There are
predecrement, preincrement, and test-only versions of these
instructions.

The numeric range of 9-bit offset values is $100 (–256) to $0FF (255)
from the address of the next memory location after the offset value.

Table 5-20 is a summary of loop primitive branches.

Table 5-20. Loop Primitive Instructions

Mnemonic Function Equation or Operation

DBEQ
Decrement counter and branch if = 0

(counter = A, B, D, X, Y, or SP)

(counter) – 1⇒ counter
If (counter) = 0, then branch;

else continue to next instruction

DBNE
Decrement counter and branch if ≠ 0

(counter = A, B, D, X, Y, or SP)

(counter) – 1⇒ counter
If (counter) not = 0, then branch;
else continue to next instruction

IBEQ
Increment counter and branch if = 0

(counter = A, B, D, X, Y, or SP)

(counter) + 1⇒ counter
If (counter) = 0, then branch;

else continue to next instruction

IBNE
Increment counter and branch if ≠ 0

(counter = A, B, D, X, Y, or SP)

(counter) + 1⇒ counter
If (counter) not = 0, then branch;
else continue to next instruction

TBEQ
Test counter and branch if = 0
(counter = A, B, D, X,Y, or SP)

If (counter) = 0, then branch;
else continue to next instruction

TBNE
Test counter and branch if ≠ 0
(counter = A, B, D, X,Y, or SP)

If (counter) not = 0, then branch;
else continue to next instruction
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 81

Instruction Set Overview
5.21 Jump and Subroutine Instructions

Jump (JMP) instructions cause immediate changes in sequence. The
JMP instruction loads the PC with an address in the 64-Kbyte memory
map, and program execution continues at that address. The address can
be provided as an absolute 16-bit address or determined by various
forms of indexed addressing.

Subroutine instructions optimize the process of transferring control to a
code segment that performs a particular task. A short branch (BSR),
a jump to subroutine (JSR), or an expanded-memory call (CALL) can be
used to initiate subroutines. There is no LBSR instruction, but a
PC-relative JSR performs the same function. A return address is
stacked, then execution begins at the subroutine address. Subroutines
in the normal 64-Kbyte address space are terminated with a
return-from-subroutine (RTS) instruction. RTS unstacks the return
address so that execution resumes with the instruction after BSR
or JSR.

The call subroutine in expanded memory (CALL) instruction is intended
for use with expanded memory. CALL stacks the value in the PPAGE
register and the return address, then writes a new value to PPAGE to
select the memory page where the subroutine resides. The page value
is an immediate operand in all addressing modes except indexed
indirect modes; in these modes, an operand points to locations in
memory where the new page value and subroutine address are stored.
The return from call (RTC) instruction is used to terminate subroutines in
expanded memory. RTC unstacks the PPAGE value and the return
address so that execution resumes with the next instruction after CALL.
For software compatibility, CALL and RTC execute correctly on devices
that do not have expanded addressing capability. Table 5-21
summarizes the jump and subroutine instructions.
Reference Manual S12CPUV2

82 Instruction Set Overview MOTOROLA

Instruction Set Overview
Interrupt Instructions
5.22 Interrupt Instructions

Interrupt instructions handle transfer of control to a routine that performs
a critical task. Software interrupts are a type of exception. Section 7.
Exception Processing covers interrupt exception processing in detail.

The software interrupt (SWI) instruction initiates synchronous exception
processing. First, the return PC value is stacked. After CPU context is
stacked, execution continues at the address pointed to by the SWI
vector.

Execution of the SWI instruction causes an interrupt without an interrupt
service request. SWI is not inhibited by global mask bits I and X in the
CCR, and execution of SWI sets the I mask bit. Once an SWI interrupt
begins, maskable interrupts are inhibited until the I bit in the CCR is
cleared. This typically occurs when a return from interrupt (RTI)
instruction at the end of the SWI service routine restores context.

Table 5-21. Jump and Subroutine Instructions

Mnemonic Function Operation

BSR Branch to subroutine
SP – 2 ⇒ SP

RTNH : RTNL ⇒ M(SP) : M(SP+1)
Subroutine address ⇒ PC

CALL
Call subroutine

in expanded memory

SP – 2 ⇒ SP
RTNH:RTNL⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP
(PPAGE) ⇒ M(SP)
Page ⇒ PPAGE

Subroutine address ⇒ PC

JMP Jump Address ⇒ PC

JSR Jump to subroutine
SP – 2 ⇒ SP

RTNH : RTNL⇒ M(SP) : M(SP+1)
Subroutine address ⇒ PC

RTC Return from call

M(SP) ⇒ PPAGE
SP + 1 ⇒ SP

M(SP) : M(SP+1) ⇒ PCH : PCL
SP + 2 ⇒ SP

RTS Return from subroutine
M(SP) : M(SP+1) ⇒ PCH : PCL

SP + 2 ⇒ SP
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 83

Instruction Set Overview
The CPU12 uses a variation of the software interrupt for unimplemented
opcode trapping. There are opcodes in all 256 positions in the page 1
opcode map, but only 54 of the 256 positions on page 2 of the opcode
map are used. If the CPU attempts to execute one of the unimplemented
opcodes on page 2, an opcode trap interrupt occurs. Traps are
essentially interrupts that share the $FFF8:$FFF9 interrupt vector.

The RTI instruction is used to terminate all exception handlers, including
interrupt service routines. RTI first restores the CCR, B:A, X, Y, and the
return address from the stack. If no other interrupt is pending, normal
execution resumes with the instruction following the last instruction that
executed prior to interrupt.

Table 5-22 is a summary of interrupt instructions.

Table 5-22. Interrupt Instructions

Mnemonic Function Operation

RTI
Return

from interrupt

(M(SP)) ⇒ CCR; (SP) + $0001 ⇒ SP
(M(SP) : M(SP+1)) ⇒ B : A; (SP) + $0002 ⇒ SP

(M(SP) : M(SP+1)) ⇒ XH : XL; (SP) + $0004 ⇒ SP
(M(SP) : M(SP+1)) ⇒ PCH : PCL; (SP) + $0002 ⇒ SP

(M(SP) : M(SP+1)) ⇒ YH : YL; (SP) + $0004 ⇒ SP

SWI Software interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)

TRAP
Unimplemented
opcode interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)
Reference Manual S12CPUV2

84 Instruction Set Overview MOTOROLA

Instruction Set Overview
Index Manipulation Instructions
5.23 Index Manipulation Instructions

The index manipulation instructions perform 8- and 16-bit operations on
the three index registers and accumulators, other registers, or memory,
as shown in Table 5-23 .

Table 5-23. Index Manipulation Instructions

Mnemonic Function Operation

Addition Instructions

ABX Add B to X (B) + (X) ⇒ X

ABY Add B to Y (B) + (Y) ⇒ Y

Compare Instructions

CPS Compare SP to memory (SP) – (M : M + 1)

CPX Compare X to memory (X) – (M : M + 1)

CPY Compare Y to memory (Y) – (M : M + 1)

Load Instructions

LDS Load SP from memory M : M+1 ⇒ SP

LDX Load X from memory (M : M + 1) ⇒ X

LDY Load Y from memory (M : M + 1) ⇒ Y

LEAS Load effective address into SP Effective address ⇒ SP

LEAX Load effective address into X Effective address ⇒ X

LEAY Load effective address into Y Effective address ⇒ Y

Store Instructions

STS Store SP in memory (SP) ⇒ M:M+1

STX Store X in memory (X) ⇒ M : M + 1

STY Store Y in memory (Y) ⇒ M : M + 1

Transfer Instructions

TFR Transfer register to register
(A, B, CCR, D, X, Y, or SP)

⇒ A, B, CCR, D, X, Y, or SP

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS transfer X to SP (X) ⇒ SP

TYS transfer Y to SP (Y) ⇒ SP

Exchange Instructions

EXG Exchange register to register
(A, B, CCR, D, X, Y, or SP)

⇔ (A, B, CCR, D, X, Y, or SP)

XGDX EXchange D with X (D) ⇔ (X)

XGDY EXchange D with Y (D) ⇔ (Y)
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 85

Instruction Set Overview
5.24 Stacking Instructions

The two types of stacking instructions, are shown in Table 5-24 . Stack
pointer instructions use specialized forms of mathematical and data
transfer instructions to perform stack pointer manipulation. Stack
operation instructions save information on and retrieve information from
the system stack.

Table 5-24. Stacking Instructions

Mnemonic Function Operation

Stack Pointer Instructions

CPS Compare SP to memory (SP) – (M : M + 1)

DES Decrement SP (SP) – 1 ⇒ SP

INS Increment SP (SP) + 1 ⇒ SP

LDS Load SP (M : M + 1) ⇒ SP

LEAS
Load effective address

into SP
Effective address ⇒ SP

STS Store SP (SP) ⇒ M : M + 1

TSX Transfer SP to X (SP) ⇒ X

TSY Transfer SP to Y (SP) ⇒ Y

TXS Transfer X to SP (X) ⇒ SP

TYS Transfer Y to SP (Y) ⇒ SP

Stack Operation Instructions

PSHA Push A (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

PSHB Push B (SP) – 1 ⇒ SP; (B) ⇒ M(SP)

PSHC Push CCR (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

PSHD Push D (SP) – 2 ⇒ SP; (A : B) ⇒ M(SP) : M(SP+1)

PSHX Push X (SP) – 2 ⇒ SP; (X) ⇒ M(SP) : M(SP+1)

PSHY Push Y (SP) – 2 ⇒ SP; (Y) ⇒ M(SP) : M(SP+1)

PULA Pull A (M(SP)) ⇒ A; (SP) + 1 ⇒ SP

PULB Pull B (M(SP)) ⇒ B; (SP) + 1 ⇒ SP

PULC Pull CCR (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

PULD Pull D (M(SP) : M(SP+1)) ⇒ A : B; (SP) + 2 ⇒ SP

PULX Pull X (M(SP) : M(SP+1)) ⇒ X; (SP) + 2 ⇒ SP

PULY Pull Y (M(SP) : M(SP+1)) ⇒ Y; (SP) + 2 ⇒ SP
Reference Manual S12CPUV2

86 Instruction Set Overview MOTOROLA

Instruction Set Overview
Pointer and Index Calculation Instructions
5.25 Pointer and Index Calculation Instructions

The load effective address instructions allow 5-, 8-, or 16-bit constants
or the contents of 8-bit accumulators A and B or 16-bit accumulator D to
be added to the contents of the X and Y index registers, or to the SP.

Table 5-25 is a summary of pointer and index instructions.

Table 5-25. Pointer and Index Calculation Instructions

Mnemonic Function Operation

LEAS
Load result of indexed addressing mode

effective address calculation
into stack pointer

r ± constant ⇒ SP or
(r) + (accumulator) ⇒ SP

r = X, Y, SP, or PC

LEAX
Load result of indexed addressing mode

effective address calculation
into x index register

r ± constant ⇒X or
(r) + (accumulator) ⇒X

r = X, Y, SP, or PC

LEAY
Load result of indexed addressing mode

effective address calculation
into y index register

r ± constant ⇒Y or
(r) + (accumulator) ⇒ Y

r = X, Y, SP, or PC
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 87

Instruction Set Overview
5.26 Condition Code Instructions

Condition code instructions are special forms of mathematical and data
transfer instructions that can be used to change the condition code
register. Table 5-26 shows instructions that can be used to manipulate
the CCR.

Table 5-26. Condition Code Instructions

Mnemonic Function Operation

ANDCC Logical AND CCR with memory (CCR) • (M) ⇒ CCR

CLC Clear C bit 0 ⇒ C

CLI Clear I bit 0 ⇒ I

CLV Clear V bit 0 ⇒ V

ORCC Logical OR CCR with memory (CCR) + (M) ⇒ CCR

PSHC Push CCR onto stack (SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)

PULC Pull CCR from stack (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

SEC Set C bit 1 ⇒ C

SEI Set I bit 1 ⇒ I

SEV Set V bit 1 ⇒ V

TAP Transfer A to CCR (A) ⇒ CCR

TPA Transfer CCR to A (CCR) ⇒ A
Reference Manual S12CPUV2

88 Instruction Set Overview MOTOROLA

Instruction Set Overview
Stop and Wait Instructions
5.27 Stop and Wait Instructions

As shown in Table 5-27 , two instructions put the CPU12 in an inactive
state that reduces power consumption.

The stop instruction (STOP) stacks a return address and the contents of
CPU registers and accumulators, then halts all system clocks.

The wait instruction (WAI) stacks a return address and the contents of
CPU registers and accumulators, then waits for an interrupt service
request; however, system clock signals continue to run.

Both STOP and WAI require that either an interrupt or a reset exception
occur before normal execution of instructions resumes. Although both
instructions require the same number of clock cycles to resume normal
program execution after an interrupt service request is made, restarting
after a STOP requires extra time for the oscillator to reach operating
speed.

Table 5-27. Stop and Wait Instructions

Mnemonic Function Operation

STOP Stop

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)
Stop CPU clocks

WAI Wait for interrupt

SP – 2 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; YH : YL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; XH : XL ⇒ M(SP) : M(SP+1)
SP – 2 ⇒ SP; B : A ⇒ M(SP) : M(SP+1)

SP – 1 ⇒ SP; CCR ⇒ M(SP)
S12CPUV2 Reference Manual

MOTOROLA Instruction Set Overview 89

Instruction Set Overview
5.28 Background Mode and Null Operations

Background debug mode (BDM) is a special CPU12 operating mode
that is used for system development and debugging. Executing enter
background debug mode (BGND) when BDM is enabled puts the
CPU12 in this mode. For complete information, refer to Section 8.
Instruction Queue .

Null operations are often used to replace other instructions during
software debugging. Replacing conditional branch instructions with
branch never (BRN), for instance, permits testing a decision-making
routine by disabling the conditional branch without disturbing the offset
value.

Null operations can also be used in software delay programs to consume
execution time without disturbing the contents of other CPU registers or
memory.

Table 5-28 shows the BGND and null operation (NOP) instructions.

Table 5-28. Background Mode and Null Operation Instructions

Mnemonic Function Operation

BGND Enter background debug mode
If BDM enabled, enter BDM;

else resume normal processing

BRN Branch never Does not branch

LBRN Long branch never Does not branch

NOP Null operation —
Reference Manual S12CPUV2

90 Instruction Set Overview MOTOROLA

Reference Manual — S12CPUV2

Section 6. Instruction Glossary
6.1 Introduction

This section is a comprehensive reference to the CPU12 instruction set.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 91

Instruction Glossary
6.2 Glossary Information

The glossary contains an entry for each assembler mnemonic, in
alphabetic order. Figure 6-1 is a representation of a glossary page.

Figure 6-1. Example Glossary Page

Each entry contains symbolic and textual descriptions of operation,
information concerning the effect of operation on status bits in the
condition code register, and a table that describes assembler syntax,
address mode variations, and cycle-by-cycle execution of the
instruction.

S X H

—

N: Set if MSB of resu

Z: Set if result is $00

V: 0; Cleared.

Load Index Regi

Operation:

Description: Loads the most significa
memory at the addres

CCR Details:

DETAILED SYNTAX
AND CYCLE-BY-CYCLE

OPERATION

EFFECT ON
CONDITION CODE REGISTER

STATUS BITS

DETAILED DESCRIPTION
OF OPERATION

SYMBOLIC DESCRIPTION
OF OPERATION

MNEMONIC LDX
(M : M+1) ⇒ X

content of the next b

——

Source Form Address Mode

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysp
LDX oprx9,xysp
LDX oprx16,xysp
LDX [D,xysp]
LDX [oprx16,xysp]

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CE j j
DE d d
FE h h
EE x b
EE x b
EE x b
EE x b
EE x b
Reference Manual S12CPUV2

92 Instruction Glossary MOTOROLA

Instruction Glossary
Condition Code Changes
6.3 Condition Code Changes

The following special characters are used to describe the effects of
instruction execution on the status bits in the condition code register.

– — Status bit not affected by operation

0 — Status bit cleared by operation

1 — Status bit set by operation

∆ — Status bit affected by operation

⇓ — Status bit may be cleared or remain set, but is not set
by operation.

⇑ — Status bit may be set or remain cleared, but is not
cleared by operation.

? — Status bit may be changed by operation, but the final
state is not defined.

! — Status bit used for a special purpose
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 93

Instruction Glossary
6.4 Object Code Notation

The digits 0 to 9 and the uppercase letters A to F are used to express
hexadecimal values. Pairs of lowercase letters represent the 8-bit values
as described here.

dd — 8-bit direct address $0000 to $00FF; high byte
assumed to be $00

ee — High-order byte of a 16-bit constant offset for indexed
addressing

eb — Exchange/transfer post-byte

ff — Low-order eight bits of a 9-bit signed constant offset
for indexed addressing, or low-order byte of a 16-bit
constant offset for indexed addressing

hh — High-order byte of a 16-bit extended address

ii — 8-bit immediate data value

jj — High-order byte of a 16-bit immediate data value

kk — Low-order byte of a 16-bit immediate data value

lb — Loop primitive (DBNE) post-byte

ll — Low-order byte of a 16-bit extended address

mm— 8-bit immediate mask value for bit manipulation
instructions; set bits indicate bits to be affected

pg — Program overlay page (bank) number used in CALL
instruction

qq — High-order byte of a 16-bit relative offset for long
branches

tn — Trap number $30–$39 or $40–$FF

rr — Signed relative offset $80 (–128) to $7F (+127)
offset relative to the byte following the relative offset
byte, or low-order byte of a 16-bit relative offset for
long branches

xb — Indexed addressing post-byte
Reference Manual S12CPUV2

94 Instruction Glossary MOTOROLA

Instruction Glossary
Source Forms
6.5 Source Forms

The glossary pages provide only essential information about assembler
source forms. Assemblers generally support a number of assembler
directives, allow definition of program labels, and have special
conventions for comments. For complete information about writing
source files for a particular assembler, refer to the documentation
provided by the assembler vendor.

Assemblers are typically flexible about the use of spaces and tabs.
Often, any number of spaces or tabs can be used where a single space
is shown on the glossary pages. Spaces and tabs are also normally
allowed before and after commas. When program labels are used, there
must also be at least one tab or space before all instruction mnemonics.
This required space is not apparent in the source forms.

Everything in the source forms columns, except expressions in italic
characters, is literal information which must appear in the assembly
source file exactly as shown. The initial 3- to 5-letter mnemonic is always
a literal expression. All commas, pound signs (#), parentheses, square
brackets ([or]), plus signs (+), minus signs (–), and the register
designation D (as in [D,...), are literal characters.

Groups of italic characters in the columns represent variable information
to be supplied by the programmer. These groups can include any
alphanumeric character or the underscore character, but cannot include
a space or comma. For example, the groups xysp and oprx0_xysp are
both valid, but the two groups oprx0 xysp are not valid because there is
a space between them. Permitted syntax is described here.

The definition of a legal label or expression varies from assembler to
assembler. Assemblers also vary in the way CPU registers are specified.
Refer to assembler documentation for detailed information.
Recommended register designators are a, A, b, B, ccr, CCR, d, D, x, X,
y, Y, sp, SP, pc, and PC.

abc — Any one legal register designator for accumulators A or
B or the CCR

abcdxys — Any one legal register designator for accumulators A or
B, the CCR, the double accumulator D, index registers X
or Y, or the SP. Some assemblers may accept t2, T2, t3,
or T3 codes in certain cases of transfer and exchange
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 95

Instruction Glossary
instructions, but these forms are intended for Motorola
use only.

abd — Any one legal register designator for accumulators A or
B or the double accumulator D

abdxys — Any one legal register designator for accumulators A or
B, the double accumulator D, index register X or Y, or the
SP

dxys — Any one legal register designation for the double
accumulator D, index registers X or Y, or the SP

msk8 — Any label or expression that evaluates to an 8-bit value.
Some assemblers require a # symbol before this value.

opr8i — Any label or expression that evaluates to an 8-bit
immediate value

opr16i — Any label or expression that evaluates to a 16-bit
immediate value

opr8a — Any label or expression that evaluates to an 8-bit value.
The instruction treats this 8-bit value as the low-order 8
bits of an address in the direct page of the 64-Kbyte
address space ($00xx).

opr16a — Any label or expression that evaluates to a 16-bit value.
The instruction treats this value as an address in the
64-Kbyte address space.

oprx0_xysp — This word breaks down into one of the following
alternative forms that assemble to an 8-bit indexed
addressing postbyte code. These forms generate the
same object code except for the value of the postbyte
code, which is designated as xb in the object code
columns of the glossary pages. As with the source
forms, treat all commas, plus signs, and minus signs as
literal syntax elements. The italicized words used in
these forms are included in this key.

oprx5,xysp
oprx3,–xys
oprx3,+xys
oprx3,xys–
oprx3,xys+
abd,xysp
Reference Manual S12CPUV2

96 Instruction Glossary MOTOROLA

Instruction Glossary
Source Forms
oprx3 — Any label or expression that evaluates to a value in the
range +1 to +8

oprx5 — Any label or expression that evaluates to a 5-bit value in
the range –16 to +15

oprx9 — Any label or expression that evaluates to a 9-bit value in
the range –256 to +255

oprx16 — Any label or expression that evaluates to a 16-bit value.
Since the CPU12 has a 16-bit address bus, this can be
either a signed or an unsigned value.

page — Any label or expression that evaluates to an 8-bit value.
The CPU12 recognizes up to an 8-bit page value for
memory expansion but not all MCUs that include the
CPU12 implement all of these bits. It is the
programmer’s responsibility to limit the page value to
legal values for the intended MCU system. Some
assemblers require a # symbol before this value.

rel8 — Any label or expression that refers to an address that is
within –128 to +127 locations from the next address after
the last byte of object code for the current instruction.
The assembler will calculate the 8-bit signed offset and
include it in the object code for this instruction.

rel9 — Any label or expression that refers to an address that is
within –256 to +255 locations from the next address after
the last byte of object code for the current instruction.
The assembler will calculate the 9-bit signed offset and
include it in the object code for this instruction. The sign
bit for this 9-bit value is encoded by the assembler as a
bit in the looping postbyte (lb) of one of the loop control
instructions DBEQ, DBNE, IBEQ, IBNE, TBEQ, or
TBNE. The remaining eight bits of the offset are included
as an extra byte of object code.

rel16 — Any label or expression that refers to an address
anywhere in the 64-Kbyte address space. The
assembler will calculate the 16-bit signed offset between
this address and the next address after the last byte of
object code for this instruction and include it in the object
code for this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 97

Instruction Glossary
6.6 Cycle-by-Cycle Execution

This information is found in the tables at the bottom of each instruction
glossary page. Entries show how many bytes of information are
accessed from different areas of memory during the course of instruction
execution. With this information and knowledge of the type and speed of
memory in the system, a user can determine the execution time for any
instruction in any system.

A single letter code in the column represents a single CPU cycle.
Uppercase letters indicate 16-bit access cycles. There are cycle codes
for each addressing mode variation of each instruction. Simply count
code letters to determine the execution time of an instruction in a
best-case system. An example of a best-case system is a single-chip
16-bit system with no 16-bit off-boundary data accesses to any locations
other than on-chip RAM.

Many conditions can cause one or more instruction cycles to be
stretched, but the CPU is not aware of the stretch delays because the
clock to the CPU is temporarily stopped during these delays.

The following paragraphs explain the cycle code letters used and note
conditions that can cause each type of cycle to be stretched.

trapnum — Any label or expression that evaluates to an 8-bit
number in the range $30–$39 or $40–$FF. Used for
TRAP instruction.

xys — Any one legal register designation for index registers X
or Y or the SP

xysp — Any one legal register designation for index registers X
or Y, the SP, or the PC. The reference point for
PC-relative instructions is the next address after the last
byte of object code for the current instruction.

f — Free cycle. This indicates a cycle where the CPU
does not require use of the system buses. An f cycle
is always one cycle of the system bus clock. These
cycles can be used by a queue controller or the
background debug system to perform single cycle
accesses without disturbing the CPU.
Reference Manual S12CPUV2

98 Instruction Glossary MOTOROLA

Instruction Glossary
Cycle-by-Cycle Execution
g — Read 8-bit PPAGE register. These cycles are used
only with the CALL instruction to read the current
value of the PPAGE register and are not visible on the
external bus. Since the PPAGE register is an internal
8-bit register, these cycles are never stretched.

I — Read indirect pointer. Indexed indirect instructions
use this 16-bit pointer from memory to address the
operand for the instruction. These are always 16-bit
reads but they can be either aligned or misaligned.
These cycles are extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the corresponding data is stored in external memory.
There can be additional stretching when the address
space is assigned to a chip-select circuit programmed
for slow memory. These cycles are also stretched if
they correspond to misaligned access to a memory
that is not designed for single-cycle misaligned
access.

i — Read indirect PPAGE value. These cycles are only
used with indexed indirect versions of the CALL
instruction, where the 8-bit value for the memory
expansion page register of the CALL destination is
fetched from an indirect memory location. These
cycles are stretched only when controlled by a
chip-select circuit that is programmed for slow
memory.

n — Write 8-bit PPAGE register. These cycles are used
only with the CALL and RTC instructions to write the
destination value of the PPAGE register and are not
visible on the external bus. Since the PPAGE register
is an internal 8-bit register, these cycles are never
stretched.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 99

Instruction Glossary
O — Optional cycle. Program information is always fetched
as aligned 16-bit words. When an instruction consists
of an odd number of bytes, and the first byte is
misaligned, an O cycle is used to make an additional
program word access (P) cycle that maintains queue
order. In all other cases, the O cycle appears as a free
(f) cycle. The $18 prebyte for page two opcodes is
treated as a special 1-byte instruction. If the prebyte is
misaligned, the O cycle is used as a program word
access for the prebyte; if the prebyte is aligned, the O
cycle appears as a free cycle. If the remainder of the
instruction consists of an odd number of bytes,
another O cycle is required some time before the
instruction is completed. If the O cycle for the prebyte
is treated as a P cycle, any subsequent O cycle in the
same instruction is treated as an f cycle; if the O cycle
for the prebyte is treated as an f cycle, any
subsequent O cycle in the same instruction is treated
as a P cycle. Optional cycles used for program word
accesses can be extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can
be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory. Optional cycles used as free cycles are
never stretched.

P — Program word access. Program information is fetched
as aligned 16-bit words. These cycles are extended to
two bus cycles if the MCU is operating with an 8-bit
external data bus and the program is stored
externally. There can be additional stretching when
the address space is assigned to a chip-select circuit
programmed for slow memory.

r — 8-bit data read. These cycles are stretched only when
controlled by a chip-select circuit programmed for
slow memory.
Reference Manual S12CPUV2

100 Instruction Glossary MOTOROLA

Instruction Glossary
Cycle-by-Cycle Execution
R — 16-bit data read. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is
stored in external memory. There can be additional
stretching when the address space is assigned to a
chip-select circuit programmed for slow memory.
These cycles are also stretched if they correspond to
misaligned accesses to memory that is not designed
for single-cycle misaligned access.

s — Stack 8-bit data. These cycles are stretched only
when controlled by a chip-select circuit programmed
for slow memory.

S — Stack 16-bit data. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external
memory. There can be additional stretching if the
address space is assigned to a chip-select circuit
programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses
to a memory that is not designed for single cycle
misaligned access. The internal RAM is designed to
allow single cycle misaligned word access.

w — 8-bit data write. These cycles are stretched only when
controlled by a chip-select circuit programmed for
slow memory.

W — 16-bit data write. These cycles are extended to two
bus cycles if the MCU is operating with an 8-bit
external data bus and the corresponding data is
stored in external memory. There can be additional
stretching when the address space is assigned to a
chip-select circuit programmed for slow memory.
These cycles are also stretched if they correspond to
misaligned access to a memory that is not designed
for single-cycle misaligned access.

u — Unstack 8-bit data. These cycles are stretched only
when controlled by a chip-select circuit programmed
for slow memory.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 101

Instruction Glossary
U — Unstack 16-bit data. These cycles are extended to
two bus cycles if the MCU is operating with an 8-bit
external data bus and the SP is pointing to external
memory. There can be additional stretching when the
address space is assigned to a chip-select circuit
programmed for slow memory. These cycles are also
stretched if they correspond to misaligned accesses
to a memory that is not designed for single-cycle
misaligned access. The internal RAM is designed to
allow single-cycle misaligned word access.

V — Vector fetch. Vectors are always aligned 16-bit words.
These cycles are extended to two bus cycles if the
MCU is operating with an 8-bit external data bus and
the program is stored in external memory. There can
be additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory.

t — 8-bit conditional read. These cycles are either data
read cycles or unused cycles, depending on the data
and flow of the REVW instruction. These cycles are
stretched only when controlled by a chip-select circuit
programmed for slow memory.

T — 16-bit conditional read. These cycles are either data
read cycles or free cycles, depending on the data and
flow of the REV or REVW instruction. These cycles
are extended to two bus cycles if the MCU is operating
with an 8-bit external data bus and the corresponding
data is stored in external memory. There can be
additional stretching when the address space is
assigned to a chip-select circuit programmed for slow
memory. These cycles are also stretched if they
correspond to misaligned accesses to a memory that
is not designed for single-cycle misaligned access.

x — 8-bit conditional write. These cycles are either data
write cycles or free cycles, depending on the data and
flow of the REV or REVW instruction. These cycles
are only stretched when controlled by a chip-select
circuit programmed for slow memory.
Reference Manual S12CPUV2

102 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
6.7 Glossary

This subsection contains an entry for each assembler mnemonic, in
alphabetic order.

Special Notation for Branch Taken/Not Taken Cases

PPP/P — Short branches require three cycles if taken, one
cycle if not taken. Since the instruction consists of a
single word containing both an opcode and an 8-bit
offset, the not-taken case is simple — the queue
advances, another program word fetch is made, and
execution continues with the next instruction. The
taken case requires that the queue be refilled so that
execution can continue at a new address. First, the
effective address of the destination is determined,
then the CPU performs three program word fetches
from that address.

OPPP/OPO — Long branches require four cycles if taken, three
cycles if not taken. Optional cycles are required
because all long branches are page two opcodes, and
thus include the $18 prebyte. The CPU12 treats the
prebyte as a special 1-byte instruction. If the prebyte
is misaligned, the optional cycle is used to perform a
program word access; if the prebyte is aligned, the
optional cycle is used to perform a free cycle. As a
result, both the taken and not-taken cases use one
optional cycle for the prebyte. In the not-taken case,
the queue must advance so that execution can
continue with the next instruction, and another
optional cycle is required to maintain the queue. The
taken case requires that the queue be refilled so that
execution can continue at a new address. First, the
effective address of the destination is determined,
then the CPU performs three program word fetches
from that address.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 103

Instruction Glossary
Operation: (A) + (B) ⇒ A

Description: Adds the content of accumulator B to the content of accumulator A and
places the result in A. The content of B is not changed. This instruction
affects the H status bit so it is suitable for use in BCD arithmetic
operations. See DAA instruction for additional information.

ABA Add Accumulator B to Accumulator A ABA

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • B3 + B3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • B7 + B7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ABA INH 18 06 OO OO
Reference Manual S12CPUV2

104 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (B) + (X) ⇒ X

Description: Adds the 8-bit unsigned content of accumulator B to the content of index
register X considering the possible carry out of the low-order byte of X;
places the result in X. The content of B is not changed.

This mnemonic is implemented by the LEAX B,X instruction. The LEAX
instruction allows A, B, D, or a constant to be added to X. For
compatibility with the M68HC11, the mnemonic ABX is translated into
the LEAX B,X instruction by the assembler.

ABX Add Accumulator B to Index Register X ABX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ABX
translates to... LEAX B,X IDX 1A E5 Pf PP (1)

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 105

Instruction Glossary
Operation: (B) + (Y) ⇒ Y

Description: Adds the 8-bit unsigned content of accumulator B to the content of index
register Y considering the possible carry out of the low-order byte of Y;
places the result in Y. The content of B is not changed.

This mnemonic is implemented by the LEAY B,Y instruction. The LEAY
instruction allows A, B, D, or a constant to be added to Y. For
compatibility with the M68HC11, the mnemonic ABY is translated into
the LEAY B,Y instruction by the assembler.

ABY Add Accumulator B to Index Register Y ABY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ABY
translates to... LEAY B,Y

IDX 19 ED Pf PP (1)

1. Due to internal M68HC12CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
Reference Manual S12CPUV2

106 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + (M) + C ⇒ A

Description: Adds the content of accumulator A to the content of memory location M,
then adds the value of the C bit and places the result in A. This
instruction affects the H status bit, so it is suitable for use in BCD
arithmetic operations. See DAA instruction for additional information.

ADCA Add with Carry to A ADCA

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysp
ADCA oprx9,xysp
ADCA oprx16,xysp
ADCA [D,xysp]
ADCA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 107

Instruction Glossary
Operation: (B) + (M) + C ⇒ B

Description: Adds the content of accumulator B to the content of memory location M,
then adds the value of the C bit and places the result in B. This
instruction affects the H status bit, so it is suitable for use in BCD
arithmetic operations. See DAA instruction for additional information.

ADCB Add with Carry to B ADCB

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: X3 • M3 + M3 • R3 + R3 • X3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: X7 • M7 • R7 + X7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: X7 • M7 + M7 • R7 + R7 • X7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysp
ADCB oprx9,xysp
ADCB oprx16,xysp
ADCB [D,xysp]
ADCB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

108 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + (M) ⇒ A

Description: Adds the content of memory location M to accumulator A and places the
result in A. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations. See DAA instruction for additional
information.

ADDA Add without Carry to A ADDA

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: A3 • M3 + M3 • R3 + R3 • A3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysp
ADDA oprx9,xysp
ADDA oprx16,xysp
ADDA [D,xysp]
ADDA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 109

Instruction Glossary
Operation: (B) + (M) ⇒ B

Description: Adds the content of memory location M to accumulator B and places the
result in B. This instruction affects the H status bit, so it is suitable for use
in BCD arithmetic operations. See DAA instruction for additional
information.

ADDB Add without Carry to B ADDB

CCR Details:
S X H I N Z V C

– – ∆ – ∆ ∆ ∆ ∆

H: B3 • M3 + M3 • R3 + R3 • B3
Set if there was a carry from bit 3; cleared otherwise

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysp
ADDB oprx9,xysp
ADDB oprx16,xysp
ADDB [D,xysp]
ADDB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

110 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A : B) + (M : M+1) ⇒ A : B

Description: Adds the content of memory location M concatenated with the content of
memory location M +1 to the content of double accumulator D and
places the result in D. Accumulator A forms the high-order half of 16-bit
double accumulator D; accumulator B forms the low-order half.

ADDD Add Double Accumulator ADDD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if there was a carry from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysp
ADDD oprx9,xysp
ADDD oprx16,xysp
ADDD [D,xysp]
ADDD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPF
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 111

Instruction Glossary
Operation: (A) • (M) ⇒ A

Description: Performs logical AND between the content of memory location M and
the content of accumulator A. The result is placed in A. After the
operation is performed, each bit of A is the logical AND of the
corresponding bits of M and of A before the operation began.

ANDA Logical AND A ANDA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysp
ANDA oprx9,xysp
ANDA oprx16,xysp
ANDA [D,xysp]
ANDA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

112 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (B) • (M) ⇒ B

Description: Performs logical AND between the content of memory location M and
the content of accumulator B. The result is placed in B. After the
operation is performed, each bit of B is the logical AND of the
corresponding bits of M and of B before the operation began.

ANDB Logical AND B ANDB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysp
ANDB oprx9,xysp
ANDB oprx16,xysp
ANDB [D,xysp]
ANDB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 113

Instruction Glossary
Operation: (CCR) • (Mask) ⇒ CCR

Description: Performs bitwise logical AND between the content of a mask operand
and the content of the CCR. The result is placed in the CCR. After the
operation is performed, each bit of the CCR is the result of a logical AND
with the corresponding bits of the mask. To clear CCR bits, clear the
corresponding mask bits. CCR bits that correspond to ones in the mask
are not changed by the ANDCC operation.

If the I mask bit is cleared, there is a 1-cycle delay before the system
allows interrupt requests. This prevents interrupts from occurring
between instructions in the sequences CLI, WAI and CLI, SEI (CLI is
equivalent to ANDCC #$EF).

Condition code bits are cleared if the corresponding bit was 0 before the
operation or if the corresponding bit in the mask is 0.

ANDCC Logical AND CCR with Mask ANDCC

CCR Details:
S X H I N Z V C

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ANDCC #opr8i IMM 10 ii P P
Reference Manual S12CPUV2

114 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one bit position to the left. Bit 0 is
loaded with a 0. The C status bit is loaded from the most significant bit
of M.

ASL Arithmetic Shift Left Memory
(same as LSL) ASL

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M7
Set if the MSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASL opr16a
ASL oprx0_xysp
ASL oprx9,xysp
ASL oprx16,xysp
ASL [D,xysp]
ASL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 115

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one bit position to the left. Bit 0 is loaded
with a 0. TheC status bit is loaded from the most significant bit of A.

ASLA Arithmetic Shift Left A
(same as LSLA) ASLA

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A7
Set if the MSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASLA INH 48 O O
Reference Manual S12CPUV2

116 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one bit position to the left. Bit 0 is loaded
with a 0. The C status bit is loaded from the most significant bit of B.

ASLB Arithmetic Shift Left B
(same as LSLB) ASLB

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B7
Set if the MSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASLB INH 58 1 O
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 117

Instruction Glossary
Operation:

Description: Shifts all bits of double accumulator D one bit position to the left. Bit 0 is
loaded with a 0. The C status bit is loaded from the most significant bit
of D.

ASLD Arithmetic Shift Left Double Accumulator
(same as LSLD) ASLD

C b7 – – – – – – b0 b7 – – – – – – b0 0

Accumulator A Accumulator B

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: D15
Set if the MSB of D was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASLD INH 59 O O
Reference Manual S12CPUV2

118 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

ASR Arithmetic Shift Right Memory ASR

Cb7 – – – – – – b0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M0
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASR opr16a
ASR oprx0_xysp
ASR oprx9,xysp
ASR oprx16,xysp
ASR [D,xysp]
ASR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 119

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

ASRA Arithmetic Shift Right A ASRA

Cb7 – – – – – – b0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A0
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASRA INH 47 O O
Reference Manual S12CPUV2

120 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is held
constant. Bit 0 is loaded into the C status bit. This operation effectively
divides a two’s complement value by two without changing its sign. The
carry bit can be used to round the result.

ASRB Arithmetic Shift Right B ASRB

Cb7 – – – – – – b0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B0
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ASRB INH 57 O O
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 121

Instruction Glossary
Operation: If C = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

BCC Branch if Carry Cleared
(Same as BHS) BCC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BCC rel8 REL 24 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

122 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (M) • (Mask) ⇒ M

Description: Clears bits in location M. To clear a bit, set the corresponding bit in the
mask byte. Bits in M that correspond to 0s in the mask byte are not
changed. Mask bytes can be located at PC + 2, PC + 3, or PC + 4,
depending on addressing mode used.

BCLR Clear Bits in Memory BCLR

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address
Mode(1)

1. Indirect forms of indexed addressing cannot be used with this instruction.

Object Code
Access Detail

HCS12 M68HC12

BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysp, msk8
BCLR oprx9,xysp, msk8
BCLR oprx16,xysp, msk8

DIR
EXT
IDX

IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 123

Instruction Glossary
Operation: If C = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

BCS Branch if Carry Set
(Same as BLO) BCS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BCS rel8 REL 25 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

124 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If Z = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

BEQ Branch if Equal BEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BEQ rel8 REL 27 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 125

Instruction Glossary
Operation: If N ⊕ V = 0, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement values
if (Accumulator) ≥ (Memory), then branch

Description: BGE can be used to branch after comparing or subtracting signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is greater than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BGE Branch if Greater than or Equal to Zero BGE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BGE rel8 REL 2C rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

126 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Description: BGND operates like a software interrupt, except that no registers are
stacked. First, the current PC value is stored in internal CPU register
TMP2. Next, the BDM ROM and background register block become
active. The BDM ROM contains a substitute vector, mapped to the
address of the software interrupt vector, which points to routines in the
BDM ROM that control background operation. The substitute vector is
fetched, and execution continues from the address that it points to.
Finally, the CPU checks the location that TMP2 points to. If the value
stored in that location is $00 (the BGND opcode), TMP2 is incremented,
so that the instruction that follows the BGND instruction is the first
instruction executed when normal program execution resumes.

For all other types of BDM entry, the CPU performs the same sequence
of operations as for a BGND instruction, but the value stored in TMP2
already points to the instruction that would have executed next had BDM
not become active. If active BDM is triggered just as a BGND instruction
is about to execute, the BDM firmware does increment TMP2, but the
change does not affect resumption of normal execution.

While BDM is active, the CPU executes debugging commands received
via a special single-wire serial interface. BDM is terminated by the
execution of specific debugging commands. Upon exit from BDM, the
background/boot ROM and registers are disabled, the instruction queue
is refilled starting with the return address pointed to by TMP2, and
normal processing resumes.

BDM is normally disabled to avoid accidental entry. While BDM is
disabled, BGND executes as described, but the firmware causes
execution to return to the user program. Refer to Section 8. Instruction
Queue for more information concerning BDM.

BGND Enter Background Debug Mode BGND

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BGND INH 00 VfPPP VfPPP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 127

Instruction Glossary
Operation: If Z + (N ⊕ V) = 0, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement values
if (Accumulator) > (Memory), then branch

Description: BGT can be used to branch after comparing or subtracting signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than the value in M. After CBA or SBA, the branch
occurs if the value in B is greater than the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BGT Branch if Greater than Zero BGT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BGT rel8 REL 2E rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

128 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 0, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) > (Memory), then branch

Description: BHI can be used to branch after comparing or subtracting unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than the value in M. After CBA or SBA, the branch occurs if the
value in B is greater than the value in A. BHI should not be used for
branching after instructions that do not affect the C bit, such as
increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

BHI Branch if Higher BHI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BHI rel8 REL 22 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 129

Instruction Glossary
Operation: If C = 0, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) ≥ (Memory), then branch

Description: BHS can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than or equal to the value in M. After CBA or SBA, the branch
occurs if the value in B is greater than or equal to the value in A. BHS
should not be used for branching after instructions that do not affect the
C bit, such as increment, decrement, load, store, test, clear, or
complement.

See 3.8 Relative Addressing Mode for details of branch execution.

BHS Branch if Higher or Same
(Same as BCC) BHS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BHS rel8 REL 24 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

130 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) • (M)

Description: Performs bitwise logical AND on the content of accumulator A and the
content of memory location M and modifies the condition codes
accordingly. Each bit of the result is the logical AND of the corresponding
bits of the accumulator and the memory location. Neither the content of
the accumulator nor the content of the memory location is affected.

BITA Bit Test A BITA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysp
BITA oprx9,xysp
BITA oprx16,xysp
BITA [D,xysp]
BITA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 131

Instruction Glossary
Operation: (B) • (M)

Description: Performs bitwise logical AND on the content of accumulator B and the
content of memory location M and modifies the condition codes
accordingly. Each bit of the result is the logical AND of the corresponding
bits of the accumulator and the memory location. Neither the content of
the accumulator nor the content of the memory location is affected.

BITB Bit Test B BITB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysp
BITB oprx9,xysp
BITB oprx16,xysp
BITB [D,xysp]
BITB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

132 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If Z + (N ⊕ V) = 1, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement numbers
if (Accumulator) ≤ (Memory), then branch

Description: BLE can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is less than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is less than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BLE Branch if Less Than or Equal to Zero BLE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLE rel8 REL 2F rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 133

Instruction Glossary
Operation: If C = 1, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) < (Memory), then branch

Description: BLO can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
less than the value in M. After CBA or SBA, the branch occurs if the
value in B is less than the value in A. BLO should not be used for
branching after instructions that do not affect the C bit, such as
increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

BLO Branch if Lower
(Same as BCS) BLO

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLO rel8 REL 25 rr PPP/P (1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

PPP/P(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

134 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 1, then (PC) + $0002 + Rel ⇒ PC

For unsigned values, if (Accumulator) ≤ (Memory), then branch

Description: If BLS is executed immediately after execution of CBA, CMPA, CMPB,
CMPD, CPX, CPY, SBA, SUBA, SUBB, or SUBD, a branch occurs if and
only if the unsigned binary number in the accumulator is less than or
equal to the unsigned binary number in memory. Generally not useful
after INC/DEC, LD/ST, and TST/CLR/COM because these instructions
do not affect the C status bit.

See 3.8 Relative Addressing Mode for details of branch execution.

BLS Branch if Lower or Same BLS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLS rel8 REL 23 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 135

Instruction Glossary
Operation: If N ⊕ V = 1, then (PC) + $0002 + Rel ⇒ PC

For signed two’s complement numbers
if (Accumulator) < (Memory), then branch

Description: BLT can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CMPD, CPS, CPX, CPY,
SBCA, SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU
register value is less than the value in M. After CBA or SBA, the branch
occurs if the value in B is less than the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

BLT Branch if Less than Zero BLT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BLT rel8 REL 2D rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

136 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

BMI Branch if Minus BMI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BMI rel8 REL 2B rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 137

Instruction Glossary
Operation: If Z = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

BNE Branch if Not Equal to Zero BNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BNE rel8 REL 26 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

138 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

BPL Branch if Plus BPL

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BPL rel8 REL 2A rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 139

Instruction Glossary
Operation: (PC) + $0002 + Rel ⇒ PC

Description: Unconditional branch to an address calculated as shown in the
expression. Rel is a relative offset stored as a two’s complement number
in the second byte of the branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must
always be refilled.

See 3.8 Relative Addressing Mode for details of branch execution.

BRA Branch Always BRA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BRA rel8 REL 20 rr PPP PPP
Reference Manual S12CPUV2

140 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If (M) • (Mask) = 0, then branch

Description: Performs a bitwise logical AND of memory location M and the mask
supplied with the instruction, then branches if and only if all bits with a
value of 1 in the mask byte correspond to bits with a value of 0 in the
tested byte. Mask operands can be located at PC + 1, PC + 2, or
PC + 4, depending on addressing mode. The branch offset is referenced
to the next address after the relative offset (rr) which is the last byte of
the instruction object code.

See 3.8 Relative Addressing Mode for details of branch execution.

BRCLR Branch if Bits Cleared BRCLR

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address
Mode(1) Object Code

Access Detail

HCS12 M68HC12

BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysp, msk8, rel8
BRCLR oprx9,xysp, msk8, rel8
BRCLR oprx16,xysp, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

1. Indirect forms of indexed addressing cannot be used with this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 141

Instruction Glossary
Operation: (PC) + $0002 ⇒ PC

Description: Never branches. BRN is effectively a 2-byte NOP that requires one cycle
to execute. BRN is included in the instruction set to provide a
complement to the BRA instruction. The instruction is useful during
program debug, to negate the effect of another branch instruction
without disturbing the offset byte. A complement for BRA is also useful
in compiler implementations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the BRN branch condition is never
satisfied, the branch is never taken, and only a single program fetch is
needed to update the instruction queue.

See 3.8 Relative Addressing Mode for details of branch execution.

BRN Branch Never BRN

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BRN rel8 REL 21 rr P P
Reference Manual S12CPUV2

142 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If (M) • (Mask) = 0, then branch

Description: Performs a bitwise logical AND of the inverse of memory location M and
the mask supplied with the instruction, then branches if and only if all bits
with a value of 1 in the mask byte correspond to bits with a value of one
in the tested byte. Mask operands can be located at PC + 1, PC + 2, or
PC + 4, depending on addressing mode. The branch offset is referenced
to the next address after the relative offset (rr) which is the last byte of
the instruction object code.

See 3.8 Relative Addressing Mode for details of branch execution.

BRSET Branch if Bits Set BRSET

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address
Mode(1) Object Code

Access Detail

HCS12 M68HC12

BRSET opr8a, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysp, msk8, rel8
BRSET oprx9,xysp, msk8, rel8
BRSET oprx16,xysp, msk8, rel8

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

1. Indirect forms of indexed addressing cannot be used with this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 143

Instruction Glossary
Operation: (M) + (Mask) ⇒ M

Description: Sets bits in memory location M. To set a bit, set the corresponding bit in
the mask byte. All other bits in M are unchanged. The mask byte can be
located at PC + 2, PC + 3, or PC + 4, depending upon addressing mode.

BSET Set Bit(s) in Memory BSET

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address
Mode(1) Object Code

Access Detail

HCS12 M68HC12

BSET opr8a, msk8
BSET opr16a, msk8
BSET oprx0_xysp, msk8
BSET oprx9,xysp, msk8
BSET oprx16,xysp, msk8

DIR
EXT
IDX

IDX1
IDX2

4C dd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP

1. Indirect forms of indexed addressing cannot be used with this instruction.
Reference Manual S12CPUV2

144 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
RTNH : RTNL ⇒ M(SP) : M(SP+1)
(PC) + Rel ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers
control to a subroutine. Uses the address of the instruction after the BSR
as a return address.

Decrements the SP by two, to allow the two bytes of the return address
to be stacked.

Stacks the return address (the SP points to the high-order byte of the
return address).

Branches to a location determined by the branch offset.

Subroutines are normally terminated with an RTS instruction, which
restores the return address from the stack.

BSR Branch to Subroutine BSR

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BSR rel8 REL 07 rr SPPP PPPS
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 145

Instruction Glossary
Operation: If V = 0, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 0.

BVC causes a branch when a previous operation on two’s complement
binary values does not cause an overflow. That is, when BVC follows a
two’s complement operation, a branch occurs when the result of the
operation is valid.

See 3.8 Relative Addressing Mode for details of branch execution.

BVC Branch if Overflow Cleared BVC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BVC rel8 REL 28 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
Reference Manual S12CPUV2

146 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: If V = 1, then (PC) + $0002 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 1.

BVS causes a branch when a previous operation on two’s complement
binary values causes an overflow. That is, when BVS follows a two’s
complement operation, a branch occurs when the result of the operation
is invalid.

See 3.8 Relative Addressing Mode for details of branch execution.

BVS Branch if Overflow Set BVS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

BVS rel8 REL 29 rr PPP/P (1) PPP/P(1)

1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program
fetch cycle if the branch is not taken.

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 147

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ M(SP) : M(SP+1)
(SP) – $0001 ⇒ SP; (PPAGE) ⇒ M(SP)
page ⇒ PPAGE; Subroutine Address ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers
control to a subroutine in expanded memory. Uses the address of the
instruction following the CALL as a return address. For code
compatibility, CALL also executes correctly in devices that do not have
expanded memory capability.

Decrements the SP by two, then stores the return address on the stack.
The SP points to the high-order byte of the return address.

Decrements the SP by one, then stacks the current memory page value
from the PPAGE register on the stack.

Writes a new page value supplied by the instruction to PPAGE and
transfers control to the subroutine.

In indexed-indirect modes, the subroutine address and the PPAGE
value are fetched from memory in the order M high byte, M low byte, and
new PPAGE value.

Expanded-memory subroutines must be terminated by an RTC
instruction, which restores the return address and PPAGE value from
the stack.

CALL Call Subroutine in Expanded Memory CALL

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CALL opr16a, page
CALL oprx0_xysp, page
CALL oprx9,xysp, page
CALL oprx16,xysp, page
CALL [D,xysp]
CALL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg
4B xb
4B xb ee ff

gnSsPPP
gnSsPPP
gnSsPPP
fgnSsPPP
fIignSsPPP
fIignSsPPP

gnfSsPPP
gnfSsPPP
gnfSsPPP

fgnfSsPPP
fIignSsPPP
fIignSsPPP
Reference Manual S12CPUV2

148 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) – (B)

Description: Compares the content of accumulator A to the content of accumulator B
and sets the condition codes, which may then be used for arithmetic and
logical conditional branches. The contents of the accumulators are not
changed.

CBA Compare Accumulators CBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • B7 + B7 • R7 + R7 • A7
Set if there was a borrow from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CBA INH 18 17 OO OO
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 149

Instruction Glossary
Operation: 0 ⇒ C bit

Description: Clears the C status bit. This instruction is assembled as ANDCC #$FE.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

CLC can be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

CLC Clear Carry CLC

CCR Details:
S X H I N Z V C

– – – – – – – 0

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLC
translates to... ANDCC #$FE IMM 10 FE P P
Reference Manual S12CPUV2

150 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: 0 ⇒ I bit

Description: Clears the I mask bit. This instruction is assembled as ANDCC #$EF.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

When the I bit is cleared, interrupts are enabled. There is a 1-cycle (bus
clock) delay in the clearing mechanism for the I bit so that, if interrupts
were previously disabled, the next instruction after a CLI will always be
executed, even if there was an interrupt pending prior to execution of the
CLI instruction.

CLI Clear Interrupt Mask CLI

CCR Details:
S X H I N Z V C

– – – 0 – – – –

I: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLI
translates to... ANDCC #$EF IMM 10 EF P P
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 151

Instruction Glossary
Operation: 0 ⇒ M

Description: All bits in memory location M are cleared to 0.

CLR Clear Memory CLR

CCR Details:
S X H I N Z V C

– – – – 0 1 0 0

N: 0; cleared

Z: 1; set

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLR opr16a
CLR oprx0_xysp
CLR oprx9,xysp
CLR oprx16,xysp
CLR [D,xysp]
CLR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff

PwO
Pw
PwO
PwP
PIfw
PIPw

wOP
Pw

PwO
PwP

PIfPw
PIPPw
Reference Manual S12CPUV2

152 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: 0 ⇒ A

Description: All bits in accumulator A are cleared to 0.

CLRA Clear A CLRA

CCR Details:
S X H I N Z V C

– – – – 0 1 0 0

N: 0; cleared

Z: 1; set

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLRA INH 87 O O
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 153

Instruction Glossary
Operation: 0 ⇒ B

Description: All bits in accumulator B are cleared to 0.

CLRB Clear B CLRB

CCR Details:
S X H I N Z V C

– – – – 0 1 0 0

N: 0; cleared

Z: 1; set

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLRB INH C7 O O
Reference Manual S12CPUV2

154 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: 0 ⇒ V bit

Description: Clears the V status bit. This instruction is assembled as ANDCC #$FD.
The ANDCC instruction can be used to clear any combination of bits in
the CCR in one operation.

CLV Clear Two’s Complement Overflow Bit CLV

CCR Details:
S X H I N Z V C

– – – – – – 0 –

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CLV
translates to... ANDCC #$FD IMM 10 FD P P
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 155

Instruction Glossary
Operation: (A) – (M)

Description: Compares the content of accumulator A to the content of memory
location M and sets the condition codes, which may then be used for
arithmetic and logical conditional branching. The contents of A and
location M are not changed.

CMPA Compare A CMPA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if there was a borrow from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysp
CMPA oprx9,xysp
CMPA oprx16,xysp
CMPA [D,xysp]
CMPA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

156 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (B) – (M)

Description: Compares the content of accumulator B to the content of memory
location M and sets the condition codes, which may then be used for
arithmetic and logical conditional branching. The contents of B and
location M are not changed.

CMPB Compare B CMPB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if there was a borrow from the MSB of the result; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysp
CMPB oprx9,xysp
CMPB oprx16,xysp
CMPB [D,xysp]
CMPB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 157

Instruction Glossary
Operation: (M) = $FF – (M) ⇒ M

Description: Replaces the content of memory location M with its one’s complement.
Each bit of M is complemented. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can
be expected to perform consistently. After operation on two’s
complement values, all signed branches are available.

COM Complement Memory COM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 1; set (for M6800 compatibility)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

COM opr16a
COM oprx0_xysp
COM oprx9,xysp
COM oprx16,xysp
COM [D,xysp]
COM [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

158 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A) = $FF – (A) ⇒ A

Description: Replaces the content of accumulator A with its one’s complement. Each
bit of A is complemented. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can
be expected to perform consistently. After operation on two’s
complement values, all signed branches are available.

COMA Complement A COMA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 1; set (for M6800 compatibility)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

COMA INH 41 0 0
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 159

Instruction Glossary
Operation: (B) = $FF – (B) ⇒ B

Description: Replaces the content of accumulator B with its one’s complement. Each
bit of B is complemented. Immediately after a COM operation on
unsigned values, only the BEQ, BNE, LBEQ, and LBNE branches can
be expected to perform consistently. After operation on two’s
complement values, all signed branches are available.

COMB Complement B COMB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 1

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 1; set (for M6800 compatibility)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

COMB INH 51 0 0
Reference Manual S12CPUV2

160 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (A : B) – (M : M + 1)

Description: Compares the content of double accumulator D with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by a 16-bit subtract of (M : M + 1)
from D without modifying either D or (M : M + 1).

CPD Compare Double Accumulator CPD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the absolute value of the content of memory is larger than the
absolute value of the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysp
CPD oprx9,xysp
CPD oprx16,xysp
CPD [D,xysp]
CPD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 161

Instruction Glossary
Operation: (SP) – (M : M + 1)

Description: Compares the content of the SP with a 16-bit value at the address
specified, and sets the condition codes accordingly. The compare is
accomplished internally by doing a 16-bit subtract of (M : M + 1) from the
SP without modifying either the SP or (M : M + 1).

CPS Compare Stack Pointer CPS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: S15 • M15 • R15 + S15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: S15 • M15 + M15 • R15 + R15 • S15
Set if the absolute value of the content of memory is larger than the
absolute value of the SP; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysp
CPS oprx9,xysp
CPS oprx16,xysp
CPS [D,xysp]
CPS [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

162 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (X) – (M : M + 1)

Description: Compares the content of index register X with a 16-bit value at the
address specified and sets the condition codes accordingly. The
compare is accomplished internally by a 16-bit subtract of (M : M + 1)
from index register X without modifying either index register X or
(M : M + 1).

CPX Compare Index Register X CPX

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: X15 • M15 • R15 + X15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: X15 • M15 + M15 • R15 + R15 • X15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysp
CPX oprx9,xysp
CPX oprx16,xysp
CPX [D,xysp]
CPX [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 163

Instruction Glossary
Operation: (Y) – (M : M + 1)

Description: Compares the content of index register Y to a 16-bit value at the address
specified and sets the condition codes accordingly. The compare is
accomplished internally by a 16-bit subtract of (M : M + 1) from Y without
modifying either Y or (M : M + 1).

CPY Compare Index Register Y CPY

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: Y15 • M15 • R15 + Y15 • M15 • R15
Set if two’s complement overflow resulted from the operation;
cleared otherwise

C: Y15 • M15 + M15 • R15 + R15 • Y15
Set if the absolute value of the content of memory is larger than the
absolute value of the index register; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysp
CPY oprx9,xysp
CPY oprx16,xysp
CPY [D,xysp]
CPY [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

164 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Description: DAA adjusts the content of accumulator A and the state of the C status
bit to represent the correct binary-coded-decimal sum and the
associated carry when a BCD calculation has been performed. To
execute DAA, the content of accumulator A, the state of the C status bit,
and the state of the H status bit must all be the result of performing an
ABA, ADD, or ADC on BCD operands, with or without an initial carry.

The table shows DAA operation for all legal combinations of input
operands. Columns 1 through 4 represent the results of ABA, ADC, or
ADD operations on BCD operands. The correction factor in column 5 is
added to the accumulator to restore the result of an operation on two
BCD operands to a valid BCD value and to set or clear the C bit. All
values are in hexadecimal.

DAA Decimal Adjust A DAA

1 2 3 4 5 6

Initial
C Bit Value

Value
of A[7:4]

Initial
H Bit Value

Value
of A[3:0]

Correction
Factor

Corrected
C Bit Value

0 0–9 0 0–9 00 0

0 0–8 0 A–F 06 0

0 0–9 1 0–3 06 0

0 A–F 0 0–9 60 1

0 9–F 0 A–F 66 1

0 A–F 1 0–3 66 1

1 0–2 0 0–9 60 1

1 0–2 0 A–F 66 1

1 0–3 1 0–3 66 1

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ? ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
V: Undefined
C: Represents BCD carry. See bit table

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DAA INH 18 07 OfO OfO
S12CPUV2 Reference Manual

MOTOROLA Instruction Glossary 165

Instruction Glossary
Operation: (Counter) – 1 ⇒ Counter
If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Subtract one from the specified counter register A, B, D, X, Y, or SP. If
the counter register has reached zero, execute a branch to the specified
relative destination. The DBEQ instruction is encoded into three bytes of
machine code including the 9-bit relative offset (–256 to +255 locations
from the start of the next instruction).

IBEQ and TBEQ instructions are similar to DBEQ except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

DBEQ Decrement and Branch if Equal to Zero DBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

Access Detail

HCS12 M68HC12

DBEQ abdxys, rel9 REL 04 lb rr PPP/PPO PPP

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero
(DBEQ – 0) or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would be 0:0
for DBEQ.

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

DBEQ A, rel9
DBEQ B, rel9

04 00 rr
04 01 rr

04 10 rr
04 11 rr

D
X
Y

SP

100
101
110
111

DBEQ D, rel9
DBEQ X, rel9
DBEQ Y, rel9
DBEQ SP, rel9

04 04 rr
04 05 rr
04 06 rr
04 07 rr

04 14 rr
04 15 rr
04 16 rr
04 17 rr
Reference Manual S12CPUV2

166 Instruction Glossary MOTOROLA

Instruction Glossary
Glossary
Operation: (Counter) – 1 ⇒ Counter
If (Counter) not = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Subtract one from the specified counter register A, B, D, X, Y, or SP. If
the counter register has not been decremented to zero, execute a
branch to the specified relative destination. The DBNE instruction is
encoded into three bytes of machine code including a 9-bit relative offset
(–256 to +255 locations from the start of the next instruction).

IBNE and TBNE instructions are similar to DBNE except that the counter
is incremented or tested rather than being decremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

DBNE Decrement and Branch if Not Equal to Zero DBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (DBEQ – 0)
or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would be 0:0 for DBNE.

Access Detail

HCS12 M68HC12

DBNE abdxys, rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

DBNE A, rel9
DBNE B, rel9

04 20 rr
04 21 rr

04 30 rr
04 31 rr

D
X
Y

SP

100
101
110
111

DBNE D, rel9
DBNE X, rel9
DBNE Y, rel9
DBNE SP, rel9

04 24 rr
04 25 rr
04 26 rr
04 27 rr

04 34 rr
04 35 rr
04 36 rr
04 37 rr
S12CPUV2 Reference Manual

MOTOROLA 167

Instruction Glossary
Operation: (M) – $01 ⇒ M

Description: Subtract one from the content of memory location M.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in
multiple-precision computations.

DEC Decrement Memory DEC

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs
if and only if (M) was $80 before the operation.

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (DBEQ – 0)
or not zero (DBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 would be 0:0 for DBNE.

Access Detail

HCS12 M68HC12

DEC opr16a
DEC oprx0_xysp
DEC oprx9,xysp
DEC oprx16,xysp
DEC [D,xysp]
DEC [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

168 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) – $01 ⇒ A

Description: Subtract one from the content of accumulator A.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in
multiple-precision computations.

DECA Decrement A DECA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (A) was $80 before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DECA INH 43 O O
S12CPUV2 Reference Manual

MOTOROLA 169

Instruction Glossary
Operation: (B) – $01 ⇒ B

Description: Subtract one from the content of accumulator B.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the DEC instruction to be used as a loop counter in
multiple-precision computations.

DECB Decrement B DECB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there was a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (B) was $80 before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DECB INH 53 O O
Reference Manual S12CPUV2

170 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0001 ⇒ SP

Description: Subtract one from the SP. This instruction assembles to LEAS –1,SP.
The LEAS instruction does not affect condition codes as DEX or DEY
instructions do.

DES Decrement Stack Pointer DES

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DES
translates to... LEAS –1,SP IDX 1B 9F Pf PP (1)

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA 171

Instruction Glossary
Operation: (X) – $0001 ⇒ X

Description: Subtract one from index register X. LEAX –1,X can produce the same
result, but LEAX does not affect the Z bit. Although the LEAX instruction
is more flexible, DEX requires only one byte of object code.

Only the Z bit is set or cleared according to the result of this operation.

DEX Decrement Index Register X DEX

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DEX INH 09 O O
Reference Manual S12CPUV2

172 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y) – $0001 ⇒ Y

Description: Subtract one from index register Y. LEAY –1,Y can produce the same
result, but LEAY does not affect the Z bit. Although the LEAY instruction
is more flexible, DEY requires only one byte of object code.

Only the Z bit is set or cleared according to the result of this operation.

DEY Decrement Index Register Y DEY

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

DEY INH 03 O O
S12CPUV2 Reference Manual

MOTOROLA 173

Instruction Glossary
Operation: (Y : D) ÷ (X) ⇒ Y; Remainder ⇒ D

Description: Divides a 32-bit unsigned dividend by a 16-bit divisor, producing a 16-bit
unsigned quotient and an unsigned 16-bit remainder. All operands and
results are located in CPU registers. If an attempt to divide by zero is
made, C is set and the states of the N, Z, and V bits in the CCR are
undefined. In case of an overflow or a divide by zero, the contents of the
registers D and Y do not change.

EDIV Extended Divide 32-Bit by 16-Bit
(Unsigned) EDIV

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Undefined after overflow or division by zero

Z: Set if result is $0000; cleared otherwise
Undefined after overflow or division by zero

V: Set if the result was > $FFFF; cleared otherwise Undefined after
division by zero

C: Set if divisor was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EDIV INH 11 ffffffffffO ffffffffffO
Reference Manual S12CPUV2

174 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y : D) ÷ (X) ⇒ Y; Remainder ⇒ D

Description: Divides a signed 32-bit dividend by a 16-bit signed divisor, producing a
signed 16-bit quotient and a signed 16-bit remainder. All operands and
results are located in CPU registers. If an attempt to divide by zero is
made, C is set and the states of the N, Z, and V bits in the CCR are
undefined. In case of an overflow or a divide by zero, the contents of the
registers D and Y do not change.

EDIVS Extended Divide 32-Bit by 16-Bit
(Signed) EDIVS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Undefined after overflow or division by zero

Z: Set if result is $0000; cleared otherwise
Undefined after overflow or division by zero

V: Set if the result was > $7FFF or < $8000; cleared otherwise
Undefined after division by zero

C: Set if divisor was $0000; cleared otherwise
Indicates division by zero

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EDIVS INH 18 14 OffffffffffO OffffffffffO
S12CPUV2 Reference Manual

MOTOROLA 175

Instruction Glossary
Operation: (M(X) : M(X+1)) × (M(Y) : M(Y+1)) + (M ~ M+3) ⇒ M ~ M+3

Description: A 16-bit value is multiplied by a 16-bit value to produce a 32-bit
intermediate result. This 32-bit intermediate result is then added to the
content of a 32-bit accumulator in memory. EMACS is a signed integer
operation. All operands and results are located in memory. When the
EMACS instruction is executed, the first source operand is fetched from
an address pointed to by X, and the second source operand is fetched
from an address pointed to by index register Y. Before the instruction is
executed, the X and Y index registers must contain values that point to
the most significant bytes of the source operands. The most significant
byte of the 32-bit result is specified by an extended address supplied
with the instruction.

EMACS Extended Multiply and Accumulate
(Signed)

16-Bit by 16-Bit to 32-Bit
EMACS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00000000; cleared otherwise

V: M31 • I31 • R31 + M31 • I31 • R31
Set if result > $7FFFFFFF (+ overflow) or
< $80000000 (– underflow)
Indicates two’s complement overflow

C: M15 • I15 + I15 • R15 + R15 • M15
Set if there was a carry from bit 15 of the result; cleared otherwise
Indicates a carry from low word to high word of the result occurred

Source Form (1)

1. opr16a is an extended address specification. Both X and Y point to source operands.

Address
Mode

Object Code
Access Detail

HCS12 M68HC12

EMACS opr16a Special 18 12 hh ll ORROfffRRfWWP ORROfffRRfWWP
Reference Manual S12CPUV2

176 MOTOROLA

Instruction Glossary
Glossary
Operation: MAX ((D), (M : M + 1)) ⇒ D

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the larger of the two values in D. The Z status bit is set when the result
of the subtraction is zero (the values are equal), and the C status bit is
set when the subtraction requires a borrow (the value in memory is
larger than the value in the accumulator). When C = 1, the value in D has
been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

EMAXD Place Larger of Two
Unsigned 16-Bit Values

in Accumulator D
EMAXD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMAXD oprx0_xysp
EMAXD oprx9,xysp
EMAXD oprx16,xysp
EMAXD [D,xysp]
EMAXD [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP
S12CPUV2 Reference Manual

MOTOROLA 177

Instruction Glossary
Operation: MAX ((D), (M : M + 1)) ⇒ M : M + 1

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the larger of the two values in the memory location. The Z status bit is
set when the result of the subtraction is zero (the values are equal), and
the C status bit is set when the subtraction requires a borrow (the value
in memory is larger than the value in the accumulator). When C = 0, the
value in D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

EMAXM Place Larger of Two
Unsigned 16-Bit Values

in Memory
EMAXM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMAXM oprx0_xysp
EMAXM oprx9,xysp
EMAXM oprx16,xysp
EMAXM [D,xysp]
EMAXM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW
Reference Manual S12CPUV2

178 MOTOROLA

Instruction Glossary
Glossary
Operation: MIN ((D), (M : M + 1)) ⇒ D

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger, and leaves
the smaller of the two values in D. The Z status bit is set when the result
of the subtraction is zero (the values are equal), and the C status bit is
set when the subtraction requires a borrow (the value in memory is
larger than the value in the accumulator). When C = 0, the value in D has
been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the smallest value in a list of values.

EMIND Place Smaller of Two
Unsigned 16-Bit Values

in Accumulator D
EMIND

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
V: D15 • M15 • R15 + D15 • M15 • R15

Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMIND oprx0_xysp
EMIND oprx9,xysp
EMIND oprx16,xysp
EMIND [D,xysp]
EMIND [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP
S12CPUV2 Reference Manual

MOTOROLA 179

Instruction Glossary
Operation: MIN ((D), (M : M + 1)) ⇒ M : M + 1

Description: Subtracts an unsigned 16-bit value in memory from an unsigned 16-bit
value in double accumulator D to determine which is larger and leaves
the smaller of the two values in the memory location. The Z status bit is
set when the result of the subtraction is zero (the values are equal), and
the C status bit is set when the subtraction requires a borrow (the value
in memory is larger than the value in the accumulator). When C = 1, the
value in D has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

EMINM Place Smaller of Two
Unsigned 16-Bit Values

in Memory
EMINM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = D – M : M + 1)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMINM oprx0_xysp
EMINM oprx9,xysp
EMINM oprx16,xysp
EMINM [D,xysp]
EMINM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW
Reference Manual S12CPUV2

180 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) × (Y) ⇒ Y : D

Description: An unsigned 16-bit value is multiplied by an unsigned 16-bit value to
produce an unsigned 32-bit result. The first source operand must be
loaded into 16-bit double accumulator D and the second source operand
must be loaded into index register Y before executing the instruction.
When the instruction is executed, the value in D is multiplied by the value
in Y. The upper 16-bits of the 32-bit result are stored in Y and the
low-order 16-bits of the result are stored in D.

The C status bit can be used to round the high-order 16 bits of the result.

EMUL Extended Multiply
16-Bit by 16-Bit (Unsigned) EMUL

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise

Z: Set if result is $00000000; cleared otherwise

C: Set if bit 15 of the result is set; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMUL INH 13 ffO ffO
S12CPUV2 Reference Manual

MOTOROLA 181

Instruction Glossary
A

Operation: (D) × (Y) ⇒ Y : D

Description: A signed 16-bit value is multiplied by a signed 16-bit value to produce a
signed 32-bit result. The first source operand must be loaded into 16-bit
double accumulator D, and the second source operand must be loaded
into index register Y before executing the instruction. When the
instruction is executed, D is multiplied by the value Y. The 16 high-order
bits of the 32-bit result are stored in Y and the 16 low-order bits of the
result are stored in D.

The C status bit can be used to round the high-order 16 bits of the result.

EMULS Extended Multiply
16-Bit by 16-Bit (Signed) EMULS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆

N: Set if the MSB of the result is set; cleared otherwise

Z: Set if result is $00000000; cleared otherwise

C: Set if bit 15 of the result is set; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EMULS INH 18 13
OfO
OffO (1)

1. EMULS has an extra free cycle if it is followed by another PAGE TWO instruction.

OfO
Reference Manual S12CPUV2

182 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) ⊕ (M) ⇒ A

Description: Performs the logical exclusive OR between the content of accumulator
A and the content of memory location M. The result is placed in A. Each
bit of A after the operation is the logical exclusive OR of the
corresponding bits of M and A before the operation.

EORA Exclusive OR A EORA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysp
EORA oprx9,xysp
EORA oprx16,xysp
EORA [D,xysp]
EORA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 183

Instruction Glossary
Operation: (B) ⊕ (M) ⇒ B

Description: Performs the logical exclusive OR between the content of accumulator
B and the content of memory location M. The result is placed in A. Each
bit of A after the operation is the logical exclusive OR of the
corresponding bits of M and B before the operation.

EORB Exclusive OR B EORB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysp
EORB oprx9,xysp
EORB oprx16,xysp
EORB [D,xysp]
EORB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

184 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M + 1) + [(B) × ((M + 2 : M + 3) – (M : M + 1))] ⇒ D

Description: ETBL linearly interpolates one of 256 result values that fall between
each pair of data entries in a lookup table stored in memory. Data entries
in the table represent the y values of endpoints of equally-spaced line
segments. Table entries and the interpolated result are 16-bit values.
The result is stored in the D accumulator.

Before executing ETBL, an index register points to the table entry
corresponding to the x value (X1 that is closest to, but less than or equal
to, the desired lookup point (XL, YL). This defines the left end of a line
segment and the right end is defined by the next data entry in the table.
Prior to execution, accumulator B holds a binary fraction (radix left of
MSB) representing the ratio of (XL–X1) ÷ (X2–X1).

The 16-bit unrounded result is calculated using the following expression:

D = Y1 + [(B) × (Y2 – Y1)]

Where:
(B) = (XL – X1) ÷ (X2 – X1)
Y1 = 16-bit data entry pointed to by <effective address>
Y2 = 16-bit data entry pointed to by <effective address> + 2

The intermediate value [(B) × (Y2 – Y1)] produces a 24-bit result with the
radix point between bits 7 and 8. Any indexed addressing mode, except
indirect modes or 9-bit and 16-bit offset modes, can be used to identify
the first data point (X1,Y1). The second data point is the next table entry.

1. C-bit was undefined in original M68HC12

ETBL Extended Table Lookup and Interpolate ETBL

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆(1)

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $0000; cleared otherwise
C: Set if result can be rounded up; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ETBL oprx0_xysp IDX 18 3F xb ORRffffffP ORRffffffP
S12CPUV2 Reference Manual

MOTOROLA 185

Instruction Glossary
Operation: See table

Description: Exchanges the contents of registers specified in the instruction as shown
below. Note that the order in which exchanges between 8-bit and 16-bit
registers are specified affects the high byte of the 16-bit registers
differently. Exchanges of D with A or B are ambiguous. Cases involving
TMP2 and TMP3 are reserved for Motorola use, so some assemblers
may not permit their use, but it is possible to generate these cases by
using DC.B or DC.W assembler directives.

None affected, unless the CCR is the destination register. Condition
codes take on the value of the corresponding source bits, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only in
response to any reset or by recognition of an XIRQ interrupt.

EXG Exchange Register Contents EXG

CCR Details:
S X H I N Z V C

Or:
S X H I N Z V C

– – – – – – – – ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code (1)

1. Legal coding for eb is summarized in the following table. Columns represent the high-order source digit. Rows represent
the low-order destination digit (bit 3 is a don’t care). Values are in hexadecimal.

Access Detail

HCS12 M68HC12

EXG abcdxys,abcdxys INH B7 eb P P

8 9 A B C D E F

0 A ⇔ A B ⇔ A CCR ⇔ A
TMP3L ⇒ A

$00:A ⇒ TMP3
B ⇒ A
A ⇒ B

XL ⇒ A
$00:A ⇒ X

YL ⇒ A
$00:A ⇒ Y

SPL ⇒ A
$00:A ⇒ SP

1 A ⇔ B B ⇔ B CCR ⇔ B
TMP3L ⇒ B

$FF:B ⇒ TMP3
B ⇒ B

$FF ⇒ A
XL ⇒ B

$FF:B ⇒ X
YL ⇒ B

$FF:B ⇒ Y
SPL ⇒ B

$FF:B ⇒ SP

2 A ⇔ CCR B ⇔ CCR CCR ⇔ CCR
TMP3L ⇒ CCR

$FF:CCR ⇒ TMP3
B ⇒ CCR

$FF:CCR ⇒ D
XL ⇒ CCR

$FF:CCR ⇒ X
YL ⇒ CCR

$FF:CCR ⇒ Y
SPL ⇒ CCR

$FF:CCR ⇒ SP

3 $00:A ⇒ TMP2
TMP2L ⇒ A

$00:B ⇒ TMP2
TMP2L ⇒ B

$00:CCR ⇒ TMP2
TMP2L ⇒ CCR

TMP3 ⇔ TMP2 D ⇔ TMP2 X ⇔ TMP2 Y ⇔ TMP2 SP ⇔ TMP2

4 $00:A ⇒ D $00:B ⇒ D
$00:CCR ⇒ D

B ⇒ CCR
TMP3 ⇔ D D ⇔ D X ⇔ D Y ⇔ D SP ⇔ D

5 $00:A ⇒ X
XL ⇒ A

$00:B ⇒ X
XL ⇒ B

$00:CCR ⇒ X
XL ⇒ CCR

TMP3 ⇔ X D ⇔ X X ⇔ X Y ⇔ X SP ⇔ X

6 $00:A ⇒ Y
YL ⇒ A

$00:B ⇒ Y
YL ⇒ B

$00:CCR ⇒ Y
YL ⇒ CCR

TMP3 ⇔ Y D ⇔ Y X ⇔ Y Y ⇔ Y SP ⇔ Y

7 $00:A ⇒ SP
SPL ⇒ A

$00:B ⇒ SP
SPL ⇒ B

$00:CCR ⇒ SP
SPL ⇒ CCR

TMP3 ⇔ SP D ⇔ SP X ⇔ SP Y ⇔ SP SP ⇔ SP
Reference Manual S12CPUV2

186 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Divides an unsigned 16-bit numerator in double accumulator D by an
unsigned 16-bit denominator in index register X, producing an unsigned
16-bit quotient in X and an unsigned 16-bit remainder in D. If both the
numerator and the denominator are assumed to have radix points in the
same positions, the radix point of the quotient is to the left of bit 15. The
numerator must be less than the denominator. In the case of overflow
(denominator is less than or equal to the numerator) or division by zero,
the quotient is set to $FFFF, and the remainder is indeterminate.

FDIV is equivalent to multiplying the numerator by 216 and then
performing 32 by 16-bit integer division. The result is interpreted as a
binary-weighted fraction, which resulted from the division of a 16-bit
integer by a larger 16-bit integer. A result of $0001 corresponds to
0.000015, and $FFFF corresponds to 0.9998. The remainder of an IDIV
instruction can be resolved into a binary-weighted fraction by an FDIV
instruction. The remainder of an FDIV instruction can be resolved into
the next 16 bits of binary-weighted fraction by another FDIV instruction.

FDIV Fractional Divide FDIV

CCR Details:
S X H I N Z V C

– – – – – ∆ ∆ ∆

Z: Set if quotient is $0000; cleared otherwise

V: 1 if X ≤ D
Set if the denominator was less than or equal to the numerator;
cleared otherwise

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

FDIV INH 18 11 OffffffffffO OffffffffffO
S12CPUV2 Reference Manual

MOTOROLA 187

Instruction Glossary
Operation: (Counter) + 1 ⇒ Counter
If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Add one to the specified counter register A, B, D, X, Y, or SP. If the
counter register has reached zero, branch to the specified relative
destination. The IBEQ instruction is encoded into three bytes of machine
code including a 9-bit relative offset (–256 to +255 locations from the
start of the next instruction).

DBEQ and TBEQ instructions are similar to IBEQ except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

IBEQ Increment and Branch if Equal to Zero IBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (IBEQ –
0) or not zero (IBNE – 1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 1:0 for IBEQ.

Access Detail

HCS12 M68HC12

IBEQ abdxys, rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

IBEQ A, rel9
IBEQ B, rel9

04 80 rr
04 81 rr

04 90 rr
04 91 rr

D
X
Y

SP

100
101
110
111

IBEQ D, rel9
IBEQ X, rel9
IBEQ Y, rel9
IBEQ SP, rel9

04 84 rr
04 85 rr
04 86 rr
04 87 rr

04 94 rr
04 95 rr
04 96 rr
04 97 rr
Reference Manual S12CPUV2

188 MOTOROLA

Instruction Glossary
Glossary
Operation: (Counter) + 1 ⇒ Counter
If (Counter) not = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Add one to the specified counter register A, B, D, X, Y, or SP. If the
counter register has not been incremented to zero, branch to the
specified relative destination. The IBNE instruction is encoded into three
bytes of machine code including a 9-bit relative offset (–256 to +255
locations from the start of the next instruction).

DBNE and TBNE instructions are similar to IBNE except that the counter
is decremented or tested rather than being incremented. Bits 7 and 6 of
the instruction postbyte are used to determine which operation is to be
performed.

IBNE Increment and Branch if Not Equal to Zero IBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (IBEQ –
0) or not zero (IBNE – 1) versions, and bit 0 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 1:0 for IBNE.

Access Detail

HCS12 M68HC12

IBNE abdxys, rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

IBNE A, rel9
IBNE B, rel9

04 A0 rr
04 A1 rr

04 B0 rr
04 B1 rr

D
X
Y

SP

100
101
110
111

IBNE D, rel9
IBNE X, rel9
IBNE Y, rel9
IBNE SP, rel9

04 A4 rr
04 A5 rr
04 A6 rr
04 A7 rr

04 B4 rr
04 B5 rr
04 B6 rr
04 B7 rr
S12CPUV2 Reference Manual

MOTOROLA 189

Instruction Glossary
Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Divides an unsigned 16-bit dividend in double accumulator D by an
unsigned 16-bit divisor in index register X, producing an unsigned 16-bit
quotient in X, and an unsigned 16-bit remainder in D. If both the divisor
and the dividend are assumed to have radix points in the same positions,
the radix point of the quotient is to the right of bit 0. In the case of division
by zero, C is set, the quotient is set to $FFFF, and the remainder is
indeterminate.

IDIV Integer Divide IDIV

CCR Details:
S X H I N Z V C

– – – – – ∆ 0 ∆

Z: Set if quotient is $0000; cleared otherwise

V: 0; cleared

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

IDIV INH 18 10 OffffffffffO OffffffffffO
Reference Manual S12CPUV2

190 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) ÷ (X) ⇒ X; Remainder ⇒ D

Description: Performs signed integer division of a signed 16-bit numerator in double
accumulator D by a signed 16-bit denominator in index register X,
producing a signed 16-bit quotient in X, and a signed 16-bit remainder
in D. If division by zero is attempted, the values in D and X are not
changed, C is set, and the values of the N, Z, and V status bits are
undefined.

Other than division by zero, which is not legal and causes the C status
bit to be set, the only overflow case is:

But the highest positive value that can be represented in a 16-bit two’s
complement number is 32,767 ($7FFFF).

IDIVS Integer Divide (Signed) IDIVS

$8000
$FFFF

–32,768
–1

--------------------- +32,768= =

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise
Undefined after overflow or division by zero

Z: Set if quotient is $0000; cleared otherwise
Undefined after overflow or division by zero

V: Set if the result was > $7FFF or < $8000; cleared otherwise
Undefined after division by zero

C: X15 • X14 • X13 • X12 •... • X3 • X2 • X1 • X0
Set if denominator was $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

IDIVS INH 18 15 OffffffffffO OffffffffffO
S12CPUV2 Reference Manual

MOTOROLA 191

Instruction Glossary
Operation: (M) + $01 ⇒ M

Description: Add one to the content of memory location M.

The N, Z and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in
multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

INC Increment Memory INC

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there is a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (M) was $7F before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INC opr16a
INC oprx0_xysp
INC oprx9,xysp
INC oprx16,xysp
INC [D,xysp]
INC [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

192 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + $01 ⇒ A

Description: Add one to the content of accumulator A.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in
multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

INCA Increment A INCA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there is a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (A) was $7F before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INCA INH 42 O O
S12CPUV2 Reference Manual

MOTOROLA 193

Instruction Glossary
Operation: (B) + $01 ⇒ B

Description: Add one to the content of accumulator B.

The N, Z, and V status bits are set or cleared according to the results of
the operation. The C status bit is not affected by the operation, thus
allowing the INC instruction to be used as a loop counter in
multiple-precision computations.

When operating on unsigned values, only BEQ, BNE, LBEQ, and LBNE
branches can be expected to perform consistently. When operating on
two’s complement values, all signed branches are available.

INCB Increment B INCB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: Set if there is a two’s complement overflow as a result of the
operation; cleared otherwise. Two’s complement overflow occurs if
and only if (B) was $7F before the operation.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INCB INH 52 O O
Reference Manual S12CPUV2

194 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) + $0001 ⇒ SP

Description: Add one to the SP. This instruction is assembled to LEAS 1,SP. The
LEAS instruction does not affect condition codes as an INX or INY
instruction would.

INS Increment Stack Pointer INS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INS
translates to... LEAS 1,SP IDX 1B 81 Pf PP (1)

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA 195

Instruction Glossary
Operation: (X) + $0001 ⇒ X

Description: Add one to index register X. LEAX 1,X can produce the same result but
LEAX does not affect the Z status bit. Although the LEAX instruction is
more flexible, INX requires only one byte of object code.

INX operation affects only the Z status bit.

INX Increment Index Register X INX

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INX INH 08 O O
Reference Manual S12CPUV2

196 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y) + $0001 ⇒ Y

Description: Add one to index register Y. LEAY 1,Y can produce the same result but
LEAY does not affect the Z status bit. Although the LEAY instruction is
more flexible, INY requires only one byte of object code.

INY operation affects only the Z status bit.

INY Increment Index Register Y INY

CCR Details:
S X H I N Z V C

– – – – – ∆ – –

Z: Set if result is $0000; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

INY INH 02 O O
S12CPUV2 Reference Manual

MOTOROLA 197

Instruction Glossary
Operation: Effective Address ⇒ PC

Description: Jumps to the instruction stored at the effective address. The effective
address is obtained according to the rules for extended or indexed
addressing.

JMP Jump JMP

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

JMP opr16a
JMP oprx0_xysp
JMP oprx9,xysp
JMP oprx16,xysp
JMP [D,xysp]
JMP [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

PPP
PPP
PPP
fPPP
fIfPPP
fIfPPP

PPP
PPP
PPP

fPPP
fIfPPP
fIfPPP
Reference Manual S12CPUV2

198 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
RTNH : RTNL ⇒ M(SP) : M(SP + 1)
Subroutine Address ⇒ PC

Description: Sets up conditions to return to normal program flow, then transfers
control to a subroutine. Uses the address of the instruction following the
JSR as a return address.

Decrements the SP by two to allow the two bytes of the return address
to be stacked.

Stacks the return address. The SP points to the high order byte of the
return address.

Calculates an effective address according to the rules for extended,
direct, or indexed addressing.

Jumps to the location determined by the effective address.

Subroutines are normally terminated with an RTS instruction, which
restores the return address from the stack.

JSR Jump to Subroutine JSR

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

JSR opr8a
JSR opr16a
JSR oprx0_xysp
JSR oprx9,xysp
JSR oprx16,xysp
JSR [D,xysp]
JSR [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

SPPP
SPPP
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS

PPPS
PPPS
PPPS
PPPS

fPPPS
fIfPPPS
fIfPPPS
S12CPUV2 Reference Manual

MOTOROLA 199

Instruction Glossary
Operation: If C = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

LBCC Long Branch if Carry Cleared
(Same as LBHS) LBCC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBCC rel16 REL 18 24 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

200 MOTOROLA

Instruction Glossary
Glossary
Operation: If C = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the C status bit and branches if C = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

LBCS Long Branch if Carry Set
(Same as LBLO) LBCS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBCS rel16 REL 18 25 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 201

Instruction Glossary
Operation: If Z = 1, (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

LBEQ Long Branch if Equal LBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBEQ rel16 REL 18 27 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

202 MOTOROLA

Instruction Glossary
Glossary
Operation: If N ⊕ V = 0, (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, if (Accumulator) ≥ Memory),
then branch

Description: LBGE can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is greater than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBGE Long Branch if Greater Than or Equal to Zero LBGE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBGE rel16 REL 18 2C qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 203

Instruction Glossary
Operation: If Z + (N ⊕ V) = 0, then (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, If (Accumulator) > (Memory),
then branch

Description: LBGT can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is greater than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is greater than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBGT Long Branch if Greater Than Zero LBGT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBGT rel16 REL 18 2E qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

204 MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 0, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) > (Memory), then branch

Description: LBHI can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than the value in M. After CBA or SBA, the branch occurs if the
value in B is greater than the value in A. LBHI should not be used for
branching after instructions that do not affect the C bit, such as
increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBHI Long Branch if Higher LBHI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBHI rel16 REL 18 22 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 205

Instruction Glossary
Operation: If C = 0, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) ≥ (Memory), then branch

Description: LBHS can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
greater than or equal to the value in M. After CBA or SBA, the branch
occurs if the value in B is greater than or equal to the value in A. LBHS
should not be used for branching after instructions that do not affect the
C bit, such as increment, decrement, load, store, test, clear, or
complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBHS Long Branch if Higher or Same
(Same as LBCC) LBHS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBHS rel16 REL 18 24 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

206 MOTOROLA

Instruction Glossary
Glossary
Operation: If Z + (N ⊕ V) = 1, then (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, if (Accumulator) ≤ (Memory),
then branch.

Description: LBLE can be used to branch after subtracting or comparing signed two’s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is less than or equal to the value in M. After CBA or SBA, the
branch occurs if the value in B is less than or equal to the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLE Long Branch if Less Than or Equal to Zero LBLE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLE rel16 REL 18 2F qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 207

Instruction Glossary
Operation: If C = 1, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) < (Memory), then branch

Description: LBLO can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SUBA, SUBB, or
SUBD, the branch occurs if the CPU register value is less than the value
in M. After CBA or SBA, the branch occurs if the value in B is less than
the value in A. LBLO should not be used for branching after instructions
that do not affect the C bit, such as increment, decrement, load, store,
test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLO Long Branch if Lower
(Same as LBCS) LBLO

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLO rel16 REL 18 25 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

208 MOTOROLA

Instruction Glossary
Glossary
Operation: If C + Z = 1, then (PC) + $0004 + Rel ⇒ PC

For unsigned binary numbers, if (Accumulator) ≤ (Memory), then branch

Description: LBLS can be used to branch after subtracting or comparing unsigned
values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA, SBCB,
SUBA, SUBB, or SUBD, the branch occurs if the CPU register value is
less than or equal to the value in M. After CBA or SBA, the branch occurs
if the value in B is less than or equal to the value in A. LBLS should not
be used for branching after instructions that do not affect the C bit, such
as increment, decrement, load, store, test, clear, or complement.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLS Long Branch if Lower or Same LBLS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLS rel16 REL 18 23 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 209

Instruction Glossary
Operation: If N ⊕ V = 1, (PC) + $0004 + Rel ⇒ PC

For signed two’s complement numbers, if (Accumulator) < (Memory),
then branch

Description: LBLT can be used to branch after subtracting or comparing signed two-s
complement values. After CMPA, CMPB, CPD, CPS, CPX, CPY, SBCA,
SBCB, SUBA, SUBB, or SUBD, the branch occurs if the CPU register
value is less than the value in M. After CBA or SBA, the branch occurs
if the value in B is less than the value in A.

See 3.8 Relative Addressing Mode for details of branch execution.

LBLT Long Branch if Less Than Zero LBLT

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBLT rel16 REL 18 2D qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

210 MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 1.

See 3.8 Relative Addressing Mode for details of branch execution.

LBMI Long Branch if Minus LBMI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBMI rel16 REL 18 2B qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 211

Instruction Glossary
Operation: If Z = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the Z status bit and branches if Z = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

LBNE Long Branch if Not Equal to Zero LBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBNE rel16 REL 18 26 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

212 MOTOROLA

Instruction Glossary
Glossary
Operation: If N = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the N status bit and branches if N = 0.

See 3.8 Relative Addressing Mode for details of branch execution.

LBPL Long Branch if Plus LBPL

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBPL rel16 REL 18 2A qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 213

Instruction Glossary
Operation: (PC) + $0004 + Rel ⇒ PC

Description: Unconditional branch to an address calculated as shown in the
expression. Rel is a relative offset stored as a two’s complement number
in the second and third bytes of machine code corresponding to the long
branch instruction.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRA branch condition is always
satisfied, the branch is always taken, and the instruction queue must
always be refilled, so execution time is always the larger value.

See 3.8 Relative Addressing Mode for details of branch execution.

LBRA Long Branch Always LBRA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBRA rel16 REL 18 20 qq rr OPPP OPPP
Reference Manual S12CPUV2

214 MOTOROLA

Instruction Glossary
Glossary
Operation: (PC) + $0004 ⇒ PC

Description: Never branches. LBRN is effectively a 4-byte NOP that requires three
cycles to execute. LBRN is included in the instruction set to provide a
complement to the LBRA instruction. The instruction is useful during
program debug, to negate the effect of another branch instruction
without disturbing the offset byte. A complement for LBRA is also useful
in compiler implementations.

Execution time is longer when a conditional branch is taken than when
it is not, because the instruction queue must be refilled before execution
resumes at the new address. Since the LBRN branch condition is never
satisfied, the branch is never taken, and the queue does not need to be
refilled, so execution time is always the smaller value.

LBRN Long Branch Never LBRN

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBRN rel16 REL 18 21 qq rr OPO OPO
S12CPUV2 Reference Manual

MOTOROLA 215

Instruction Glossary
Operation: If V = 0, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 0.

LBVC causes a branch when a previous operation on two’s complement
binary values does not cause an overflow. That is, when LBVC follows a
two’s complement operation, a branch occurs when the result of the
operation is valid.

See 3.8 Relative Addressing Mode for details of branch execution.

LBVC Long Branch if Overflow Cleared LBVC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBVC rel16 REL 18 28 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
Reference Manual S12CPUV2

216 MOTOROLA

Instruction Glossary
Glossary
Operation: If V = 1, then (PC) + $0004 + Rel ⇒ PC

Simple branch

Description: Tests the V status bit and branches if V = 1.

LBVS causes a branch when a previous operation on two’s complement
binary values causes an overflow. That is, when LBVS follows a two’s
complement operation, a branch occurs when the result of the operation
is invalid.

See 3.8 Relative Addressing Mode for details of branch execution.

LBVS Long Branch if Overflow Set LBVS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LBVS rel16 REL 18 29 qq rr OPPP/OPO (1)

1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles
if the branch is not taken.

OPPP/OPO(1)

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m LBGT 18 2E Z + (N ⊕ V) = 0 r≤m LBLE 18 2F Signed
r≥m LBGE 18 2C N ⊕ V = 0 r<m LBLT 18 2D Signed
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Signed
r≤m LBLE 18 2F Z + (N ⊕ V) = 1 r>m LBGT 18 2E Signed
r<m LBLT 18 2D N ⊕ V = 1 r≥m LBGE 18 2C Signed
r>m LBHI 18 22 C + Z = 0 r≤m LBLS 18 23 Unsigned
r≥m LBHS/LBCC 18 24 C = 0 r<m LBLO/LBCS 18 25 Unsigned
r=m LBEQ 18 27 Z = 1 r≠m LBNE 18 26 Unsigned
r≤m LBLS 18 23 C + Z = 1 r>m LBHI 18 22 Unsigned
r<m LBLO/LBCS 18 25 C = 1 r≥m LBHS/LBCC 18 24 Unsigned

Carry LBCS 18 25 C = 1 No Carry LBCC 18 24 Simple
Negative LBMI 18 2B N = 1 Plus LBPL 18 2A Simple
Overflow LBVS 18 29 V = 1 No Overflow LBVC 18 28 Simple

r=0 LBEQ 18 27 Z = 1 r≠0 LBNE 18 26 Simple
Always LBRA 18 20 — Never LBRN 18 21 Unconditional
S12CPUV2 Reference Manual

MOTOROLA 217

Instruction Glossary
Operation: (M) ⇒ A

Description: Loads the content of memory location M into accumulator A. The
condition codes are set according to the data.

LDAA Load Accumulator A LDAA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysp
LDAA oprx9,xysp
LDAA oprx16,xysp
LDAA [D,xysp]
LDAA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

218 MOTOROLA

Instruction Glossary
Glossary
Operation: (M) ⇒ B

Description: Loads the content of memory location M into accumulator B. The
condition codes are set according to the data.

LDAB Load Accumulator B LDAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysp
LDAB oprx9,xysp
LDAB oprx16,xysp
LDAB [D,xysp]
LDAB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 219

Instruction Glossary
Operation: (M : M+1) ⇒ A : B

Description: Loads the contents of memory locations M and M+1 into double
accumulator D. The condition codes are set according to the data. The
information from M is loaded into accumulator A, and the information
from M+1 is loaded into accumulator B.

LDD Load Double Accumulator LDD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysp
LDD oprx9,xysp
LDD oprx16,xysp
LDD [D,xysp]
LDD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

220 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M+1) ⇒ SP

Description: Loads the most significant byte of the SP with the content of memory
location M, and loads the least significant byte of the SP with the content
of the next byte of memory at M+1.

LDS Load Stack Pointer LDS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysp
LDS oprx9,xysp
LDS oprx16,xysp
LDS [D,xysp]
LDS [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA 221

Instruction Glossary
Operation: (M : M+1) ⇒ X

Description: Loads the most significant byte of index register X with the content of
memory location M, and loads the least significant byte of X with the
content of the next byte of memory at M+1.

LDX Load Index Register X LDX

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysp
LDX oprx9,xysp
LDX oprx16,xysp
LDX [D,xysp]
LDX [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

222 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M+1) ⇒ Y

Description: Loads the most significant byte of index register Y with the content of
memory location M, and loads the least significant byte of Y with the
content of the next memory location at M+1.

LDY Load Index Register Y LDY

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysp
LDY oprx9,xysp
LDY oprx16,xysp
LDY [D,xysp]
LDY [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
S12CPUV2 Reference Manual

MOTOROLA 223

Instruction Glossary
Operation: Effective Address ⇒ SP

Description: Loads the stack pointer with an effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.9 Indexed Addressing Modes for more details.

LEAS does not alter condition code bits. This allows stack modification
without disturbing CCR bits changed by recent arithmetic operations.

Operation is a bit more complex when LEAS is used with auto-increment
or auto-decrement operand specifications and the SP is the referenced
index register. The index register is loaded with what would have gone
out to the address bus in the case of a load index instruction. In the case
of a pre-increment or pre-decrement, the modification is made before the
index register is loaded. In the case of a post-increment or
post-decrement, modification would have taken effect after the address
went out on the address bus, so post-modification does not affect the
content of the index register.

In the unusual case where LEAS involves two different index registers
and post-increment or post-decrement, both index registers are modified
as demonstrated by the following example. Consider the instruction
LEAS 4,Y+. First S is loaded with the value of Y, then Y is incremented
by 4.

LEAS Load Stack Pointer with Effective Address LEAS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LEAS oprx0_xysp
LEAS oprx9,xysp
LEAS oprx16,xysp

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

Pf
PO
PP

PP(1)

PO
PP

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
Reference Manual S12CPUV2

224 MOTOROLA

Instruction Glossary
Glossary
Operation: Effective Address ⇒ X

Description: Loads index register X with an effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.9 Indexed Addressing Modes for more details.

Operation is a bit more complex when LEAX is used with auto-increment
or auto-decrement operand specifications and index register X is the
referenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed
instruction. In the case of a pre-increment or pre-decrement, the
modification is made before the index register is loaded. In the case of a
post-increment or post-decrement, modification would have taken effect
after the address went out on the address bus, so post-modification does
not affect the content of the index register.

In the unusual case where LEAX involves two different index registers
and post-increment and post-decrement, both index registers are
modified as demonstrated by the following example. Consider the
instruction LEAX 4,Y+. First X is loaded with the value of Y, then Y is
incremented by 4.

LEAX Load X with Effective Address LEAX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LEAX oprx0_xysp
LEAX oprx9,xysp
LEAX oprx16,xysp

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

Pf
PO
PP

PP(1)

PO
PP

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
S12CPUV2 Reference Manual

MOTOROLA 225

Instruction Glossary
Operation: Effective Address ⇒ Y

Description: Loads index register Y with an effective address specified by the
program. The effective address can be any indexed addressing mode
operand address except an indirect address. Indexed addressing mode
operand addresses are formed by adding an optional constant supplied
by the program or an accumulator value to the current value in X, Y, SP,
or PC. See 3.9 Indexed Addressing Modes for more details.

Operation is a bit more complex when LEAY is used with auto-increment
or auto-decrement operand specifications and index register Y is the
referenced index register. The index register is loaded with what would
have gone out to the address bus in the case of a load indexed
instruction. In the case of a pre-increment or pre-decrement, the
modification is made before the index register is loaded. In the case of a
post-increment or post-decrement, modification would have taken effect
after the address went out on the address bus, so post-modification does
not affect the content of the index register.

In the unusual case where LEAY involves two different index registers
and post-increment and post-decrement, both index registers are
modified as demonstrated by the following example. Consider the
instruction LEAY 4,X+. First Y is loaded with the value of X, then X is
incremented by 4.

LEAY Load Y with Effective Address LEAY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LEAY oprx0_xysp
LEAY oprx9,xysp
LEAY oprx16,xysp

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

Pf
PO
PP

PP(1)

PO
PP

1. Due to internal M68HC12 CPU requirements, the program word fetch is performed twice to the same address during this
instruction.
Reference Manual S12CPUV2

226 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of the memory location M one place to the left. Bit 0 is
loaded with 0. The C status bit is loaded from the most significant bit
of M.

LSL Logical Shift Left Memory
(Same as ASL) LSL

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M7
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSL opr16a
LSL oprx0_xysp
LSL oprx9,xysp
LSL oprx16,xysp
LSL [D,xysp]
LSL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 227

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the left. Bit 0 is loaded with 0.
The C status bit is loaded from the most significant bit of A.

LSLA Logical Shift Left A
(Same as ASLA) LSLA

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A7
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSLA INH 48 O O
Reference Manual S12CPUV2

228 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the left. Bit 0 is loaded with 0.
The C status bit is loaded from the most significant bit of B.

LSLB Logical Shift Left B
(Same as ASLB) LSLB

C b7 – – – – – – b0 0

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B7
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSLB INH 58 O O
S12CPUV2 Reference Manual

MOTOROLA 229

Instruction Glossary
Operation:

Description: Shifts all bits of double accumulator D one place to the left. Bit 0 is
loaded with 0. The C status bit is loaded from the most significant bit of
accumulator A.

LSLD Logical Shift Left Double
(Same as ASLD) LSLD

C b7 – – – – – – b0 b7 – – – – – – b0 0

Accumulator A Accumulator B

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: D15
Set if the MSB of D was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSLD INH 59 O O
Reference Manual S12CPUV2

230 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is loaded
with 0. The C status bit is loaded from the least significant bit of M.

LSR Logical Shift Right Memory LSR

Cb7 – – – – – – b00

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M0
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSR opr16a
LSR oprx0_xysp
LSR oprx9,xysp
LSR oprx16,xysp
LSR [D,xysp]
LSR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 231

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is loaded
with 0. The C status bit is loaded from the least significant bit of A.

C

LSRA Logical Shift Right A LSRA

Cb7 – – – – – – b00

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A0
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSRA INH 44 O O
Reference Manual S12CPUV2

232 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is loaded
with 0. The C status bit is loaded from the least significant bit of B.

LSRB Logical Shift Right B LSRB

Cb7 – – – – – – b00

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B0
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSRB INH 54 O O
S12CPUV2 Reference Manual

MOTOROLA 233

Instruction Glossary
Operation:

Description: Shifts all bits of double accumulator D one place to the right. D15 (MSB
of A) is loaded with 0. The C status bit is loaded from D0 (LSB of B).

LSRD Logical Shift Right Double LSRD

Cb7 – – – – – – b0 b7 – – – – – – b00

Accumulator A Accumulator B

CCR Details:
S X H I N Z V C

– – – – 0 ∆ ∆ ∆

N: 0; cleared

Z: Set if result is $0000; cleared otherwise

V: D0
Set if, after the shift operation, C is set; cleared otherwise

C: D0
Set if the LSB of D was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

LSRD INH 49 O O
Reference Manual S12CPUV2

234 MOTOROLA

Instruction Glossary
Glossary
Operation: MAX ((A), (M)) ⇒ A

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger and leaves the larger
of the two values in A. The Z status bit is set when the result of the
subtraction is zero (the values are equal), and the C status bit is set
when the subtraction requires a borrow (the value in memory is larger
than the value in the accumulator). When C = 1, the value in A has been
replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the largest value in a list of values.

MAXA Place Larger of Two Unsigned 8-Bit Values
in Accumulator A MAXA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MAXA oprx0_xysp
MAXA oprx9,xysp
MAXA oprx16,xysp
MAXA [D,xysp]
MAXA [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP
S12CPUV2 Reference Manual

MOTOROLA 235

Instruction Glossary
Operation: MAX ((A), (M)) ⇒ M

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger and leaves the larger
of the two values in the memory location. The Z status bit is set when the
result of the subtraction is zero (the values are equal), and the C status
bit is set when the subtraction requires a borrow (the value in memory is
larger than the value in the accumulator). When C = 0, the value in
accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

MAXM Place Larger of Two Unsigned 8-Bit Values
in Memory MAXM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MAXM oprx0_xysp
MAXM oprx9,xysp
MAXM oprx16,xysp
MAXM [D,xysp]
MAXM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw
Reference Manual S12CPUV2

236 MOTOROLA

Instruction Glossary
Glossary
Operation: Grade of Membership ⇒ M(Y)
(Y) + $0001 ⇒ Y
(X) + $0004 ⇒ X

Description: Before executing MEM, initialize A, X, and Y. Load A with the current
crisp value of a system input variable. Load Y with the fuzzy input RAM
location where the grade of membership is to be stored. Load X with the
first address of a 4-byte data structure that describes a trapezoidal
membership function. The data structure consists of:

• Point_1 — The x-axis starting point for the leading side (at MX)

• Slope_1 — The slope of the leading side (at MX+1)

• Point_2 — The x-axis position of the rightmost point (at MX+2)

• Slope_2 — The slope of the trailing side (at MX+3); the right side
slopes up and to the left from point_2

A slope_1 or slope_2 value of $00 is a special case in which the
membership function either starts with a grade of $FF at input = point_1,
or ends with a grade of $FF at input = point_2 (infinite slope).

During execution, the value of A remains unchanged. X is incremented
by four and Y is incremented by one.

H, N, Z, V, and C may be altered by this instruction.

MEM Determine Grade of Membership
(Fuzzy Logic) MEM

CCR Details:
S X H I N Z V C

– – ? – ? ? ? ?

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MEM Special 01 RRfOw RRfOw
S12CPUV2 Reference Manual

MOTOROLA 237

Instruction Glossary
Operation: MIN ((A), (M)) ⇒ A

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger, and leaves the
smaller of the two values in accumulator A. The Z status bit is set when
the result of the subtraction is zero (the values are equal), and the C
status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 0, the
value in accumulator A has been replaced by the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand. Auto increment/decrement variations of indexed
addressing facilitate finding the smallest value in a list of values.

MINA Place Smaller of Two
Unsigned 8-Bit Values

in Accumulator A
MINA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MINA oprx0_xysp
MINA oprx9,xysp
MINA oprx16,xysp
MINA [D,xysp]
MINA [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP
Reference Manual S12CPUV2

238 MOTOROLA

Instruction Glossary
Glossary
Operation: MIN ((A), (M)) ⇒ M

Description: Subtracts an unsigned 8-bit value in memory from an unsigned 8-bit
value in accumulator A to determine which is larger and leaves the
smaller of the two values in the memory location. The Z status bit is set
when the result of the subtraction is zero (the values are equal), and the
C status bit is set when the subtraction requires a borrow (the value in
memory is larger than the value in the accumulator). When C = 1, the
value in accumulator A has replaced the value in memory.

The unsigned value in memory is accessed by means of indexed
addressing modes, which allow a great deal of flexibility in specifying the
address of the operand.

MINM Place Smaller of Two
Unsigned 8-Bit Values

in Memory
MINM

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Condition codes reflect internal subtraction (R = A – M)

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MINM oprx0_xysp
MINM oprx9,xysp
MINM oprx16,xysp
MINM [D,xysp]
MINM [oprx16,xysp]

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw
S12CPUV2 Reference Manual

MOTOROLA 239

Instruction Glossary
Operation: (M1) ⇒ M2

Description: Moves the content of one memory location to another memory location.
The content of the source memory location is not changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM–EXT, IMM–IDX, EXT–EXT, EXT–IDX,
IDX–EXT, and IDX–IDX. IDX operands allow indexed addressing mode
specifications that fit in a single postbyte including 5-bit constant,
accumulator offsets, and auto increment/decrement modes. Nine-bit
and 16-bit constant offsets would require additional extension bytes and
are not allowed. Indexed indirect modes (for example [D,r]) are also not
allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.10 Instructions
Using Multiple Modes .

MOVB Move a Byte of Data
from One Memory Location to Another MOVB

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form (1)

1. The first operand in the source code statement specifies the source for the move.

Address
Mode

Object Code
Access Detail

HCS12 M68HC12

MOVB #opr8, opr16a
MOVB #opr8i, oprx0_xysp
MOVB opr16a, opr16a
MOVB opr16a, oprx0_xysp
MOVB oprx0_xysp, opr16a
MOVB oprx0_xysp, oprx0_xysp

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

OPwP
OPwO
OrPwPO
OPrPw
OrPwP
OrPwO

OPwP
OPwO

OrPwPO
OPrPw
OrPwP
OrPwO
Reference Manual S12CPUV2

240 MOTOROLA

Instruction Glossary
Glossary
Operation: (M : M + 11) ⇒ M : M + 12

Description: Moves the content of one 16-bit location in memory to another 16-bit
location in memory. The content of the source memory location is not
changed.

Move instructions use separate addressing modes to access the source
and destination of a move. The following combinations of addressing
modes are supported: IMM–EXT, IMM–IDX, EXT–EXT, EXT–IDX,
IDX–EXT, and IDX–IDX. IDX operands allow indexed addressing mode
specifications that fit in a single postbyte including 5-bit constant,
accumulator offsets, and auto increment/decrement modes. Nine-bit
and 16-bit constant offsets would require additional extension bytes and
are not allowed. Indexed indirect modes (for example [D,r]) are also not
allowed.

There are special considerations when using PC-relative addressing
with move instructions. These are discussed in 3.10 Instructions
Using Multiple Modes .

MOVW Move a Word of Data
from One Memory Location to Another MOVW

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form (1)

1. The first operand in the source code statement specifies the source for the move.

Address
Mode

Object Code
Access Detail

HCS12 M68HC12

MOVW #opr16i, opr16a
MOVW #opr16i, oprx0_xysp
MOVW opr16a, opr16a
MOVW opr16a, oprx0_xysp
MOVW oprx0_xysp, opr16a
MOVW oprx0_xysp, oprx0_xysp

IMM–EXT
IMM–IDX
EXT–EXT
EXT–IDX
IDX–EXT
IDX–IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

OPWPO
OPPW
ORPWPO
OPRPW
ORPWP
ORPWO

OPWPO
OPPW

ORPWPO
OPRPW
ORPWP
ORPWO
S12CPUV2 Reference Manual

MOTOROLA 241

Instruction Glossary
Operation: (A) × (B) ⇒ A : B

Description: Multiplies the 8-bit unsigned binary value in accumulator A by the 8-bit
unsigned binary value in accumulator B and places the 16-bit unsigned
result in double accumulator D. The carry flag allows rounding the most
significant byte of the result through the sequence MUL, ADCA #0.

MUL Multiply
8-Bit by 8-Bit (Unsigned) MUL

CCR Details:
S X H I N Z V C

– – – – – – – ∆

C: R7
Set if bit 7 of the result (B bit 7) is set; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

MUL INH 12 O ffO
Reference Manual S12CPUV2

242 MOTOROLA

Instruction Glossary
Glossary
Operation: 0 – (M) = (M) + 1 ⇒ M

Description: Replaces the content of memory location M with its two’s complement
(the value $80 is left unchanged).

NEG Negate Memory NEG

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise.

Z: Set if result is $00; cleared otherwise.

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied
subtraction from zero; cleared otherwise. Two’s complement
overflow occurs if and only if (M) = $80

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise. Set in all cases except when (M) = $00.

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NEG opr16a
NEG oprx0_xysp
NEG oprx9,xysp
NEG oprx16,xysp
NEG [D,xysp]
NEG [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 243

Instruction Glossary
Operation: 0 – (A) = (A) + 1 ⇒ A

Description: Replaces the content of accumulator A with its two’s complement (the
value $80 is left unchanged).

NEGA Negate A NEGA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied
subtraction from zero; cleared otherwise
Two’s complement overflow occurs if and only if (A) = $80

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise
Set in all cases except when (A) = $00

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NEGA INH 40 O O
Reference Manual S12CPUV2

244 MOTOROLA

Instruction Glossary
Glossary
Operation: 0 – (B) = (B) + 1 ⇒ B

Description: Replaces the content of accumulator B with its two’s complement (the
value $80 is left unchanged).

NEGB Negate B NEGB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: R7 • R6 • R5 • R4 • R3 • R2 • R1 • R0
Set if there is a two’s complement overflow from the implied
subtraction from zero; cleared otherwise
Two’s complement overflow occurs if and only if (B) = $80

C: R7 + R6 + R5 + R4 + R3 + R2 + R1 + R0
Set if there is a borrow in the implied subtraction from zero; cleared
otherwise
Set in all cases except when (B) = $00

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NEGB INH 50 O O
S12CPUV2 Reference Manual

MOTOROLA 245

Instruction Glossary
Operation: No operation

Description: This single-byte instruction increments the PC and does nothing else.
No other CPU registers are affected. NOP is typically used to produce a
time delay, although some software disciplines discourage CPU
frequency-based time delays. During debug, NOP instructions are
sometimes used to temporarily replace other machine code instructions,
thus disabling the replaced instruction(s).

NOP Null Operation NOP

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

NOP INH A7 O O
Reference Manual S12CPUV2

246 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) + (M) ⇒ A

Description: Performs bitwise logical inclusive OR between the content of
accumulator A and the content of memory location M and places the
result in A. Each bit of A after the operation is the logical inclusive OR of
the corresponding bits of M and of A before the operation.

ORAA Inclusive OR A ORAA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysp
ORAA oprx9,xysp
ORAA oprx16,xysp
ORAA [D,xysp]
ORAA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 247

Instruction Glossary
Operation: (B) + (M) ⇒ B

Description: Performs bitwise logical inclusive OR between the content of
accumulator B and the content of memory location M. The result is
placed in B. Each bit of B after the operation is the logical inclusive OR
of the corresponding bits of M and of B before the operation.

ORAB Inclusive OR B ORAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysp
ORAB oprx9,xysp
ORAB oprx16,xysp
ORAB [D,xysp]
ORAB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

248 MOTOROLA

Instruction Glossary
Glossary
Operation: (CCR) + (M) ⇒ CCR

Description: Performs bitwise logical inclusive OR between the content of memory
location M and the content of the CCR and places the result in the CCR.
Each bit of the CCR after the operation is the logical OR of the
corresponding bits of M and of CCR before the operation. To set one or
more bits, set the corresponding bit of the mask equal to 1. Bits
corresponding to 0s in the mask are not changed by the ORCC
operation.

Condition code bits are set if the corresponding bit was 1 before the
operation or if the corresponding bit in the instruction-provided mask
is 1. The X interrupt mask cannot be set by any software instruction.

ORCC Logical OR CCR with Mask ORCC

CCR Details:
S X H I N Z V C

⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ORCC #opr8i IMM 14 ii P P
S12CPUV2 Reference Manual

MOTOROLA 249

Instruction Glossary
Operation: (SP) – $0001 ⇒ SP
(A) ⇒ M(SP)

Description: Stacks the content of accumulator A. The stack pointer is decremented
by one. The content of A is then stored at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHA Push A onto Stack PSHA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHA INH 36 Os Os
Reference Manual S12CPUV2

250 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0001 ⇒ SP
(B) ⇒ M(SP)

Description: Stacks the content of accumulator B. The stack pointer is decremented
by one. The content of B is then stored at the address the SP points to.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHB Push B onto Stack PSHB

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHB INH 37 Os Os
S12CPUV2 Reference Manual

MOTOROLA 251

Instruction Glossary
Operation: (SP) – $0001 ⇒ SP
(CCR) ⇒ M(SP)

Description: Stacks the content of the condition codes register. The stack pointer is
decremented by one. The content of the CCR is then stored at the
address to which the SP points.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHC Push CCR onto Stack PSHC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHC INH 39 Os Os
Reference Manual S12CPUV2

252 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
(A : B) ⇒ M(SP) : M(SP+1)

Description: Stacks the content of double accumulator D. The stack pointer is
decremented by two, then the contents of accumulators A and B are
stored at the location to which the SP points.

After PSHD executes, the SP points to the stacked value of accumulator
A. This stacking order is the opposite of the order in which A and B are
stacked when an interrupt is recognized. The interrupt stacking order is
backward-compatible with the M6800, which had no 16-bit accumulator.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHD Push Double Accumulator onto Stack PSHD

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHD INH 3B OS OS
S12CPUV2 Reference Manual

MOTOROLA 253

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP
(XH : XL) ⇒ M(SP) : M(SP+1)

Description: Stacks the content of index register X. The stack pointer is decremented
by two. The content of X is then stored at the address to which the SP
points. After PSHX executes, the SP points to the stacked value of the
high-order half of X.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHX Push Index Register X onto Stack PSHX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHX INH 34 OS OS
Reference Manual S12CPUV2

254 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP
(YH : YL) ⇒ M(SP) : M(SP+1)

Description: Stacks the content of index register Y. The stack pointer is decremented
by two. The content of Y is then stored at the address to which the SP
points. After PSHY executes, the SP points to the stacked value of the
high-order half of Y.

Push instructions are commonly used to save the contents of one or
more CPU registers at the start of a subroutine. Complementary pull
instructions can be used to restore the saved CPU registers just before
returning from the subroutine.

PSHY Push Index Register Y onto Stack PSHY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PSHY INH 35 OS OS
S12CPUV2 Reference Manual

MOTOROLA 255

Instruction Glossary
Operation: (M(SP)) ⇒ A
(SP) + $0001 ⇒ SP

Description: Accumulator A is loaded from the address indicated by the stack pointer.
The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

PULA Pull A from Stack PULA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULA INH 32 ufO ufO
Reference Manual S12CPUV2

256 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP)) ⇒ B
(SP) + $0001 ⇒ SP

Description: Accumulator B is loaded from the address indicated by the stack pointer.
The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine, to
restore the contents of CPU registers that were pushed onto the stack
before subroutine execution.

PULB Pull B from Stack PULB

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULB INH 33 ufO ufO
S12CPUV2 Reference Manual

MOTOROLA 257

Instruction Glossary
Operation: (M(SP)) ⇒ CCR
(SP) + $0001 ⇒ SP

Description: The condition code register is loaded from the address indicated by the
stack pointer. The SP is then incremented by one.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

Condition codes take on the value pulled from the stack, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only by a reset
or by recognition of an XIRQ interrupt.

PULC Pull Condition Code Register from Stack PULC

CCR Details:
S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULC INH 38 ufO ufO
Reference Manual S12CPUV2

258 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP) : M(SP+1)) ⇒ A : B
(SP) + $0002 ⇒ SP

Description: Double accumulator D is loaded from the address indicated by the stack
pointer. The SP is then incremented by two.

The order in which A and B are pulled from the stack is the opposite of
the order in which A and B are pulled when an RTI instruction is
executed. The interrupt stacking order for A and B is
backward-compatible with the M6800, which had no 16-bit accumulator.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

PULD Pull Double Accumulator from Stack PULD

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULD INH 3A UfO UfO
S12CPUV2 Reference Manual

MOTOROLA 259

Instruction Glossary
Operation: (M(SP) : M(SP+1)) ⇒ XH : XL
(SP) + $0002 ⇒ SP

Description: Index register X is loaded from the address indicated by the stack
pointer. The SP is then incremented by two.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

PULX Pull Index Register X from Stack PULX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULX INH 30 UfO UfO
Reference Manual S12CPUV2

260 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP) : M(SP+1)) ⇒ YH : YL
(SP) + $0002 ⇒ SP

Description: Index register Y is loaded from the address indicated by the stack
pointer. The SP is then incremented by two.

Pull instructions are commonly used at the end of a subroutine to restore
the contents of CPU registers that were pushed onto the stack before
subroutine execution.

PULY Pull Index Register Y from Stack PULY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

PULY INH 31 UfO UfO
S12CPUV2 Reference Manual

MOTOROLA 261

Instruction Glossary
Operation: MIN-MAX Rule Evaluation

Description: Performs an unweighted evaluation of a list of rules, using fuzzy input
values to produce fuzzy outputs. REV can be interrupted, so it does not
adversely affect interrupt latency.

The REV instruction uses an 8-bit offset from a base address stored in
index register Y to determine the address of each fuzzy input and fuzzy
output. For REV to execute correctly, each rule in the knowledge base
must consist of a table of 8-bit antecedent offsets followed by a table of
8-bit consequent offsets. The value $FE marks boundaries between
antecedents and consequents and between successive rules. The value
$FF marks the end of the rule list. REV can evaluate any number of rules
with any number of inputs and outputs.

Beginning with the address pointed to by the first rule antecedent, REV
evaluates each successive fuzzy input value until it encounters an $FE
separator. Operation is similar to that of a MINA instruction. The smallest
input value is the truth value of the rule. Then, beginning with the
address pointed to by the first rule consequent, the truth value is
compared to each successive fuzzy output value until another $FE
separator is encountered; if the truth value is greater than the current
output value, it is written to the output. Operation is similar to that of a
MAXM instruction. Rules are processed until an $FF terminator is
encountered.

Before executing REV, perform these set up operations.

• X must point to the first 8-bit element in the rule list.

• Y must point to the base address for fuzzy inputs and fuzzy
outputs.

• A must contain the value $FF, and the CCR V bit must = 0.
(LDAA #$FF places the correct value in A and clears V.)

• Clear fuzzy outputs to 0s.

Index register X points to the element in the rule list that is being
evaluated. X is automatically updated so that execution can resume
correctly if the instruction is interrupted. When execution is complete, X
points to the next address after the $FF separator at the end of the rule
list.

REV Fuzzy Logic Rule Evaluation REV
Reference Manual S12CPUV2

262 MOTOROLA

Instruction Glossary
Glossary
Index register Y points to the base address for the fuzzy inputs and fuzzy
outputs. The value in Y does not change during execution.

Accumulator A holds intermediate results. During antecedent
processing, a MIN function compares each fuzzy input to the value
stored in A, and writes the smaller of the two to A. When all antecedents
have been evaluated, A contains the smallest input value. This is the
truth value used during consequent processing. Accumulator A must be
initialized to $FF for the MIN function to evaluate the inputs of the first
rule correctly. For subsequent rules, the value $FF is written to A when
an $FE marker is encountered. At the end of execution, accumulator A
holds the truth value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to 0 for processing to begin with
the antecedents of the first rule. Once execution begins, the value of V
is automatically changed as $FE separators are encountered. At the end
of execution, V should equal 1, because the last element before the $FF
end marker should be a rule consequent. If V is equal to 0 at the end of
execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work
correctly. Residual output values would cause incorrect comparison.

Refer to Section 9. Fuzzy Logic Support for details.

REV Fuzzy Logic Rule Evaluation
(Continued) REV

CCR Details:
S X H I N Z V C

– – ? – ? ? ∆ ?

V: 1; Normally set, unless rule structure is erroneous

H, N, Z, and C may be altered by this instruction

Source Form
Address

Mode
Object Code

Access Detail (1)

1. The 3-cycle loop in parentheses is executed once for each element in the rule list. When an interrupt occurs, there is a
2-cycle exit sequence, a 4-cycle re-entry sequence, then execution resumes with a prefetch of the last antecedent or
consequent being processed at the time of the interrupt.

HCS12 M68HC12

REV
(replace comma if interrupted)

Special 18 3A
Orf(t,tx)O
ff + Orf(t,

Orf(t,tx)O
ff + Orf(t,
S12CPUV2 Reference Manual

MOTOROLA 263

Instruction Glossary
Operation: MIN-MAX Rule Evaluation with Optional Rule Weighting

Description: REVW performs either weighted or unweighted evaluation of a list of
rules, using fuzzy inputs to produce fuzzy outputs. REVW can be
interrupted, so it does not adversely affect interrupt latency.

For REVW to execute correctly, each rule in the knowledge base must
consist of a table of 16-bit antecedent pointers followed by a table of
16-bit consequent pointers. The value $FFFE marks boundaries
between antecedents and consequents, and between successive rules.
The value $FFFF marks the end of the rule list. REVW can evaluate any
number of rules with any number of inputs and outputs.

Setting the C status bit enables weighted evaluation. To use weighted
evaluation, a table of 8-bit weighting factors, one per rule, must be stored
in memory. Index register Y points to the weighting factors.

Beginning with the address pointed to by the first rule antecedent,
REVW evaluates each successive fuzzy input value until it encounters
an $FFFE separator. Operation is similar to that of a MINA instruction.
The smallest input value is the truth value of the rule. Next, if weighted
evaluation is enabled, a computation is performed, and the truth value is
modified. Then, beginning with the address pointed to by the first rule
consequent, the truth value is compared to each successive fuzzy output
value until another $FFFE separator is encountered; if the truth value is
greater than the current output value, it is written to the output. Operation
is similar to that of a MAXM instruction. Rules are processed until an
$FFFF terminator is encountered.

Perform these set up operations before execution:

• X must point to the first 16-bit element in the rule list.

• A must contain the value $FF, and the CCR V bit must = 0
(LDAA #$FF places the correct value in A and clears V).

• Clear fuzzy outputs to 0s.

• Set or clear the CCR C bit. When weighted evaluation is enabled,
Y must point to the first item in a table of 8-bit weighting factors.

REVW Fuzzy Logic Rule Evaluation (Weighted) REVW
Reference Manual S12CPUV2

264 MOTOROLA

Instruction Glossary
Glossary
Index register X points to the element in the rule list that is being
evaluated. X is automatically updated so that execution can resume
correctly if the instruction is interrupted. When execution is complete, X
points to the address after the $FFFF separator at the end of the rule list.

Index register Y points to the weighting factor being used. Y is
automatically updated so that execution can resume correctly if the
instruction is interrupted. When execution is complete, Y points to the
last weighting factor used. When weighting is not used (C = 0), Y is not
changed.

Accumulator A holds intermediate results. During antecedent
processing, a MIN function compares each fuzzy input to the value
stored in A and writes the smaller of the two to A. When all antecedents
have been evaluated, A contains the smallest input value. For
unweighted evaluation, this is the truth value used during consequent
processing. For weighted evaluation, the value in A is multiplied by the
quantity (Rule Weight + 1) and the upper eight bits of the result replace
the content of A. Accumulator A must be initialized to $FF for the MIN
function to evaluate the inputs of the first rule correctly. For subsequent
rules, the value $FF is automatically written to A when an $FFFE marker
is encountered. At the end of execution, accumulator A holds the truth
value for the last rule.

The V status bit signals whether antecedents (0) or consequents (1) are
being processed. V must be initialized to 0 for processing to begin with
the antecedents of the first rule. Once execution begins, the value of V
is automatically changed as $FFFE separators are encountered. At the
end of execution, V should equal 1, because the last element before the
$FF end marker should be a rule consequent. If V is equal to 0 at the end
of execution, the rule list is incorrect.

Fuzzy outputs must be cleared to $00 before processing begins in order
for the MAX algorithm used during consequent processing to work
correctly. Residual output values would cause incorrect comparison.

Refer to Section 9. Fuzzy Logic Support for details.

REVW Fuzzy Logic Rule Evaluation (Weighted)
(Continued) REVW
S12CPUV2 Reference Manual

MOTOROLA 265

Instruction Glossary
REVW Fuzzy Logic Rule Evaluation (Weighted)
(Concluded) REVW

CCR Details:
S X H I N Z V C

– – ? – ? ? ∆ !

V: 1; Normally set, unless rule structure is erroneous
C: Selects weighted (1) or unweighted (0) rule evaluation
H, N, Z, and C may be altered by this instruction

Source Form
Address

Mode
Object Code

Access Detail (1)

1. The 3-cycle loop in parentheses expands to five cycles for separators when weighting is enabled. The loop is executed
once for each element in the rule list. When an interrupt occurs, there is a 2-cycle exit sequence, a 4-cycle re-entry
sequence, then execution resumes with a prefetch of the last antecedent or consequent being processed at the time of
the interrupt.

HCS12 M68HC12

REVW
(add 2 at end of ins if wts)
(replace comma if interrupted)

Special 18 3B
ORf(t,Tx)O
(r,RfRf)
ffff + ORf(t,

ORf(tTx)O
(r,RfRf)

ffff + ORf(t,
Reference Manual S12CPUV2

266 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of memory location M one place to the left. Bit 0 is loaded
from the C status bit. The C bit is loaded from the most significant bit of
M. Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, ROL HIGH could
be used where LOW, MID and HIGH refer to the low-order, middle and
high-order bytes of the 24-bit value, respectively.

ROL Rotate Left Memory ROL

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M7
Set if the MSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROL opr16a
ROL oprx0_xysp
ROL oprx9,xysp
ROL oprx16,xysp
ROL [D,xysp]
ROL [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
S12CPUV2 Reference Manual

MOTOROLA 267

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the left. Bit 0 is loaded from
the C status bit. The C bit is loaded from the most significant bit of A.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, and ROL HIGH
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

ROLA Rotate Left A ROLA

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A7
Set if the MSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROLA INH 45 O O
Reference Manual S12CPUV2

268 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the left. Bit 0 is loaded from
the C status bit. The C bit is loaded from the most significant bit of B.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the left, the sequence ASL LOW, ROL MID, and ROL HIGH
could be used where LOW, MID, and HIGH refer to the low-order, middle
and high-order bytes of the 24-bit value, respectively.

ROLB Rotate Left B ROLB

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B7
Set if the MSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROLB INH 55 O O
S12CPUV2 Reference Manual

MOTOROLA 269

Instruction Glossary
Operation:

Description: Shifts all bits of memory location M one place to the right. Bit 7 is loaded
from the C status bit. The C bit is loaded from the least significant bit of
M. Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, and ROR LOW
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

ROR Rotate Right Memory ROR

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: M0
Set if the LSB of M was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

ROR opr16a
ROR oprx0_xysp
ROR oprx9,xysp
ROR oprx16,xysp
ROR [D,xysp]
ROR [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw
Reference Manual S12CPUV2

270 MOTOROLA

Instruction Glossary
Glossary
Operation:

Description: Shifts all bits of accumulator A one place to the right. Bit 7 is loaded from
the C status bit. The C bit is loaded from the least significant bit of A.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, and ROR LOW
could be used where LOW, MID, and HIGH refer to the low-order,
middle, and high-order bytes of the 24-bit value, respectively.

RORA Rotate Right A RORA

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: A0
Set if the LSB of A was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RORA INH 46 O O
S12CPUV2 Reference Manual

MOTOROLA 271

Instruction Glossary
Operation:

Description: Shifts all bits of accumulator B one place to the right. Bit 7 is loaded from
the C status bit. The C bit is loaded from the least significant bit of B.
Rotate operations include the carry bit to allow extension of shift and
rotate operations to multiple bytes. For example, to shift a 24-bit value
one bit to the right, the sequence LSR HIGH, ROR MID, and ROR LOW
could be used where LOW, MID, and HIGH refer to the low-order, middle
and high-order bytes of the 24-bit value, respectively.

RORB Rotate Right B RORB

C b7 – – – – – – b0 C

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: N ⊕ C = [N • C] + [N • C] (for N and C after the shift)
Set if (N is set and C is cleared) or (N is cleared and C is set);
cleared otherwise (for values of N and C after the shift)

C: B0
Set if the LSB of B was set before the shift; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RORB INH 56 O O
Reference Manual S12CPUV2

272 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP)) ⇒ PPAGE
(SP) + $0001 ⇒ SP
(M(SP) : M(SP+1)) ⇒ PCH : PCL
(SP) + $0002 ⇒ SP

Description: Terminates subroutines in expanded memory invoked by the CALL
instruction. Returns execution flow from the subroutine to the calling
program. The program overlay page (PPAGE) register and the return
address are restored from the stack; program execution continues at the
restored address. For code compatibility purposes, CALL and RTC also
execute correctly in devices that do not have expanded memory
capability.

RTC Return from Call RTC

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RTC INH 0A uUnfPPP uUnPPP
S12CPUV2 Reference Manual

MOTOROLA 273

Instruction Glossary
Operation: (M(SP)) ⇒ CCR; (SP) + $0001 ⇒ SP
(M(SP) : M(SP+1)) ⇒ B : A; (SP) + $0002 ⇒ SP
(M(SP) : M(SP+1)) ⇒ XH : XL; (SP) + $0004 ⇒ SP
(M(SP) : M(SP+1)) ⇒ PCH : PCL; (SP) – $0002 ⇒ SP
(M(SP) : M(SP+1)) ⇒ YH : YL; (SP) + $0004 ⇒ SP

Description: Restores system context after interrupt service processing is completed.
The condition codes, accumulators B and A, index register X, the PC,
and index register Y are restored to a state pulled from the stack. The X
mask bit may be cleared as a result of an RTI instruction, but cannot be
set if it was cleared prior to execution of the RTI instruction.

If another interrupt is pending when RTI has finished restoring registers
from the stack, the SP is adjusted to preserve stack content, and the new
vector is fetched. This operation is functionally identical to the same
operation in the M68HC11, where registers actually are re-stacked, but
is faster.

Condition codes take on the value pulled from the stack, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only by a reset
or by recognition of an XIRQ interrupt.

RTI Return from Interrupt RTI

CCR Details:
S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RTI
(with interrupt pending)

INH 0B
uUUUUPPP
uUUUUfVfPPP

uUUUUPPP
uUUUUVfPPP
Reference Manual S12CPUV2

274 MOTOROLA

Instruction Glossary
Glossary
Operation: (M(SP) : M(SP+1)) ⇒ PCH : PCL; (SP) + $0002 ⇒ SP

Description: Restores context at the end of a subroutine. Loads the program counter
with a 16-bit value pulled from the stack and increments the stack pointer
by two. Program execution continues at the address restored from the
stack.

RTS Return from Subroutine RTS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

RTS INH 3D UfPPP UfPPP
S12CPUV2 Reference Manual

MOTOROLA 275

Instruction Glossary
Operation: (A) – (B) ⇒ A

Description: Subtracts the content of accumulator B from the content of accumulator
A and places the result in A. The content of B is not affected. For
subtraction instructions, the C status bit represents a borrow.

SBA Subtract Accumulators SBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • B7 • R7 + A7 • B7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • B7 + B7 • R7 + R7 • A7
Set if the absolute value of B is larger than the absolute value of A;
cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SBA INH 18 16 OO OO
Reference Manual S12CPUV2

276 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) – (M) – C ⇒ A

Description: Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator A. The result is placed in A. For
subtraction instructions, the C status bit represents a borrow.

SBCA Subtract with Carry from A SBCA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the absolute value of the content of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysp
SBCA oprx9,xysp
SBCA oprx16,xysp
SBCA [D,xysp]
SBCA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 277

Instruction Glossary
Operation: (B) – (M) – C ⇒ B

Description: Subtracts the content of memory location M and the value of the C status
bit from the content of accumulator B. The result is placed in B. For
subtraction instructions, the C status bit represents a borrow.

SBCB Subtract with Carry from B SBCB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if the absolute value of the content of memory plus previous
carry is larger than the absolute value of the accumulator; cleared
otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysp
SBCB oprx9,xysp
SBCB oprx16,xysp
SBCB [D,xysp]
SBCB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

278 MOTOROLA

Instruction Glossary
Glossary
Operation: 1 ⇒ C bit

Description: Sets the C status bit. This instruction is assembled as ORCC #$01. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation.

SEC can be used to set up the C bit prior to a shift or rotate instruction
involving the C bit.

SEC Set Carry SEC

CCR Details:
S X H I N Z V C

– – – – – – – 1

C: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SEC
translates to... ORCC #$01 IMM 14 01 P

P

S12CPUV2 Reference Manual

MOTOROLA 279

Instruction Glossary
Operation: 1 ⇒ I bit

Description: Sets the I mask bit. This instruction is assembled as ORCC #$10. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation. When the I bit is set, all maskable interrupts are
inhibited, and the CPU will recognize only non-maskable interrupt
sources or an SWI.

SEI Set Interrupt Mask SEI

CCR Details:
S X H I N Z V C

– – – 1 – – – –

I: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SEI
translates to... ORCC #$10 IMM 14 10 P

P

Reference Manual S12CPUV2

280 MOTOROLA

Instruction Glossary
Glossary
Operation: 1 ⇒ V bit

Description: Sets the V status bit. This instruction is assembled as ORCC #$02. The
ORCC instruction can be used to set any combination of bits in the CCR
in one operation.

SEV Set Two’s Complement Overflow Bit SEV

CCR Details:
S X H I N Z V C

– – – – – – 1 –

V: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SEV
translates to... ORCC #$02 IMM 14 02 P

P

S12CPUV2 Reference Manual

MOTOROLA 281

Instruction Glossary
Operation: If r1 bit 7 = 0, then $00 : (r1) ⇒ r2
If r1 bit 7 = 1, then $FF : (r1) ⇒ r2

Description: This instruction is an alternate mnemonic for the TFR r1,r2 instruction,
where r1 is an 8-bit register and r2 is a 16-bit register. The result in r2 is
the 16-bit sign extended representation of the original two’s complement
number in r1. The content of r1 is unchanged in all cases except that of
SEX A,D (D is A : B).

SEX Sign Extend into 16-Bit Register SEX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Legal coding for eb is summarized in the following table. Columns represent the high-order source digit. Rows represent
the low-order destination digit (MSB is a don’t care). Values are in hexadecimal.

Access Detail

HCS12 M68HC12

SEX abc,dxys INH B7 eb P P

0 1 2

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2

4 sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

5 sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

6 sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

7 sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP
Reference Manual S12CPUV2

282 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) ⇒ M

Description: Stores the content of accumulator A in memory location M. The content
of A is unchanged.

STAA Store Accumulator A STAA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STAA opr8a
STAA opr16a
STAA oprx0_xysp
STAA oprx9,xysp
STAA oprx16,xysp
STAA [D,xysp]
STAA [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw
S12CPUV2 Reference Manual

MOTOROLA 283

Instruction Glossary
Operation: (B) ⇒ M

Description: Stores the content of accumulator B in memory location M. The content
of B is unchanged.

STAB Store Accumulator B STAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STAB opr8a
STAB opr16a
STAB oprx0_xysp
STAB oprx9,xysp
STAB oprx16,xysp
STAB [D,xysp]
STAB [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw
Reference Manual S12CPUV2

284 MOTOROLA

Instruction Glossary
Glossary
Operation: (A : B) ⇒ M : M + 1

Description: Stores the content of double accumulator D in memory location
M : M + 1. The content of D is unchanged.

STD Store Double Accumulator STD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STD opr8a
STD opr16a
STD oprx0_xysp
STD oprx9,xysp
STD oprx16,xysp
STD [D,xysp]
STD [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
S12CPUV2 Reference Manual

MOTOROLA 285

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
Stop All Clocks

Description: When the S control bit is set, STOP is disabled and operates like a
2-cycle NOP instruction. When the S bit is cleared, STOP stacks CPU
context, stops all system clocks, and puts the device in standby mode.

Standby operation minimizes system power consumption. The contents
of registers and the states of I/O pins remain unchanged.

Asserting the RESET, XIRQ, or IRQ signals ends standby mode.
Stacking on entry to STOP allows the CPU to recover quickly when an
interrupt is used, provided a stable clock is applied to the device. If the
system uses a clock reference crystal that also stops during low-power
mode, crystal startup delay lengthens recovery time.

If XIRQ is asserted while the X mask bit = 0 (XIRQ interrupts enabled),
execution resumes with a vector fetch for the XIRQ interrupt. If the X
mask bit = 1 (XIRQ interrupts disabled), a 2-cycle recovery sequence
including an O cycle is used to adjust the instruction queue, and
execution continues with the next instruction after STOP.

STOP Stop Processing STOP

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STOP (entering STOP) INH 18 3E OOSSSSsf OOSSSfSs

(exiting STOP) fVfPPP fVfPPP

(continue) ff fO

(if STOP disabled) OO OO
Reference Manual S12CPUV2

286 MOTOROLA

Instruction Glossary
Glossary
Operation: (SPH : SPL) ⇒ M : M + 1

Description: Stores the content of the stack pointer in memory. The most significant
byte of the SP is stored at the specified address, and the least significant
byte of the SP is stored at the next higher byte address (the specified
address plus one).

STS Store Stack Pointer STS

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STS opr8a
STS opr16a
STS oprx0_xysp
STS oprx9,xysp
STS oprx16,xysp
STS [D,xysp]
STS [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
S12CPUV2 Reference Manual

MOTOROLA 287

Instruction Glossary
Operation: (XH : XL) ⇒ M : M + 1

Description: Stores the content of index register X in memory. The most significant
byte of X is stored at the specified address, and the least significant byte
of X is stored at the next higher byte address (the specified address plus
one).

STX Store Index Register X STX

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STX opr8a
STX opr16a
STX oprx0_xysp
STX oprx9,xysp
STX oprx16,xysp
STX [D,xysp]
STX [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
Reference Manual S12CPUV2

288 MOTOROLA

Instruction Glossary
Glossary
Operation: (YH : YL) ⇒ M : M + 1

Description: Stores the content of index register Y in memory. The most significant
byte of Y is stored at the specified address, and the least significant byte
of Y is stored at the next higher byte address (the specified address plus
one).

STY Store Index Register Y STY

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

STY opr8a
STY opr16a
STY oprx0_xysp
STY oprx9,xysp
STY oprx16,xysp
STY [D,xysp]
STY [oprx16,xysp]

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW
S12CPUV2 Reference Manual

MOTOROLA 289

Instruction Glossary
Operation: (A) – (M) ⇒ A

Description: Subtracts the content of memory location M from the content of
accumulator A, and places the result in A. For subtraction instructions,
the C status bit represents a borrow.

SUBA Subtract A SUBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: A7 • M7 • R7 + A7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: A7 • M7 + M7 • R7 + R7 • A7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysp
SUBA oprx9,xysp
SUBA oprx16,xysp
SUBA [D,xysp]
SUBA [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
Reference Manual S12CPUV2

290 MOTOROLA

Instruction Glossary
Glossary
Operation: (B) – (M) ⇒ B

Description: Subtracts the content of memory location M from the content of
accumulator B and places the result in B. For subtraction instructions,
the C status bit represents a borrow.

SUBB Subtract B SUBB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: B7 • M7 • R7 + B7 • M7 • R7
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: B7 • M7 + M7 • R7 + R7 • B7
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysp
SUBB oprx9,xysp
SUBB oprx16,xysp
SUBB [D,xysp]
SUBB [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 291

Instruction Glossary
Operation: (A : B) – (M : M + 1) ⇒ A : B

Description: Subtracts the content of memory location M : M + 1 from the content of
double accumulator D and places the result in D. For subtraction
instructions, the C status bit represents a borrow.

SUBD Subtract Double Accumulator SUBD

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ ∆ ∆

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $0000; cleared otherwise

V: D15 • M15 • R15 + D15 • M15 • R15
Set if a two’s complement overflow resulted from the operation;
cleared otherwise

C: D15 • M15 + M15 • R15 + R15 • D15
Set if the value of the content of memory is larger than the value of
the accumulator; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysp
SUBD oprx9,xyssp
SUBD oprx16,xysp
SUBD [D,xysp]
SUBD [oprx16,xysp]

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP
Reference Manual S12CPUV2

292 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
1 ⇒ I
(SWI Vector) ⇒ PC

Description: Causes an interrupt without an external interrupt service request. Uses
the address of the next instruction after SWI as a return address. Stacks
the return address, index registers Y and X, accumulators B and A, and
the CCR, decrementing the SP before each item is stacked. The I mask
bit is then set, the PC is loaded with the SWI vector, and instruction
execution resumes at that location. SWI is not affected by the I mask bit.
Refer to Section 7. Exception Processing for more information.

SWI Software Interrupt SWI

CCR Details:
S X H I N Z V C

– – – 1 – – – –

I: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

SWI INH 3F VSPSSPSsP(1)

1. The CPU also uses the SWI processing sequence for hardware interrupts and unimplemented opcode traps. A variation
of the sequence (VfPPP) is used for resets.

VSPSSPSsP(1)
S12CPUV2 Reference Manual

MOTOROLA 293

Instruction Glossary
Operation: (A) ⇒ B

Description: Moves the content of accumulator A to accumulator B. The former
content of B is lost; the content of A is not affected. Unlike the general
transfer instruction TFR A,B which does not affect condition codes, the
TAB instruction affects the N, Z, and V status bits for compatibility with
M68HC11.

TAB Transfer from Accumulator A
to Accumulator B TAB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TAB INH 18 0E OO OO
Reference Manual S12CPUV2

294 MOTOROLA

Instruction Glossary
Glossary
Operation: (A) ⇒ CCR

Description: Transfers the logic states of bits [7:0] of accumulator A to the
corresponding bit positions of the CCR. The content of A remains
unchanged. The X mask bit can be cleared as a result of a TAP, but
cannot be set if it was cleared prior to execution of the TAP. If the I bit is
cleared, there is a 1-cycle delay before the system allows interrupt
requests. This prevents interrupts from occurring between instructions in
the sequences CLI, WAI and CLI, SEI.

This instruction is accomplished with the TFR A,CCR instruction. For
compatibility with the M68HC11, the mnemonic TAP is translated by the
assembler.

Condition codes take on the value of the corresponding bit of
accumulator A, except that the X mask bit cannot change from 0 to 1.
Software can leave the X bit set, leave it cleared, or change it from 1 to
0, but it can only be set by a reset or by recognition of an XIRQ interrupt.

TAP Transfer from Accumulator A
to Condition Code Register TAP

CCR Details:
S X H I N Z V C

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TAP translates to...
TFR A,CCR

INH B7 02 P P
S12CPUV2 Reference Manual

MOTOROLA 295

Instruction Glossary
Operation: (B) ⇒ A

Description: Moves the content of accumulator B to accumulator A. The former
content of A is lost; the content of B is not affected. Unlike the general
transfer instruction TFR B,A, which does not affect condition codes, the
TBA instruction affects N, Z, and V for compatibility with M68HC11.

TBA Transfer from Accumulator B
to Accumulator A TBA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 –

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TBA INH 18 0F OO OO
Reference Manual S12CPUV2

296 MOTOROLA

Instruction Glossary
Glossary
Operation: If (Counter) = 0, then (PC) + $0003 + Rel ⇒ PC

Description: Tests the specified counter register A, B, D, X, Y, or SP. If the counter
register is zero, branches to the specified relative destination. TBEQ is
encoded into three bytes of machine code including a 9-bit relative offset
(–256 to +255 locations from the start of the next instruction).

DBEQ and IBEQ instructions are similar to TBEQ, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which
operation is to be performed.

TBEQ Test and Branch if Equal to Zero TBEQ

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (TBEQ – 0)
or not zero (TBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 0:1 for TBEQ.

Access Detail

HCS12 M68HC12

TBEQ abdxys,rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

TBEQ A, rel9
TBEQ B, rel9

04 40 rr
04 41 rr

04 50 rr
04 51 rr

D
X
Y

SP

100
101
110
111

TBEQ D, rel9
TBEQ X, rel9
TBEQ Y, rel9
TBEQ SP, rel9

04 44 rr
04 45 rr
04 46 rr
04 47 rr

04 54 rr
04 55 rr
04 56 rr
04 57 rr
S12CPUV2 Reference Manual

MOTOROLA 297

Instruction Glossary
Operation: (M) + [(B) × ((M+1) – (M))] ⇒ A

Description: Linearly interpolates one of 256 result values that fall between each pair
of data entries in a lookup table stored in memory. Data entries in the
table represent the Y values of endpoints of equally spaced line
segments. Table entries and the interpolated result are 8-bit values. The
result is stored in accumulator A.

Before executing TBL, an index register points to the table entry
corresponding to the X value (X1) that is closest to, but less than or equal
to, the desired lookup point (XL, YL). This defines the left end of a line
segment and the right end is defined by the next data entry in the table.
Prior to execution, accumulator B holds a binary fraction (radix point to
left of MSB), representing the ratio (XL–X1) ÷ (X2–X1).

The 8-bit unrounded result is calculated using the following expression:

A = Y1 + [(B) × (Y2 – Y1)]
Where

(B) = (XL – X1) ÷ (X2 – X1)
Y1 = 8-bit data entry pointed to by <effective address>
Y2 = 8-bit data entry pointed to by <effective address> + 1

The intermediate value [(B) × (Y2 – Y1)] produces a 16-bit result with the
radix point between bits 7 and 8. Any indexed addressing mode
referenced to X, Y, SP, or PC, except indirect modes or 9-bit and 16-bit
offset modes, can be used to identify the first data point (X1,Y1). The
second data point is the next table entry.

TBL Table Lookup and Interpolate TBL

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ – ∆(1)

1. C-bit was undefined in original M68HC12.

N: Set if MSB of result is set; cleared otherwise
Z: Set if result is $00; cleared otherwise
C: Set if result can be rounded up; cleared otherwise

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TBL oprx0_xysp IDX 18 3D xb ORfffP OrrffffP
Reference Manual S12CPUV2

298 MOTOROLA

Instruction Glossary
Glossary
Operation: If (Counter) ≠ 0, then (PC) + $0003 + Rel ⇒ PC

Description: Tests the specified counter register A, B, D, X, Y, or SP. If the counter
register is not zero, branches to the specified relative destination. TBNE
is encoded into three bytes of machine code including a 9-bit relative
offset (–256 to +255 locations from the start of the next instruction).

DBNE and IBNE instructions are similar to TBNE, except that the
counter is decremented or incremented rather than simply being tested.
Bits 7 and 6 of the instruction postbyte are used to determine which
operation is to be performed.

TBNE Test and Branch if Not Equal to Zero TBNE

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code (1)

1. Encoding for lb is summarized in the following table. Bit 3 is not used (don’t care), bit 5 selects branch on zero (TBEQ –
0) or not zero (TBNE – 1) versions, and bit 4 is the sign bit of the 9-bit relative offset. Bits 7 and 6 should be 0:1 for TBNE.

Access Detail

HCS12 M68HC12

TBNE abdxys,rel9 REL 04 lb rr PPP/PPO PPP

Count
Register

Bits 2:0 Source Form
Object Code

(If Offset is Positive)
Object Code

(If Offset is Negative)

A
B

000
001

TBNE A, rel9
TBNE B, rel9

04 60 rr
04 61 rr

04 70 rr
04 71 rr

D
X
Y

SP

100
101
110
111

TBNE D, rel9
TBNE X, rel9
TBNE Y, rel9
TBNE SP, rel9

04 64 rr
04 65 rr
04 66 rr
04 67 rr

04 74 rr
04 75 rr
04 76 rr
04 77 rr
S12CPUV2 Reference Manual

MOTOROLA 299

Instruction Glossary
Operation: See table.

Description: Transfers the content of a source register to a destination register
specified in the instruction. The order in which transfers between 8-bit
and 16-bit registers are specified affects the high byte of the 16-bit
registers differently. Cases involving TMP2 and TMP3 are reserved for
Motorola use, so some assemblers may not permit their use. It is
possible to generate these cases by using DC.B or DC.W assembler
directives.

None affected, unless the CCR is the destination register. Condition
codes take on the value of the corresponding source bits, except that the
X mask bit cannot change from 0 to 1. Software can leave the X bit set,
leave it cleared, or change it from 1 to 0, but it can be set only by a reset
or by recognition of an XIRQ interrupt.

TFR Transfer Register Content
to Another Register TFR

CCR Details:
S X H I N Z V C

Or:
S X H I N Z V C

– – – – – – – – ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

Source Form
Address

Mode
Object Code (1)

1. Legal coding for eb is summarized in the following table. Columns represent the high-order source digit. Rows represent
the low-order destination digit (MSB is a don’t-care). Values are in hexadecimal.

Access Detail

HCS12 M68HC12

TFR abcdxys,abcdxys INH B7 eb P P

0 1 2 3 4 5 6 7

0 A ⇒ A B ⇒ A CCR ⇒ A TMP3L ⇒ A B ⇒ A XL ⇒ A YL ⇒ A SPL ⇒ A

1 A ⇒ B B ⇒ B CCR ⇒ B TMP3L ⇒ B B ⇒ B XL ⇒ B YL ⇒ B SPL ⇒ B

2 A ⇒ CCR B ⇒ CCR CCR ⇒ CCR TMP3L ⇒ CCR B ⇒ CCR XL ⇒ CCR YL ⇒ CCR SPL ⇒ CCR

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2 TMP3 ⇒ TMP2 D ⇒ TMP2 X ⇒ TMP2 Y ⇒ TMP2 SP ⇒ TMP2

4 sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

TMP3 ⇒ D D ⇒ D X ⇒ D Y ⇒ D SP ⇒ D

5 sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

TMP3 ⇒ X D ⇒ X X ⇒ X Y ⇒ X SP ⇒ X

6 sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

TMP3 ⇒ Y D ⇒ Y X ⇒ Y Y ⇒ Y SP ⇒ Y

7 sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP

TMP3 ⇒ SP D ⇒ SP X ⇒ SP Y ⇒ SP SP ⇒ SP
Reference Manual S12CPUV2

300 MOTOROLA

Instruction Glossary
Glossary
Operation: (CCR) ⇒ A

Description: Transfers the content of the condition code register to corresponding bit
positions of accumulator A. The CCR remains unchanged.

This mnemonic is implemented by the TFR CCR,A instruction. For
compatibility with the M68HC11, the mnemonic TPA is translated into
the TFR CCR,A instruction by the assembler.

TPA Transfer from Condition Code
Register to Accumulator A TPA

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TPA
translates to... TFR CCR,A INH B7 20 P P
S12CPUV2 Reference Manual

MOTOROLA 301

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
1 ⇒ I
(Trap Vector) ⇒ PC

Description: Traps unimplemented opcodes. There are opcodes in all 256 positions
in the page 1 opcode map, but only 54 of the 256 positions on page 2 of
the opcode map are used. If the CPU attempts to execute one of the
unimplemented opcodes on page 2, an opcode trap interrupt occurs.
Unimplemented opcode traps are essentially interrupts that share the
$FFF8:$FFF9 interrupt vector.

TRAP uses the next address after the unimplemented opcode as a
return address. It stacks the return address, index registers Y and X,
accumulators B and A, and the CCR, automatically decrementing the SP
before each item is stacked. The I mask bit is then set, the PC is loaded
with the trap vector, and instruction execution resumes at that location.
This instruction is not maskable by the I bit. Refer to Section 7.
Exception Processing for more information.

TRAP Unimplemented Opcode Trap TRAP

CCR Details:
S X H I N Z V C

– – – 1 – – – –

I: 1; set

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TRAP trapnum INH $18 tn (1)

1. The value tn represents an unimplemented page 2 opcode in either of the two ranges $30 to $39 or $40 to $FF.

OVSPSSPSsP OfVSPSSPSsP
Reference Manual S12CPUV2

302 MOTOROLA

Instruction Glossary
Glossary
Operation: (M) – $00

Description: Subtracts $00 from the content of memory location M and sets the
condition codes accordingly.

The subtraction is accomplished internally without modifying M.

The TST instruction provides limited information when testing unsigned
values. Since no unsigned value is less than zero, BLO and BLS have
no utility following TST. While BHI can be used after TST, it performs the
same function as BNE, which is preferred. After testing signed values,
all signed branches are available.

TST Test Memory TST

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TST opr16a
TST oprx0_xysp
TST oprx9,xysp
TST oprx16,xysp
TST [D,xysp]
TST [oprx16,xysp]

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff

rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

rOP
rfP
rPO

frPP
fIfrfP
fIPrfP
S12CPUV2 Reference Manual

MOTOROLA 303

Instruction Glossary
Operation: (A) – $00

Description: Subtracts $00 from the content of accumulator A and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying A.

The TSTA instruction provides limited information when testing
unsigned values. Since no unsigned value is less than zero, BLO and
BLS have no utility following TSTA. While BHI can be used after TST, it
performs the same function as BNE, which is preferred. After testing
signed values, all signed branches are available.

TSTA Test A TSTA

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSTA INH 97 O O
Reference Manual S12CPUV2

304 MOTOROLA

Instruction Glossary
Glossary
Operation: (B) – $00

Description: Subtracts $00 from the content of accumulator B and sets the condition
codes accordingly.

The subtraction is accomplished internally without modifying B.

The TSTB instruction provides limited information when testing
unsigned values. Since no unsigned value is less than zero, BLO and
BLS have no utility following TSTB. While BHI can be used after TST, it
performs the same function as BNE, which is preferred. After testing
signed values, all signed branches are available.

TSTB Test B TSTB

CCR Details:
S X H I N Z V C

– – – – ∆ ∆ 0 0

N: Set if MSB of result is set; cleared otherwise

Z: Set if result is $00; cleared otherwise

V: 0; cleared

C: 0; cleared

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSTB INH D7 O O
S12CPUV2 Reference Manual

MOTOROLA 305

Instruction Glossary
Operation: (SP) ⇒ X

Description: This is an alternate mnemonic to transfer the stack pointer value to index
register X. The content of the SP remains unchanged. After a TSX
instruction, X points at the last value that was stored on the stack.

TSX Transfer from Stack Pointer
to Index Register X TSX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSX
translates to... TFR SP,X INH B7 75 P P
Reference Manual S12CPUV2

306 MOTOROLA

Instruction Glossary
Glossary
Operation: (SP) ⇒ Y

Description: This is an alternate mnemonic to transfer the stack pointer value to index
register Y. The content of the SP remains unchanged. After a TSY
instruction, Y points at the last value that was stored on the stack.

TSY Transfer from Stack Pointer
to Index Register Y TSY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TSY
translates to... TFR SP,Y INH B7 76 P P
S12CPUV2 Reference Manual

MOTOROLA 307

Instruction Glossary
Operation: (X) ⇒ SP

Description: This is an alternate mnemonic to transfer index register X value to the
stack pointer. The content of X is unchanged.

TXS Transfer from Index Register X
to Stack Pointer TXS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TXS
translates to... TFR X,SP INH B7 57 P P
Reference Manual S12CPUV2

308 MOTOROLA

Instruction Glossary
Glossary
Operation: (Y) ⇒ SP

Description: This is an alternate mnemonic to transfer index register Y value to the
stack pointer. The content of Y is unchanged.

TYS Transfer from Index Register Y
to Stack Pointer TYS

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

TYS
translates to... TFR Y,SP INH B7 67 P P
S12CPUV2 Reference Manual

MOTOROLA 309

Instruction Glossary
Operation: (SP) – $0002 ⇒ SP; RTNH : RTNL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; YH : YL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; XH : XL ⇒ (M(SP) : M(SP+1))
(SP) – $0002 ⇒ SP; B : A⇒ (M(SP) : M(SP+1))
(SP) – $0001 ⇒ SP; CCR ⇒ (M(SP))
Stop CPU Clocks

Description: Puts the CPU into a wait state. Uses the address of the instruction
following WAI as a return address. Stacks the return address, index
registers Y and X, accumulators B and A, and the CCR, decrementing
the SP before each item is stacked.

The CPU then enters a wait state for an integer number of bus clock
cycles. During the wait state, CPU clocks are stopped, but other MCU
clocks can continue to run. The CPU leaves the wait state when it
senses an interrupt that has not been masked.

Upon leaving the wait state, the CPU sets the appropriate interrupt mask
bit(s), fetches the vector corresponding to the interrupt sensed, and
instruction execution continues at the location the vector points to.

Although the WAI instruction itself does not alter the condition codes, the
interrupt that causes the CPU to resume processing also causes the I
mask bit (and the X mask bit, if the interrupt was XIRQ) to be set as the
interrupt vector is fetched.

WAI Wait for Interrupt WAI

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

WAI (before interrupt)
INH 3E

OSSSSsf OSSSfSsf

WAI (when interrupt comes) fVfPPP VfPPP
Reference Manual S12CPUV2

310 MOTOROLA

Instruction Glossary
Glossary
Operation: Do until B = 0, leave SOP in Y : D, SOW in X

Partial Product = (M pointed to by X) × (M pointed to by Y)
Sum-of-Products (24-bit SOP) = Previous SOP + Partial Product
Sum-of-Weights (16-bit SOW) = Previous SOW + (M pointed to by Y)
(X) + $0001 ⇒ X; (Y) + $0001 ⇒ Y
(B) – $01 ⇒ B

Description: Performs weighted average calculations on values stored in memory.
Uses indexed (X) addressing mode to reference one source operand list,
and indexed (Y) addressing mode to reference a second source operand
list. Accumulator B is used as a counter to control the number of
elements to be included in the weighted average.

For each pair of data points, a 24-bit sum of products (SOP) and a 16-bit
sum of weights (SOW) is accumulated in temporary registers. When B
reaches zero (no more data pairs), the SOP is placed in Y : D. The SOW
is placed in X. To arrive at the final weighted average, divide the content
of Y : D by X by executing an EDIV after the WAV.

This instruction can be interrupted. If an interrupt occurs during WAV
execution, the intermediate results (six bytes) are stacked in the order
SOW[15:0], SOP[15:0], $00:SOP[23:16] before the interrupt is processed.
The wavr pseudo-instruction is used to resume execution after an
interrupt. The mechanism is re-entrant. New WAV instructions can be
started and interrupted while a previous WAV instruction is interrupted.

This instruction is often used in fuzzy logic rule evaluation. Refer to
Section 9. Fuzzy Logic Support for more information.

WAV Weighted Average WAV

CCR Details:
S X H I N Z V C

– – ? – ? 1 ? ?

Z: 1; set
H, N, V and C may be altered by this instruction

Source Form
Address

Mode
Object Code

Access Detail (1)

HCS12 M68HC12

WAV Special
18 3C

Of(frr,ffff)O Off(frr,fffff)O
(replace comma if interrupted)

SSS + UUUrr SSSf + UUUrr

1. The replace comma sequence in parentheses represents the loop for one iteration of SOP and SOW accumulation.
S12CPUV2 Reference Manual

MOTOROLA 311

Instruction Glossary
Operation: (D) ⇔ (X)

Description: Exchanges the content of double accumulator D and the content of index
register X. For compatibility with the M68HC11, the XGDX instruction is
translated into an EXG D,X instruction by the assembler.

XGDX Exchange Double Accumulator
and Index Register X XGDX

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

XGDX
translates to... EXG D,X INH B7 C5 P P
Reference Manual S12CPUV2

312 MOTOROLA

Instruction Glossary
Glossary
Operation: (D) ⇔ (Y)

Description: Exchanges the content of double accumulator D and the content of index
register Y. For compatibility with the M68HC11, the XGDY instruction is
translated into an EXG D,Y instruction by the assembler.

XGDY Exchange Double Accumulator
and Index Register Y XGDY

CCR Details:
S X H I N Z V C

– – – – – – – –

Source Form
Address

Mode
Object Code

Access Detail

HCS12 M68HC12

XGDY
translates to... EXG D,Y INH B7 C6 P P
S12CPUV2 Reference Manual

MOTOROLA 313

Instruction Glossary
Reference Manual S12CPUV2

314 MOTOROLA

Reference Manual — S12CPUV2

Section 7. Exception Processing
7.1 Introduction

Exceptions are events that require processing outside the normal flow of
instruction execution. This section describes exceptions and the way
each is handled.

7.2 Types of Exceptions

Central processor unit (CPU12) exceptions include:

• Resets

– Power-on reset and RESET pin

– Clock monitor reset

– COP watchdog reset

• An unimplemented opcode trap

• A software interrupt instruction (SWI)

• Non-maskable (X-bit) interrupts

• Non-maskable (I-bit) interrupts

Each exception has an associated 16-bit vector, which points to the
memory location where the routine that handles the exception is located.
As shown in Table 7-1 , vectors are stored in the upper bytes of the
standard 64-Kbyte address map.

The six highest vector addresses are used for resets and unmaskable
interrupt sources. The remaining vectors are used for maskable
interrupts. All vectors must be programmed to point to the address of the
appropriate service routine.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 315

Exception Processing
The CPU12 can handle up to 128 exception vectors, but the number
actually used varies from device to device, and some vectors are
reserved for Motorola use. Refer to Device User Guide for more
information.

Exceptions can be classified by the effect of the X and I interrupt mask
bits on recognition of a pending request.

• Resets, the unimplemented opcode trap, and the SWI instruction
are not affected by the X and I mask bits.

• Interrupt service requests from the XIRQ pin are inhibited when
X = 1, but are not affected by the I bit.

• All other interrupts are inhibited when I = 1.

7.3 Exception Priority

A hardware priority hierarchy determines which reset or interrupt is
serviced first when simultaneous requests are made. Six sources are not
maskable. The remaining sources are maskable, and the device
integration module typically can change the relative priorities of
maskable interrupts. Refer to 7.5 Interrupts for more detail concerning
interrupt priority and servicing.

Table 7-1. CPU12 Exception Vector Map (1)

1. See Device User Guide and Interrupt Block Guide for further details

Vector Address Source

$FFFE–$FFFF System reset

$FFFC–$FFFD Clock monitor reset

$FFFA–$FFFB COP reset

$FFF8–$FFF9 Unimplemented opcode trap

$FFF6–$FFF7 Software interrupt instruction (SWI)

$FFF4–$FFF5 XIRQ signal

$FFF2–$FFF3 IRQ signal

$FF00–$FFF1 Device-specific interrupt sources (HCS12)

$FFC0–$FFF1 Device-specific interrupt sources (M68HC12)
Reference Manual S12CPUV2

316 Exception Processing MOTOROLA

Exception Processing
Exception Priority
The priorities of the unmaskable sources are:

1. RESET pin or power-on reset (POR)

2. Clock monitor reset

3. Computer operating properly (COP) watchdog reset

4. Non-maskable interrupt request (XIRQ) signal

5. Unimplemented opcode trap

6. Software interrupt instruction (SWI)

External reset and POR share the highest exception-processing priority,
followed by clock monitor reset, and then the on-chip watchdog reset.

The XIRQ interrupt is pseudo-non-maskable. After reset, the X bit in the
CCR is set, which inhibits all interrupt service requests from the XIRQ
pin until the X bit is cleared. The X bit can be cleared by a program
instruction, but program instructions cannot change X from 0 to 1. Once
the X bit is cleared, interrupt service requests made via the XIRQ pin
become non-maskable.

The unimplemented page 2 opcode trap (TRAP) and the SWI are special
cases. In one sense, these two exceptions have very low priority,
because any enabled interrupt source that is pending prior to the time
exception processing begins will take precedence. However, once the
CPU begins processing a TRAP or SWI, neither can be interrupted.
Also, since these are mutually exclusive instructions, they have no
relative priority.

All remaining interrupts are subject to masking via the I bit in the CCR.
Most HCS12 microcontroller units (MCU) have an external IRQ pin,
which is assigned the highest I-bit interrupt priority and an internal
periodic real-time interrupt generator, which has the next highest priority.
The other maskable sources have default priorities that follow the
address order of the interrupt vectors — the higher the address, the
higher the priority of the interrupt. Other maskable interrupts are
associated with on-chip peripherals such as timers or serial ports.
Typically, logic in the device integration module can give one I-masked
source priority over other I-masked sources. Refer to the documentation
for the specific HCS12 derivative for more information.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 317

Exception Processing
7.4 Resets

M68HC12 devices perform resets with a combination of hardware and
software. Integration module circuitry determines the type of reset that
has occurred, performs basic system configuration, then passes control
to the CPU12. The CPU fetches a vector determined by the type of reset
that has occurred, jumps to the address pointed to by the vector, and
begins to execute code at that address.

The are four possible sources of reset are:

• Power-on reset (POR)

• External reset (RESET pin)

• COP reset

• Clock monitor reset

Power-on reset (POR) and external reset share the same reset vector.
The computer operating properly (COP) reset and the clock monitor
reset each have a vector.

7.4.1 Power-On Reset

The HCS12 incorporate circuitry to detect a positive transition in the VDD
supply and initialize the device during cold starts, generally by asserting
the reset signal internally. The signal is typically released after a delay
that allows the device clock generator to stabilize.

7.4.2 External Reset

The MCU distinguishes between internal and external resets by sensing
how quickly the signal on the RESET pin rises to logic level 1 after it has
been asserted. When the MCU senses any of the four reset conditions,
internal circuitry drives the RESET signal low for N clock cycles, then
releases. M clock cycles later, the MCU samples the state of the signal
applied to the RESET pin. If the signal is still low, an external reset has
occurred. If the signal is high, reset is assumed to have been initiated
internally by either the COP system or the clock monitor.
Reference Manual S12CPUV2

318 Exception Processing MOTOROLA

Exception Processing
Interrupts
7.4.3 COP Reset

The MCU includes a computer operating properly (COP) system to help
protect against software failures. When the COP is enabled, software
must write a particular code sequence to a specific address to keep a
watchdog timer from timing out. If software fails to execute the sequence
properly, a reset occurs.

7.4.4 Clock Monitor Reset

The clock monitor circuit uses an internal RC circuit to determine
whether clock frequency is above a predetermined limit. If clock
frequency falls below the limit when the clock monitor is enabled, a reset
occurs.

7.5 Interrupts

Each HCS12 device can recognize a number of interrupt sources. Each
source has a vector in the vector table. The XIRQ signal, the
unimplemented opcode trap, and the SWI instruction are non-maskable,
and have a fixed priority. The remaining interrupt sources can be
masked by the I bit. In most devices, the external interrupt request pin is
assigned the highest maskable interrupt priority, and the internal
periodic real-time interrupt generator has the next highest priority. Other
maskable interrupts are associated with on-chip peripherals such as
timers or serial ports. These maskable sources have default priorities
that follow the address order of the interrupt vectors. The higher the
vector address, the higher the priority of the interrupt. Typically, a device
integration module incorporates logic that can give any one maskable
source priority over other maskable sources.

7.5.1 Non-Maskable Interrupt Request (XIRQ)

The XIRQ input is an updated version of the non-maskable interrupt
(NMI) input of earlier MCUs. The XIRQ function is disabled during
system reset and upon entering the interrupt service routine for an XIRQ
interrupt.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 319

Exception Processing
During reset, both the I bit and the X bit in the CCR are set. This disables
maskable interrupts and interrupt service requests made by asserting
the XIRQ signal. After minimum system initialization, software can clear
the X bit using an instruction such as ANDCC #$BF. Software cannot set
the X bit from 0 to 1 once it has been cleared, and interrupt requests
made via the XIRQ pin become non-maskable. When a non-maskable
interrupt is recognized, both the X and I bits are set after context is
saved. The X bit is not affected by maskable interrupts. Execution of an
return-from-interrupt (RTI) instruction at the end of the interrupt service
routine normally restores the X and I bits to the pre-interrupt request
state.

7.5.2 Maskable Interrupts

Maskable interrupt sources include on-chip peripheral systems and
external interrupt service requests. Interrupts from these sources are
recognized when the global interrupt mask bit (I) in the CCR is cleared.
The default state of the I bit out of reset is 1, but it can be written at any
time.

The interrupt module manages maskable interrupt priorities. Typically,
an on-chip interrupt source is subject to masking by associated bits in
control registers in addition to global masking by the I bit in the CCR.
Sources generally must be enabled by writing one or more bits in
associated control registers. There may be other interrupt-related
control bits and flags, and there may be specific register read-write
sequences associated with interrupt service. Refer to individual on-chip
peripheral descriptions for details.

7.5.3 Interrupt Recognition

Once enabled, an interrupt request can be recognized at any time after
the I mask bit is cleared. When an interrupt service request is
recognized, the CPU responds at the completion of the instruction being
executed. Interrupt latency varies according to the number of cycles
required to complete the current instruction. Because the fuzzy logic rule
evaluation (REV), fuzzy logic rule evaluation weighted (REVW), and
weighted average (WAV) instructions can take many cycles to complete,
they are designed so that they can be interrupted. Instruction execution
resumes when interrupt execution is complete. When the CPU begins to
Reference Manual S12CPUV2

320 Exception Processing MOTOROLA

Exception Processing
Interrupts
service an interrupt, the instruction queue is refilled, a return address is
calculated, and then the return address and the contents of the CPU
registers are stacked as shown in Table 7-2 .

After the CCR is stacked, the I bit (and the X bit, if an XIRQ interrupt
service request caused the interrupt) is set to prevent other interrupts
from disrupting the interrupt service routine. Execution continues at the
address pointed to by the vector for the highest-priority interrupt that was
pending at the beginning of the interrupt sequence. At the end of the
interrupt service routine, an RTI instruction restores context from the
stacked registers, and normal program execution resumes.

7.5.4 External Interrupts

External interrupt service requests are made by asserting an active-low
signal connected to the IRQ pin. Typically, control bits affect how the
signal is detected and recognized.

The I bit serves as the IRQ interrupt enable flag. When an IRQ interrupt
is recognized, the I bit is set to inhibit interrupts during the interrupt
service routine. Before other maskable interrupt requests can be
recognized, the I bit must be cleared. This is generally done by an RTI
instruction at the end of the service routine.

7.5.5 Return-from-Interrupt Instruction (RTI)

RTI is used to terminate interrupt service routines. RTI is an 8-cycle
instruction when no other interrupt is pending and 11 cycles (10 cycles
in M68HC12) when another interrupt is pending. In either case, the first
five cycles are used to restore (pull) the CCR, B:A, X, Y, and the return

Table 7-2. Stacking Order on Entry to Interrupts

Memory Location CPU Registers

SP + 7 RTNH : RTNL

SP + 5 YH : YL

SP + 3 XH : XL

SP + 1 B : A

SP CCR
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 321

Exception Processing
address from the stack. If no other interrupt is pending at this point, three
program words are fetched to refill the instruction queue from the area
of the return address and processing proceeds from there.

If another interrupt is pending after registers are restored, a new vector
is fetched, and the stack pointer is adjusted to point at the CCR value
that was just recovered (SP = SP – 9). This makes it appear that the
registers have been stacked again. After the SP is adjusted, three
program words are fetched to refill the instruction queue, starting at the
address the vector points to. Processing then continues with execution
of the instruction that is now at the head of the queue.

7.6 Unimplemented Opcode Trap

The CPU12 has opcodes in all 256 positions in the page 1 opcode map,
but only 54 of the 256 positions on page 2 of the opcode map are used.
If the CPU attempts to execute one of the 202 unused opcodes on
page 2, an unimplemented opcode trap occurs. The 202 unimplemented
opcodes are essentially interrupts that share a common interrupt vector,
$FFF8:$FFF9.

The CPU12 uses the next address after an unimplemented page 2
opcode as a return address. This differs from the M68HC11 illegal
opcode interrupt, which uses the address of an illegal opcode as the
return address. In the CPU12, the stacked return address can be used
to calculate the address of the unimplemented opcode for
software-controlled traps.

7.7 Software Interrupt Instruction (SWI)

Execution of the SWI instruction causes an interrupt without an interrupt
service request. SWI is not inhibited by the global mask bits in the CCR,
and execution of SWI sets the I mask bit. Once an SWI interrupt begins,
maskable interrupts are inhibited until the I bit in the CCR is cleared. This
typically occurs when an RTI instruction at the end of the SWI service
routine restores context.
Reference Manual S12CPUV2

322 Exception Processing MOTOROLA

Exception Processing
Exception Processing Flow
7.8 Exception Processing Flow

The first cycle in the exception processing flow for all CPU12 exceptions
is the same, regardless of the source of the exception. Between the first
and second cycles of execution, the CPU chooses one of three
alternative paths. The first path is for resets, the second path is for
pending X or I interrupts, and the third path is used for software
interrupts (SWI) and trapping unimplemented opcodes. The last two
paths are virtually identical, differing only in the details of calculating the
return address. Refer to Figure 7-1 for the following discussion.

7.8.1 Vector Fetch

The first cycle of all exception processing, regardless of the cause, is a
vector fetch. The vector points to the address where exception
processing will continue. Exception vectors are stored in a table located
at the top of the memory map ($FFxx). The CPU cannot use the fetched
vector until the third cycle of the exception processing sequence.

During the vector fetch cycle, the CPU issues a signal that tells the
interrupt module to drive the vector address of the highest priority,
pending exception onto the system address bus (the CPU does not
provide this address).

After the vector fetch, the CPU selects one of the three alternate
execution paths, depending upon the cause of the exception.

7.8.2 Reset Exception Processing

If reset caused the exception, processing continues to cycle 2.0. This
cycle sets the S, X, and I bits in the CCR. Cycles 3.0 through 5.0 are
program word fetches that refill the instruction queue. Fetches start at
the address pointed to by the reset vector. When the fetches are
completed, exception processing ends, and the CPU starts executing
the instruction at the head of the instruction queue.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 323

Exception Processing
Figure 7-1. Exception Processing Flow Diagram

PUSH CCR (BYTE)8.2 - s

1.0 - V FETCH VECTOR

2.0 - f NO BUS ACCESS

SET S, X, AND I

START

END

NO

YES
RESET?

INTERRUPT?

2.1 - S PUSH RETURN ADDRESS

ADDRESS OF INST THAT WOULD HAVE

2.2 - S PUSH RETURN ADDRESS

ADDRESS OF INST AFTER SWI OR
EXECUTED IF NO INTERRUPT UNIMPLEMENTED OPCODE

3.0 - P FETCH PROGRAM WORD

START TO FILL INSTRUCTION QUEUE

4.0 - P FETCH PROGRAM WORD

CONTINUE TO FILL INSTRUCTION

5.0 - P FETCH PROGRAM WORD

FINISH FILLING INSTRUCTION QUEUE

3.2 - P FETCH PROGRAM WORD

START TO FILL INSTRUCTION QUEUE

4.2 - S PUSH Y

6.2 - P FETCH PROGRAM WORD

CONTINUE TO FILL INST. QUEUE

9.2 - P FETCH PROGRAM WORD

FINISH FILLING INSTRUCTION QUEUE

5.2 - S PUSH X

TRANSFER B:A TO 16-BIT TEMP REG

7.2 - S PUSH B:A

SET I BIT

END

3.1 - P FETCH PROGRAM WORD

START TO FILL INSTRUCTION QUEUE

4.1 - S PUSH Y

6.1 - P FETCH PROGRAM WORD

CONTINUE TO FILL INST. QUEUE

9.1 - P FETCH PROGRAM WORD

FINISH FILLING INSTRUCTION QUEUE

5.1 - S PUSH X

TRANSFER B:A TO 16-BIT TEMP REG

7.1 - S PUSH B:A

8.1 - s PUSH CCR (BYTE)

SET I BIT

IF XIRQ, SET X BIT

END

NO

YES

OPCODE TRAP?
YES

T.1 - f INTERNAL CALCULATIONS

NO

QUEUE
Reference Manual S12CPUV2

324 Exception Processing MOTOROLA

Exception Processing
Exception Processing Flow
7.8.3 Interrupt and Unimplemented Opcode Trap Exception Processing

If an exception was not caused by a reset, a return address is calculated.

• Cycles 2.1and 2.2 are both S cycles (stack a 16-bit word), but the
CPU12 performs different return address calculations for each
type of exception.

– When an X- or I-related interrupt causes the exception, the
return address points to the next instruction that would have
been executed had processing not been interrupted.

– When an exception is caused by an SWI opcode or by an
unimplemented opcode (see 7.6 Unimplemented Opcode
Trap), the return address points to the next address after the
opcode.

• Once calculated, the return address is pushed onto the stack.

• Cycles 3.1 through 9.1 are identical to cycles 3.2 through 9.2 for
the rest of the sequence, except for optional setting of the X mask
bit performed in cycle 8.1 (see below).

• Cycle 3.1/3.2 is the first of three program word fetches that refill
the instruction queue.

• Cycle 4.1/4.2 pushes Y onto the stack.

• Cycle 5.1/5.2 pushes X onto the stack.

• Cycle 6.1/6.2 is the second of three program word fetches that
refill the instruction queue. During this cycle, the contents of the A
and B accumulators are concatenated into a 16-bit word in the
order B:A. This makes register order in the stack frame the same
as that of the M68HC11, M6801, and the M6800.

• Cycle 7.1/7.2 pushes the 16-bit word containing B:A onto the
stack.

• Cycle 8.1/8.2 pushes the 8-bit CCR onto the stack, then updates
the mask bits.

– When an XIRQ interrupt causes an exception, both X and I are
set, which inhibits further interrupts during exception
processing.

– When any other interrupt causes an exception, the I bit is set,
but the X bit is not changed.
S12CPUV2 Reference Manual

MOTOROLA Exception Processing 325

Exception Processing
• Cycle 9.1/9.2 is the third of three program word fetches that refill
the instruction queue. It is the last cycle of exception processing.
After this cycle the CPU starts executing the first cycle of the
instruction at the head of the instruction queue.
Reference Manual S12CPUV2

326 Exception Processing MOTOROLA

Reference Manual — S12CPUV2

Section 8. Instruction Queue
8.1 Introduction

This section describes development and debug support features related
to the central processor unit (CPU12). Topics include:

• Single-wire background debug interface

• Hardware breakpoint system

• Instruction queue operation and reconstruction

• Instruction tagging

1 = Valid Data

TRACE — Trace Flag

Indicates when tracing is enabled. Firmware in the BDM ROM sets
TRACE in response to a TRACE1 command and TRACE is cleared
upon completion of the TRACE1 command. Do not attempt to write
TRACE directly with WRITE_BD_BYTE commands.

0 = Tracing not enabled
1 = TRACE1 command in progress

8.2 External Reconstruction of the Queue

The CPU12 uses an instruction queue to buffer program information and
increase instruction throughput. The HCS12 implements the queue
somewhat differently from the original M68HC12. The HCS12 queue
consists of three 16-bit stages while the M68HC12 queue consists of two
16-bit stages, plus a 16-bit holding latch. Program information is always
fetched in aligned 16-bit words. At least three bytes of program
information are available to the CPU when instruction execution begins.
The holding latch in the M68HC12 is used when a word of program
information arrives before the queue can advance.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 327

Instruction Queue
Because of the queue, program information is fetched a few cycles
before it is used by the CPU. Internally, the microcontroller unit (MCU)
only needs to buffer the fetched data. But, in order to monitor
cycle-by-cycle CPU activity externally, it is necessary to capture data
and address to discern what is happening in the instruction queue.

Two external pins, IPIPE1 and IPIPE0, provide time-multiplexed
information about data movement in the queue and instruction
execution. The instruction queue and cycle-by-cycle activity can be
reconstructed in real time or from trace history captured by a logic
analyzer. However, neither scheme can be used to stop the CPU12
at a specific instruction. By the time an operation is visible outside the
MCU, the instruction has already begun execution. A separate
instruction tagging mechanism is provided for this purpose. A tag follows
the information in the queue as the queue is advanced. During
debugging, the CPU enters active background debug mode when
a tagged instruction reaches the head of the queue, rather than
executing the tagged instruction. For more information about tagging,
refer to 8.6 Instruction Tagging .

8.3 Instruction Queue Status Signals

The IPIPE1 and IPIPE0 signals carry time-multiplexed information about
data movement and instruction execution during normal CPU operation.
The signals are available on two multifunctional device pins. During
reset, the pins are used as mode-select input signals MODA and MODB.

To reconstruct the queue, the information carried by the status signals
must be captured externally. In general, data movement and execution
start information are considered to be distinct 2-bit values, with the
low-order bit on IPIPE0 and the high-order bit on IPIPE1.
Reference Manual S12CPUV2

328 Instruction Queue MOTOROLA

Instruction Queue
Instruction Queue Status Signals
8.3.1 HCS12 Timing Detail

In the HCS12, data-movement information is available when E clock is
high or on falling edges of the E clock; execution-start information is
available when E clock is low or on rising edges of the E clock, as shown
in Figure 8-1 . Data-movement information refers to data on the bus.
Execution-start information refers to the bus cycle that starts with that
E-low time and continues through the following E-high time. Table 8-1
summarizes the information encoded on the IPIPE1 and IPIPE0 pins.

Figure 8-1. Queue Status Signal Timing (HCS12)

8.3.2 M68HC12 Timing Detail

In the M68HC12, data movement information is available on rising
edges of the E clock; execution start information is available on falling
edges of the E clock, as shown in Figure 8-2 . Data movement
information refers to data on the bus at the previous falling edge of E.
Execution information refers to the bus cycle from the current falling
edge to the next falling edge of E. Table 8-1 summarizes the information
encoded on the IPIPE1 and IPIPE0 pins.

E CLOCK

ADDRESS

DATA

IPIPE[1:0]

ADDR0 ADDR1

DATA0 DATA1

EX0 DM0 EX1 DM1

CYCLE 0 CYCLE 1

EX1 REFERS TO
THIS CYCLE

DM0 REFERS TO DATA
CAPTURED AT THE END
OF CURRENT E-HIGH PERIOD
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 329

Instruction Queue
Figure 8-2. Queue Status Signal Timing (M68HC12)

Table 8-1. IPIPE1 and IPIPE0 Decoding (HCS12 and M68HC12)

Mnemonic Meaning

Data Movement Capture at E Fall in HCS12 (E Rise in M68HC12)

0:0 — No movement

0:1 LAT(1)

1. The HCS12 implementation does not include a holding latch, so these data movement
codes are used only in the original M68HC12.

Latch data from bus

1:0 ALD Advance queue and load from bus

1:1 ALL(1) Advance queue and load from latch

Execution Start Capture at E Rise in HCS12 (E Fall in M68HC12)

0:0 — No start

0:1 INT Start interrupt sequence

1:0 SEV Start even instruction

1:1 SOD Start odd instruction

E CLOCK

ADDRESS

DATA

IPIPE[1:0]

ADDR1 ADDR2

DATA1 DATA2

DM0 EX2 DM1

CYCLE 1 CYCLE 2

EX1 REFERS TO
THIS CYCLE

DM0 REFERS TO DATA
CAPTURED AT
PREVIOUS E FALL

DATA0

ADDR0

CYCLE 0

EX1
Reference Manual S12CPUV2

330 Instruction Queue MOTOROLA

Instruction Queue
Instruction Queue Status Signals
8.3.3 Null (Code 0:0)

The 0:0 data movement state indicates that there was no data
movement in the instruction queue; the 0:0 execution start state
indicates continuation of an instruction or interrupt sequence (no new
instruction or interrupt start).

8.3.4 LAT — Latch Data from Bus (Code 0:1)

This code is not used in the HCS12. In the M68HC12, fetched program
information has arrived, but the queue is not ready to advance. The
information is latched into a buffer. Later, when the queue does
advance, stage 1 is refilled from the buffer or from the data bus if the
buffer is empty. In some instruction sequences, there can be several
latch cycles before the queue advances. In these cases, the buffer is
filled on the first latch event and additional latch requests are ignored.

8.3.5 ALD — Advance and Load from Data Bus (Code 1:0)

The instruction queue is advanced by one word and stage one is refilled
with a word of program information from the data bus. The CPU
requested the information two bus cycles earlier but, due to access
delays, the information was not available until the E cycle referred to by
the ALD code.

8.3.6 ALL — Advance and Load from Latch (Code 1:1)

This code is not used in the HCS12. In the M68HC12, the 2-stage
instruction queue is advanced by one word and stage one is refilled with
a word of program information from the buffer. The information was
latched from the data bus at the falling edge of a previous E cycle
because the instruction queue was not ready to advance when it arrived.

8.3.7 INT — Interrupt Sequence Start (Code 0:1)

The E cycle associated with this code is the first cycle of an interrupt
sequence. Normally, this cycle is a read of the interrupt vector. However,
in systems that have interrupt vectors in external memory and an 8-bit
data bus, this cycle reads the upper byte of the 16-bit interrupt vector.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 331

Instruction Queue
8.3.8 SEV — Start Instruction on Even Address (Code 1:0)

The E cycle associated with this code is the first cycle of the instruction
in the even (high order) half of the word at the head of the instruction
queue. The queue treats the $18 prebyte for instructions on page 2 of
the opcode map as a special 1-byte, 1-cycle instruction, except that
interrupts are not recognized at the boundary between the prebyte and
the rest of the instruction.

8.3.9 SOD — Start Instruction on Odd Address (Code 1:1)

The E cycle associated with this code is the first cycle of the instruction
in the odd (low order) half of the word at the head of the instruction
queue. The queue treats the $18 prebyte for instructions on page 2 of
the opcode map as a special 1-byte, 1-cycle instruction, except that
interrupts are not recognized at the boundary between the prebyte and
the rest of the instruction.

8.4 Queue Reconstruction (for HCS12)

The raw signals required for queue reconstruction are the address bus
(ADDR), the data bus (DATA), the system clock (E), and the queue
status signals (IPIPE1 and IPIPE2). An ALD data movement implies a
read; therefore, it is not necessary to capture the R/W signal. An E clock
cycle begins at a falling edge of E. Addresses and execution status must
be captured at the rising E edge in the middle of the cycle. Data and
data-movement status must be captured at the falling edge of E at the
end of the cycle. These captures can then be organized into records with
one record per E clock cycle.

Implementation details depend on the type of MCU and the mode of
operation. For instance, the data bus can be eight bits or 16 bits wide,
and nonmultiplexed or multiplexed. In all cases, the externally
reconstructed queue must use 16-bit words. Demultiplexing and
assembly of 8-bit data into 16-bit words is done before program
information enters the real queue, so it must also be done for the
external reconstruction.
Reference Manual S12CPUV2

332 Instruction Queue MOTOROLA

Instruction Queue
Queue Reconstruction (for HCS12)
An example:

Systems with an 8-bit data bus and a program stored in external
memory require two cycles for each program word fetch. MCU
bus-control logic freezes the CPU clocks long enough to do two 8-bit
accesses rather than a single 16-bit access, so the CPU sees only
16-bit words of program information. To recover the 16-bit program
words externally, latch the data bus state at the falling edge of E when
ADDR0 = 0, and gate the outputs of the latch onto DATA[15:8] when
an ALD cycle occurs. Since the 8-bit data bus is connected to
DATA[7:0], the 16-bit word on the data lines corresponds to the ALD
during the last half of the second 8-bit fetch, which is always to an odd
address. IPIPE[1:0] status signals indicate 0:0 for the second half of
the E cycle corresponding to the first 8-bit fetch.

Some MCUs have address lines to support memory expansion beyond
the standard 64-Kbyte address space. When memory expansion is
used, expanded addresses must also be captured and maintained.

8.4.1 Queue Reconstruction Registers (for HCS12)

Queue reconstruction requires the following registers, which can be
implemented as software variables when previously captured trace data
is used, or as hardware latches in real time.

8.4.1.1 fetch_add Register

This register buffers the fetch address.

8.4.1.2 st1_add, st1_dat Registers

These registers contain address and data for the first stage of the
reconstructed instruction queue.

8.4.1.3 st2_add, st2_dat Registers

These registers contain address and data for the middle stage of the
reconstructed instruction queue.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 333

Instruction Queue
8.4.1.4 st3_add, st3_dat Registers

These registers contain address and data for the final stage of the
reconstructed instruction queue. When the IPIPE[1:0] signals indicate
the execution status, the address and opcode can be found in these
registers.

8.4.2 Reconstruction Algorithm (for HCS12)

This section describes how to use IPIPE[1:0] signals and queue
reconstruction registers to reconstruct the queue.

Typically, the first few cycles of raw capture data are not useful because
it takes several cycles before an instruction propagates to the head of
the queue. During these first raw cycles, the only meaningful information
available is data movement signals. Information on the external address
and data buses during this setup time is still captured and propagated
through the reconstructed queue, but the information reflects the actions
of instructions that were fetched before data collection started.

In the special case of a reset, there is a five-cycle sequence (VfPPP)
during which the reset vector is fetched and the instruction queue is
filled, before execution of the first instruction begins. Due to the timing of
the switchover of the IPIPE[1:0] pins from their alternate function as
mode-select inputs, the status information on these two pins may be
erroneous during the first cycle or two after the release of reset. This is
not a problem because the status is correct in time for queue
reconstruction logic to correctly replicate the queue.

On an advance-and-load-from-data-bus (ALD) cycle, the information in
the instruction queue must advance by one stage. Whatever was in
stage three of the queue simply disappears. The previous contents of
stage two go to stage three, the previous contents of stage one go to
stage two, and the contents of fetch_add and data from the current cycle
go to stage one.

Figure 8-3 shows the reset sequence and illustrates the relationship
between instruction cycle codes (VfPPP) and pipe status signals. One
cycle of the data bus is shown to indicate the relationship between the
ALD data movement code and the data value it refers to. The SEV
execution start code indicates that the reset vector pointed to an even
address in this example.
Reference Manual S12CPUV2

334 Instruction Queue MOTOROLA

Instruction Queue
Queue Reconstruction (for M68HC12)
Figure 8-3. Reset Sequence for HCS12

8.5 Queue Reconstruction (for M68HC12)

The raw signals required for queue reconstruction are the address bus
(ADDR), the data bus (DATA), the system clock (E), and the queue
status signals (IPIPE1 and IPIPE0). An E-clock cycle begins after an E
fall. Addresses and data movement status must be captured at the E rise
in the middle of the cycle. Data and execution start status must be
captured at the E fall at the end of the cycle. These captures can then be
organized into records with one record per E clock cycle.

Implementation details depend upon the type of device and the mode of
operation. For instance, the data bus can be eight bits or 16 bits wide,
and non-multiplexed or multiplexed. In all cases, the externally
reconstructed queue must use 16-bit words. Demultiplexing and
assembly of 8-bit data into 16-bit words is done before program
information enters the real queue, so it must also be done for the
external reconstruction.

An example:

Systems with an 8-bit data bus and a program stored in external
memory require two cycles for each program word fetch. MCU bus
control logic freezes the CPU clocks long enough to do two 8-bit
accesses rather than a single 16-bit access, so the CPU sees only
16-bit words of program information. To recover the 16-bit program
words externally, latch the data bus state at the falling edge of E when
ADDR0 = 0, and gate the outputs of the latch onto DATA[15:8] when
a LAT or ALD cycle occurs. Since the 8-bit data bus is connected to
DATA[7:0], the 16-bit word on the data lines corresponds to the ALD
or LAT status indication at the E rise after the second 8-bit fetch,

ALD
00 00 00 00 00 10 00 10 00 10 10

ALD ALD SEV

DM EXDM DM

V f P P PINSTRUCTION
CYCLE CODES

E CLOCK

DATA BUS

IPIPE[1:0]

FIRST
USER
INSTRUCTION
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 335

Instruction Queue
which is always to an odd address. IPIPE1 and IPIPE0 status signals
indicate 0:0 at the beginning (E fall) and middle (E rise) of the first 8-bit
fetch.

Some M68HC12 devices have address lines to support memory
expansion beyond the standard 64-Kbyte address space. When
memory expansion is used, expanded addresses must also be captured
and maintained.

8.5.1 Queue Reconstruction Registers (for M68HC12)

Queue reconstruction requires these registers, which can be
implemented as software variables when previously captured trace data
is used or as hardware latches in real time.

8.5.1.1 in_add, in_dat Registers

These registers contain the address and data from the previous external
bus cycle. Depending on how records are read and processed from the
raw capture information, it may be possible to simply read this
information from the raw capture data file when needed.

8.5.1.2 fetch_add, fetch_dat Registers

These registers buffer address and data for information that was fetched
before the queue was ready to advance.

8.5.1.3 st1_add, st1_dat Registers

These registers contain address and data for the first stage of the
reconstructed instruction queue.

8.5.1.4 st2_add, st2_dat Registers

These registers contain address and data for the final stage of the
reconstructed instruction queue. When the IPIPE1 and IPIPE0 signals
indicate that an instruction is starting to execute, the address and
opcode can be found in these registers.
Reference Manual S12CPUV2

336 Instruction Queue MOTOROLA

Instruction Queue
Queue Reconstruction (for M68HC12)
8.5.2 Reconstruction Algorithm (for M68HC12)

This subsection describes in detail how to use IPIPE1 and IPIPE0
signals and queue reconstruction registers to reconstruct the queue. An
“is_full” flag is used to indicate when the fetch_add and fetch_dat buffer
registers contain information. The use of the flag is explained more fully
in subsequent paragraphs.

Typically, the first few cycles of raw capture data are not useful because
it takes several cycles before an instruction propagates to the head of
the queue. During these first raw cycles, the only meaningful information
available are data movement signals. Information on the external
address and data buses during this setup time reflects the actions of
instructions that were fetched before data collection started.

In the special case of a reset, there is a 5-cycle sequence (VfPPP)
during which the reset vector is fetched and the instruction queue is
filled, before execution of the first instruction begins. Due to the timing of
the switchover of the IPIPE1 and IPIPE0 pins from their alternate
function as mode select inputs, the status information on these two pins
may be erroneous during the first cycle or two after the release of reset.
This is not a problem because the status is correct in time for queue
reconstruction logic to correctly replicate the queue.

Before starting to reconstruct the queue, clear the is_full flag to indicate
that there is no meaningful information in the fetch_add and fetch_dat
buffers. Further movement of information in the instruction queue is
based on the decoded status on the IPIPE1 and IPIPE0 signals at the
rising edges of E.

8.5.2.1 LAT Decoding

On a latch cycle (LAT), check the is_full flag. If and only if is_full = 0,
transfer the address and data from the previous bus cycle (in_add and
in_dat) into the fetch_add and fetch_dat registers, respectively. Then,
set the is_full flag. The usual reason for a latch request instead of an
advance request is that the previous instruction ended with a single
aligned byte of program information in the last stage of the instruction
queue. Since the odd half of this word still holds the opcode for the next
instruction, the queue cannot advance on this cycle. However, the cycle
to fetch the next word of program information has already started and the
data is on its way.
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 337

Instruction Queue
8.5.2.2 ALD Decoding

On an advance-and-load-from-data-bus (ALD) cycle, the information in
the instruction queue must advance by one stage. Whatever was in
stage 2 of the queue is simply thrown away. The previous contents of
stage 1 are moved to stage 2, and the address and data from the
previous cycle (in_add and in_dat) are transferred into stage 1 of the
instruction queue. Finally, clear the is_full flag to indicate the buffer latch
is ready for new data. Usually, there would be no useful information in
the fetch buffer when an ALD cycle was encountered, but in the case of
a change-of-flow, any data that was there needs to be flushed out (by
clearing the is_full flag).

8.5.2.3 ALL Decoding

On an advance-and-load-from-latch (ALL) cycle, the information in the
instruction queue must advance by one stage. Whatever was in stage 2
of the queue is simply thrown away. The previous contents of stage 1 are
moved to stage 2, and the contents of the fetch buffer latch are
transferred into stage 1 of the instruction queue. One or more cycles
preceding the ALL cycle will have been a LAT cycle. After updating the
instruction queue, clear the is_full flag to indicate the fetch buffer is ready
for new information.

Figure 8-4 shows the reset sequence and illustrates the relationship
between instruction cycle codes (VfPPP) and pipe status signals. One
cycle of the data bus is shown to indicate the relationship between the
ALD data movement code and the data value it refers to. The SEV
execution start code indicates that the reset vector pointed to an even
address in this example.

Figure 8-4. Reset Sequence for M68HC12

ALD

00 00 00 00 00 00 10 00 10 10 10
ALD ALDSEV

DM EXDM DM

V f P P PINSTRUCTION
CYCLE CODES

E CLOCK

DATA BUS

IPIPE[1:0]

FIRST USER
INSTRUCTION
Reference Manual S12CPUV2

338 Instruction Queue MOTOROLA

Instruction Queue
Instruction Tagging
8.6 Instruction Tagging

The instruction queue and cycle-by-cycle CPU activity can be
reconstructed in real time or from trace history that was captured by a
logic analyzer. However, the reconstructed queue cannot be used to
stop the CPU at a specific instruction, because execution has already
begun by the time an operation is visible outside the MCU. A separate
instruction tagging mechanism is provided for this purpose.

Executing the BDM TAGGO command configures two MCU pins for
tagging. The TAGLO signal shares a pin with the LSTRB signal, and the
TAGHI signal shares the BKGD pin. Tagging information is latched on
the falling edge of ECLK, as shown in Figure 8-5 .

Figure 8-5. Tag Input Timing

Table 8-2 shows the functions of the two independent tagging pins. The
presence of logic level 0 on either pin at the fall of ECLK tags (marks)
the associated byte of program information as it is read into the
instruction queue. Tagging is allowed in all modes. Tagging is disabled
when BDM becomes active.

Table 8-2. Tag Pin Function

TAGHI TAGLO Tag

1 1 No tag

1 0 Low byte

0 1 High byte

0 0 Both bytes

E CLOCK

LSTRB/TAGLO

BKGD/TAGHI

TAGS ARE APPLIED TO PROGRAM INFORMATION
CAPTURED ON THIS E CLOCK TRANSITION

LSTRB VALID
TAGLO

TAGHI

VALID

VALID
S12CPUV2 Reference Manual

MOTOROLA Instruction Queue 339

Instruction Queue
In HCS12 and M68HC12 derivatives that have hardware breakpoint
capability, the breakpoint control logic and BDM control logic use the
same internal signals for instruction tagging. The CPU does not
differentiate between the two kinds of tags.

The tag follows program information as it advances through the queue.
When a tagged instruction reaches the head of the queue, the CPU
enters active background debug mode rather than executing the
instruction.
Reference Manual S12CPUV2

340 Instruction Queue MOTOROLA

Reference Manual — S12CPUV2

Section 9. Fuzzy Logic Support
9.1 Introduction

The instruction set of the central processor unit (CPU12) is the first
instruction set to specifically address the needs of fuzzy logic. This
section describes the use of fuzzy logic in control systems, discusses the
CPU12 fuzzy logic instructions, and provides examples of fuzzy logic
programs.

The CPU12 includes four instructions that perform specific fuzzy logic
tasks. In addition, several other instructions are especially useful in fuzzy
logic programs. The overall C-friendliness of the instruction set also aids
development of efficient fuzzy logic programs.

This section explains the basic fuzzy logic algorithm for which the four
fuzzy logic instructions are intended. Each of the fuzzy logic instructions
are then explained in detail. Finally, other custom fuzzy logic algorithms
are discussed, with emphasis on use of other CPU12 instructions.

The four fuzzy logic instructions are:

• MEM (determine grade of membership), which evaluates
trapezoidal membership functions

• REV (fuzzy logic rule evaluation) and REVW (fuzzy logic rule
evaluation weighted), which perform unweighted or weighted
MIN-MAX rule evaluation

• WAV (weighted average), which performs weighted average
defuzzification on singleton output membership functions.

Other instructions that are useful for custom fuzzy logic programs
include:

• MINA (place smaller of two unsigned 8-bit values in
accumulator A)

• EMIND (place smaller of two unsigned 16-bit values in
accumulator D)

• MAXM (place larger of two unsigned 8-bit values in memory)
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 341

Fuzzy Logic Support
• EMAXM (place larger of two unsigned 16-bit values in memory)

• TBL (table lookup and interpolate)

• ETBL (extended table lookup and interpolate)

• EMACS (extended multiply and accumulate signed 16-bit by
16-bit to 32-bit)

For higher resolution fuzzy programs, the fast extended precision math
instructions in the CPU12 are also beneficial. Flexible indexed
addressing modes help simplify access to fuzzy logic data structures
stored as lists or tabular data structures in memory.

The actual logic additions required to implement fuzzy logic support in
the CPU12 are quite small, so there is no appreciable increase in cost
for the typical user. A fuzzy inference kernel for the CPU12 requires
one-fifth as much code space and executes almost 50 times faster than
a comparable kernel implemented on a typical midrange microcontroller.
By incorporating fuzzy logic support into a high-volume,
general-purpose microcontroller product family, Motorola has made
fuzzy logic available for a huge base of applications.

9.2 Fuzzy Logic Basics

This is an overview of basic fuzzy logic concepts. It can serve as a
general introduction to the subject, but that is not the main purpose.
There are a number of fuzzy logic programming strategies. This
discussion concentrates on the methods implemented in the CPU12
fuzzy logic instructions. The primary goal is to provide a background for
a detailed explanation of the CPU12 fuzzy logic instructions.

In general, fuzzy logic provides for set definitions that have fuzzy
boundaries rather than the crisp boundaries of Aristotelian logic. These
sets can overlap so that, for a specific input value, one or more sets
associated with linguistic labels may be true to a degree at the same
time. As the input varies from the range of one set into the range of an
adjacent set, the first set becomes progressively less true while the
second set becomes progressively more true.

Fuzzy logic has membership functions which emulate human concepts
like “temperature is warm”; that is, conditions are perceived to have
gradual boundaries. This concept seems to be a key element of the
human ability to solve certain types of complex problems that have
eluded traditional control methods.
Reference Manual S12CPUV2

342 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Fuzzy Logic Basics
Fuzzy sets provide a means of using linguistic expressions like
“temperature is warm” in rules which can then be evaluated with a high
degree of numerical precision and repeatability. This directly contradicts
the common misperception that fuzzy logic produces approximate
results — a specific set of input conditions always produces the same
result, just as a conventional control system does.

A microcontroller-based fuzzy logic control system has two parts:

• A fuzzy inference kernel which is executed periodically to
determine system outputs based on current system inputs

• A knowledge base which contains membership functions and
rules

Figure 9-1 is a block diagram of this kind of fuzzy logic system.

Figure 9-1. Block Diagram of a Fuzzy Logic System

The knowledge base can be developed by an application expert without
any microcontroller programming experience. Membership functions are
simply expressions of the expert’s understanding of the linguistic terms
that describe the system to be controlled. Rules are ordinary language
statements that describe the actions a human expert would take to solve
the application problem.

INPUT
MEMBERSHIP
FUNCTIONS

RULE LIST

OUTPUT
MEMBERSHIP
FUNCTIONS

FUZZIFICATION

RULE EVALUATION

DEFUZZIFICATION

FUZZY
INFERENCE

KERNEL

KNOWLEDGE
BASE

SYSTEM
INPUTS

SYSTEM
OUTPUTS

FUZZY INPUTS
(IN RAM)

FUZZY OUTPUTS
(IN RAM)

…

…

S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 343

Fuzzy Logic Support
Rules and membership functions can be reduced to relatively simple
data structures (the knowledge base) stored in non-volatile memory. A
fuzzy inference kernel can be written by a programmer who does not
know how the application system works. The only thing the programmer
needs to do with knowledge base information is store it in the memory
locations used by the kernel.

One execution pass through the fuzzy inference kernel generates
system output signals in response to current input conditions. The kernel
is executed as often as needed to maintain control. If the kernel is
executed more often than needed, processor bandwidth and power are
wasted; delaying too long between passes can cause the system to get
too far out of control. Choosing a periodic rate for a fuzzy control system
is the same as it would be for a conventional control system.

9.2.1 Fuzzification (MEM)

During the fuzzification step, the current system input values are
compared against stored input membership functions to determine the
degree to which each label of each system input is true. This is
accomplished by finding the y-value for the current input value on a
trapezoidal membership function for each label of each system input.
The MEM instruction in the CPU12 performs this calculation for one label
of one system input. To perform the complete fuzzification task for a
system, several MEM instructions must be executed, usually in a
program loop structure.

Figure 9-2 shows a system of three input membership functions, one for
each label of the system input. The x-axis of all three membership
functions represents the range of possible values of the system input.
The vertical line through all three membership functions represents a
specific system input value. The y-axis represents degree of truth and
varies from completely false ($00 or 0 percent) to completely true ($FF
or 100 percent). The y-value where the vertical line intersects each of the
membership functions, is the degree to which the current input value
matches the associated label for this system input. For example, the
expression “temperature is warm” is 25 percent true ($40). The value
$40 is stored to a random-access memory (RAM) location and is called
a fuzzy input (in this case, the fuzzy input for “temperature is warm”).
There is a RAM location for each fuzzy input (for each label of each
system input).
Reference Manual S12CPUV2

344 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Fuzzy Logic Basics
Figure 9-2. Fuzzification Using Membership Functions

When the fuzzification step begins, the current value of the system input
is in an accumulator of the CPU12, one index register points to the first
membership function definition in the knowledge base, and a second
index register points to the first fuzzy input in RAM. As each fuzzy input
is calculated by executing a MEM instruction, the result is stored to the
fuzzy input and both pointers are updated automatically to point to the
locations associated with the next fuzzy input. The MEM instruction
takes care of everything except counting the number of labels per
system input and loading the current value of any subsequent system
inputs.

The end result of the fuzzification step is a table of fuzzy inputs
representing current system conditions.

$00

$80

$FF

0°F 32°F 64°F 96°F 128°F

$40

$C0
HOT

$00

$80

$FF

0°F 32°F 64°F 96°F 128°F

$40

$C0
WARM

$00

$80

$FF

0°F 32°F 64°F 96°F 128°F

$40

$C0
COLD

CURRENT

IS 64°F
TEMPERATURE

MEMBERSHIP FUNCTIONS
FOR TEMPERATURE FUZZY INPUTS

TEMPERATURE IS HOT

TEMPERATURE IS WARM

TEMPERATURE IS COLD

$00

$40

$C0
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 345

Fuzzy Logic Support
9.2.2 Rule Evaluation (REV and REVW)

Rule evaluation is the central element of a fuzzy logic inference program.
This step processes a list of rules from the knowledge base using current
fuzzy input values from RAM to produce a list of fuzzy outputs in RAM.
These fuzzy outputs can be thought of as raw suggestions for what the
system output should be in response to the current input conditions.
Before the results can be applied, the fuzzy outputs must be further
processed, or defuzzified, to produce a single output value that
represents the combined effect of all of the fuzzy outputs.

The CPU12 offers two variations of rule evaluation instructions. The
REV instruction provides for unweighted rules (all rules are considered
to be equally important). The REVW instruction is similar but allows each
rule to have a separate weighting factor which is stored in a separate
parallel data structure in the knowledge base. In addition to the weights,
the two rule evaluation instructions also differ in the way rules are
encoded into the knowledge base.

An understanding of the structure and syntax of rules is needed to
understand how a microcontroller performs the rule evaluation task. An
example of a typical rule is:

If temperature is warm and pressure is high, then heat is
(should be) off.

At first glance, it seems that encoding this rule in a compact form
understandable to the microcontroller would be difficult, but it is actually
simple to reduce the rule to a small list of memory pointers. The
antecedent portion of the rule is a statement of input conditions and the
consequent portion of the rule is a statement of output actions.

The antecedent portion of a rule is made up of one or more (in this case
two) antecedents connected by a fuzzy and operator. Each antecedent
expression consists of the name of a system input, followed by is,
followed by a label name. The label must be defined by a membership
function in the knowledge base. Each antecedent expression
corresponds to one of the fuzzy inputs in RAM. Since and is the only
operator allowed to connect antecedent expressions, there is no need to
include these in the encoded rule. The antecedents can be encoded as
a simple list of pointers to (or addresses of) the fuzzy inputs to which they
refer.
Reference Manual S12CPUV2

346 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Fuzzy Logic Basics
The consequent portion of a rule is made up of one or more (in this case
one) consequents. Each consequent expression consists of the name of
a system output, followed by is, followed by a label name. Each
consequent expression corresponds to a specific fuzzy output in RAM.
Consequents for a rule can be encoded as a simple list of pointers to (or
addresses of) the fuzzy outputs to which they refer.

The complete rules are stored in the knowledge base as a list of pointers
or addresses of fuzzy inputs and fuzzy outputs. For the rule evaluation
logic to work, there must be some means of knowing which pointers refer
to fuzzy inputs and which refer to fuzzy outputs. There also must be a
way to know when the last rule in the system has been reached.

• One method of organization is to have a fixed number of rules with
a specific number of antecedents and consequents.

• A second method, employed in Motorola Freeware M68HC11
kernels, is to mark the end of the rule list with a reserved value,
and use a bit in the pointers to distinguish antecedents from
consequents.

• A third method of organization, used in the CPU12, is to mark the
end of the rule list with a reserved value, and separate
antecedents and consequents with another reserved value. This
permits any number of rules, and allows each rule to have any
number of antecedents and consequents, subject to the limits
imposed by availability of system memory.

Each rule is evaluated sequentially, but the rules as a group are treated
as if they were all evaluated simultaneously. Two mathematical
operations take place during rule evaluation. The fuzzy and operator
corresponds to the mathematical minimum operation and the fuzzy or
operation corresponds to the mathematical maximum operation. The
fuzzy and is used to connect antecedents within a rule. The fuzzy or is
implied between successive rules. Before evaluating any rules, all fuzzy
outputs are set to zero (meaning not true at all). As each rule is
evaluated, the smallest (minimum) antecedent is taken to be the overall
truth of the rule. This rule truth value is applied to each consequent of
the rule (by storing this value to the corresponding fuzzy output) unless
the fuzzy output is already larger (maximum). If two rules affect the same
fuzzy output, the rule that is most true governs the value in the fuzzy
output because the rules are connected by an implied fuzzy or.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 347

Fuzzy Logic Support
In the case of rule weighting, the truth value for a rule is determined as
usual by finding the smallest rule antecedent. Before applying this truth
value to the consequents for the rule, the value is multiplied by a fraction
from zero (rule disabled) to one (rule fully enabled). The resulting
modified truth value is then applied to the fuzzy outputs.

The end result of the rule evaluation step is a table of suggested or “raw”
fuzzy outputs in RAM. These values were obtained by plugging current
conditions (fuzzy input values) into the system rules in the knowledge
base. The raw results cannot be supplied directly to the system outputs
because they may be ambiguous. For instance, one raw output can
indicate that the system output should be medium with a degree of truth
of 50 percent while, at the same time, another indicates that the system
output should be low with a degree of truth of 25 percent. The
defuzzification step resolves these ambiguities.

9.2.3 Defuzzification (WAV)

The final step in the fuzzy logic program combines the raw fuzzy outputs
into a composite system output. Unlike the trapezoidal shapes used for
inputs, the CPU12 typically uses singletons for output membership
functions. As with the inputs, the x-axis represents the range of possible
values for a system output. Singleton membership functions consist of
the x-axis position for a label of the system output. Fuzzy outputs
correspond to the y-axis height of the corresponding output membership
function.

The WAV instruction calculates the numerator and denominator sums
for weighted average of the fuzzy outputs according to the formula:

Where n is the number of labels of a system output, Si are the singleton
positions from the knowledge base, and Fi are fuzzy outputs from RAM.
For a common fuzzy logic program on the CPU12, n is eight or less
(though this instruction can handle any value to 255) and Si and Fi are
8-bit values. The final divide is performed with a separate EDIV
instruction placed immediately after the WAV instruction.

System Output

SiFi
i 1=

n

∑

Fi
i 1=

n

∑
-----------------------=
Reference Manual S12CPUV2

348 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Example Inference Kernel
Before executing WAV, an accumulator must be loaded with the number
of iterations (n), one index register must be pointed at the list of singleton
positions in the knowledge base, and a second index register must be
pointed at the list of fuzzy outputs in RAM. If the system has more than
one system output, the WAV instruction is executed once for each
system output.

9.3 Example Inference Kernel

Figure 9-3 is a complete fuzzy inference kernel written in CPU12
assembly language. Numbers in square brackets are cycle counts for an
HCS12 device. The kernel uses two system inputs with seven labels
each and one system output with seven labels. The program assembles
to 57 bytes. It executes in about 20 µs at an 25-MHz bus rate. The basic
structure can easily be extended to a general-purpose system with a
larger number of inputs and outputs.

Figure 9-3. Fuzzy Inference Engine

*
01 [2] FUZZIFY LDX #INPUT_MFS ;Point at MF definitions
02 [2] LDY #FUZ_INS ;Point at fuzzy input table
03 [3] LDAA CURRENT_INS ;Get first input value
04 [1] LDAB #7 ;7 labels per input
05 [5] GRAD_LOOP MEM ;Evaluate one MF
06 [3] DBNE B,GRAD_LOOP ;For 7 labels of 1 input
07 [3] LDAA CURRENT_INS+1 ;Get second input value
08 [1] LDAB #7 ;7 labels per input
09 [5] GRAD_LOOP1 MEM ;Evaluate one MF
10 [3] DBNE B,GRAD_LOOP1 ;For 7 labels of 1 input

11 [1] LDAB #7 ;Loop count
12 [2] RULE_EVAL CLR 1,Y+ ;Clr a fuzzy out & inc ptr
13 [3] DBNE b,RULE_EVAL ;Loop to clr all fuzzy outs
14 [2] LDX #RULE_START ;Point at first rule element
15 [2] LDY #FUZ_INS ;Point at fuzzy ins and outs
16 [1] LDAA #$FF ;Init A (and clears V-bit)
17 [3n+4] REV ;Process rule list

18 [2] DEFUZ LDY #FUZ_OUT ;Point at fuzzy outputs
19 [2] LDX #SGLTN_POS ;Point at singleton positions
20 [1] LDAB #7 ;7 fuzzy outs per COG output
21 [7b+4] WAV ;Calculate sums for wtd av
22 [11] EDIV ;Final divide for wtd av
23 [1] TFR Y,D ;Move result to A:B
24 [3] STAB COG_OUT ;Store system output

*
***** End
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 349

Fuzzy Logic Support
Lines 1 to 3 set up pointers and load the system input value into the A
accumulator.

Line 4 sets the loop count for the loop in lines 5 and 6.

Lines 5 and 6 make up the fuzzification loop for seven labels of one
system input. The MEM instruction finds the y-value on a trapezoidal
membership function for the current input value, for one label of the
current input, and then stores the result to the corresponding fuzzy input.
Pointers in X and Y are automatically updated by four and one so they
point at the next membership function and fuzzy input respectively.

Line 7 loads the current value of the next system input. Pointers in X and
Y already point to the right places as a result of the automatic update
function of the MEM instruction in line 5.

Line 8 reloads a loop count.

Lines 9 and 10 form a loop to fuzzify the seven labels of the second
system input. When the program drops to line 11, the Y index register is
pointing at the next location after the last fuzzy input, which is the first
fuzzy output in this system.

Line 11 sets the loop count to clear seven fuzzy outputs.

Lines 12 and 13 form a loop to clear all fuzzy outputs before rule
evaluation starts.

Line 14 initializes the X index register to point at the first element in the
rule list for the REV instruction.

Line 15 initializes the Y index register to point at the fuzzy inputs and
outputs in the system. The rule list (for REV) consists of 8-bit offsets from
this base address to particular fuzzy inputs or fuzzy outputs. The special
value $FE is interpreted by REV as a marker between rule antecedents
and consequents.

Line 16 initializes the A accumulator to the highest 8-bit value in
preparation for finding the smallest fuzzy input referenced by a rule
antecedent. The LDAA #$FF instruction also clears the V-bit in the
CPU12’s condition code register so the REV instruction knows it is
processing antecedents. During rule list processing, the V bit is toggled
each time an $FE is detected in the list. The V bit indicates whether REV
is processing antecedents or consequents.
Reference Manual S12CPUV2

350 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
MEM Instruction Details
Line 17 is the REV instruction, a self-contained loop to process
successive elements in the rule list until an $FF character is found. For
a system of 17 rules with two antecedents and one consequent each, the
REV instruction takes 259 cycles, but it is interruptible so it does not
cause a long interrupt latency.

Lines 18 through 20 set up pointers and an iteration count for the WAV
instruction.

Line 21 is the beginning of defuzzification. The WAV instruction
calculates a sum-of-products and a sum-of-weights.

Line 22 completes defuzzification. The EDIV instruction performs a
32-bit by 16-bit divide on the intermediate results from WAV to get the
weighted average.

Line 23 moves the EDIV result into the double accumulator.

Line 24 stores the low 8-bits of the defuzzification result.

This example inference program shows how easy it is to incorporate
fuzzy logic into general applications using the CPU12. Code space and
execution time are no longer serious factors in the decision to use fuzzy
logic. The next section begins a much more detailed look at the fuzzy
logic instructions of the CPU12.

9.4 MEM Instruction Details

This section provides a more detailed explanation of the membership
function evaluation instruction (MEM), including details about abnormal
special cases for improperly defined membership functions.

9.4.1 Membership Function Definitions

Figure 9-4 shows how a normal membership function is specified in the
CPU12. Typically, a software tool is used to input membership functions
graphically, and the tool generates data structures for the target
processor and software kernel. Alternatively, points and slopes for the
membership functions can be determined and stored in memory with
define-constant assembler directives.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 351

Fuzzy Logic Support
Figure 9-4. Defining a Normal Membership Function

An internal CPU algorithm calculates the y-value where the current input
intersects a membership function. This algorithm assumes the
membership function obeys some common-sense rules. If the
membership function definition is improper, the results may be unusual.
See 9.4.2 Abnormal Membership Function Definitions for a
discussion of these cases.

These rules apply to normal membership functions.

• $00 ≤ point1 < $FF

• $00 < point2 ≤ $FF

• point1 < point2

• The sloping sides of the trapezoid meet at or above $FF.

Each system input such as temperature has several labels such as cold,
cool, normal, warm, and hot. Each label of each system input must have
a membership function to describe its meaning in an unambiguous
numerical way. Typically, there are three to seven labels per system
input, but there is no practical restriction on this number as far as the
fuzzification step is concerned.

GRAPHICAL REPRESENTATION

$00 $10 $20 $30 $40 $50 $60 $70 $80 $90 $A0 $B0 $C0 $D0 $E0 $F0 $FF

$00

$20

$40

$60

$80

$A0

$FF

$E0

$C0

MEMORY REPRESENTATION

ADDR

ADDR+1

ADDR+2

ADDR+3

$40

$D0

$08

$04

X-POSITION OF point_1

X-POSITION OF point_2

slope_1 ($FF/(X-POS OF SATURATION – point_1))

slope_2 ($FF/(point_2 – X-POS OF SATURATION))

point_1
point_2

slope_1

slope_2

DEGREE
OF

TRUTH

INPUT RANGE
Reference Manual S12CPUV2

352 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
MEM Instruction Details
9.4.2 Abnormal Membership Function Definitions

In the CPU12, it is possible (and proper) to define “crisp” membership
functions. A crisp membership function has one or both sides vertical
(infinite slope). Since the slope value $00 is not used otherwise, it is
assigned to mean infinite slope to the MEM instruction in the CPU12.

Although a good fuzzy development tool will not allow the user to specify
an improper membership function, it is possible to have program errors
or memory errors which result in erroneous abnormal membership
functions. Although these abnormal shapes do not correspond to any
working systems, understanding how the CPU12 treats these cases can
be helpful for debugging.

A close examination of the MEM instruction algorithm will show how
such membership functions are evaluated. Figure 9-5 is a complete flow
diagram for the execution of a MEM instruction. Each rectangular box
represents one CPU bus cycle. The number in the upper left corner
corresponds to the cycle number and the letter corresponds to the cycle
type (refer to Section 6. Instruction Glossary for details). The upper
portion of the box includes information about bus activity during this
cycle (if any). The lower portion of the box, which is separated by a
dashed line, includes information about internal CPU processes. It is
common for several internal functions to take place during a single CPU
cycle (for example, in cycle 2, two 8-bit subtractions take place and a flag
is set based on the results).

Consider 4a: If (((Slope_2 = 0) or (Grade_2 > $FF)) and (flag_d12n = 0)).

The flag_d12n is zero as long as the input value (in accumulator A) is
within the trapezoid. Everywhere outside the trapezoid, one or the other
delta term will be negative, and the flag will equal one. Slope_2 equals
zero indicates the right side of the trapezoid has infinite slope, so the
resulting grade should be $FF everywhere in the trapezoid, including at
point_2, as far as this side is concerned. The term grade_2 greater than
$FF means the value is far enough into the trapezoid that the right
sloping side of the trapezoid has crossed above the $FF cutoff level and
the resulting grade should be $FF as far as the right sloping side is
concerned. 4a decides if the value is left of the right sloping side
(Grade = $FF), or on the sloping portion of the right side of the trapezoid
(Grade = Grade_2). 4b could still override this tentative value in grade.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 353

Fuzzy Logic Support
Figure 9-5. MEM Instruction Flow Diagram

In 4b, slope_1 is zero if the left side of the trapezoid has infinite slope
(vertical). If so, the result (grade) should be $FF at and to the right of
point_1 everywhere within the trapezoid as far as the left side is
concerned. The grade_1 greater than $FF term corresponds to the input
being to the right of where the left sloping side passes the $FF cutoff
level. If either of these conditions is true, the result (grade) is left at the
value it got from 4a. The “else” condition in 4b corresponds to the input
falling on the sloping portion of the left side of the trapezoid (or possibly
outside the trapezoid), so the result is grade equal grade_1. If the input
was outside the trapezoid, flag_d12n would be one and grade_1 and

1 - R READ WORD @ 0,X — Point_1 AND Point_2

2 - R READ WORD @ –2,X — Slope_1 AND Slope_2

2a — Delta_1 = ACCA – Point_1
2b — Delta_2 = Point_2 – ACCA
2c — IF (Delta_1 OR Delta_2) < 0 THEN flag_d12n = 1 ELSE flag_d12n = 0

3 - f NO BUS ACCESS

3a — IF flag_d12n = 1 THEN Grade_1 = 0 ELSE Grade_1 = Slope_1 * Delta_1
3b — IF flag_d12n = 1 THEN Grade_2 = 0 ELSE Grade_2 = Slope_2 * Delta_2

4 - O IF MISALIGNED THEN READ PROGRAM WORD TO FILL INSTRUCTION QUEUE ELSE NO BUS ACCESS

4a — IF (((Slope_2 = 0) OR (Grade_2 > $FF)) AND (flag_d12n = 0)) THEN GRADE = $FF

ELSE GRADE = Grade_2

4b — IF (((Slope_1 = 0) OR (Grade_1 > $FF)) AND (flag_d12n = 0)) THEN GRADE = GRADE

ELSE GRADE = Grade_1

5 - w WRITE BYTE @ –1,Y — FUZZY INPUT RESULT (GRADE)

START

END

X = X + 4

Y = Y + 1
Reference Manual S12CPUV2

354 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
MEM Instruction Details
grade_2 would have been forced to $00 in cycle 3. The else condition of
4b would set the result to $00.

The special cases shown here represent abnormal membership function
definitions. The explanations describe how the specific algorithm in the
CPU12 resolves these unusual cases. The results are not all intuitively
obvious, but rather fall out from the specific algorithm. Remember, these
cases should not occur in a normal system.

9.4.2.1 Abnormal Membership Function Case 1

This membership function is abnormal because the sloping sides cross
below the $FF cutoff level. The flag_d12n signal forces the membership
function to evaluate to $00 everywhere except from point_1 to point_2.
Within this interval, the tentative values for grade_1 and grade_2
calculated in cycle 3 fall on the crossed sloping sides. In step 4a, grade
gets set to the grade_2 value, but in 4b this is overridden by the grade_1
value, which ends up as the result of the MEM instruction. One way to
say this is that the result follows the left sloping side until the input
passes point_2, where the result goes to $00.

Figure 9-6. Abnormal Membership Function Case 1

If point_1 was to the right of point_2, flag_d12n would force the result to
be $00 for all input values. In fact, flag_d12n always limits the region of
interest to the space greater than or equal to point_1 and less than or
equal to point_2.

MEMORY DEFINITION: $60, $80, $04, $04; point_1, point_2, slope_1, slope_2

GRAPHICAL REPRESENTATION HOW INTERPRETED

P1 P2 P1 P2
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 355

Fuzzy Logic Support
9.4.2.2 Abnormal Membership Function Case 2

Like the previous example, the membership function in case 2 is
abnormal because the sloping sides cross below the $FF cutoff level, but
the left sloping side reaches the $FF cutoff level before the input gets to
point_2. In this case, the result follows the left sloping side until it
reaches the $FF cutoff level. At this point, the (grade_1 > $FF) term of
4b kicks in, making the expression true so grade equals grade (no
overwrite). The result from here to point_2 becomes controlled by the
“else” part of 4a (grade = grade_2), and the result follows the right
sloping side.

Figure 9-7. Abnormal Membership Function Case 2

9.4.2.3 Abnormal Membership Function Case 3

The membership function in case 3 is abnormal because the sloping
sides cross below the $FF cutoff level, and the left sloping side has
infinite slope. In this case, 4a is not true, so grade equals grade_2. 4b is
true because slope_1 is zero, so 4b does not overwrite grade.

Figure 9-8. Abnormal Membership Function Case 3

MEMORY DEFINITION: $60, $C0, $04, $04; point_1, point_2, slope_1, slope_2

GRAPHICAL REPRESENTATION HOW INTERPRETED

P1 P2 P1 P2LEFT SIDE
CROSSES $FF

MEMORY DEFINITION: $60, $80, $00, $04; point_1, point_2, slope_1, slope_2

GRAPHICAL REPRESENTATION HOW INTERPRETED

P1 P2 P1 P2
Reference Manual S12CPUV2

356 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
9.5 REV and REVW Instruction Details

This section provides a more detailed explanation of the rule evaluation
instructions (REV and REVW). The data structures used to specify rules
are somewhat different for the weighted versus unweighted versions of
the instruction. One uses 8-bit offsets in the encoded rules, while the
other uses full 16-bit addresses. This affects the size of the rule data
structure and execution time.

9.5.1 Unweighted Rule Evaluation (REV)

This instruction implements basic min-max rule evaluation. CPU
registers are used for pointers and intermediate calculation results.

Since the REV instruction is essentially a list-processing instruction,
execution time is dependent on the number of elements in the rule list.
The REV instruction is interruptible (typically within three bus cycles), so
it does not adversely affect worst case interrupt latency. Since all
intermediate results and instruction status are held in stacked CPU
registers, the interrupt service code can even include independent REV
and REVW instructions.

9.5.1.1 Set Up Prior to Executing REV

Some CPU registers and memory locations need to be set up prior to
executing the REV instruction. X and Y index registers are used as index
pointers to the rule list and the fuzzy inputs and outputs. The A
accumulator is used for intermediate calculation results and needs to be
set to $FF initially. The V condition code bit is used as an instruction
status indicator to show whether antecedents or consequents are being
processed. Initially, the V bit is cleared to zero to indicate antecedents
are being processed. The fuzzy outputs (working RAM locations) need
to be cleared to $00. If these values are not initialized before executing
the REV instruction, results will be erroneous.

The X index register is set to the address of the first element in the rule
list (in the knowledge base). The REV instruction automatically updates
this pointer so that the instruction can resume correctly if it is interrupted.
After the REV instruction finishes, X will point at the next address past
the $FF separator character that marks the end of the rule list.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 357

Fuzzy Logic Support
The Y index register is set to the base address for the fuzzy inputs and
outputs (in working RAM). Each rule antecedent is an unsigned 8-bit
offset from this base address to the referenced fuzzy input. Each rule
consequent is an unsigned 8-bit offset from this base address to the
referenced fuzzy output. The Y index register remains constant
throughout execution of the REV instruction.

The 8-bit A accumulator is used to hold intermediate calculation results
during execution of the REV instruction. During antecedent processing,
A starts out at $FF and is replaced by any smaller fuzzy input that is
referenced by a rule antecedent (MIN). During consequent processing,
A holds the truth value for the rule. This truth value is stored to any fuzzy
output that is referenced by a rule consequent, unless that fuzzy output
is already larger (MAX).

Before starting to execute REV, A must be set to $FF (the largest 8-bit
value) because rule evaluation always starts with processing of the
antecedents of the first rule. For subsequent rules in the list, A is
automatically set to $FF when the instruction detects the $FE marker
character between the last consequent of the previous rule and the first
antecedent of a new rule.

The instruction LDAA #$FF clears the V bit at the same time it initializes
A to $FF. This satisfies the REV setup requirement to clear the V bit as
well as the requirement to initialize A to $FF. Once the REV instruction
starts, the value in the V bit is automatically maintained as $FE separator
characters are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX
algorithm. Each time a rule consequent references a fuzzy output, that
fuzzy output is compared to the truth value for the current rule. If the
current truth value is larger, it is written over the previous value in the
fuzzy output. After all rules have been evaluated, the fuzzy output
contains the truth value for the most-true rule that referenced that fuzzy
output.

After REV finishes, A will hold the truth value for the last rule in the rule
list. The V condition code bit should be one because the last element
before the $FF end marker should have been a rule consequent. If V is
zero after executing REV, it indicates the rule list was structured
incorrectly.
Reference Manual S12CPUV2

358 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
9.5.1.2 Interrupt Details

The REV instruction includes a 3-cycle processing loop for each byte in
the rule list (including antecedents, consequents, and special separator
characters). Within this loop, a check is performed to see if any qualified
interrupt request is pending. If an interrupt is detected, the current CPU
registers are stacked and the interrupt is honored. When the interrupt
service routine finishes, an RTI instruction causes the CPU to recover its
previous context from the stack, and the REV instruction is resumed as
if it had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted
REV instruction, points to the REV instruction rather than the instruction
that follows. This causes the CPU to try to execute a new REV
instruction upon return from the interrupt. Since the CPU registers
(including the V bit in the condition codes register) indicate the current
status of the interrupted REV instruction, this effectively causes the rule
evaluation operation to resume from where it left off.

9.5.1.3 Cycle-by-Cycle Details for REV

The central element of the REV instruction is a 3-cycle loop that is
executed once for each byte in the rule list. There is a small amount of
housekeeping activity to get this loop started as REV begins and a small
sequence to end the instruction. If an interrupt comes, there is a special
small sequence to save CPU status on the stack before honoring the
requested interrupt.

Figure 9-9 is a REV instruction flow diagram. Each rectangular box
represents one CPU clock cycle. Decision blocks and connecting arrows
are considered to take no time at all. The letters in the small rectangles
in the upper left corner of each bold box correspond to execution cycle
codes (refer to Section 6. Instruction Glossary for details). Lower case
letters indicate a cycle where 8-bit or no data is transferred. Upper case
letters indicate cycles where 16-bit or no data is transferred.

When a value is read from memory, it cannot be used by the CPU until
the second cycle after the read takes place. This is due to access and
propagation delays.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 359

Fuzzy Logic Support
Figure 9-9. REV Instruction Flow Diagram

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED

2.0 - r READ BYTE @ 0,X (RULE ELEMENT Rx)

X = X + 1 POINT AT NEXT RULE ELEMENT

START

END

4.0 - t

THEN READ BYTE @ Rx,Y (FUZZY IN OR OUT Fy)

5.2 - f NO BUS ACCESS

ADJUST PC TO POINT AT CURRENT REV INSTRUCTION

IF Rx $FE OR $FF

NO

YES

5.0 - t

READ BYTE @ 0,X (RULE ELEMENT Rx)

Rx = $FF, OTHER?
$FF

OTHER

X = X + 1 POINT AT NEXT RULE ELEMENT

6.2 - f NO BUS ACCESS

ADJUST X = X – 1

CONTINUE TO INTERRUPT STACKING

V-BIT

0 (MIN)

1 (MAX)

6.0 - x NO BUS ACCESS

IF Rx $FE THEN A = MIN(A, Fy)

6.1 - x
IF Rx $FE OR $FF, AND ACCA > Fy
THEN WRITE BYTE @ Rx,Y
ELSE NO BUS ACCESS

Rx = $FF (END OF RULES)?

YES

NO

7.0 - O READ PROGRAM WORD IF $3A MISALIGNED

3.0 - f NO BUS ACCESS

IF Rx = $FE & V WAS 1, RESET ACCA TO $FF
IF Rx = $FE TOGGLE V-BIT

ELSE NO BUS ACCESS

ELSE A = A (NO CHANGE TO A)

UPDATE RX WITH VALUE READ IN CYC 2 OR 5

INTERRUPT PENDING?

UPDATE FY WITH VALUE READ IN CYC 4.0
UPDATE Fy WITH VALUE READ IN CYC 4.0
Reference Manual S12CPUV2

360 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
Since there is more than one flow path through the REV instruction,
cycle numbers have a decimal place. This decimal place indicates which
of several possible paths is being used. The CPU normally moves
forward by one digit at a time within the same flow (flow number is
indicated after the decimal point in the cycle number). There are two
exceptions possible to this orderly sequence through an instruction. The
first is a branch back to an earlier cycle number to form a loop as in
6.0 to 4.0. The second type of sequence change is from one flow to a
parallel flow within the same instruction such as 4.0 to 5.2, which occurs
if the REV instruction senses an interrupt. In this second type of
sequence branch, the whole number advances by one and the flow
number changes to a new value (the digit after the decimal point).

In cycle 1.0, the CPU12 does an optional program word access to
replace the $18 prebyte of the REV instruction. Notice that cycle 7.0 is
also an O type cycle. One or the other of these will be a program word
fetch, while the other will be a free cycle where the CPU does not access
the bus. Although the $18 page prebyte is a required part of the REV
instruction, it is treated by the CPU12 as a somewhat separate single
cycle instruction.

Rule evaluation begins at cycle 2.0 with a byte read of the first element
in the rule list. Usually this would be the first antecedent of the first rule,
but the REV instruction can be interrupted, so this could be a read of any
byte in the rule list. The X index register is incremented so it points to the
next element in the rule list. Cycle 3.0 is needed to satisfy the required
delay between a read and when data is valid to the CPU. Some internal
CPU housekeeping activity takes place during this cycle, but there is no
bus activity. By cycle 4.0, the rule element that was read in cycle 2.0 is
available to the CPU.

Cycle 4.0 is the first cycle of the main three cycle rule evaluation loop.
Depending upon whether rule antecedents or consequents are being
processed, the loop will consist of cycles 4.0, 5.0, 6.0, or the sequence
4.0, 5.0, 6.1. This loop is executed once for every byte in the rule list,
including the $FE separators and the $FF end-of-rules marker.

At each cycle 4.0, a fuzzy input or fuzzy output is read, except during the
loop passes associated with the $FE and $FF marker bytes, where no
bus access takes place during cycle 4.0. The read access uses the Y
index register as the base address and the previously read rule byte (Rx)
as an unsigned offset from Y. The fuzzy input or output value read here
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 361

Fuzzy Logic Support
will be used during the next cycle 6.0 or 6.1. Besides being used as the
offset from Y for this read, the previously read Rx is checked to see if it
is a separator character ($FE). If Rx was $FE and the V bit was one, this
indicates a switch from processing consequents of one rule to starting to
process antecedents of the next rule. At this transition, the A
accumulator is initialized to $FF to prepare for the min operation to find
the smallest fuzzy input. Also, if Rx is $FE, the V bit is toggled to indicate
the change from antecedents to consequents, or consequents to
antecedents.

During cycle 5.0, a new rule byte is read unless this is the last loop pass,
and Rx is $FF (marking the end of the rule list). This new rule byte will
not be used until cycle 4.0 of the next pass through the loop.

Between cycle 5.0 and 6.x, the V-bit is used to decide which of two paths
to take. If V is zero, antecedents are being processed and the CPU
progresses to cycle 6.0. If V is one, consequents are being processed
and the CPU goes to cycle 6.1.

During cycle 6.0, the current value in the A accumulator is compared to
the fuzzy input that was read in the previous cycle 4.0, and the lower
value is placed in the A accumulator (min operation). If Rx is $FE, this is
the transition between rule antecedents and rule consequents, and this
min operation is skipped (although the cycle is still used). No bus access
takes place during cycle 6.0 but cycle 6.x is considered an x type cycle
because it could be a byte write (cycle 6.1) or a free cycle (cycle 6.0 or
6.1 with Rx = $FE or $FF).

If an interrupt arrives while the REV instruction is executing, REV can
break between cycles 4.0 and 5.0 in an orderly fashion so that the rule
evaluation operation can resume after the interrupt has been serviced.
Cycles 5.2 and 6.2 are needed to adjust the PC and X index register so
the REV operation can recover after the interrupt. PC is adjusted
backward in cycle 5.2 so it points to the currently running REV
instruction. After the interrupt, rule evaluation will resume, but the values
that were stored on the stack for index registers, accumulator A, and
CCR will cause the operation to pick up where it left off. In cycle 6.2, the
X index register is adjusted backward by one because the last rule byte
needs to be re-fetched when the REV instruction resumes.

After cycle 6.2, the REV instruction is finished, and execution would
continue to the normal interrupt processing flow.
Reference Manual S12CPUV2

362 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
9.5.2 Weighted Rule Evaluation (REVW)

This instruction implements a weighted variation of min-max rule
evaluation. The weighting factors are stored in a table with one 8-bit
entry per rule. The weight is used to multiply the truth value of the rule
(minimum of all antecedents) by a value from zero to one to get the
weighted result. This weighted result is then applied to the consequents,
just as it would be for unweighted rule evaluation.

Since the REVW instruction is essentially a list-processing instruction,
execution time is dependent on the number of rules and the number of
elements in the rule list. The REVW instruction is interruptible (typically
within three to five bus cycles), so it does not adversely affect worst case
interrupt latency. Since all intermediate results and instruction status are
held in stacked CPU registers, the interrupt service code can even
include independent REV and REVW instructions.

The rule structure is different for REVW than for REV. For REVW, the
rule list is made up of 16-bit elements rather than 8-bit elements. Each
antecedent is represented by the full 16-bit address of the corresponding
fuzzy input. Each rule consequent is represented by the full address of
the corresponding fuzzy output.

The markers separating antecedents from consequents are the
reserved 16-bit value $FFFE, and the end of the last rule is marked by
the reserved 16-bit value $FFFF. Since $FFFE and $FFFF correspond
to the addresses of the reset vector, there would never be a fuzzy input
or output at either of these locations.

9.5.2.1 Set Up Prior to Executing REVW

Some CPU registers and memory locations need to be set up prior to
executing the REVW instruction. X and Y index registers are used as
index pointers to the rule list and the list of rule weights. The A
accumulator is used for intermediate calculation results and needs to be
set to $FF initially. The V condition code bit is used as an instruction
status indicator that shows whether antecedents or consequents are
being processed. Initially the V bit is cleared to zero to indicate
antecedents are being processed. The C condition code bit is used to
indicate whether rule weights are to be used (1) or not (0). The fuzzy
outputs (working RAM locations) need to be cleared to $00. If these
values are not initialized before executing the REVW instruction, results
will be erroneous.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 363

Fuzzy Logic Support
The X index register is set to the address of the first element in the rule
list (in the knowledge base). The REVW instruction automatically
updates this pointer so that the instruction can resume correctly if it is
interrupted. After the REVW instruction finishes, X will point at the next
address past the $FFFF separator word that marks the end of the rule
list.

The Y index register is set to the starting address of the list of rule
weights. Each rule weight is an 8-bit value. The weighted result is the
truncated upper eight bits of the 16-bit result, which is derived by
multiplying the minimum rule antecedent value ($00–$FF) by the weight
plus one ($001–$100). This method of weighting rules allows an 8-bit
weighting factor to represent a value between zero and one inclusive.

The 8-bit A accumulator is used to hold intermediate calculation results
during execution of the REVW instruction. During antecedent
processing, A starts out at $FF and is replaced by any smaller fuzzy
input that is referenced by a rule antecedent. If rule weights are enabled
by the C condition code bit equal one, the rule truth value is multiplied by
the rule weight just before consequent processing starts. During
consequent processing, A holds the truth value (possibly weighted) for
the rule. This truth value is stored to any fuzzy output that is referenced
by a rule consequent, unless that fuzzy output is already larger (MAX).

Before starting to execute REVW, A must be set to $FF (the largest 8-bit
value) because rule evaluation always starts with processing of the
antecedents of the first rule. For subsequent rules in the list, A is
automatically set to $FF when the instruction detects the $FFFE marker
word between the last consequent of the previous rule, and the first
antecedent of a new rule.

Both the C and V condition code bits must be set up prior to starting a
REVW instruction. Once the REVW instruction starts, the C bit remains
constant and the value in the V bit is automatically maintained as $FFFE
separator words are detected.

The final requirement to clear all fuzzy outputs to $00 is part of the MAX
algorithm. Each time a rule consequent references a fuzzy output, that
fuzzy output is compared to the truth value (weighted) for the current
rule. If the current truth value is larger, it is written over the previous
value in the fuzzy output. After all rules have been evaluated, the fuzzy
output contains the truth value for the most-true rule that referenced that
fuzzy output.
Reference Manual S12CPUV2

364 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
After REVW finishes, A will hold the truth value (weighted) for the last
rule in the rule list. The V condition code bit should be one because the
last element before the $FFFF end marker should have been a rule
consequent. If V is zero after executing REVW, it indicates the rule list
was structured incorrectly.

9.5.2.2 Interrupt Details

The REVW instruction includes a 3-cycle processing loop for each word
in the rule list (this loop expands to five cycles between antecedents and
consequents to allow time for the multiplication with the rule weight).
Within this loop, a check is performed to see if any qualified interrupt
request is pending. If an interrupt is detected, the current CPU registers
are stacked and the interrupt is honored. When the interrupt service
routine finishes, an RTI instruction causes the CPU to recover its
previous context from the stack, and the REVW instruction is resumed
as if it had not been interrupted.

The stacked value of the program counter (PC), in case of an interrupted
REVW instruction, points to the REVW instruction rather than the
instruction that follows. This causes the CPU to try to execute a new
REVW instruction upon return from the interrupt. Since the CPU
registers (including the C bit and V bit in the condition codes register)
indicate the current status of the interrupted REVW instruction, this
effectively causes the rule evaluation operation to resume from where it
left off.

9.5.2.3 Cycle-by-Cycle Details for REVW

The central element of the REVW instruction is a 3-cycle loop that is
executed once for each word in the rule list. For the special case pass
(where the $FFFE separator word is read between the rule antecedents
and the rule consequents, and weights are enabled by the C bit equal
one), this loop takes five cycles. There is a small amount of
housekeeping activity to get this loop started as REVW begins and a
small sequence to end the instruction. If an interrupt comes, there is a
special small sequence to save CPU status on the stack before the
interrupt is serviced.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 365

Fuzzy Logic Support
Figure 9-10 is a detailed flow diagram for the REVW instruction. Each
rectangular box represents one CPU clock cycle. Decision blocks and
connecting arrows are considered to take no time at all. The letters in the
small rectangles in the upper left corner of each bold box correspond to
the execution cycle codes (refer to Section 6. Instruction Glossary for
details). Lower case letters indicate a cycle where 8-bit or no data is
transferred. Upper case letters indicate cycles where 16-bit data could
be transferred.

In cycle 2.0, the first element of the rule list (a 16-bit address) is read
from memory. Due to propagation delays, this value cannot be used for
calculations until two cycles later (cycle 4.0). The X index register, which
is used to access information from the rule list, is incremented by two to
point at the next element of the rule list.

The operations performed in cycle 4.0 depend on the value of the word
read from the rule list. $FFFE is a special token that indicates a transition
from antecedents to consequents or from consequents to antecedents
of a new rule. The V bit can be used to decide which transition is taking
place, and V is toggled each time the $FFFE token is detected. If V was
zero, a change from antecedents to consequents is taking place, and it
is time to apply weighting (provided it is enabled by the C bit equal one).
The address in TMP2 (derived from Y) is used to read the weight byte
from memory. In this case, there is no bus access in cycle 5.0, but the
index into the rule list is updated to point to the next rule element.

The old value of X (X0) is temporarily held on internal nodes, so it can be
used to access a rule word in cycle 7.2. The read of the rule word is
timed to start two cycles before it will be used in cycle 4.0 of the next loop
pass. The actual multiply takes place in cycles 6.2 through 8.2. The 8-bit
weight from memory is incremented (possibly overflowing to $100)
before the multiply, and the upper eight bits of the 16-bit internal result
is used as the weighted result. By using weight+1, the result can range
from 0.0 times A to 1.0 times A. After 8.2, flow continues to the next loop
pass at cycle 4.0.
Reference Manual S12CPUV2

366 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
REV and REVW Instruction Details
Figure 9-10. REVW Instruction Flow Diagram

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED

2.0 - R READ WORD @ 0,X (RULE ELEMENT Rx)

X = X + 2 POINT AT NEXT RULE ELEMENT

START

END

6.3 - f NO BUS ACCESS

ADJUST X = X – 2 POINTER TO RULE LIST

INTERRUPT PENDING?
NO YES

5.0 - T

7.3 - f NO BUS ACCESS

IF (Rx = $FFFE OR $FFFE) AND V = 0

CONTINUE TO INTERRUPT STACKING
6.0 - x NO BUS ACCESS

A = MIN(A, FRx)

Rx = $FFFF (END OF RULES)?

YES

NO

7.0 - O READ PROGRAM WORD IF $3B MISALIGNED

3.0 - f NO BUS ACCESS

TMP2 = Y – 1 (WEIGHT POINTER KEPT IN TMP2)

5.3 - f

ADJUST PC TO POINT AT CURRENT REVW INSTRUCTION

IF Rx $FFFF

X0 = X, X = X0 + 2

MIN/MAX/MUL?

MAX

MULMIN

V = 1 &

V=C=1 and Rx=$FFFEOR DEFAULT

7.2 - R READ RULE WORD @,X0

CONTINUE MULTIPLY

8.2 - f NO BUS ACCESS

FINISH MULTIPLY

6.2 - f NO BUS ACCESS

BEGIN MULTIPLY OF (wt + 1) * A fi A : B

RX $FFFE or $FFFF

6.1 - x IF A > FRx WRITE A TO Rx
ELSE NO BUS ACCESS

ADJUST PC TO POINT AT NEXT INSTRUCTION
IF C = 1 (WEIGHTS ENABLED), Y = TMP2 + 1

THEN READ RULE WORD @,X0

8.3 - f NO BUS ACCESS

Y = TMP2 + 1

NO BUS ACCESS

4.0 - t

IF Rx = $FFFE

ELSE NO BUS ACCESS

IF Rx = $FFFF IF Rx = OTHER
THEN READ BYTE @,Rx FUZZY IN/OUT FRxTHEN NO BUS ACCESSIF V = 0, THEN TMP2 = TMP2 + 1

THEN READ RULE WEIGHT @,TMP2

TOGGLE V BIT; IF V NOW 0, A = $FF

IF V = 0 AND C = 1,

UPDATE Rx WITH VALUE READ IN CYC 2 OR 5

THEN TMP2 = TMP2 – 1
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 367

Fuzzy Logic Support
At cycle 4.0, if Rx is $FFFE and V was one, a change from consequents
to antecedents of a new rule is taking place, so accumulator A must be
reinitialized to $FF. During processing of rule antecedents, A is updated
with the smaller of A, or the current fuzzy input (cycle 6.0). Cycle 5.0 is
usually used to read the next rule word and update the pointer in X. This
read is skipped if the current Rx is $FFFF (end of rules mark). If this is a
weight multiply pass, the read is delayed until cycle 7.2. During
processing of consequents, cycle 6.1 is used to optionally update a fuzzy
output if the value in accumulator A is larger.

After all rules have been processed, cycle 7.0 is used to update the PC
to point at the next instruction. If weights were enabled, Y is updated to
point at the location that immediately follows the last rule weight.

9.6 WAV Instruction Details

The WAV instruction performs weighted average calculations used in
defuzzification. The pseudo-instruction wavr is used to resume an
interrupted weighted average operation. WAV calculates the numerator
and denominator sums using:

Where n is the number of labels of a system output, Si are the singleton
positions from the knowledge base, and Fi are fuzzy outputs from RAM.
Si and Fi are 8-bit values. The 8-bit B accumulator holds the iteration
count n. Internal temporary registers hold intermediate sums, 24 bits for
the numerator and 16 bits for the denominator. This makes this
instruction suitable for n values up to 255 although eight is a more typical
value. The final long division is performed with a separate EDIV
instruction immediately after the WAV instruction. The WAV instruction
returns the numerator and denominator sums in the correct registers for
the EDIV. (EDIV performs the unsigned division Y = Y : D / X; remainder
in D.)

System Output

SiFi
i 1=

n

∑

Fi
i 1=

n

∑
-----------------------=
Reference Manual S12CPUV2

368 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
WAV Instruction Details
Execution time for this instruction depends on the number of iterations
(labels for the system output). WAV is interruptible so that worst case
interrupt latency is not affected by the execution time for the complete
weighted average operation. WAV includes initialization for the 24-bit
and 16-bit partial sums so the first entry into WAV looks different than a
resume from interrupt operation. The CPU12 handles this difficulty with
a pseudo-instruction (wavr), which is specifically intended to resume an
interrupted weighted average calculation. Refer to 9.6.3
Cycle-by-Cycle Details for WAV and wavr for more detail.

9.6.1 Set Up Prior to Executing WAV

Before executing the WAV instruction, index registers X and Y and
accumulator B must be set up. Index register X is a pointer to the Si
singleton list. X must have the address of the first singleton value in the
knowledge base. Index register Y is a pointer to the fuzzy outputs Fi. Y
must have the address of the first fuzzy output for this system output. B
is the iteration count n. The B accumulator must be set to the number of
labels for this system output.

9.6.2 WAV Interrupt Details

The WAV instruction includes a 7-cycle processing loop for each label of
the system output (8 cycles in M68HC12). Within this loop, the CPU
checks whether a qualified interrupt request is pending. If an interrupt is
detected, the current values of the internal temporary registers for the
24-bit and 16-bit sums are stacked, the CPU registers are stacked, and
the interrupt is serviced.

A special processing sequence is executed when an interrupt is
detected during a weighted average calculation. This exit sequence
adjusts the PC so that it points to the second byte of the WAV object
code ($3C), before the PC is stacked. Upon return from the interrupt, the
$3C value is interpreted as a wavr pseudo-instruction. The wavr
pseudo-instruction causes the CPU to execute a special WAV
resumption sequence. The wavr recovery sequence adjusts the PC so
that it looks like it did during execution of the original WAV instruction,
then jumps back into the WAV processing loop. If another interrupt
occurs before the weighted average calculation finishes, the PC is
adjusted again as it was for the first interrupt. WAV can be interrupted
any number of times, and additional WAV instructions can be executed
while a WAV instruction is interrupted.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 369

Fuzzy Logic Support
9.6.3 Cycle-by-Cycle Details for WAV and wavr

The WAV instruction is unusual in that the logic flow has two separate
entry points. The first entry point is the normal start of a WAV instruction.
The second entry point is used to resume the weighted average
operation after a WAV instruction has been interrupted. This recovery
operation is called the wavr pseudo-instruction.

Figure 9-12 is a flow diagram of the WAV instruction in the HCS12,
including the wavr pseudo-instruction. Figure 9-12 is a flow diagram of
the WAV instruction in the M68HC12, including the wavr
pseudo-instruction. Each rectangular box in these figures represents
one CPU clock cycle. Decision blocks and connecting arrows are
considered to take no time at all. The letters in the small rectangles in
the upper left corner of the boxes correspond to execution cycle codes
(refer to Section 6. Instruction Glossary for details). Lower case letters
indicate a cycle where 8-bit or no data is transferred. Upper case letters
indicate cycles where 16-bit data could be transferred.

The cycle-by-cycle description provided here refers to the HCS12 flow in
Figure 9-11 . In terms of cycle-by-cycle bus activity, the $18 page select
prebyte is treated as a special 1-byte instruction. In cycle 1.0 of the WAV
instruction, one word of program information will be fetched into the
instruction queue if the $18 is located at an odd address. If the $18 is at
an even address, the instruction queue cannot advance so there is no
bus access in this cycle.

In cycle 2.0, three internal 16-bit temporary registers are cleared in
preparation for summation operations, but there is no bus access. The
WAV instruction maintains a 32-bit sum-of-products in TMP1 : TMP2
and a 16-bit sum-of-weights in TMP3. By keeping these sums inside the
CPU, bus accesses are reduced and the WAV operation is optimized for
high speed.

Cycles 3.0 through 9.0 form the 7-cycle main loop for WAV. The value in
the 8-bit B accumulator is used to count the number of loop iterations. B
is decremented at the top of the loop in cycle 3.0, and the test for zero is
located at the bottom of the loop after cycle 9.0. Cycle 4.0 and 5.0 are
used to fetch the 8-bit operands for one iteration of the loop. X and Y
index registers are used to access these operands. The index registers
are incremented as the operands are fetched. Cycle 6.0 is used to
accumulate the current fuzzy output into TMP3. Cycles 7.0 through 9.0
are used to perform the eight by eight multiply of Fi times Si, and
Reference Manual S12CPUV2

370 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
WAV Instruction Details
accumulate this result into TMP1 : TMP2. Even though the
sum-of-products will not exceed 24 bits, the sum is maintained in the
32-bit combined TMP1 : TMP2 register because it is easier to use
existing 16-bit operations than it would be to create a new smaller
operation to handle the high order bits of this sum.

Since the weighted average operation could be quite long, it is made to
be interruptible. The usual longest latency path is from very early in cycle
6.0, through cycle 9.0, to the top of the loop to cycle 3.0, through cycle
5.0 to the interrupt check.

If the WAV instruction is interrupted, the internal temporary registers
TMP3, TMP2, and TMP1 need to be stored on the stack so the operation
can be resumed. Since the WAV instruction included initialization in
cycle 2.0, the recovery path after an interrupt needs to be different. The
wavr pseudo-instruction has the same opcode as WAV, but it is on the
first page of the opcode map so there is no page prebyte ($18) like there
is for WAV. When WAV is interrupted, the PC is adjusted to point at the
second byte of the WAV object code, so that it will be interpreted as the
wavr pseudo-instruction on return from the interrupt, rather than the
WAV instruction. During the recovery sequence, the PC is readjusted in
case another interrupt comes before the weighted average operation
finishes.

The resume sequence includes recovery of the temporary registers from
the stack (1.1 through 3.1), and reads to get the operands for the current
iteration. The normal WAV flow is then rejoined at cycle 6.0.

Upon normal completion of the instruction (cycle 10.0), the PC is
adjusted so it points to the next instruction. The results are transferred
from the TMP registers into CPU registers in such a way that the EDIV
instruction can be used to divide the sum-of-products by the
sum-of-weights. TMP1 : TMP2 is transferred into Y : D and TMP3 is
transferred into X.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 371

Fuzzy Logic Support
Figure 9-11. WAV and wavr Instruction Flow Diagram (for HCS12)

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED 1.1 - U READ WORD @ 0,SP (UNSTACK TMP1)

SP = SP + 2

WAV

END

10.0 - O READ PROGRAM WORD IF $3C MISALIGNED

ADJUST PC TO POINT AT NEXT INSTRUCTION
Y : D = TMP1 : TMP2; X = TMP3

2.1 - U READ WORD @ 0,SP (UNSTACK TMP2)

SP = SP + 2

3.1 - U READ WORD @ 0,SP (UNSTACK TMP3)

SP = SP + 2

4.1 - r READ BYTE @ –1,Y (FUZZY OUTPUT Fi)

5.1 - r READ BYTE @ –1,X (SINGLETON Si)

6.1 - S WRITE WORD @ –2,SP (STACK TMP3)

SP = SP – 2

7.1 - S WRITE WORD @ –2,SP (STACK TMP2)

SP = SP – 2

8.1 - S WRITE WORD @ –2,SP (STACK TMP1)

SP = SP – 2

wavr

2.0 - f NO BUS ACCESS

3.0 - f NO BUS ACCESS

4.0 - f

CONTINUE TO INTERRUPT STACKING

B = 0?
NO

YES

5.0 - r

Y = Y + 1 point at next fuzzy output

READ BYTE @ 0,X (SINGLETON Si)

X = X + 1 POINT AT NEXT SINGLETON

6.0 - f NO BUS ACCESS

TMP3 = TMP3 + Fi

7.0 - f NO BUS ACCESS

START MULTIPLY, PPROD = Si*Fi

8.0 - f NO BUS ACCESS

FINISH MULTIPLY, TMP2 = TMP2 + PPROD

9.0 - f NO BUS ACCESS

INTERRUPT PENDING?

NO

YES

ADJUST PC TO POINT AT $3C wavr PSEUDO-OPCODE

TMP1 = TMP2 = TMP3 = $0000

B = B – 1 DECREMENT ITERATION COUNTER

READ BYTE @ 0,Y (FUZZY OUTPUT Fi)

TMP1 = TMP1 + (CARRY FROM PPROD ADD)
Reference Manual S12CPUV2

372 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
WAV Instruction Details
Figure 9-12. WAV and wavr Instruction Flow Diagram (for M68HC12)

1.0 - O READ PROGRAM WORD IF $18 MISALIGNED

2.1 - U READ WORD @ 0,SP (UNSTACK TMP3)

SP = SP + 2

WAV

END

12.0 - O READ PROGRAM WORD IF $3C MISALIGNED

ADJUST PC TO POINT AT NEXT INSTRUCTION
Y : D = TMP3 : TMP2; X = TMP1

3.1 - U READ WORD @ 0,SP (UNSTACK TMP2)

SP = SP + 2

4.1 - U READ WORD @ 0,SP (UNSTACK TMP1)

SP = SP + 2

5.1 - r READ BYTE @ –1,Y (FUZZY OUTPUT Fi)

6.1 - r READ BYTE @ –1,X (SINGLETON Si)

7.1 - S WRITE WORD @ –2,SP (STACK TMP1)

SP = SP – 2

8.1 - S WRITE WORD @ –2,SP (STACK TMP2)

SP = SP – 2

9.1 - S WRITE WORD @ –2,SP (STACK TMP3)

SP = SP – 2

wavr

2.0 - f NO BUS ACCESS

3.0 - f NO BUS ACCESS

TMP1 = TMP2 = TMP3 = $0000

4.0 - f NO BUS ACCESS

B = B – 1 DECREMENT ITERATION COUNTER

CONTINUE TO INTERRUPT STACKING

B = 0?
NO

YES

5.0 - r READ BYTE @ 0,Y (FUZZY OUTPUT Fi)

Y = Y + 1 point at next fuzzy output

6.0 - r READ BYTE @ 0,X (SINGLETON Si)

X = X + 1 POINT AT NEXT SINGLETON

7.0 - f NO BUS ACCESS

TMP1 = TMP1 + Fi

8.0 - f NO BUS ACCESS

START MULTIPLY PPROD = Si*Fi

9.0 - f NO BUS ACCESS

CONTINUE MULTIPLY

10.0 - f NO BUS ACCESS

FINISH MULTIPLY, TMP2 = TMP2 + PPROD

11.0 - f NO BUS ACCESS

TMP3 = TMP3 + (CARRY FROM PPROD ADD)

INTERRUPT PENDING?

NO

YES

ADJUST PC TO POINT AT $3C wavr PSEUDO-OPCODE

10.1 - f NO BUS ACCESS
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 373

Fuzzy Logic Support
9.7 Custom Fuzzy Logic Programming

The basic fuzzy logic inference techniques described earlier are suitable
for a broad range of applications, but some systems may require
customization. The built-in fuzzy instructions use 8-bit resolution and
some systems may require finer resolution. The rule evaluation
instructions only support variations of MIN-MAX rule evaluation and
other methods have been discussed in fuzzy logic literature. The
weighted average of singletons is not the only defuzzification technique.
The CPU12 has several instructions and addressing modes that can be
helpful when developing custom fuzzy logic systems.

9.7.1 Fuzzification Variations

The MEM instruction supports trapezoidal membership functions and
several other varieties, including membership functions with vertical
sides (infinite slope sides). Triangular membership functions are a
subset of trapezoidal functions. Some practitioners refer to s-, z-, and
π-shaped membership functions. These refer to a trapezoid butted
against the right end of the x-axis, a trapezoid butted against the left end
of the x-axis, and a trapezoidal membership function that isn’t butted
against either end of the x-axis, respectively. Many other membership
function shapes are possible, if memory space and processing
bandwidth are sufficient.

Tabular membership functions offer complete flexibility in shape and
very fast evaluation time. However, tables take a very large amount of
memory space (as many as 256 bytes per label of one system input).
The excessive size to specify tabular membership functions makes them
impractical for most microcontroller-based fuzzy systems. The CPU12
instruction set includes two instructions (TBL and ETBL) for lookup and
interpolation of compressed tables.

The TBL instruction uses 8-bit table entries (y-values) and returns an
8-bit result. The ETBL instruction uses 16-bit table entries (y-values) and
returns a 16-bit result. A flexible indexed addressing mode is used to
identify the effective address of the data point at the beginning of the line
segment, and the data value for the end point of the line segment is the
next consecutive memory location (byte for TBL and word for ETBL). In
both cases, the B accumulator represents the ratio of (the x-distance
from the beginning of the line segment to the lookup point) to (the
Reference Manual S12CPUV2

374 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Custom Fuzzy Logic Programming
x-distance from the beginning of the line segment to the end of the line
segment). B is treated as an 8-bit binary fraction with radix point left of
the MSB, so each line segment can effectively be divided into 256
pieces. During execution of the TBL or ETBL instruction, the difference
between the end point y-value and the beginning point y-value (a signed
byte-TBL or word-ETBL) is multiplied by the B accumulator to get an
intermediate delta-y term. The result is the y-value of the beginning
point, plus this signed intermediate delta-y value.

Because indexed addressing mode is used to identify the starting point
of the line segment of interest, there is a great deal of flexibility in
constructing tables. A common method is to break the x-axis range into
256 equal width segments and store the y value for each of the resulting
257 endpoints. The 16-bit D accumulator is then used as the x input to
the table. The upper eight bits (A) is used as a coarse lookup to find the
line segment of interest, and the lower eight bits (B) is used to interpolate
within this line segment.

In the program sequence
LDX #TBL_START
LDD DATA_IN
TBL A,X

The notation A,X causes the TBL instruction to use the Ath line segment
in the table. The low-order half of D (B) is used by TBL to calculate the
exact data value from this line segment. This type of table uses only 257
entries to approximate a table with 16 bits of resolution. This type of table
has the disadvantage of equal width line segments, which means just as
many points are needed to describe a flat portion of the desired function
as are needed for the most active portions.

Another type of table stores x:y coordinate pairs for the endpoints of
each linear segment. This type of table may reduce the table storage
space compared to the previous fixed-width segments because flat
areas of the functions can be specified with a single pair of endpoints.
This type of table is a little harder to use with the CPU12 TBL and ETBL
instructions because the table instructions expect y-values for segment
endpoints to be in consecutive memory locations.

Consider a table made up of an arbitrary number of x:y coordinate pairs,
where all values are eight bits. The table is entered with the x-coordinate
of the desired point to lookup in the A accumulator. When the table is
exited, the corresponding y-value is in the A accumulator. Figure 9-13
shows one way to work with this type of table.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 375

Fuzzy Logic Support
Figure 9-13. Endpoint Table Handling

The basic idea is to find the segment of interest, temporarily build a
1-segment table of the correct format on the stack, then use TBL with
stack relative indexed addressing to interpolate. The most difficult part
of the routine is calculating the proportional distance from the beginning
of the segment to the lookup point versus the width of the segment
((XL–XB)/(XE–XB)). With this type of table, this calculation must be done
at run time. In the previous type of table, this proportional term is an
inherent part (the lowest order bits) of the data input to the table.

Some fuzzy theorists have suggested membership functions should be
shaped like normal distribution curves or other mathematical functions.
This may be correct, but the processing requirements to solve for an
intercept on such a function would be unacceptable for most
microcontroller-based fuzzy systems. Such a function could be encoded
into a table of one of the previously described types.

For many common systems, the thing that is most important about
membership function shape is that there is a gradual transition from
non-membership to membership as the system input value approaches
the central range of the membership function.

BEGIN LDY #TABLE_START-2 ;setup initial table pointer
FIND_LOOP CMPA 2,+Y ;find first Xn > XL

;(auto pre-inc Y by 2)
BLS FIND_LOOP ;loop if XL .le. Xn

* on fall thru, XB@-2,Y YB@-1,Y XE@0,Y and YE@1,Y
TFR D,X ;save XL in high half of X
CLRA ;zero upper half of D
LDAB 0,Y ;D = 0:XE
SUBB -2,Y ;D = 0:(XE-XB)
EXG D,X ;X = (XE-XB).. D = XL:junk
SUBA -2,Y ;A = (XL-XB)
EXG A,D ;D = 0:(XL-XB), uses trick of EXG
FDIV ;X reg = (XL-XB)/(XE-XB)
EXG D,X ;move fractional result to A:B
EXG A,B ;byte swap - need result in B
TSTA ;check for rounding
BPL NO_ROUND
INCB ;round B up by 1

NO_ROUND LDAA 1,Y ;YE
PSHA ;put on stack for TBL later
LDAA -1,Y ;YB
PSHA ;now YB@0,SP and YE@1,SP
TBL 2,SP+ ;interpolate and deallocate

;stack temps
Reference Manual S12CPUV2

376 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Custom Fuzzy Logic Programming
Examine the human problem of stopping a car at an intersection. Rules
such as “If intersection is close and speed is fast, apply brakes” might be
used. The meaning (reflected in membership function shape and
position) of the labels “close” and “fast” will be different for a teenager
than they are for a grandmother, but both can accomplish the goal of
stopping. It makes intuitive sense that the exact shape of a membership
function is much less important than the fact that it has gradual
boundaries.

9.7.2 Rule Evaluation Variations

The REV and REVW instructions expect fuzzy input and fuzzy output
values to be 8-bit values. In a custom fuzzy inference program, higher
resolution may be desirable (although this is not a common
requirement). The CPU12 includes variations of minimum and maximum
operations that work with the fuzzy MIN-MAX inference algorithm. The
problem with the fuzzy inference algorithm is that the min and max
operations need to store their results differently, so the min and max
instructions must work differently or more than one variation of these
instructions is needed.

The CPU12 has MIN and MAX instructions for 8- or 16-bit operands,
where one operand is in an accumulator and the other is a referenced
memory location. There are separate variations that replace the
accumulator or the memory location with the result. While processing
rule antecedents in a fuzzy inference program, a reference value must
be compared to each of the referenced fuzzy inputs, and the smallest
input must end up in an accumulator. The instruction

EMIND 2,X+ ;process one rule antecedent

automates the central operations needed to process rule antecedents.
The E stands for extended, so this instruction compares 16-bit operands.
The D at the end of the mnemonic stands for the D accumulator, which
is both the first operand for the comparison and the destination of the
result. The 2,X+ is an indexed addressing specification that says X
points to the second operand for the comparison and it will be
post-incremented by 2 to point at the next rule antecedent.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 377

Fuzzy Logic Support
When processing rule consequents, the operand in the accumulator
must remain constant (in case there is more than one consequent in the
rule), and the result of the comparison must replace the referenced fuzzy
output in RAM. To do this, use the instruction

EMAXM 2,X+ ;process one rule consequent

The M at the end of the mnemonic indicates that the result will replace
the referenced memory operand. Again, indexed addressing is used.
These two instructions would form the working part of a 16-bit resolution
fuzzy inference routine.

There are many other methods of performing inference, but none of
these are as widely used as the min-max method. Since the CPU12 is a
general-purpose microcontroller, the programmer has complete
freedom to program any algorithm desired. A custom programmed
algorithm would typically take more code space and execution time than
a routine that used the built-in REV or REVW instructions.

9.7.3 Defuzzification Variations

Other CPU12 instructions can help with custom defuzzification routines
in two main areas:

• The first case is working with operands that are more than eight
bits.

• The second case involves using an entirely different approach
than weighted average of singletons.

The primary part of the WAV instruction is a multiply and accumulate
operation to get the numerator for the weighted average calculation.
When working with operands as large as 16 bits, the EMACS instruction
could at least be used to automate the multiply and accumulate function.
The CPU12 has extended math capabilities, including the EMACS
instruction which uses 16-bit input operands and accumulates the sum
to a 32-bit memory location and 32-bit by 16-bit divide instructions.

One benefit of the WAV instruction is that both a sum of products and a
sum of weights are maintained, while the fuzzy output operand is only
accessed from memory once. Since memory access time is such a
significant part of execution time, this provides a speed advantage
compared to conventional instructions.
Reference Manual S12CPUV2

378 Fuzzy Logic Support MOTOROLA

Fuzzy Logic Support
Custom Fuzzy Logic Programming
The weighted average of singletons is the most commonly used
technique in microcontrollers because it is computationally less difficult
than most other methods. The simplest method is called max
defuzzification, which simply uses the largest fuzzy output as the system
result. However, this approach does not take into account any other
fuzzy outputs, even when they are almost as true as the chosen max
output. Max defuzzification is not a good general choice because it only
works for a subset of fuzzy logic applications.

The CPU12 is well suited for more computationally challenging
algorithms than weighted average. A 32-bit by 16-bit divide instruction
takes 11 or 12 25-MHz cycles for unsigned or signed variations. A 16-bit
by 16-bit multiply with a 32-bit result takes only three 25-MHz cycles.
The EMACS instruction uses 16-bit operands and accumulates the
result in a 32-bit memory location, taking only 12 25-MHz cycles per
iteration, including accessing all operands from memory and storing the
result to memory.
S12CPUV2 Reference Manual

MOTOROLA Fuzzy Logic Support 379

Fuzzy Logic Support
Reference Manual S12CPUV2

380 Fuzzy Logic Support MOTOROLA

Reference Manual — S12CPUV2

Appendix A. Instruction Reference
A.1 Introduction

This appendix provides quick references for the instruction set, opcode
map, and encoding.

Figure A-1. Programming Model

7

15

15

15

15

15

D

X

Y

SP

PC

A B

NS X H I Z V C

0

0

0

0

0

0

70

CONDITION CODE REGISTER

8-BIT ACCUMULATORS A AND B

16-BIT DOUBLE ACCUMULATOR D

INDEX REGISTER X

INDEX REGISTER Y

STACK POINTER

PROGRAM COUNTER

OR

STOP DISABLE (IGNORE STOP OPCODES)
RESET DEFAULT IS 1

CARRY

OVERFLOW

ZERO

NEGATIVE

MASK (DISABLE) IRQ INTERRUPTS

HALF-CARRY
(USED IN BCD ARITHMETIC)

MASK (DISABLE) XIRQ INTERRUPTS
RESET OR XIRQ SET X,
INSTRUCTIONS MAY CLEAR X
BUT CANNOT SET X
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 381

Instruction Reference
A.2 Stack and Memory Layout

A.3 Interrupt Vector Locations

SP BEFORE
INTERRUPT

SP AFTER
INTERRUPT

HIGHER ADDRESSES

LOWER ADDRESSES

RTNLO

RTNHI

YLO

YHI

XLO

XHI

A

B

CCR

SP +9

STACK UPON ENTRY TO SERVICE ROUTINE
IF SP WAS ODD BEFORE INTERRUPT

STACK UPON ENTRY TO SERVICE ROUTINE
IF SP WAS EVEN BEFORE INTERRUPT

SP +8 RTNLO SP +9 SP +9 SP +10

SP +6 YLO RTNHI SP +7 SP +7 RTNHI RTNLO SP +8

SP +4 XLO YHI SP +5 SP +5 YHI YLO SP +6

SP +2 A XHI SP +3 SP +4 XHI XLO SP +4

SP CCR B SP +1 SP +1 B A SP +2

SP –2 SP –1 SP –1 CCR SP

$FFFE, $FFFF
$FFFC, $FFFD
$FFFA, $FFFB
$FFF8, $FFF9
$FFF6, $FFF7
$FFF4, $FFF5
$FFF2, $FFF3
$FFC0–$FFF1 (M68HC12)
$FF00–$FFF1 (HCS12)

Power-On (POR) or External Reset
Clock Monitor Reset
Computer Operating Properly (COP Watchdog Reset
Unimplemented Opcode Trap
Software Interrupt Instruction (SWI)
XIRQ
IRQ
Device-Specific Interrupt Sources
Device-Specific Interrupt Sources
Reference Manual S12CPUV2

382 Instruction Reference MOTOROLA

Instruction Reference
A.4 Notation Used in Instruction Set Summary

CPU Register Notation
Accumulator A — A or a Index Register Y — Y or y
Accumulator B — B or b Stack Pointer — SP, sp, or s
Accumulator D — D or d Program Counter — PC, pc, or p
Index Register X — X or x Condition Code Register — CCR or c

Explanation of Italic Expressions in Source Form Column
abc — A or B or CCR

abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3.
abd — A or B or D

abdxys — A or B or D or X or Y or SP
dxys — D or X or Y or SP

msk8 — 8-bit mask, some assemblers require # symbol before value
opr8i — 8-bit immediate value

opr16i — 16-bit immediate value
opr8a — 8-bit address used with direct address mode

opr16a — 16-bit address value
oprx0_xysp — Indexed addressing postbyte code:

oprx3,–xys Predecrement X or Y or SP by 1 . . . 8
oprx3,+xys Preincrement X or Y or SP by 1 . . . 8
oprx3,xys– Postdecrement X or Y or SP by 1 . . . 8
oprx3,xys+ Postincrement X or Y or SP by 1 . . . 8
oprx5,xysp 5-bit constant offset from X or Y or SP or PC
abd,xysp Accumulator A or B or D offset from X or Y or SP or PC

oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
oprx5 — Any integer in the range –16 . . . +15
oprx9 — Any integer in the range –256 . . . +255

oprx16 — Any integer in the range –32,768 . . . 65,535
page — 8-bit value for PPAGE, some assemblers require # symbol before this value

rel8 — Label of branch destination within –128 to +127 locations
rel9 — Label of branch destination within –256 to +255 locations

rel16 — Any label within 64K memory space
trapnum — Any 8-bit integer in the range $30-$39 or $40-$FF

xys — X or Y or SP
xysp — X or Y or SP or PC

Operators

+ — Addition

– — Subtraction

• — Logical AND

+ — Logical OR (inclusive)

Continued on next page
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 383

Instruction Reference
Operators (continued)

⊕ — Logical exclusive OR

× — Multiplication

÷ — Division

M — Negation. One’s complement (invert each bit of M)

: — Concatenate
Example: A : B means the 16-bit value formed by concatenating 8-bit accumulator A
with 8-bit accumulator B.
A is in the high-order position.

⇒ — Transfer
Example: (A) ⇒ M means the content of accumulator A is transferred to memory
location M.

⇔ — Exchange
Example: D ⇔ X means exchange the contents of D with those of X.

Address Mode Notation
INH — Inherent; no operands in object code
IMM — Immediate; operand in object code
DIR — Direct; operand is the lower byte of an address from $0000 to $00FF
EXT — Operand is a 16-bit address
REL — Two’s complement relative offset; for branch instructions
IDX — Indexed (no extension bytes); includes:

5-bit constant offset from X, Y, SP, or PC
Pre/post increment/decrement by 1 . . . 8
Accumulator A, B, or D offset

IDX1 — 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
IDX2 — 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes

[IDX2] — Indexed-indirect; 16-bit offset from X, Y, SP, or PC
[D, IDX] — Indexed-indirect; accumulator D offset from X, Y, SP, or PC

Machine Coding
dd — 8-bit direct address $0000 to $00FF. (High byte assumed to be $00).
ee — High-order byte of a 16-bit constant offset for indexed addressing.
eb — Exchange/Transfer post-byte. See Table A-5 on page 405.
ff — Low-order eight bits of a 9-bit signed constant offset for indexed addressing,

or low-order byte of a 16-bit constant offset for indexed addressing.
hh — High-order byte of a 16-bit extended address.
ii — 8-bit immediate data value.
jj — High-order byte of a 16-bit immediate data value.
kk — Low-order byte of a 16-bit immediate data value.
lb — Loop primitive (DBNE) post-byte. See Table A-6 on page 406.
ll — Low-order byte of a 16-bit extended address.
Reference Manual S12CPUV2

384 Instruction Reference MOTOROLA

Instruction Reference
Access Detail
Each code letter except (,), and comma equals one CPU cycle. Uppercase = 16-bit
operation and lowercase = 8-bit operation. For complex sequences see the CPU12
Reference Manual (CPU12RM/AD) for more detailed information.

mm— 8-bit immediate mask value for bit manipulation instructions.
Set bits indicate bits to be affected.

pg — Program page (bank) number used in CALL instruction.
qq — High-order byte of a 16-bit relative offset for long branches.
tn — Trap number $30–$39 or $40–$FF.
rr — Signed relative offset $80 (–128) to $7F (+127).

Offset relative to the byte following the relative offset byte, or
low-order byte of a 16-bit relative offset for long branches.

xb — Indexed addressing post-byte. See Table A-3 on page 403
and Table A-4 on page 404.

f — Free cycle, CPU doesn’t use bus
g — Read PPAGE internally
I — Read indirect pointer (indexed indirect)
i — Read indirect PPAGE value (CALL indirect only)
n — Write PPAGE internally
O — Optional program word fetch (P) if instruction is misaligned and has

an odd number of bytes of object code — otherwise, appears as
a free cycle (f); Page 2 prebyte treated as a separate 1-byte instruction

P — Program word fetch (always an aligned-word read)
r — 8-bit data read
R — 16-bit data read
s — 8-bit stack write
S — 16-bit stack write
w — 8-bit data write
W — 16-bit data write
u — 8-bit stack read
U — 16-bit stack read
V — 16-bit vector fetch (always an aligned-word read)
t — 8-bit conditional read (or free cycle)
T — 16-bit conditional read (or free cycle)
x — 8-bit conditional write (or free cycle)

() — Indicate a microcode loop
, — Indicates where an interrupt could be honored

Special Cases

PPP/P — Short branch, PPP if branch taken, P if not
OPPP/OPO— Long branch, OPPP if branch taken, OPO if not
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 385

Instruction Reference
Condition Codes Columns
– — Status bit not affected by operation.
0 — Status bit cleared by operation.
1 — Status bit set by operation.
∆ — Status bit affected by operation.
fl — Status bit may be cleared or remain set, but is not set by operation.
⇑ — Status bit may be set or remain cleared, but is not cleared by operation.
? — Status bit may be changed by operation but the final state is not defined.
! — Status bit used for a special purpose.
Reference Manual S12CPUV2

386 Instruction Reference MOTOROLA

Instruction Reference
Table A-1. Instruction Set Summary (Sheet 1 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

ABA (A) + (B) ⇒ A
Add Accumulators A and B

INH 18 06 OO OO – – ∆ – ∆ ∆ ∆ ∆

ABX (B) + (X) ⇒ X
Translates to LEAX B,X

IDX 1A E5 Pf PP1 – – – – – – – –

ABY (B) + (Y) ⇒ Y
Translates to LEAY B,Y

IDX 19 ED Pf PP1 – – – – – – – –

ADCA #opr8i
ADCA opr8a
ADCA opr16a
ADCA oprx0_xysp
ADCA oprx9,xysp
ADCA oprx16,xysp
ADCA [D,xysp]
ADCA [oprx16,xysp]

(A) + (M) + C ⇒ A
Add with Carry to A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADCB #opr8i
ADCB opr8a
ADCB opr16a
ADCB oprx0_xysp
ADCB oprx9,xysp
ADCB oprx16,xysp
ADCB [D,xysp]
ADCB [oprx16,xysp]

(B) + (M) + C ⇒ B
Add with Carry to B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADDA #opr8i
ADDA opr8a
ADDA opr16a
ADDA oprx0_xysp
ADDA oprx9,xysp
ADDA oprx16,xysp
ADDA [D,xysp]
ADDA [oprx16,xysp]

(A) + (M) ⇒ A
Add without Carry to A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADDB #opr8i
ADDB opr8a
ADDB opr16a
ADDB oprx0_xysp
ADDB oprx9,xysp
ADDB oprx16,xysp
ADDB [D,xysp]
ADDB [oprx16,xysp]

(B) + (M) ⇒ B
Add without Carry to B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – ∆ – ∆ ∆ ∆ ∆

ADDD #opr16i
ADDD opr8a
ADDD opr16a
ADDD oprx0_xysp
ADDD oprx9,xysp
ADDD oprx16,xysp
ADDD [D,xysp]
ADDD [oprx16,xysp]

(A:B) + (M:M+1) ⇒ A:B
Add 16-Bit to D (A:B)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

ANDA #opr8i
ANDA opr8a
ANDA opr16a
ANDA oprx0_xysp
ANDA oprx9,xysp
ANDA oprx16,xysp
ANDA [D,xysp]
ANDA [oprx16,xysp]

(A) • (M) ⇒ A
Logical AND A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ANDB #opr8i
ANDB opr8a
ANDB opr16a
ANDB oprx0_xysp
ANDB oprx9,xysp
ANDB oprx16,xysp
ANDB [D,xysp]
ANDB [oprx16,xysp]

(B) • (M) ⇒ B
Logical AND B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ANDCC #opr8i (CCR) • (M) ⇒ CCR
Logical AND CCR with Memory

IMM 10 ii P P ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 387

Instruction Reference
ASL opr16a
ASL oprx0_xysp
ASL oprx9,xysp
ASL oprx16,xysp
ASL [D,xysp]
ASL [oprx16,xysp]
ASLA
ASLB

Arithmetic Shift Left

Arithmetic Shift Left Accumulator A
Arithmetic Shift Left Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

ASLD

Arithmetic Shift Left Double

INH 59 O O – – – – ∆ ∆ ∆ ∆

ASR opr16a
ASR oprx0_xysp
ASR oprx9,xysp
ASR oprx16,xysp
ASR [D,xysp]
ASR [oprx16,xysp]
ASRA
ASRB

Arithmetic Shift Right

Arithmetic Shift Right Accumulator A
Arithmetic Shift Right Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff
47
57

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

BCC rel8 Branch if Carry Clear (if C = 0) REL 24 rr PPP/P1 PPP/P1 – – – – – – – –

BCLR opr8a, msk8
BCLR opr16a, msk8
BCLR oprx0_xysp, msk8
BCLR oprx9,xysp, msk8
BCLR oprx16,xysp, msk8

(M) • (mm) ⇒ M
Clear Bit(s) in Memory

DIR
EXT
IDX

IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP

– – – – ∆ ∆ 0 –

BCS rel8 Branch if Carry Set (if C = 1) REL 25 rr PPP/P1 PPP/P1 – – – – – – – –

BEQ rel8 Branch if Equal (if Z = 1) REL 27 rr PPP/P1 PPP/P1 – – – – – – – –

BGE rel8 Branch if Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 2C rr PPP/P1 PPP/P1 – – – – – – – –

BGND Place CPU in Background Mode
see CPU12 Reference Manual

INH 00 VfPPP VfPPP – – – – – – – –

BGT rel8 Branch if Greater Than
(if Z + (N ⊕ V) = 0) (signed)

REL 2E rr PPP/P1 PPP/P1 – – – – – – – –

BHI rel8 Branch if Higher
(if C + Z = 0) (unsigned)

REL 22 rr PPP/P1 PPP/P1 – – – – – – – –

BHS rel8 Branch if Higher or Same
(if C = 0) (unsigned)
same function as BCC

REL 24 rr PPP/P1 PPP/P1 – – – – – – – –

BITA #opr8i
BITA opr8a
BITA opr16a
BITA oprx0_xysp
BITA oprx9,xysp
BITA oprx16,xysp
BITA [D,xysp]
BITA [oprx16,xysp]

(A) • (M)
Logical AND A with Memory
Does not change Accumulator or Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

BITB #opr8i
BITB opr8a
BITB opr16a
BITB oprx0_xysp
BITB oprx9,xysp
BITB oprx16,xysp
BITB [D,xysp]
BITB [oprx16,xysp]

(B) • (M)
Logical AND B with Memory
Does not change Accumulator or Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

BLE rel8 Branch if Less Than or Equal
(if Z + (N ⊕ V) = 1) (signed)

REL 2F rr PPP/P1 PPP/P1 – – – – – – – –

BLO rel8 Branch if Lower
(if C = 1) (unsigned)
same function as BCS

REL 25 rr PPP/P1 PPP/P1 – – – – – – – –

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 2 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

C
0

b7 b0

C
0

b7 b0A Bb7b0

Cb7 b0
Reference Manual S12CPUV2

388 Instruction Reference MOTOROLA

Instruction Reference
BLS rel8 Branch if Lower or Same
(if C + Z = 1) (unsigned)

REL 23 rr PPP/P1 PPP/P1 – – – – – – – –

BLT rel8 Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 2D rr PPP/P1 PPP/P1 – – – – – – – –

BMI rel8 Branch if Minus (if N = 1) REL 2B rr PPP/P1 PPP/P1 – – – – – – – –

BNE rel8 Branch if Not Equal (if Z = 0) REL 26 rr PPP/P1 PPP/P1 – – – – – – – –

BPL rel8 Branch if Plus (if N = 0) REL 2A rr PPP/P1 PPP/P1 – – – – – – – –

BRA rel8 Branch Always (if 1 = 1) REL 20 rr PPP PPP – – – – – – – –

BRCLR opr8a, msk8, rel8
BRCLR opr16a, msk8, rel8
BRCLR oprx0_xysp, msk8, rel8
BRCLR oprx9,xysp, msk8, rel8
BRCLR oprx16,xysp, msk8, rel8

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Clear)

DIR
EXT
IDX

IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

– – – – – – – –

BRN rel8 Branch Never (if 1 = 0) REL 21 rr P P – – – – – – – –

BRSET opr8, msk8, rel8
BRSET opr16a, msk8, rel8
BRSET oprx0_xysp, msk8, rel8
BRSET oprx9,xysp, msk8, rel8
BRSET oprx16,xysp, msk8, rel8

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Set)

DIR
EXT
IDX

IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

rPPP
rfPPP
rPPP
rfPPP
PrfPPP

rPPP
rfPPP

rPPP
rffPPP

frPffPPP

– – – – – – – –

BSET opr8, msk8
BSET opr16a, msk8
BSET oprx0_xysp, msk8
BSET oprx9,xysp, msk8
BSET oprx16,xysp, msk8

(M) + (mm) ⇒ M
Set Bit(s) in Memory

DIR
EXT
IDX

IDX1
IDX2

4C dd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

rPwO
rPwP
rPwO
rPwP
frPwPO

rPOw
rPPw
rPOw
rPwP

frPwOP

– – – – ∆ ∆ 0 –

BSR rel8 (SP) – 2 ⇒ SP; RTNH:RTNL ⇒ M(SP):M(SP+1)
Subroutine address ⇒ PC
Branch to Subroutine

REL 07 rr SPPP PPPS – – – – – – – –

BVC rel8 Branch if Overflow Bit Clear (if V = 0) REL 28 rr PPP/P1 PPP/P1 – – – – – – – –

BVS rel8 Branch if Overflow Bit Set (if V = 1) REL 29 rr PPP/P1 PPP/P1 – – – – – – – –

CALL opr16a, page
CALL oprx0_xysp, page
CALL oprx9,xysp, page
CALL oprx16,xysp, page
CALL [D,xysp]
CALL [oprx16, xysp]

(SP) – 2 ⇒ SP; RTNH:RTNL ⇒ M(SP):M(SP+1)
(SP) – 1 ⇒ SP; (PPG) ⇒ M(SP);
pg ⇒ PPAGE register; Program address ⇒ PC

Call subroutine in extended memory
(Program may be located on another
expansion memory page.)

Indirect modes get program address
and new pg value based on pointer.

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg
4B xb
4B xb ee ff

gnSsPPP
gnSsPPP
gnSsPPP
fgnSsPPP
fIignSsPPP
fIignSsPPP

gnfSsPPP
gnfSsPPP
gnfSsPPP

fgnfSsPPP
fIignSsPPP
fIignSsPPP

– – – – – – – –

CBA (A) – (B)
Compare 8-Bit Accumulators

INH 18 17 OO OO – – – – ∆ ∆ ∆ ∆

CLC 0 ⇒ C
Translates to ANDCC #$FE

IMM 10 FE P P – – – – – – – 0

CLI 0 ⇒ I
Translates to ANDCC #$EF
(enables I-bit interrupts)

IMM 10 EF P P – – – 0 – – – –

CLR opr16a
CLR oprx0_xysp
CLR oprx9,xysp
CLR oprx16,xysp
CLR [D,xysp]
CLR [oprx16,xysp]
CLRA
CLRB

0 ⇒ M Clear Memory Location

0 ⇒ A Clear Accumulator A
0 ⇒ B Clear Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff
87
C7

PwO
Pw
PwO
PwP
PIfw
PIPw
O
O

wOP
Pw

PwO
PwP

PIfPw
PIPPw

O
O

– – – – 0 1 0 0

CLV 0 ⇒ V
Translates to ANDCC #$FD

IMM 10 FD P P – – – – – – 0 –

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 389

Instruction Reference
CMPA #opr8i
CMPA opr8a
CMPA opr16a
CMPA oprx0_xysp
CMPA oprx9,xysp
CMPA oprx16,xysp
CMPA [D,xysp]
CMPA [oprx16,xysp]

(A) – (M)
Compare Accumulator A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

CMPB #opr8i
CMPB opr8a
CMPB opr16a
CMPB oprx0_xysp
CMPB oprx9,xysp
CMPB oprx16,xysp
CMPB [D,xysp]
CMPB [oprx16,xysp]

(B) – (M)
Compare Accumulator B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

COM opr16a
COM oprx0_xysp
COM oprx9,xysp
COM oprx16,xysp
COM [D,xysp]
COM [oprx16,xysp]
COMA
COMB

(M) ⇒ M equivalent to $FF – (M) ⇒ M
1’s Complement Memory Location

(A) ⇒ A Complement Accumulator A

(B) ⇒ B Complement Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff
41
51

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ 0 1

CPD #opr16i
CPD opr8a
CPD opr16a
CPD oprx0_xysp
CPD oprx9,xysp
CPD oprx16,xysp
CPD [D,xysp]
CPD [oprx16,xysp]

(A:B) – (M:M+1)
Compare D to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

CPS #opr16i
CPS opr8a
CPS opr16a
CPS oprx0_xysp
CPS oprx9,xysp
CPS oprx16,xysp
CPS [D,xysp]
CPS [oprx16,xysp]

(SP) – (M:M+1)
Compare SP to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

CPX #opr16i
CPX opr8a
CPX opr16a
CPX oprx0_xysp
CPX oprx9,xysp
CPX oprx16,xysp
CPX [D,xysp]
CPX [oprx16,xysp]

(X) – (M:M+1)
Compare X to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

CPY #opr16i
CPY opr8a
CPY opr16a
CPY oprx0_xysp
CPY oprx9,xysp
CPY oprx16,xysp
CPY [D,xysp]
CPY [oprx16,xysp]

(Y) – (M:M+1)
Compare Y to Memory (16-Bit)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

DAA Adjust Sum to BCD
Decimal Adjust Accumulator A

INH 18 07 OfO OfO – – – – ∆ ∆ ? ∆

DBEQ abdxys, rel9 (cntr) – 1⇒ cntr
if (cntr) = 0, then Branch
else Continue to next instruction

Decrement Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 4 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

390 Instruction Reference MOTOROLA

Instruction Reference
DBNE abdxys, rel9 (cntr) – 1 ⇒ cntr
If (cntr) not = 0, then Branch;
else Continue to next instruction

Decrement Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

DEC opr16a
DEC oprx0_xysp
DEC oprx9,xysp
DEC oprx16,xysp
DEC [D,xysp]
DEC [oprx16,xysp]
DECA
DECB

(M) – $01 ⇒ M
Decrement Memory Location

(A) – $01 ⇒ A Decrement A
(B) – $01 ⇒ B Decrement B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff
43
53

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ –

DES (SP) – $0001 ⇒ SP
Translates to LEAS –1,SP

IDX 1B 9F Pf PP1 – – – – – – – –

DEX (X) – $0001 ⇒ X
Decrement Index Register X

INH 09 O O – – – – – ∆ – –

DEY (Y) – $0001 ⇒ Y
Decrement Index Register Y

INH 03 O O – – – – – ∆ – –

EDIV (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 by 16 Bit ⇒ 16 Bit Divide (unsigned)

INH 11 ffffffffffO ffffffffffO – – – – ∆ ∆ ∆ ∆

EDIVS (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 by 16 Bit ⇒ 16 Bit Divide (signed)

INH 18 14 OffffffffffO OffffffffffO – – – – ∆ ∆ ∆ ∆

EMACS opr16a 2 (M(X):M(X+1)) × (M(Y):M(Y+1)) + (M~M+3) ⇒ M~M+3

16 by 16 Bit ⇒ 32 Bit
Multiply and Accumulate (signed)

Special 18 12 hh ll ORROfffRRfWWP ORROfffRRfWWP – – – – ∆ ∆ ∆ ∆

EMAXD oprx0_xysp
EMAXD oprx9,xysp
EMAXD oprx16,xysp
EMAXD [D,xysp]
EMAXD [oprx16,xysp]

MAX((D), (M:M+1)) ⇒ D
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP

– – – – ∆ ∆ ∆ ∆

EMAXM oprx0_xysp
EMAXM oprx9,xysp
EMAXM oprx16,xysp
EMAXM [D,xysp]
EMAXM [oprx16,xysp]

MAX((D), (M:M+1)) ⇒ M:M+1
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW

– – – – ∆ ∆ ∆ ∆

EMIND oprx0_xysp
EMIND oprx9,xysp
EMIND oprx16,xysp
EMIND [D,xysp]
EMIND [oprx16,xysp]

MIN((D), (M:M+1)) ⇒ D
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

ORPf
ORPO
OfRPP
OfIfRPf
OfIPRPf

ORfP
ORPO

OfRPP
OfIfRfP
OfIPRfP

– – – – ∆ ∆ ∆ ∆

EMINM oprx0_xysp
EMINM oprx9,xysp
EMINM oprx16,xysp
EMINM [D,xysp]
EMINM [oprx16,xysp]

MIN((D), (M:M+1)) ⇒ M:M+1
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

ORPW
ORPWO
OfRPWP
OfIfRPW
OfIPRPW

ORPW
ORPWO

OfRPWP
OfIfRPW
OfIPRPW

– – – – ∆ ∆ ∆ ∆

EMUL (D) × (Y) ⇒ Y:D
16 by 16 Bit Multiply (unsigned)

INH 13 ffO ffO – – – – ∆ ∆ – ∆

EMULS (D) × (Y) ⇒ Y:D
16 by 16 Bit Multiply (signed)

INH 18 13 OfO OfO – – – – ∆ ∆ – ∆
(if followed by page 2 instruction)

OffO OfO

EORA #opr8i
EORA opr8a
EORA opr16a
EORA oprx0_xysp
EORA oprx9,xysp
EORA oprx16,xysp
EORA [D,xysp]
EORA [oprx16,xysp]

(A) ⊕ (M) ⇒ A
Exclusive-OR A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

Notes:
1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.
2. opr16a is an extended address specification. Both X and Y point to source operands.

Table A-1. Instruction Set Summary (Sheet 5 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 391

Instruction Reference
EORB #opr8i
EORB opr8a
EORB opr16a
EORB oprx0_xysp
EORB oprx9,xysp
EORB oprx16,xysp
EORB [D,xysp]
EORB [oprx16,xysp]

(B) ⊕ (M) ⇒ B
Exclusive-OR B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ETBL oprx0_xysp (M:M+1)+ [(B)×((M+2:M+3) – (M:M+1))] ⇒ D
16-Bit Table Lookup and Interpolate

Initialize B, and index before ETBL.
<ea> points at first table entry (M:M+1)
and B is fractional part of lookup value

(no indirect addr. modes or extensions allowed)

IDX 18 3F xb ORRffffffP ORRffffffP – – – – ∆ ∆ – ∆
?

C Bit is undefined
in HC12

EXG abcdxys,abcdxys (r1) ⇔ (r2) (if r1 and r2 same size) or
$00:(r1) ⇒ r2 (if r1=8-bit; r2=16-bit) or
(r1low) ⇔ (r2) (if r1=16-bit; r2=8-bit)

r1 and r2 may be
A, B, CCR, D, X, Y, or SP

INH B7 eb P P – – – – – – – –

FDIV (D) ÷ (X) ⇒ X; Remainder ⇒ D
16 by 16 Bit Fractional Divide

INH 18 11 OffffffffffO OffffffffffO – – – – – ∆ ∆ ∆

IBEQ abdxys, rel9 (cntr) + 1⇒ cntr
If (cntr) = 0, then Branch
else Continue to next instruction

Increment Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

IBNE abdxys, rel9 (cntr) + 1⇒ cntr
if (cntr) not = 0, then Branch;
else Continue to next instruction

Increment Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

IDIV (D) ÷ (X) ⇒ X; Remainder ⇒ D
16 by 16 Bit Integer Divide (unsigned)

INH 18 10 OffffffffffO OffffffffffO – – – – – ∆ 0 ∆

IDIVS (D) ÷ (X) ⇒ X; Remainder ⇒ D
16 by 16 Bit Integer Divide (signed)

INH 18 15 OffffffffffO OffffffffffO – – – – ∆ ∆ ∆ ∆

INC opr16a
INC oprx0_xysp
INC oprx9,xysp
INC oprx16,xysp
INC [D,xysp]
INC [oprx16,xysp]
INCA
INCB

(M) + $01 ⇒ M
Increment Memory Byte

(A) + $01 ⇒ A Increment Acc. A
(B) + $01 ⇒ B Increment Acc. B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff
42
52

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ –

INS (SP) + $0001 ⇒ SP
Translates to LEAS 1,SP

IDX 1B 81 Pf PP1 – – – – – – – –

INX (X) + $0001 ⇒ X
Increment Index Register X

INH 08 O O – – – – – ∆ – –

INY (Y) + $0001 ⇒ Y
Increment Index Register Y

INH 02 O O – – – – – ∆ – –

JMP opr16a
JMP oprx0_xysp
JMP oprx9,xysp
JMP oprx16,xysp
JMP [D,xysp]
JMP [oprx16,xysp]

Routine address ⇒ PC

Jump

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

PPP
PPP
PPP
fPPP
fIfPPP
fIfPPP

PPP
PPP
PPP

fPPP
fIfPPP
fIfPPP

– – – – – – – –

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 6 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

392 Instruction Reference MOTOROLA

Instruction Reference
JSR opr8a
JSR opr16a
JSR oprx0_xysp
JSR oprx9,xysp
JSR oprx16,xysp
JSR [D,xysp]
JSR [oprx16,xysp]

(SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
Subroutine address ⇒ PC

Jump to Subroutine

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

SPPP
SPPP
PPPS
PPPS
fPPPS
fIfPPPS
fIfPPPS

PPPS
PPPS
PPPS
PPPS

fPPPS
fIfPPPS
fIfPPPS

– – – – – – – –

LBCC rel16 Long Branch if Carry Clear (if C = 0) REL 18 24 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBCS rel16 Long Branch if Carry Set (if C = 1) REL 18 25 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBEQ rel16 Long Branch if Equal (if Z = 1) REL 18 27 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBGE rel16 Long Branch Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 18 2C qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBGT rel16 Long Branch if Greater Than
(if Z + (N ⊕ V) = 0) (signed)

REL 18 2E qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBHI rel16 Long Branch if Higher
(if C + Z = 0) (unsigned)

REL 18 22 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBHS rel16 Long Branch if Higher or Same
(if C = 0) (unsigned)
same function as LBCC

REL 18 24 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLE rel16 Long Branch if Less Than or Equal
(if Z + (N ⊕ V) = 1) (signed)

REL 18 2F qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLO rel16 Long Branch if Lower
(if C = 1) (unsigned)
same function as LBCS

REL 18 25 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLS rel16 Long Branch if Lower or Same
(if C + Z = 1) (unsigned)

REL 18 23 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBLT rel16 Long Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 18 2D qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBMI rel16 Long Branch if Minus (if N = 1) REL 18 2B qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBNE rel16 Long Branch if Not Equal (if Z = 0) REL 18 26 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBPL rel16 Long Branch if Plus (if N = 0) REL 18 2A qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBRA rel16 Long Branch Always (if 1=1) REL 18 20 qq rr OPPP OPPP – – – – – – – –

LBRN rel16 Long Branch Never (if 1 = 0) REL 18 21 qq rr OPO OPO – – – – – – – –

LBVC rel16 Long Branch if Overflow Bit Clear (if V=0) REL 18 28 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LBVS rel16 Long Branch if Overflow Bit Set (if V = 1) REL 18 29 qq rr OPPP/OPO1 OPPP/OPO1 – – – – – – – –

LDAA #opr8i
LDAA opr8a
LDAA opr16a
LDAA oprx0_xysp
LDAA oprx9,xysp
LDAA oprx16,xysp
LDAA [D,xysp]
LDAA [oprx16,xysp]

(M) ⇒ A
Load Accumulator A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

LDAB #opr8i
LDAB opr8a
LDAB opr16a
LDAB oprx0_xysp
LDAB oprx9,xysp
LDAB oprx16,xysp
LDAB [D,xysp]
LDAB [oprx16,xysp]

(M) ⇒ B
Load Accumulator B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

LDD #opr16i
LDD opr8a
LDD opr16a
LDD oprx0_xysp
LDD oprx9,xysp
LDD oprx16,xysp
LDD [D,xysp]
LDD [oprx16,xysp]

(M:M+1) ⇒ A:B
Load Double Accumulator D (A:B)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 7 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 393

Instruction Reference
LDS #opr16i
LDS opr8a
LDS opr16a
LDS oprx0_xysp
LDS oprx9,xysp
LDS oprx16,xysp
LDS [D,xysp]
LDS [oprx16,xysp]

(M:M+1) ⇒ SP
Load Stack Pointer

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

LDX #opr16i
LDX opr8a
LDX opr16a
LDX oprx0_xysp
LDX oprx9,xysp
LDX oprx16,xysp
LDX [D,xysp]
LDX [oprx16,xysp]

(M:M+1) ⇒ X
Load Index Register X

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

LDY #opr16i
LDY opr8a
LDY opr16a
LDY oprx0_xysp
LDY oprx9,xysp
LDY oprx16,xysp
LDY [D,xysp]
LDY [oprx16,xysp]

(M:M+1) ⇒ Y
Load Index Register Y

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ 0 –

LEAS oprx0_xysp
LEAS oprx9,xysp
LEAS oprx16,xysp

Effective Address ⇒ SP
Load Effective Address into SP

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

Pf
PO
PP

PP1

PO
PP

– – – – – – – –

LEAX oprx0_xysp
LEAX oprx9,xysp
LEAX oprx16,xysp

Effective Address ⇒ X
Load Effective Address into X

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

Pf
PO
PP

PP1

PO
PP

– – – – – – – –

LEAY oprx0_xysp
LEAY oprx9,xysp
LEAY oprx16,xysp

Effective Address ⇒ Y
Load Effective Address into Y

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

Pf
PO
PP

PP1

PO
PP

– – – – – – – –

LSL opr16a
LSL oprx0_xysp
LSL oprx9,xysp
LSL oprx16,xysp
LSL [D,xysp]
LSL [oprx16,xysp]
LSLA
LSLB

Logical Shift Left
same function as ASL

Logical Shift Accumulator A to Left
Logical Shift Accumulator B to Left

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

rPwO
rPw
rPwO
frPPw
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

LSLD

Logical Shift Left D Accumulator
same function as ASLD

INH 59 O O – – – – ∆ ∆ ∆ ∆

LSR opr16a
LSR oprx0_xysp
LSR oprx9,xysp
LSR oprx16,xysp
LSR [D,xysp]
LSR [oprx16,xysp]
LSRA
LSRB

Logical Shift Right

Logical Shift Accumulator A to Right
Logical Shift Accumulator B to Right

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff
44
54

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – 0 ∆ ∆ ∆

LSRD

Logical Shift Right D Accumulator

INH 49 O O – – – – 0 ∆ ∆ ∆

MAXA oprx0_xysp
MAXA oprx9,xysp
MAXA oprx16,xysp
MAXA [D,xysp]
MAXA [oprx16,xysp]

MAX((A), (M)) ⇒ A
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP

– – – – ∆ ∆ ∆ ∆

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 8 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0
Reference Manual S12CPUV2

394 Instruction Reference MOTOROLA

Instruction Reference
MAXM oprx0_xysp
MAXM oprx9,xysp
MAXM oprx16,xysp
MAXM [D,xysp]
MAXM [oprx16,xysp]

MAX((A), (M)) ⇒ M
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw

– – – – ∆ ∆ ∆ ∆

MEM µ (grade) ⇒ M(Y);
(X) + 4 ⇒ X; (Y) + 1 ⇒ Y; A unchanged

if (A) < P1 or (A) > P2 then µ = 0, else
µ = MIN[((A) – P1)×S1, (P2 – (A))×S2, $FF]
where:
A = current crisp input value;
X points at 4-byte data structure that describes a trapezoidal
membership function (P1, P2, S1, S2);
Y points at fuzzy input (RAM location).
See CPU12 Reference Manual for special cases.

Special 01 RRfOw RRfOw – – ? – ? ? ? ?

MINA oprx0_xysp
MINA oprx9,xysp
MINA oprx16,xysp
MINA [D,xysp]
MINA [oprx16,xysp]

MIN((A), (M)) ⇒ A
MIN of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

OrPf
OrPO
OfrPP
OfIfrPf
OfIPrPf

OrfP
OrPO

OfrPP
OfIfrfP
OfIPrfP

– – – – ∆ ∆ ∆ ∆

MINM oprx0_xysp
MINM oprx9,xysp
MINM oprx16,xysp
MINM [D,xysp]
MINM [oprx16,xysp]

MIN((A), (M)) ⇒ M
MIN of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

OrPw
OrPwO
OfrPwP
OfIfrPw
OfIPrPw

OrPw
OrPwO

OfrPwP
OfIfrPw
OfIPrPw

– – – – ∆ ∆ ∆ ∆

MOVB #opr8, opr16a1

MOVB #opr8i, oprx0_xysp1

MOVB opr16a, opr16a1

MOVB opr16a, oprx0_xysp1

MOVB oprx0_xysp, opr16a1

MOVB oprx0_xysp, oprx0_xysp1

(M1) ⇒ M2
Memory to Memory Byte-Move (8-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

OPwP
OPwO
OrPwPO
OPrPw
OrPwP
OrPwO

OPwP
OPwO

OrPwPO
OPrPw
OrPwP
OrPwO

– – – – – – – –

MOVW #oprx16, opr16a1

MOVW #opr16i, oprx0_xysp1

MOVW opr16a, opr16a1

MOVW opr16a, oprx0_xysp1

MOVW oprx0_xysp, opr16a1

MOVW oprx0_xysp, oprx0_xysp1

(M:M+11) ⇒ M:M+12
Memory to Memory Word-Move (16-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

OPWPO
OPPW
ORPWPO
OPRPW
ORPWP
ORPWO

OPWPO
OPPW

ORPWPO
OPRPW
ORPWP
ORPWO

– – – – – – – –

MUL (A) × (B) ⇒ A:B
8 by 8 Unsigned Multiply

INH 12 O ffO – – – – – – – ∆

NEG opr16a
NEG oprx0_xysp
NEG oprx9,xysp
NEG oprx16,xysp
NEG [D,xysp]
NEG [oprx16,xysp]
NEGA

NEGB

0 – (M) ⇒ M equivalent to (M) + 1 ⇒ M
Two’s Complement Negate

0 – (A) ⇒ A equivalent to (A) + 1 ⇒ A
Negate Accumulator A
0 – (B) ⇒ B equivalent to (B) + 1 ⇒ B
Negate Accumulator B

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH

INH

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff
40

50

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O

O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O

O

– – – – ∆ ∆ ∆ ∆

NOP No Operation INH A7 O O – – – – – – – –

ORAA #opr8i
ORAA opr8a
ORAA opr16a
ORAA oprx0_xysp
ORAA oprx9,xysp
ORAA oprx16,xysp
ORAA [D,xysp]
ORAA [oprx16,xysp]

(A) + (M) ⇒ A
Logical OR A with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

Note 1. The first operand in the source code statement specifies the source for the move.

Table A-1. Instruction Set Summary (Sheet 9 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 395

Instruction Reference
ORAB #opr8i
ORAB opr8a
ORAB opr16a
ORAB oprx0_xysp
ORAB oprx9,xysp
ORAB oprx16,xysp
ORAB [D,xysp]
ORAB [oprx16,xysp]

(B) + (M) ⇒ B
Logical OR B with Memory

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ 0 –

ORCC #opr8i (CCR) + M ⇒ CCR
Logical OR CCR with Memory

IMM 14 ii P P ⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

PSHA (SP) – 1 ⇒ SP; (A) ⇒ M(SP)
Push Accumulator A onto Stack

INH 36 Os Os – – – – – – – –

PSHB (SP) – 1 ⇒ SP; (B) ⇒ M(SP)
Push Accumulator B onto Stack

INH 37 Os Os – – – – – – – –

PSHC (SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
Push CCR onto Stack

INH 39 Os Os – – – – – – – –

PSHD (SP) – 2 ⇒ SP; (A:B) ⇒ M(SP):M(SP+1)
Push D Accumulator onto Stack

INH 3B OS OS – – – – – – – –

PSHX (SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1)
Push Index Register X onto Stack

INH 34 OS OS – – – – – – – –

PSHY (SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1)
Push Index Register Y onto Stack

INH 35 OS OS – – – – – – – –

PULA (M(SP)) ⇒ A; (SP) + 1 ⇒ SP
Pull Accumulator A from Stack

INH 32 ufO ufO – – – – – – – –

PULB (M(SP)) ⇒ B; (SP) + 1 ⇒ SP
Pull Accumulator B from Stack

INH 33 ufO ufO – – – – – – – –

PULC (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP
Pull CCR from Stack

INH 38 ufO ufO ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

PULD (M(SP):M(SP+1)) ⇒ A:B; (SP) + 2 ⇒ SP
Pull D from Stack

INH 3A UfO UfO – – – – – – – –

PULX (M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 2 ⇒ SP
Pull Index Register X from Stack

INH 30 UfO UfO – – – – – – – –

PULY (M(SP):M(SP+1)) ⇒ YH:YL; (SP) + 2 ⇒ SP
Pull Index Register Y from Stack

INH 31 UfO UfO – – – – – – – –

REV MIN-MAX rule evaluation
Find smallest rule input (MIN).
Store to rule outputs unless fuzzy output is already larger
(MAX).

For rule weights see REVW.

Each rule input is an 8-bit offset from the base address in Y.
Each rule output is an 8-bit offset from the base address in Y.
$FE separates rule inputs from rule outputs. $FF terminates
the rule list.

REV may be interrupted.

Special 18 3A Orf(t,tx)O Orf(t,tx)O – – ? – ? ? ∆ ?

(exit + re-entry replaces comma
above if interrupted)

ff + Orf(t, ff + Orf(t,

REVW MIN-MAX rule evaluation
Find smallest rule input (MIN),
Store to rule outputs unless fuzzy output is already larger
(MAX).

Rule weights supported, optional.

Each rule input is the 16-bit address of a fuzzy input. Each rule
output is the 16-bit address of a fuzzy output. The value
$FFFE separates rule inputs from rule outputs. $FFFF termi-
nates the rule list.

REVW may be interrupted.

Special 18 3B ORf(t,Tx)O ORf(t,Tx)O – – ? – ? ? ∆ !

(loop to read weight if enabled)

(r,RfRf) (r,RfRf)

(exit + re-entry replaces comma
above if interrupted)

ffff + ORf(t, fff + ORf(t,

Table A-1. Instruction Set Summary (Sheet 10 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

396 Instruction Reference MOTOROLA

Instruction Reference
ROL opr16a
ROL oprx0_xysp
ROL oprx9,xysp
ROL oprx16,xysp
ROL [D,xysp]
ROL [oprx16,xysp]
ROLA
ROLB

Rotate Memory Left through Carry

Rotate A Left through Carry
Rotate B Left through Carry

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff
45
55

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

ROR opr16a
ROR oprx0_xysp
ROR oprx9,xysp
ROR oprx16,xysp
ROR [D,xysp]
ROR [oprx16,xysp]
RORA
RORB

Rotate Memory Right through Carry

Rotate A Right through Carry
Rotate B Right through Carry

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff
46
56

rPwO
rPw
rPwO
frPwP
fIfrPw
fIPrPw
O
O

rOPw
rPw

rPOw
frPPw

fIfrPw
fIPrPw

O
O

– – – – ∆ ∆ ∆ ∆

RTC (M(SP)) ⇒ PPAGE; (SP) + 1 ⇒ SP;
(M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP
Return from Call

INH 0A uUnfPPP uUnPPP – – – – – – – –

RTI (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP
(M(SP):M(SP+1)) ⇒ B:A; (SP) + 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 4 ⇒ SP
(M(SP):M(SP+1)) ⇒ PCH:PCL; (SP) – 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ YH:YL; (SP) + 4 ⇒ SP
Return from Interrupt

INH 0B uUUUUPPP uUUUUPPP∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆
(with interrupt pending)

uUUUUVfPPP uUUUUfVfPPP

RTS (M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP
Return from Subroutine

INH 3D UfPPP UfPPP – – – – – – – –

SBA (A) – (B) ⇒ A
Subtract B from A

INH 18 16 OO OO – – – – ∆ ∆ ∆ ∆

SBCA #opr8i
SBCA opr8a
SBCA opr16a
SBCA oprx0_xysp
SBCA oprx9,xysp
SBCA oprx16,xysp
SBCA [D,xysp]
SBCA [oprx16,xysp]

(A) – (M) – C ⇒ A
Subtract with Borrow from A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

SBCB #opr8i
SBCB opr8a
SBCB opr16a
SBCB oprx0_xysp
SBCB oprx9,xysp
SBCB oprx16,xysp
SBCB [D,xysp]
SBCB [oprx16,xysp]

(B) – (M) – C ⇒ B
Subtract with Borrow from B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

SEC 1 ⇒ C
Translates to ORCC #$01

IMM 14 01 P P – – – – – – – 1

SEI 1 ⇒ I; (inhibit I interrupts)
Translates to ORCC #$10

IMM 14 10 P P – – – 1 – – – –

SEV 1 ⇒ V
Translates to ORCC #$02

IMM 14 02 P P – – – – – – 1 –

SEX abc,dxys $00:(r1) ⇒ r2 if r1, bit 7 is 0 or
$FF:(r1) ⇒ r2 if r1, bit 7 is 1

Sign Extend 8-bit r1 to 16-bit r2
r1 may be A, B, or CCR
r2 may be D, X, Y, or SP

Alternate mnemonic for TFR r1, r2

INH B7 eb P P – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 11 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

C b7 b0

Cb7 b0
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 397

Instruction Reference
STAA opr8a
STAA opr16a
STAA oprx0_xysp
STAA oprx9,xysp
STAA oprx16,xysp
STAA [D,xysp]
STAA [oprx16,xysp]

(A) ⇒ M
Store Accumulator A to Memory

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw

– – – – ∆ ∆ 0 –

STAB opr8a
STAB opr16a
STAB oprx0_xysp
STAB oprx9,xysp
STAB oprx16,xysp
STAB [D,xysp]
STAB [oprx16,xysp]

(B) ⇒ M
Store Accumulator B to Memory

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

Pw
PwO
Pw
PwO
PwP
PIfw
PIPw

Pw
wOP

Pw
PwO
PwP

PIfPw
PIPPw

– – – – ∆ ∆ 0 –

STD opr8a
STD opr16a
STD oprx0_xysp
STD oprx9,xysp
STD oprx16,xysp
STD [D,xysp]
STD [oprx16,xysp]

(A) ⇒ M, (B) ⇒ M+1
Store Double Accumulator

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

STOP (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);
STOP All Clocks

Registers stacked to allow quicker recovery by interrupt.

If S control bit = 1, the STOP instruction is disabled and acts
like a two-cycle NOP.

INH 18 3E (entering STOP) – – – – – – – –

OOSSSSsf OOSSSfSs

(exiting STOP)

fVfPPP fVfPPP

(continue)

ff fO

(if STOP disabled)

OO OO

STS opr8a
STS opr16a
STS oprx0_xysp
STS oprx9,xysp
STS oprx16,xysp
STS [D,xysp]
STS [oprx16,xysp]

(SPH:SPL) ⇒ M:M+1
Store Stack Pointer

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

STX opr8a
STX opr16a
STX oprx0_xysp
STX oprx9,xysp
STX oprx16,xysp
STX [D,xysp]
STX [oprx16,xysp]

(XH:XL) ⇒ M:M+1
Store Index Register X

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

STY opr8a
STY opr16a
STY oprx0_xysp
STY oprx9,xysp
STY oprx16,xysp
STY [D,xysp]
STY [oprx16,xysp]

(YH:YL) ⇒ M:M+1
Store Index Register Y

DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

PW
PWO
PW
PWO
PWP
PIfW
PIPW

PW
WOP

PW
PWO
PWP

PIfPW
PIPPW

– – – – ∆ ∆ 0 –

SUBA #opr8i
SUBA opr8a
SUBA opr16a
SUBA oprx0_xysp
SUBA oprx9,xysp
SUBA oprx16,xysp
SUBA [D,xysp]
SUBA [oprx16,xysp]

(A) – (M) ⇒ A
Subtract Memory from Accumulator A

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

Table A-1. Instruction Set Summary (Sheet 12 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
Reference Manual S12CPUV2

398 Instruction Reference MOTOROLA

Instruction Reference
SUBB #opr8i
SUBB opr8a
SUBB opr16a
SUBB oprx0_xysp
SUBB oprx9,xysp
SUBB oprx16,xysp
SUBB [D,xysp]
SUBB [oprx16,xysp]

(B) – (M) ⇒ B
Subtract Memory from Accumulator B

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

P
rPf
rPO
rPf
rPO
frPP
fIfrPf
fIPrPf

P
rfP
rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

– – – – ∆ ∆ ∆ ∆

SUBD #opr16i
SUBD opr8a
SUBD opr16a
SUBD oprx0_xysp
SUBD oprx9,xysp
SUBD oprx16,xysp
SUBD [D,xysp]
SUBD [oprx16,xysp]

(D) – (M:M+1) ⇒ D
Subtract Memory from D (A:B)

IMM
DIR
EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

PO
RPf
RPO
RPf
RPO
fRPP
fIfRPf
fIPRPf

OP
RfP
ROP
RfP
RPO

fRPP
fIfRfP
fIPRfP

– – – – ∆ ∆ ∆ ∆

SWI (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (SWI Vector) ⇒ PC
Software Interrupt

INH 3F VSPSSPSsP* VSPSSPSsP* – – – 1 – – – –

(for Reset)

1 1 – 1 – – – –VfPPP VfPPP

*The CPU also uses the SWI microcode sequence for hardware interrupts and unimplemented opcode traps. Reset uses the VfPPP variation of this sequence.

TAB (A) ⇒ B
Transfer A to B

INH 18 0E OO OO – – – – ∆ ∆ 0 –

TAP (A) ⇒ CCR
Translates to TFR A , CCR

INH B7 02 P P ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

TBA (B) ⇒ A
Transfer B to A

INH 18 0F OO OO – – – – ∆ ∆ 0 –

TBEQ abdxys,rel9 If (cntr) = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

TBL oprx0_xysp (M) + [(B) × ((M+1) – (M))] ⇒ A
8-Bit Table Lookup and Interpolate

Initialize B, and index before TBL.
<ea> points at first 8-bit table entry (M) and B is fractional part
of lookup value.

(no indirect addressing modes or extensions allowed)

IDX 18 3D xb ORfffP OrrffffP – – – – ∆ ∆ – ∆
?

C Bit is undefined
in HC12

TBNE abdxys,rel9 If (cntr) not = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Not Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr PPP (branch)
PPO (no
branch)

PPP – – – – – – – –

TFR abcdxys,abcdxys (r1) ⇒ r2 or
$00:(r1) ⇒ r2 or
(r1[7:0]) ⇒ r2

Transfer Register to Register
r1 and r2 may be A, B, CCR, D, X, Y, or SP

INH B7 eb P P – – – – – – – –

or

∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

TPA (CCR) ⇒ A
Translates to TFR CCR ,A

INH B7 20 P P – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 13 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 399

Instruction Reference
TRAP trapnum (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (TRAP Vector) ⇒ PC

Unimplemented opcode trap

INH 18 tn
tn = $30–$39

or
$40–$FF

OVSPSSPSsP OfVSPSSPSsP– – – 1 – – – –

TST opr16a
TST oprx0_xysp
TST oprx9,xysp
TST oprx16,xysp
TST [D,xysp]
TST [oprx16,xysp]
TSTA
TSTB

(M) – 0
Test Memory for Zero or Minus

(A) – 0 Test A for Zero or Minus
(B) – 0 Test B for Zero or Minus

EXT
IDX

IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff
97
D7

rPO
rPf
rPO
frPP
fIfrPf
fIPrPf
O
O

rOP
rfP
rPO

frPP
fIfrfP
fIPrfP

O
O

– – – – ∆ ∆ 0 0

TSX (SP) ⇒ X
Translates to TFR SP,X

INH B7 75 P P – – – – – – – –

TSY (SP) ⇒ Y
Translates to TFR SP,Y

INH B7 76 P P – – – – – – – –

TXS (X) ⇒ SP
Translates to TFR X,SP

INH B7 57 P P – – – – – – – –

TYS (Y) ⇒ SP
Translates to TFR Y,SP

INH B7 67 P P – – – – – – – –

WAI (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);
WAIT for interrupt

INH 3E OSSSSsf OSSSfSsf – – – – – – – –

(after interrupt) or

fVfPPP VfPPP – – – 1 – – – –

or

– 1 – 1 – – – –

WAV

Calculate Sum of Products and Sum of Weights for Weighted
Average Calculation

Initialize B, X, and Y before WAV. B specifies number of ele-
ments. X points at first element in Si list. Y points at first ele-
ment in Fi list.

All Si and Fi elements are 8-bits.

If interrupted, six extra bytes of stack used for
intermediate values

Special 18 3C Of(frr,ffff)O
Off(frr,fffff)O

– – ? – ? ∆ ? ?

(add if interrupt)

SSS + UUUrr, SSSf + UUUrr

wavr

pseudo-
instruction

see WAV

Resume executing an interrupted WAV instruction (recover in-
termediate results from stack rather than initializing them to
zero)

Special 3C UUUrr,ffff
(frr,ffff)O

UUUrrfffff
(frr,fffff)O

– – ? – ? ∆ ? ?

(exit + re-entry replaces comma
above if interrupted)

SSS + UUUrr, SSSf + UUUrr

XGDX (D) ⇔ (X)
Translates to EXG D, X

INH B7 C5 P P – – – – – – – –

XGDY (D) ⇔ (Y)
Translates to EXG D, Y

INH B7 C6 P P – – – – – – – –

Table A-1. Instruction Set Summary (Sheet 14 of 14)

Source Form Operation Addr.
Mode

Machine
Coding (hex)

Access Detail
S X H I N Z V C

HCS12 M68HC12

Fi
i 1=

B

∑ X⇒SiFi
i 1=

B

∑ Y:D⇒ and
Reference Manual S12CPUV2

400 Instruction Reference MOTOROLA

S
12C

P

M
O

T
O

R
O

LA
Instruction R

eference
 401

Instruction R
eference

Table A-2. CPU12 Opcode Map (Sheet 1 of 2)
1

BB
2

D0 3
SUBB

DI 2

E0 3-6
SUBB

ID 2-4

F0 3
SUBB

EX 3
1

PB
2

D1 3
CMPB

DI 2

E1 3-6
CMPB

ID 2-4

F1 3
CMPB

EX 3
1

CB
2

D2 3
SBCB

DI 2

E2 3-6
SBCB

ID 2-4

F2 3
SBCB

EX 3
2

DD
3

D3 3
ADDD

DI 2

E3 3-6
ADDD

ID 2-4

F3 3
ADDD

EX 3
1

DB
2

D4 3
ANDB

DI 2

E4 3-6
ANDB

ID 2-4

F4 3
ANDB

EX 3
1

B
2

D5 3
BITB

DI 2

E5 3-6
BITB

ID 2-4

F5 3
BITB

EX 3
1

AB
2

D6 3
LDAB

DI 2

E6 3-6
LDAB

ID 2-4

F6 3
LDAB

EX 3
1

RB
1

D7 1
TSTB

IH 1

E7 3-6
TST

ID 2-4

F7 3
TST

EX 3
1

RB
2

D8 3
EORB

DI 2

E8 3-6
EORB

ID 2-4

F8 3
EORB

EX 3
1

CB
2

D9 3
ADCB

DI 2

E9 3-6
ADCB

ID 2-4

F9 3
ADCB

EX 3
1

AB
2

DA 3
ORAB

DI 2

EA 3-6
ORAB

ID 2-4

FA 3
ORAB

EX 3
1

DB
2

DB 3
ADDB

DI 2

EB 3-6
ADDB

ID 2-4

FB 3
ADDB

EX 3
2

D
3

DC 3
LDD

DI 2

EC 3-6
LDD

ID 2-4

FC 3
LDD

EX 3
2

Y
3

DD 3
LDY

DI 2

ED 3-6
LDY

ID 2-4

FD 3
LDY

EX 3
2

X
3

DE 3
LDX

DI 2

EE 3-6
LDX

ID 2-4

FE 3
LDX

EX 3
2

S
3

DF 3
LDS

DI 2

EF 3-6
LDS

ID 2-4

FF 3
LDS

EX 3

 different)
U
V

2
R

eference M
anual

00 †5
BGND

IH 1

10 1
ANDCC
IM 2

20 3
BRA

RL 2

30 3
PULX

IH 1

40 1
NEGA

IH 1

50 1
NEGB

IH 1

60 3-6
NEG

ID 2-4

70 4
NEG

EX 3

80 1
SUBA

IM 2

90 3
SUBA

DI 2

A0 3-6
SUBA

ID 2-4

B0 3
SUBA

EX 3

C0
SU

IM
01 5

MEM
IH 1

11 11
EDIV

IH 1

21 1
BRN

RL 2

31 3
PULY

IH 1

41 1
COMA

IH 1

51 1
COMB

IH 1

61 3-6
COM

ID 2-4

71 4
COM

EX 3

81 1
CMPA

IM 2

91 3
CMPA

DI 2

A1 3-6
CMPA

ID 2-4

B1 3
CMPA

EX 3

C1
CM

IM
02 1

INY
IH 1

12 ‡1
MUL

IH 1

22 3/1
BHI

RL 2

32 3
PULA

IH 1

42 1
INCA

IH 1

52 1
INCB

IH 1

62 3-6
INC

ID 2-4

72 4
INC

EX 3

82 1
SBCA

IM 2

92 3
SBCA

DI 2

A2 3-6
SBCA

ID 2-4

B2 3
SBCA

EX 3

C2
SB

IM
03 1

DEY
IH 1

13 3
EMUL

IH 1

23 3/1
BLS

RL 2

33 3
PULB

IH 1

43 1
DECA

IH 1

53 1
DECB

IH 1

63 3-6
DEC

ID 2-4

73 4
DEC

EX 3

83 2
SUBD

IM 3

93 3
SUBD

DI 2

A3 3-6
SUBD

ID 2-4

B3 3
SUBD

EX 3

C3
AD

IM
04 3

loop*

RL 3

14 1
ORCC

IM 2

24 3/1
BCC

RL 2

34 2
PSHX

IH 1

44 1
LSRA

IH 1

54 1
LSRB

IH 1

64 3-6
LSR

ID 2-4

74 4
LSR

EX 3

84 1
ANDA

IM 2

94 3
ANDA

DI 2

A4 3-6
ANDA

ID 2-4

B4 3
ANDA

EX 3

C4
AN

IM
05 3-6

JMP
ID 2-4

15 4-7
JSR

ID 2-4

25 3/1
BCS

RL 2

35 2
PSHY

IH 1

45 1
ROLA

IH 1

55 1
ROLB

IH 1

65 3-6
ROL

ID 2-4

75 4
ROL

EX 3

85 1
BITA

IM 2

95 3
BITA

DI 2

A5 3-6
BITA

ID 2-4

B5 3
BITA

EX 3

C5
BIT

IM
06 3

JMP
EX 3

16 4
JSR

EX 3

26 3/1
BNE

RL 2

36 2
PSHA

IH 1

46 1
RORA

IH 1

56 1
RORB

IH 1

66 3-6
ROR

ID 2-4

76 4
ROR

EX 3

86 1
LDAA

IM 2

96 3
LDAA

DI 2

A6 3-6
LDAA

ID 2-4

B6 3
LDAA

EX 3

C6
LD

IM
07 4

BSR
RL 2

17 4
JSR

DI 2

27 3/1
BEQ

RL 2

37 2
PSHB

IH 1

47 1
ASRA

IH 1

57 1
ASRB

IH 1

67 3-6
ASR

ID 2-4

77 4
ASR

EX 3

87 1
CLRA

IH 1

97 1
TSTA

IH 1

A7 1
NOP

IH 1

B7 1
TFR/EXG
IH 2

C7
CL

IH
08 1

INX
IH 1

18 -
Page 2

- -

28 3/1
BVC

RL 2

38 3
PULC

IH 1

48 1
ASLA

IH 1

58 1
ASLB

IH 1

68 3-6
ASL

ID 2-4

78 4
ASL

EX 3

88 1
EORA

IM 2

98 3
EORA

DI 2

A8 3-6
EORA

ID 2-4

B8 3
EORA

EX 3

C8
EO

IM
09 1

DEX
IH 1

19 2
LEAY

ID 2-4

29 3/1
BVS

RL 2

39 2
PSHC

IH 1

49 1
LSRD

IH 1

59 1
ASLD

IH 1

69 ‡2-4
CLR

ID 2-4

79 3
CLR

EX 3

89 1
ADCA

IM 2

99 3
ADCA

DI 2

A9 3-6
ADCA

ID 2-4

B9 3
ADCA

EX 3

C9
AD

IM
0A ‡7

RTC
IH 1

1A 2
LEAX

ID 2-4

2A 3/1
BPL

RL 2

3A 3
PULD

IH 1

4A ‡7
CALL

EX 4

5A 2
STAA

DI 2

6A ‡2-4
STAA

ID 2-4

7A 3
STAA

EX 3

8A 1
ORAA

IM 2

9A 3
ORAA

DI 2

AA 3-6
ORAA

ID 2-4

BA 3
ORAA

EX 3

CA
OR

IM
0B †8

RTI
IH 1

1B 2
LEAS

ID 2-4

2B 3/1
BMI

RL 2

3B 2
PSHD

IH 1

4B ‡7-10
CALL

ID 2-5

5B 2
STAB

DI 2

6B ‡2-4
STAB

ID 2-4

7B 3
STAB

EX 3

8B 1
ADDA

IM 2

9B 3
ADDA

DI 2

AB 3-6
ADDA

ID 2-4

BB 3
ADDA

EX 3

CB
AD

IM
0C 4-6

BSET
ID 3-5

1C 4
BSET

EX 4

2C 3/1
BGE

RL 2

3C ‡+5
wavr

SP 1

4C 4
BSET

DI 3

5C 2
STD

DI 2

6C ‡2-4
STD

ID 2-4

7C 3
STD

EX 3

8C 2
CPD

IM 3

9C 3
CPD

DI 2

AC 3-6
CPD

ID 2-4

BC 3
CPD

EX 3

CC
LD

IM
0D 4-6

BCLR
ID 3-5

1D 4
BCLR

EX 4

2D 3/1
BLT

RL 2

3D 5
RTS

IH 1

4D 4
BCLR

DI 3

5D 2
STY

DI 2

6D ‡2-4
STY

ID 2-4

7D 3
STY

EX 3

8D 2
CPY

IM 3

9D 3
CPY

DI 2

AD 3-6
CPY

ID 2-4

BD 3
CPY

EX 3

CD
LD

IM
0E ‡4-6
BRSET

ID 4-6

1E 5
BRSET

EX 5

2E 3/1
BGT

RL 2

3E ‡†7
WAI

IH 1

4E 4
BRSET

DI 4

5E 2
STX

DI 2

6E ‡2-4
STX

ID 2-4

7E 3
STX

EX 3

8E 2
CPX

IM 3

9E 3
CPX

DI 2

AE 3-6
CPX

ID 2-4

BE 3
CPX

EX 3

CE
LD

IM
0F ‡4-6
BRCLR

ID 4-6

1F 5
BRCLR

EX 5

2F 3/1
BLE

RL 2

3F 9
SWI

IH 1

4F 4
BRCLR

DI 4

5F 2
STS

DI 2

6F ‡2-4
STS

ID 2-4

7F 3
STS

EX 3

8F 2
CPS

IM 3

9F 3
CPS

DI 2

AF 3-6
CPS

ID 2-4

BF 3
CPS

EX 3

CF
LD

IM

00 5
BGND

IH I

Number of HCS12 cycles (‡ indicates HC12
Key to Table A-2

Number of bytes

Opcode
Mnemonic

Address Mode

R
efere

402
Instruction R

eference
M

O
T

O
R

O
LA

Instruction R
eference

Q, or TBNE.

e as a page 2 instruction opcode.

00 4 10 12 20 4 30 10 40 10 50 10 60 10 70 10 80 10 90 10 A0 10 B0 10 C0 10
AP

2

D0 10
TRAP

IH 2

E0 10
TRAP

IH 2

F0 10
TRAP

IH 2
10

AP
2

D1 10
TRAP

IH 2

E1 10
TRAP

IH 2

F1 10
TRAP

IH 2
10

AP
2

D2 10
TRAP

IH 2

E2 10
TRAP

IH 2

F2 10
TRAP

IH 2
10

AP
2

D3 10
TRAP

IH 2

E3 10
TRAP

IH 2

F3 10
TRAP

IH 2
10

AP
2

D4 10
TRAP

IH 2

E4 10
TRAP

IH 2

F4 10
TRAP

IH 2
10

AP
2

D5 10
TRAP

IH 2

E5 10
TRAP

IH 2

F5 10
TRAP

IH 2
10

AP
2

D6 10
TRAP

IH 2

E6 10
TRAP

IH 2

F6 10
TRAP

IH 2
10

AP
2

D7 10
TRAP

IH 2

E7 10
TRAP

IH 2

F7 10
TRAP

IH 2
10

AP
2

D8 10
TRAP

IH 2

E8 10
TRAP

IH 2

F8 10
TRAP

IH 2
10

AP
2

D9 10
TRAP

IH 2

E9 10
TRAP

IH 2

F9 10
TRAP

IH 2
10

AP
2

DA 10
TRAP

IH 2

EA 10
TRAP

IH 2

FA 10
TRAP

IH 2
10

AP
2

DB 10
TRAP

IH 2

EB 10
TRAP

IH 2

FB 10
TRAP

IH 2
10

AP
2

DC 10
TRAP

IH 2

EC 10
TRAP

IH 2

FC 10
TRAP

IH 2
10

AP
2

DD 10
TRAP

IH 2

ED 10
TRAP

IH 2

FD 10
TRAP

IH 2
10

AP
2

DE 10
TRAP

IH 2

EE 10
TRAP

IH 2

FE 10
TRAP

IH 2
10

AP
2

DF 10
TRAP

IH 2

EF 10
TRAP

IH 2

FF 10
TRAP

IH 2

Table A-2. CPU12 Opcode Map (Sheet 2 of 2)
nce M
anual

S
12C

P
U

V
2

* The opcode $04 (on sheet 1 of 2) corresponds to one of the loop primitive instructions DBEQ, DBNE, IBEQ, IBNE, TBE
† Refer to instruction summary for more information.
‡ Refer to instruction summary for different HC12 cycle count.
Page 2: When the CPU encounters a page 2 opcode ($18 on page 1 of the opcode map), it treats the next byte of object cod

MOVW
IM-ID 5

IDIV
IH 2

LBRA
RL 4

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TRAP
IH 2

TR
IH

01 5
MOVW

EX-ID 5

11 12
FDIV

IH 2

21 3
LBRN

RL 4

31 10
TRAP

IH 2

41 10
TRAP

IH 2

51 10
TRAP

IH 2

61 10
TRAP

IH 2

71 10
TRAP

IH 2

81 10
TRAP

IH 2

91 10
TRAP

IH 2

A1 10
TRAP

IH 2

B1 10
TRAP

IH 2

C1
TR

IH
02 5
MOVW

ID-ID 4

12 13
EMACS
SP 4

22 4/3
LBHI

RL 4

32 10
TRAP

IH 2

42 10
TRAP

IH 2

52 10
TRAP

IH 2

62 10
TRAP

IH 2

72 10
TRAP

IH 2

82 10
TRAP

IH 2

92 10
TRAP

IH 2

A2 10
TRAP

IH 2

B2 10
TRAP

IH 2

C2
TR

IH
03 5
MOVW

IM-EX 6

13 3
EMULS
IH 2

23 4/3
LBLS

RL 4

33 10
TRAP

IH 2

43 10
TRAP

IH 2

53 10
TRAP

IH 2

63 10
TRAP

IH 2

73 10
TRAP

IH 2

83 10
TRAP

IH 2

93 10
TRAP

IH 2

A3 10
TRAP

IH 2

B3 10
TRAP

IH 2

C3
TR

IH
04 6
MOVW

EX-EX 6

14 12
EDIVS

IH 2

24 4/3
LBCC

RL 4

34 10
TRAP

IH 2

44 10
TRAP

IH 2

54 10
TRAP

IH 2

64 10
TRAP

IH 2

74 10
TRAP

IH 2

84 10
TRAP

IH 2

94 10
TRAP

IH 2

A4 10
TRAP

IH 2

B4 10
TRAP

IH 2

C4
TR

IH
05 5
MOVW

ID-EX 5

15 12
IDIVS

IH 2

25 4/3
LBCS

RL 4

35 10
TRAP

IH 2

45 10
TRAP

IH 2

55 10
TRAP

IH 2

65 10
TRAP

IH 2

75 10
TRAP

IH 2

85 10
TRAP

IH 2

95 10
TRAP

IH 2

A5 10
TRAP

IH 2

B5 10
TRAP

IH 2

C5
TR

IH
06 2

ABA
IH 2

16 2
SBA

IH 2

26 4/3
LBNE

RL 4

36 10
TRAP

IH 2

46 10
TRAP

IH 2

56 10
TRAP

IH 2

66 10
TRAP

IH 2

76 10
TRAP

IH 2

86 10
TRAP

IH 2

96 10
TRAP

IH 2

A6 10
TRAP

IH 2

B6 10
TRAP

IH 2

C6
TR

IH
07 3

DAA
IH 2

17 2
CBA

IH 2

27 4/3
LBEQ

RL 4

37 10
TRAP

IH 2

47 10
TRAP

IH 2

57 10
TRAP

IH 2

67 10
TRAP

IH 2

77 10
TRAP

IH 2

87 10
TRAP

IH 2

97 10
TRAP

IH 2

A7 10
TRAP

IH 2

B7 10
TRAP

IH 2

C7
TR

IH
08 4
MOVB

IM-ID 4

18 4-7
MAXA

ID 3-5

28 4/3
LBVC

RL 4

38 10
TRAP

IH 2

48 10
TRAP

IH 2

58 10
TRAP

IH 2

68 10
TRAP

IH 2

78 10
TRAP

IH 2

88 10
TRAP

IH 2

98 10
TRAP

IH 2

A8 10
TRAP

IH 2

B8 10
TRAP

IH 2

C8
TR

IH
09 5
MOVB

EX-ID 5

19 4-7
MINA

ID 3-5

29 4/3
LBVS

RL 4

39 10
TRAP

IH 2

49 10
TRAP

IH 2

59 10
TRAP

IH 2

69 10
TRAP

IH 2

79 10
TRAP

IH 2

89 10
TRAP

IH 2

99 10
TRAP

IH 2

A9 10
TRAP

IH 2

B9 10
TRAP

IH 2

C9
TR

IH
0A 5
MOVB

ID-ID 4

1A 4-7
EMAXD
ID 3-5

2A 4/3
LBPL

RL 4

3A †3n
REV

SP 2

4A 10
TRAP

IH 2

5A 10
TRAP

IH 2

6A 10
TRAP

IH 2

7A 10
TRAP

IH 2

8A 10
TRAP

IH 2

9A 10
TRAP

IH 2

AA 10
TRAP

IH 2

BA 10
TRAP

IH 2

CA
TR

IH
0B 4
MOVB

IM-EX 5

1B 4-7
EMIND

ID 3-5

2B 4/3
LBMI

RL 4

3B †5n/3n
REVW

SP 2

4B 10
TRAP

IH 2

5B 10
TRAP

IH 2

6B 10
TRAP

IH 2

7B 10
TRAP

IH 2

8B 10
TRAP

IH 2

9B 10
TRAP

IH 2

AB 10
TRAP

IH 2

BB 10
TRAP

IH 2

CB
TR

IH
0C 6
MOVB

EX-EX 6

1C 4-7
MAXM

ID 3-5

2C 4/3
LBGE

RL 4

3C ‡†7B
WAV

SP 2

4C 10
TRAP

IH 2

5C 10
TRAP

IH 2

6C 10
TRAP

IH 2

7C 10
TRAP

IH 2

8C 10
TRAP

IH 2

9C 10
TRAP

IH 2

AC 10
TRAP

IH 2

BC 10
TRAP

IH 2

CC
TR

IH
0D 5
MOVB

ID-EX 5

1D D4-7
MINM

ID 3-5

2D 4/3
LBLT

RL 4

3D ‡6
TBL

ID 3

4D 10
TRAP

IH 2

5D 10
TRAP

IH 2

6D 10
TRAP

IH 2

7D 10
TRAP

IH 2

8D 10
TRAP

IH 2

9D 10
TRAP

IH 2

AD 10
TRAP

IH 2

BD 10
TRAP

IH 2

CD
TR

IH
0E 2

TAB
IH 2

1E 4-7
EMAXM
ID 3-5

2E 4/3
LBGT

RL 4

3E ‡8
STOP

IH 2

4E 10
TRAP

IH 2

5E 10
TRAP

IH 2

6E 10
TRAP

IH 2

7E 10
TRAP

IH 2

8E 10
TRAP

IH 2

9E 10
TRAP

IH 2

AE 10
TRAP

IH 2

BE 10
TRAP

IH 2

CE
TR

IH
0F 2

TBA
IH 2

1F 4-7
EMINM

ID 3-5

2F 4/3
LBLE

RL 4

3F 10
ETBL

ID 3

4F 10
TRAP

IH 2

5F 10
TRAP

IH 2

6F 10
TRAP

IH 2

7F 10
TRAP

IH 2

8F 10
TRAP

IH 2

9F 10
TRAP

IH 2

AF 10
TRAP

IH 2

BF 10
TRAP

IH 2

CF
TR

IH

S
12C

P

M
O

T
O

R
O

LA
Instruction R

eference
 403

Instruction R
eference

Table A-3. Indexed Addressing Mode Postbyte Encoding (xb)
00 10 20 30 40 50 60 70 80 90 A0 B0 C0

,PC
onst

D0
–16,PC

5b const

E0
n,X

9b const

F0
n,SP

9b const

,PC
onst

D1
–15,PC

5b const

E1
–n,X

9b const

F1
–n,SP

9b const

,PC
onst

D2
–14,PC

5b const

E2
n,X

16b const

F2
n,SP

16b const

,PC
onst

D3
–13,PC

5b const

E3
[n,X]

16b indr

F3
[n,SP]

16b indr

,PC
onst

D4
–12,PC

5b const

E4
A,X

A offset

F4
A,SP

A offset

,PC
onst

D5
–11,PC

5b const

E5
B,X

B offset

F5
B,SP

B offset

,PC
onst

D6
–10,PC

5b const

E6
D,X

D offset

F6
D,SP

D offset

,PC
onst

D7
–9,PC

5b const

E7
[D,X]

D indirect

F7
[D,SP]

D indirect

,PC
onst

D8
–8,PC

5b const

E8
n,Y

9b const

F8
n,PC

9b const

,PC
onst

D9
–7,PC

5b const

E9
–n,Y

9b const

F9
–n,PC

9b const

0,PC
onst

DA
–6,PC

5b const

EA
n,Y

16b const

FA
n,PC

16b const

1,PC
onst

DB
–5,PC

5b const

EB
[n,Y]

16b indr

FB
[n,PC]

16b indr

2,PC
onst

DC
–4,PC

5b const

EC
A,Y

A offset

FC
A,PC

A offset

3,PC
onst

DD
–3,PC

5b const

ED
B,Y

B offset

FD
B,PC

B offset

4,PC
onst

DE
–2,PC

5b const

EE
D,Y

D offset

FE
D,PC

D offset

5,PC
onst

DF
–1,PC

5b const

EF
[D,Y]

D indirect

FF
[D,PC]

D indirect
U
V

2
R

eference M
anual

0,X
5b const

–16,X
5b const

1,+X
pre-inc

1,X+
post-inc

0,Y
5b const

–16,Y
5b const

1,+Y
pre-inc

1,Y+
post-inc

0,SP
5b const

–16,SP
5b const

1,+SP
pre-inc

1,SP+
post-inc

0
5b c

01
1,X

5b const

11
–15,X

5b const

21
2,+X

pre-inc

31
2,X+

post-inc

41
1,Y

5b const

51
–15,Y

5b const

61
2,+Y

pre-inc

71
2,Y+

post-inc

81
1,SP

5b const

91
–15,SP

5b const

A1
2,+SP

pre-inc

B1
2,SP+

post-inc

C1
1

5b c
02

2,X
5b const

12
–14,X

5b const

22
3,+X

pre-inc

32
3,X+

post-inc

42
2,Y

5b const

52
–14,Y

5b const

62
3,+Y

pre-inc

72
3,Y+

post-inc

82
2,SP

5b const

92
–14,SP

5b const

A2
3,+SP

pre-inc

B2
3,SP+

post-inc

C2
2

5b c
03

3,X
5b const

13
–13,X

5b const

23
4,+X

pre-inc

33
4,X+

post-inc

43
3,Y

5b const

53
–13,Y

5b const

63
4,+Y

pre-inc

73
4,Y+

post-inc

83
3,SP

5b const

93
–13,SP

5b const

A3
4,+SP

pre-inc

B3
4,SP+

post-inc

C3
3

5b c
04

4,X
5b const

14
–12,X

5b const

24
5,+X

pre-inc

34
5,X+

post-inc

44
4,Y

5b const

54
–12,Y

5b const

64
5,+Y

pre-inc

74
5,Y+

post-inc

84
4,SP

5b const

94
–12,SP

5b const

A4
5,+SP

pre-inc

B4
5,SP+

post-inc

C4
4

5b c
05

5,X
5b const

15
–11,X

5b const

25
6,+X

pre-inc

35
6,X+

post-inc

45
5,Y

5b const

55
–11,Y

5b const

65
6,+Y

pre-inc

75
6,Y+

post-inc

85
5,SP

5b const

95
–11,SP

5b const

A5
6,+SP

pre-inc

B5
6,SP+

post-inc

C5
5

5b c
06

6,X
5b const

16
–10,X

5b const

26
7,+X

pre-inc

36
7,X+

post-inc

46
6,Y

5b const

56
–10,Y

5b const

66
7,+Y

pre-inc

76
7,Y+

post-inc

86
6,SP

5b const

96
–10,SP

5b const

A6
7,+SP

pre-inc

B6
7,SP+

post-inc

C6
6

5b c
07

7,X
5b const

17
–9,X

5b const

27
8,+X

pre-inc

37
8,X+

post-inc

47
7,Y

5b const

57
–9,Y

5b const

67
8,+Y

pre-inc

77
8,Y+

post-inc

87
7,SP

5b const

97
–9,SP

5b const

A7
8,+SP

pre-inc

B7
8,SP+

post-inc

C7
7

5b c
08

8,X
5b const

18
–8,X

5b const

28
8,–X

pre-dec

38
8,X–

post-dec

48
8,Y

5b const

58
–8,Y

5b const

68
8,–Y

pre-dec

78
8,Y–

post-dec

88
8,SP

5b const

98
–8,SP

5b const

A8
8,–SP

pre-dec

B8
8,SP–

post-dec

C8
8

5b c
09

9,X
5b const

19
–7,X

5b const

29
7,–X

pre-dec

39
7,X–

post-dec

49
9,Y

5b const

59
–7,Y

5b const

69
7,–Y

pre-dec

79
7,Y–

post-dec

89
9,SP

5b const

99
–7,SP

5b const

A9
7,–SP

pre-dec

B9
7,SP–

post-dec

C9
9

5b c
0A

10,X
5b const

1A
–6,X

5b const

2A
6,–X

pre-dec

3A
6,X–

post-dec

4A
10,Y

5b const

5A
–6,Y

5b const

6A
6,–Y

pre-dec

7A
6,Y–

post-dec

8A
10,SP

5b const

9A
–6,SP

5b const

AA
6,–SP

pre-dec

BA
6,SP–

post-dec

CA
1

5b c
0B

11,X
5b const

1B
–5,X

5b const

2B
5,–X

pre-dec

3B
5,X–

post-dec

4B
11,Y

5b const

5B
–5,Y

5b const

6B
5,–Y

pre-dec

7B
5,Y–

post-dec

8B
11,SP

5b const

9B
–5,SP

5b const

AB
5,–SP

pre-dec

BB
5,SP–

post-dec

CB
1

5b c
0C

12,X
5b const

1C
–4,X

5b const

2C
4,–X

pre-dec

3C
4,X–

post-dec

4C
12,Y

5b const

5C
–4,Y

5b const

6C
4,–Y

pre-dec

7C
4,Y–

post-dec

8C
12,SP

5b const

9C
–4,SP

5b const

AC
4,–SP

pre-dec

BC
4,SP–

post-dec

CC
1

5b c
0D

13,X
5b const

1D
–3,X

5b const

2D
3,–X

pre-dec

3D
3,X–

post-dec

4D
13,Y

5b const

5D
–3,Y

5b const

6D
3,–Y

pre-dec

7D
3,Y–

post-dec

8D
13,SP

5b const

9D
–3,SP

5b const

AD
3,–SP

pre-dec

BD
3,SP–

post-dec

CD
1

5b c
0E

14,X
5b const

1E
–2,X

5b const

2E
2,–X

pre-dec

3E
2,X–

post-dec

4E
14,Y

5b const

5E
–2,Y

5b const

6E
2,–Y

pre-dec

7E
2,Y–

post-dec

8E
14,SP

5b const

9E
–2,SP

5b const

AE
2,–SP

pre-dec

BE
2,SP–

post-dec

CE
1

5b c
0F

15,X
5b const

1F
–1,X

5b const

2F
1,–X

pre-dec

3F
1,X–

post-dec

4F
15,Y

5b const

5F
–1,Y

5b const

6F
1,–Y

pre-dec

7F
1,Y–

post-dec

8F
15,SP

5b const

9F
–1,SP

5b const

AF
1,–SP

pre-dec

BF
1,SP–

post-dec

CF
1

5b c

postbyte (hex)
B0
#,REG

type

type offset used

source code syntax

Key to Table A-3

Instruction Reference
Table A-4. Indexed Addressing Mode Summary

Postbyte
Code (xb)

Operand
Syntax Comments

rr0nnnnn ,r
n,r
–n,r

5-bit constant offset
n = –16 to +15
rr can specify X, Y, SP, or PC

111rr0zs n,r
–n,r

Constant offset (9- or 16-bit signed)
z- 0 = 9-bit with sign in LSB of postbyte (s)

1 = 16-bit
if z = s = 1, 16-bit offset indexed-indirect (see below)
rr can specify X, Y, SP, or PC

rr1pnnnn n,–r
n,+r
n,r–
n,r+

Auto predecrement, preincrement, postdecrement, or postincrement ;
p = pre-(0) or post-(1), n = –8 to –1, +1 to +8
rr can specify X, Y, or SP (PC not a valid choice)

111rr1aa A,r
B,r
D,r

Accumulator offset (unsigned 8-bit or 16-bit)
aa - 00 = A

01 = B
10 = D (16-bit)
11 = see accumulator D offset indexed-indirect

rr can specify X, Y, SP, or PC

111rr011 [n,r] 16-bit offset indexed-indirect
rr can specify X, Y, SP, or PC

111rr111 [D,r] Accumulator D offset indexed-indirect
rr can specify X, Y, SP, or PC
Reference Manual S12CPUV2

404 Instruction Reference MOTOROLA

S
12C

P

M
O

T
O

R
O

LA
Instruction R

eference
 405

Instruction R
eference

Table A-5. Transfer and Exchange Postbyte Encoding

6 7

YL ⇒ A SPL ⇒ A

YL ⇒ B SPL ⇒ B

YL ⇒ CCR SPL ⇒ CCR

2 Y ⇒ TMP2 SP ⇒ TMP2

Y ⇒ D SP ⇒ D

Y ⇒ X SP ⇒ X

Y ⇒ Y SP ⇒ Y

Y ⇒ SP SP ⇒ SP

E F

YL ⇒ A
$00:A ⇒ Y

SPL ⇒ A
$00:A ⇒ SP

YL ⇒ B
$FF:B ⇒ Y

SPL ⇒ B
$FF:B ⇒ SP

 X
YL ⇒ CCR

$FF:CCR ⇒ Y
SPL ⇒ CCR

$FF:CCR ⇒ SP

2 Y ⇔ TMP2 SP ⇔ TMP2

Y ⇔ D SP ⇔ D

Y ⇔ X SP ⇔ X

Y ⇔ Y SP ⇔ Y

Y ⇔ SP SP ⇔ SP
U
V

2
R

eference M
anual

TRANSFERS

⇓ LS MS⇒ 0 1 2 3 4 5

0 A ⇒ A B ⇒ A CCR ⇒ A TMP3L ⇒ A B ⇒ A XL ⇒ A

1 A ⇒ B B ⇒ B CCR ⇒ B TMP3L ⇒ B B ⇒ B XL ⇒ B

2 A ⇒ CCR B ⇒ CCR CCR ⇒ CCR TMP3L ⇒ CCR B ⇒ CCR XL ⇒ CCR

3 sex:A ⇒ TMP2 sex:B ⇒ TMP2 sex:CCR ⇒ TMP2 TMP3 ⇒ TMP2 D ⇒ TMP2 X ⇒ TMP

4
sex:A ⇒ D
SEX A,D

sex:B ⇒ D
SEX B,D

sex:CCR ⇒ D
SEX CCR,D

TMP3 ⇒ D D ⇒ D X ⇒ D

5
sex:A ⇒ X
SEX A,X

sex:B ⇒ X
SEX B,X

sex:CCR ⇒ X
SEX CCR,X

TMP3 ⇒ X D ⇒ X X ⇒ X

6
sex:A ⇒ Y
SEX A,Y

sex:B ⇒ Y
SEX B,Y

sex:CCR ⇒ Y
SEX CCR,Y

TMP3 ⇒ Y D ⇒ Y X ⇒ Y

7
sex:A ⇒ SP
SEX A,SP

sex:B ⇒ SP
SEX B,SP

sex:CCR ⇒ SP
SEX CCR,SP

TMP3 ⇒ SP D ⇒ SP X ⇒ SP

EXCHANGES

⇓ LS MS⇒ 8 9 A B C D

0 A ⇔ A B ⇔ A CCR ⇔ A
TMP3L ⇒ A

$00:A ⇒ TMP3
B ⇒ A
A ⇒ B

XL ⇒ A
$00:A ⇒ X

1 A ⇔ B B ⇔ B CCR ⇔ B
TMP3L ⇒ B

$FF:B ⇒ TMP3
B ⇒ B

$FF ⇒ A
XL ⇒ B

$FF:B ⇒ X

2 A ⇔ CCR B ⇔ CCR CCR ⇔ CCR
TMP3L ⇒ CCR

$FF:CCR ⇒ TMP3
B ⇒ CCR

$FF:CCR ⇒ D
XL ⇒ CCR

$FF:CCR ⇒

3
$00:A ⇒ TMP2

TMP2L ⇒ A
$00:B ⇒ TMP2

TMP2L ⇒ B
$00:CCR ⇒ TMP2

TMP2L ⇒ CCR
TMP3 ⇔ TMP2 D ⇔ TMP2 X ⇔ TMP

4 $00:A ⇒ D $00:B ⇒ D
$00:CCR ⇒ D

B ⇒ CCR
TMP3 ⇔ D D ⇔ D X ⇔ D

5
$00:A ⇒ X

XL ⇒ A
$00:B ⇒ X

XL ⇒ B
$00:CCR ⇒ X

XL ⇒ CCR
TMP3 ⇔ X D ⇔ X X ⇔ X

6
$00:A ⇒ Y

YL ⇒ A
$00:B ⇒ Y

YL ⇒ B
$00:CCR ⇒ Y

YL ⇒ CCR
TMP3 ⇔ Y D ⇔ Y X ⇔ Y

7
$00:A ⇒ SP

SPL ⇒ A
$00:B ⇒ SP

SPL ⇒ B
$00:CCR ⇒ SP

SPL ⇒ CCR
TMP3 ⇔ SP D ⇔ SP X ⇔ SP

TMP2 and TMP3 registers are for factory use only.

Instruction Reference
Table A-6. Loop Primitive Postbyte Encoding (lb)
00 A

DBEQ
(+)

10 A
DBEQ

(–)

20 A
DBNE

(+)

30 A
DBNE

(–)

40 A
TBEQ

(+)

50 A
TBEQ

(–)

60 A
TBNE

(+)

70 A
TBNE

(–)

80 A
IBEQ

(+)

90 A
IBEQ

(–)

A0 A
IBNE

(+)

B0 A
IBNE

(–)
01 B

DBEQ
(+)

11 B
DBEQ

(–)

21 B
DBNE

(+)

31 B
DBNE

(–)

41 B
TBEQ

(+)

51 B
TBEQ

(–)

61 B
TBNE

(+)

71 B
TBNE

(–)

81 B
IBEQ

(+)

91 B
IBEQ

(–)

A1 B
IBNE

(+)

B1 B
IBNE

(–)
02

—
12

—
22

—
32

—
42

—
52

—
62

—
72

—
82

—
92

—
A2

—
B2

—

03
—

13
—

23
—

33
—

43
—

53
—

63
—

73
—

83
—

93
—

A3
—

B3
—

04 D
DBEQ

(+)

14 D
DBEQ

(–)

24 D
DBNE

(+)

34 D
DBNE

(–)

44 D
TBEQ

(+)

54 D
TBEQ

(–)

64 D
TBNE

(+)

74 D
TBNE

(–)

84 D
IBEQ

(+)

94 D
IBEQ

(–)

A4 D
IBNE

(+)

B4 D
IBNE

(–)
05 X

DBEQ
(+)

15 X
DBEQ

(–)

25 X
DBNE

(+)

35 X
DBNE

(–)

45 X
TBEQ

(+)

55 X
TBEQ

(–)

65 X
TBNE

(+)

75 X
TBNE

(–)

85 X
IBEQ

(+)

95 X
IBEQ

(–)

A5 X
IBNE

(+)

B5 X
IBNE

(–)
06 Y

DBEQ
(+)

16 Y
DBEQ

(–)

26 Y
DBNE

(+)

36 Y
DBNE

(–)

46 Y
TBEQ

(+)

56 Y
TBEQ

(–)

66 Y
TBNE

(+)

76 Y
TBNE

(–)

86 Y
IBEQ

(+)

96 Y
IBEQ

(–)

A6 Y
IBNE

(+)

B6 Y
IBNE

(–)
07 SP

DBEQ
(+)

17 SP
DBEQ

(–)

27 SP
DBNE

(+)

37 SP
DBNE

(–)

47 SP
TBEQ

(+)

57 SP
TBEQ

(–)

67 SP
TBNE

(+)

77 SP
TBNE

(–)

87 SP
IBEQ

(+)

97 SP
IBEQ

(–)

A7 SP
IBNE

(+)

B7 SP
IBNE

(–)

postbyte (hex)
B0 A
_BEQ

(–)

counter used

sign of 9-bit relative branch offset
(lower eight bits are an extension byte
following postbyte)

branch condition

Key to Table A-6

(bit 3 is don’t care)

Table A-7. Branch/Complementary Branch

Branch Complementary Branch
Test Mnemonic Opcode Boolean Test Mnemonic Opcode Comment
r>m BGT 2E Z + (N ⊕ V) = 0 r≤m BLE 2F Signed
r≥m BGE 2C N ⊕ V = 0 r<m BLT 2D Signed
r=m BEQ 27 Z = 1 r≠m BNE 26 Signed
r≤m BLE 2F Z + (N ⊕ V) = 1 r>m BGT 2E Signed
r<m BLT 2D N ⊕ V = 1 r≥m BGE 2C Signed
r>m BHI 22 C + Z = 0 r≤m BLS 23 Unsigned
r≥m BHS/BCC 24 C = 0 r<m BLO/BCS 25 Unsigned
r=m BEQ 27 Z = 1 r≠m BNE 26 Unsigned
r≤m BLS 23 C + Z = 1 r>m BHI 22 Unsigned
r<m BLO/BCS 25 C = 1 r≥m BHS/BCC 24 Unsigned

Carry BCS 25 C = 1 No Carry BCC 24 Simple
Negative BMI 2B N = 1 Plus BPL 2A Simple
Overflow BVS 29 V = 1 No Overflow BVC 28 Simple

r=0 BEQ 27 Z = 1 r≠0 BNE 26 Simple
Always BRA 20 — Never BRN 21 Unconditional

For 16-bit offset long branches precede opcode with a $18 page prebyte.
Reference Manual S12CPUV2

406 Instruction Reference MOTOROLA

Instruction Reference
Table A-8. Hexadecimal to ASCII Conversion

Hex ASCII Hex ASCII Hex ASCII Hex ASCII

$00 NUL $20 SP space $40 @ $60 ` grave

$01 SOH $21 ! $41 A $61 a

$02 STX $22 “ quote $42 B $62 b

$03 ETX $23 # $43 C $63 c

$04 EOT $24 $ $44 D $64 d

$05 ENQ $25 % $45 E $65 e

$06 ACK $26 & $46 F $66 f

$07 BEL beep $27 ‘ apost. $47 G $67 g

$08
BS back

sp
$28 ($48 H $68 h

$09 HT tab $29) $49 I $69 i

$0A
LF

linefeed
$2A * $4A J $6A j

$0B VT $2B + $4B K $6B k

$0C FF $2C , comma $4C L $6C l

$0D CR return $2D - dash $4D M $6D m

$0E SO $2E . period $4E N $6E n

$0F SI $2F / $4F O $6F o

$10 DLE $30 0 $50 P $70 p

$11 DC1 $31 1 $51 Q $71 q

$12 DC2 $32 2 $52 R $72 r

$13 DC3 $33 3 $53 S $73 s

$14 DC4 $34 4 $54 T $74 t

$15 NAK $35 5 $55 U $75 u

$16 SYN $36 6 $56 V $76 v

$17 ETB $37 7 $57 W $77 w

$18 CAN $38 8 $58 X $78 x

$19 EM $39 9 $59 Y $79 y

$1A SUB $3A : $5A Z $7A z

$1B ESCAPE $3B ; $5B [$7B {

$1C FS $3C < $5C \ $7C |

$1D GS $3D = $5D] $7D }

$1E RS $3E > $5E ^ $7E ~

$1F US $3F ? $5F _ under $7F
DEL

delete
S12CPUV2 Reference Manual

MOTOROLA Instruction Reference 407

Instruction Reference
A.5 Hexadecimal to Decimal Conversion

To convert a hexadecimal number (up to four hexadecimal digits) to
decimal, look up the decimal equivalent of each hexadecimal digit in
Table A-9 . The decimal equivalent of the original hexadecimal number
is the sum of the weights found in the table for all hexadecimal digits.

A.6 Decimal to Hexadecimal Conversion

To convert a decimal number (up to 65,53510) to hexadecimal, find the
largest decimal number in Table A-9 that is less than or equal to the
number you are converting. The corresponding hexadecimal digit is the
most significant hexadecimal digit of the result. Subtract the decimal
number found from the original decimal number to get the remaining
decimal value. Repeat the procedure using the remaining decimal value
for each subsequent hexadecimal digit.

Table A-9. Hexadecimal to/from Decimal Conversion
15 Bit 8 7 Bit 0

15 12 11 8 7 4 3 0

4th Hex Digit 3rd Hex Digit 2nd Hex Digit 1st Hex Digit

Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0 0

1 4,096 1 256 1 16 1 1

2 8,192 2 512 2 32 2 2

3 12,288 3 768 3 48 3 3

4 16,384 4 1,024 4 64 4 4

5 20,480 5 1,280 5 80 5 5

6 24,576 6 1,536 6 96 6 6

7 28,672 7 1,792 7 112 7 7

8 32,768 8 2,048 8 128 8 8

9 36,864 9 2,304 9 144 9 9

A 40,960 A 2,560 A 160 A 10

B 45,056 B 2,816 B 176 B 11

C 49,152 C 3,072 C 192 C 12

D 53,248 D 3,328 D 208 D 13

E 57,344 E 3,484 E 224 E 14

F 61,440 F 3,840 F 240 F 15
Reference Manual S12CPUV2

408 Instruction Reference MOTOROLA

Reference Manual — S12CPUV2

Appendix B. M68HC11 to CPU12 Upgrade Path
B.1 Introduction

This appendix discusses similarities and differences between the
CPU12 and the M68HC11 CPU. In general, the CPU12 is a proper
superset of the M68HC11. Significant changes have been made to
improve the efficiency and capabilities of the CPU12 without eliminating
compatibility and familiarity for the large community of M68HC11
programmers.

B.2 CPU12 Design Goals

The primary goals of the CPU12 design were:

• Absolute source code compatibility with the M68HC11

• Same programming model

• Same stacking operations

• Upgrade to 16-bit architecture

• Eliminate extra byte/extra cycle penalty for using index register Y

• Improve performance

• Improve compatibility with high-level languages
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 409

M68HC11 to CPU12 Upgrade Path
B.3 Source Code Compatibility

Every M68HC11 instruction mnemonic and source code statement can
be assembled directly with a CPU12 assembler with no modifications.

The CPU12 supports all M68HC11 addressing modes and includes
several new variations of indexed addressing mode. CPU12 instructions
affect condition code bits in the same way as M68HC11 instructions.

CPU12 object code is similar to but not identical to M68HC11 object
code. Some primary objectives, such as the elimination of the penalty for
using Y, could not be achieved without object code differences. While
the object code has been changed, the majority of the opcodes are
identical to those of the M6800, which was developed more than 20
years earlier.

The CPU12 assembler automatically translates a few M68HC11
instruction mnemonics into functionally equivalent CPU12 instructions.
For example, the CPU12 does not have an increment stack pointer (INS)
instruction, so the INS mnemonic is translated to LEAS 1,S. The CPU12
does provide single-byte DEX, DEY, INX, and INY instructions because
the LEAX and LEAY instructions do not affect the condition codes, while
the M68HC11 instructions update the Z bit according to the result of the
decrement or increment.

Table B-1 shows M68HC11 instruction mnemonics that are
automatically translated into equivalent CPU12 instructions. This
translation is performed by the assembler so there is no need to modify
an old M68HC11 program to assemble it for the CPU12. In fact, the
M68HC11 mnemonics can be used in new CPU12 programs.

Table B-1. Translated M68HC11 Mnemonics

M68HC11
Mnemonic

Equivalent
CPU12 Instruction

Comments

ABX
ABY

LEAX B,X
LEAY B,Y

Since CPU12 has accumulator offset indexing,
ABX and ABY are rarely used in new CPU12
programs. ABX is one byte on M68HC11 but
ABY is two bytes. The LEA substitutes are two
bytes.

Continued on next page
Reference Manual S12CPUV2

410 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
All of the translations produce the same amount of or slightly more object
code than the original M68HC11 instructions. However, there are
offsetting savings in other instructions. Y-indexed instructions in
particular assemble into one byte less object code than the same
M68HC11 instruction.

The CPU12 has a 2-page opcode map, rather than the 4-page
M68HC11 map. This is largely due to redesign of the indexed
addressing modes. Most of pages 2, 3, and 4 of the M68HC11 opcode
map are required because Y-indexed instructions use different opcodes
than X-indexed instructions. Approximately two-thirds of the M68HC11
page 1 opcodes are unchanged in CPU12, and some M68HC11
opcodes have been moved to page 1 of the CPU12 opcode map. Object
code for each of the moved instructions is one byte smaller than object
code for the equivalent M68HC11 instruction. Table B-2 shows
instructions that assemble to one byte less object code on the CPU12.

CLC
CLI
CLV
SEC
SEI
SEV

ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
ORCC #$01
ORCC #$10
ORCC #$02

ANDCC and ORCC now allow more control
over the CCR, including the ability to set or
clear multiple bits in a single instruction. These
instructions take one byte each on M68HC11
while the ANDCC and ORCC equivalents take
two bytes each.

DES
INS

LEAS –1,S
LEAS 1,S

Unlike DEX and INX, DES and INS did not
affect CCR bits in the M68HC11, so the LEAS
equivalents in CPU12 duplicate the function of
DES and INS. These instructions are one byte
on M68HC11 and two bytes on CPU12.

TAP
TPA
TSX
TSY
TXS
TYS

XGDX
XGDY

TFR A,CCR
TFR CCR,A

TFR S,X
TFR S,Y
TFR X,S
TFR Y,S
EXG D,X
EXG D,Y

The M68HC11 has a small collection of specific
transfer and exchange instructions. CPU12
expanded this to allow transfer or exchange
between any two CPU registers. For all but TSY
and TYS (which take two bytes on either CPU),
the CPU12 transfer/exchange costs one extra
byte compared to the M68HC11. The substitute
instructions execute in one cycle rather than
two.

Table B-1. Translated M68HC11 Mnemonics (Continued)

M68HC11
Mnemonic

Equivalent
CPU12 Instruction

Comments
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 411

M68HC11 to CPU12 Upgrade Path
Instruction set changes offset each other to a certain extent.
Programming style also affects the rate at which instructions appear. As
a test, the BUFFALO monitor, an 8-Kbyte M68HC11 assembly code
program, was reassembled for the CPU12. The resulting object code is
six bytes smaller than the M68HC11 code. It is fair to conclude that
M68HC11 code can be reassembled with very little change in size.

The relative size of code for M68HC11 vs. code for CPU12 has also
been tested by rewriting several smaller programs from scratch. In these
cases, the CPU12 code is typically about 30 percent smaller. These
savings are mostly due to improved indexed addressing.

It seems useful to mention the results of size comparisons done on C
programs. A C program compiled for the CPU12 is about 30 percent
smaller than the same program compiled for the M68HC11. The savings
are largely due to better indexing.

Table B-2. Instructions with Smaller Object Code

Instruction Comments

DEY
INY

Page 2 opcodes in M68HC11 but page 1 in CPU12

INST n,Y

For values of n less than 16 (the majority of cases). Were on page 2,
now are on page 1. Applies to BSET, BCLR, BRSET, BRCLR, NEG,
COM, LSR, ROR, ASR, ASL, ROL, DEC, INC, TST, JMP, CLR,
SUB, CMP, SBC, SUBD, ADDD, AND, BIT, LDA, STA, EOR, ADC,
ORA, ADD, JSR, LDS, and STS. If X is the index reference and the
offset is greater than 15 (much less frequent than offsets of 0, 1, and
2), the CPU12 instruction assembles to one byte more of object code
than the equivalent M68HC11 instruction.

PSHY
PULY

 Were on page 2, now are on page 1

LDY
STY
CPY

 Were on page 2, now are on page 1

CPY n,Y
LDY n,Y
STY n,Y

For values of n less than 16 (the majority of cases); were on page 3,
now are on page 1

CPD
Was on page 2, 3, or 4, now on page 1. In the case of indexed with
offset greater than 15, CPU12 and M68HC11 object code are the
same size.
Reference Manual S12CPUV2

412 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.4 Programmer’s Model and Stacking

The CPU12 programming model and stacking order are identical to
those of the M68HC11.

B.5 True 16-Bit Architecture

The M68HC11 is a direct descendant of the M6800, one of the first
microprocessors, which was introduced in 1974. The M6800 was strictly
an 8-bit machine, with 8-bit data buses and 8-bit instructions. As
Motorola devices evolved from the M6800 to the M68HC11, a number of
16-bit instructions were added, but the data buses remained eight bits
wide, so these instructions were performed as sequences of 8-bit
operations. The CPU12 is a true 16-bit implementation, but it retains the
ability to work with the mostly 8-bit M68HC11 instruction set. The larger
arithmetic logic unit (ALU) of the CPU12 (it can perform some 20-bit
operations) is used to calculate 16-bit pointers and to speed up math
operations.

B.5.1 Bus Structures

The CPU12 is a 16-bit processor with 16-bit data paths. Typical HCS12
and M68HC12 devices have internal and external 16-bit data paths, but
some derivatives incorporate operating modes that allow for an 8-bit
data bus, so that a system can be built with low-cost 8-bit program
memory. HCS12 and M68HC12 MCUs include an on-chip integration
module that manages the external bus interface. When the CPU makes
a 16-bit access to a resource that is served by an 8-bit bus, the
integration module performs two 8-bit accesses, freezes the CPU clocks
for part of the sequence, and assembles the data into a 16-bit word. As
far as the CPU is concerned, there is no difference between this access
and a 16-bit access to an internal resource via the 16-bit data bus. This
is similar to the way an M68HC11 can stretch clock cycles to
accommodate slow peripherals.
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 413

M68HC11 to CPU12 Upgrade Path
B.5.2 Instruction Queue

The CPU12 has a 2-word instruction queue and a 16-bit holding buffer,
which sometimes acts as a third word for queueing program information.
All program information is fetched from memory as aligned 16-bit words,
even though there is no requirement for instructions to begin or end on
even word boundaries. There is no penalty for misaligned instructions. If
a program begins on an odd boundary (if the reset vector is an odd
address), program information is fetched to fill the instruction queue,
beginning with the aligned word at the next address below the
misaligned reset vector. The instruction queue logic starts execution with
the opcode in the low-order half of this word.

The instruction queue causes three bytes of program information
(starting with the instruction opcode) to be directly available to the CPU
at the beginning of every instruction. As it executes, each instruction
performs enough additional program fetches to refill the space it took up
in the queue. Alignment information is maintained by the logic in the
instruction queue. The CPU provides signals that tell the queue logic
when to advance a word of program information and when to toggle the
alignment status.

The CPU is not aware of instruction alignment. The queue logic includes
a multiplexer that sorts out the information in the queue to present the
opcode and the next two bytes of information as CPU inputs. The
multiplexer determines whether the opcode is in the even or odd half of
the word at the head of the queue. Alignment status is also available to
the ALU for address calculations. The execution sequence for all
instructions is independent of the alignment of the instruction.

The only situation where alignment can affect the number of cycles an
instruction takes occurs in devices that have a narrow (8-bit) external
data bus and is related to optional program fetch cycles (O type cycles).
O cycles are always performed, but serve different purposes determined
by instruction size and alignment.

Each instruction includes one program fetch cycle for every two bytes of
object code. Instructions with an odd number of bytes can use an O
cycle to fetch an extra word of object code. If the queue is aligned at the
start of an instruction with an odd byte count, the last byte of object code
shares a queue word with the opcode of the next instruction. Since this
word holds part of the next instruction, the queue cannot advance after
Reference Manual S12CPUV2

414 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
the odd byte executes because the first byte of the next instruction would
be lost. In this case, the O cycle appears as a free cycle since the queue
is not ready to accept the next word of program information. If this same
instruction had been misaligned, the queue would be ready to advance
and the O cycle would be used to perform a program word fetch.

In a single-chip system or in a system with the program in 16-bit memory,
both the free cycle and the program fetch cycle take one bus cycle. In a
system with the program in an external 8-bit memory, the O cycle takes
one bus cycle when it appears as a free cycle, but it takes two bus cycles
when used to perform a program fetch. In this case, the on-chip
integration module freezes the CPU clocks long enough to perform the
cycle as two smaller accesses. The CPU handles only 16-bit data, and
is not aware that the 16-bit program access is split into two 8-bit
accesses.

To allow development systems to track events in the CPU12 instruction
queue, two status signals (IPIPE[1:0]) provide information about data
movement in the queue and about the start of instruction execution. A
development system can use this information along with address and
data information to externally reconstruct the queue. This representation
of the queue can also track both the data and address buses.

B.5.3 Stack Function

Both the M68HC11 and the CPU12 stack nine bytes for interrupts. Since
this is an odd number of bytes, there is no practical way to ensure that
the stack will stay aligned. To ensure that instructions take a fixed
number of cycles regardless of stack alignment, the internal RAM in
M68HC12 MCUs is designed to allow single cycle 16-bit accesses to
misaligned addresses. As long as the stack is located in this special
RAM, stacking and unstacking operations take the same amount of
execution time, regardless of stack alignment. If the stack is located in
an external 16-bit RAM, a PSHX instruction can take two or three cycles
depending on the alignment of the stack. This extra access time is
transparent to the CPU because the integration module freezes the CPU
clocks while it performs the extra 8-bit bus cycle required for a
misaligned stack operation.

The CPU12 has a “last-used” stack rather than a “next-available” stack
like the M68HC11 CPU. That is, the stack pointer points to the last 16-bit
stack address used, rather than to the address of the next available
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 415

M68HC11 to CPU12 Upgrade Path
stack location. This generally has very little effect, because it is very
unusual to access stacked information using absolute addressing. The
change allows a 16-bit word of data to be removed from the stack
without changing the value of the SP twice.

To illustrate, consider the operation of a PULX instruction. With the
next-available M68HC11 stack, if the SP = $01F0 when execution
begins, the sequence of operations is: SP = SP + 1; load X from
$01F1:01F2; SP = SP + 1; and the SP ends up at $01F2. With the
last-used CPU12 stack, if the SP = $01F0 when execution begins, the
sequence is: load X from $01F0:01F1; SP = SP + 2; and the SP again
ends up at $01F2. The second sequence requires one less stack pointer
adjustment.

The stack pointer change also affects operation of the TSX and TXS
instructions. In the M68HC11, TSX increments the SP by one during the
transfer. This adjustment causes the X index to point to the last stack
location used. The TXS instruction operates similarly, except that it
decrements the SP by one during the transfer. CPU12 TSX and TXS
instructions are ordinary transfers — the CPU12 stack requires no
adjustment.

For ordinary use of the stack, such as pushes, pulls, and even
manipulations involving TSX and TXS, there are no differences in the
way the M68HC11 and the CPU12 stacks look to a programmer.
However, the stack change can affect a program algorithm in two subtle
ways.

The LDS #$xxxx instruction is normally used to initialize the stack pointer
at the start of a program. In the M68HC11, the address specified in the
LDS instruction is the first stack location used. In the CPU12, however,
the first stack location used is one address lower than the address
specified in the LDS instruction. Since the stack builds downward,
M68HC11 programs reassembled for the CPU12 operate normally, but
the program stack is one physical address lower in memory.

In very uncommon situations, such as test programs used to verify CPU
operation, a program could initialize the SP, stack data, and then read
the stack via an extended mode read (it is normally improper to read
stack data from an absolute extended address). To make an M68HC11
source program that contains such a sequence work on the CPU12,
change either the initial LDS #$xxxx or the absolute extended address
used to read the stack.
Reference Manual S12CPUV2

416 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.6 Improved Indexing

The CPU12 has significantly improved indexed addressing capability,
yet retains compatibility with the M68HC11. The one cycle and one byte
cost of doing Y-related indexing in the M68HC11 has been eliminated.
In addition, high-level language requirements, including stack relative
indexing and the ability to perform pointer arithmetic directly in the index
registers, have been accommodated.

The M68HC11 has one variation of indexed addressing that works from
X or Y as the reference pointer. For X indexed addressing, an 8-bit
unsigned offset in the instruction is added to the index pointer to arrive
at the address of the operand for the instruction. A load accumulator
instruction assembles into two bytes of object code, the opcode and a
1-byte offset. Using Y as the reference, the same instruction assembles
into three bytes (a page prebyte, the opcode, and a 1-byte offset.)
Analysis of M68HC11 source code indicates that the offset is most
frequently zero and seldom greater than four.

The CPU12 indexed addressing scheme uses a postbyte plus 0, 1, or 2
extension bytes after the instruction opcode. These bytes specify which
index register is used, determine whether an accumulator is used as the
offset, implement automatic pre/post increment/decrement of indices,
and allow a choice of 5-, 9-, or 16-bit signed offsets. This approach
eliminates the differences between X and Y register use and
dramatically enhances indexed addressing capabilities.

Major improvements that result from this new approach are:

• Stack pointer can be used as an index register in all indexed
operations (very important for C compilers)

• Program counter can be used as index register in all but auto
inc/dec modes

• Accumulator offsets allowed using A, B, or D accumulators

• Automatic pre- or post- increment or decrement by –8 to +8

• 5-bit, 9-bit, or 16-bit signed constant offsets (M68HC11 only
supported positive unsigned 8-bit offsets)

• 16-bit offset indexed-indirect and accumulator D offset
indexed-indirect
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 417

M68HC11 to CPU12 Upgrade Path
The change completely eliminates pages three and four of the M68HC11
opcode map and eliminates almost all instructions from page two of the
opcode map. For offsets of 0 to +15 from the X index register, the object
code is the same size as it was for the M68HC11. For offsets of 0 to +15
from the Y index register, the object code is one byte smaller than it was
for the M68HC11.

Table A-3 and Table A-4 summarize CPU12 indexed addressing mode
capabilities. Table A-6 shows how the postbyte is encoded.

B.6.1 Constant Offset Indexing

The CPU12 offers three variations of constant offset indexing to optimize
the efficiency of object code generation.

The most common constant offset is 0. Offsets of 1, 2, 3, 4 are used fairly
often, but with less frequency than 0.

The 5-bit constant offset variation covers the most frequent indexing
requirements by including the offset in the postbyte. This reduces a load
accumulator indexed instruction to two bytes of object code, and
matches the object code size of the smallest M68HC11 indexed
instructions, which can only use X as the index register. The CPU12 can
use X, Y, SP, or PC as the index reference with no additional object code
size cost.

The signed 9-bit constant offset indexing mode covers the same positive
range as the M68HC11 8-bit unsigned offset. The size was increased to
nine bits with the sign bit (ninth bit) included in the postbyte, and the
remaining 8 bits of the offset in a single extension byte.

The 16-bit constant offset indexing mode allows indexed access to the
entire normal 64-Kbyte address space. Since the address consists of 16
bits, the 16-bit offset can be regarded as a signed (–32,768 to +32,767)
or unsigned (0 to 65,535) value. In 16-bit constant offset mode, the offset
is supplied in two extension bytes after the opcode and postbyte.
Reference Manual S12CPUV2

418 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.6.2 Auto-Increment Indexing

The CPU12 provides greatly enhanced auto increment and decrement
modes of indexed addressing. In the CPU12, the index modification may
be specified for before the index is used (pre-), or after the index is used
(post-), and the index can be incremented or decremented by any
amount from one to eight, independent of the size of the operand that
was accessed. X, Y, and SP can be used as the index reference, but this
mode does not allow PC to be the index reference (this would interfere
with proper program execution).

This addressing mode can be used to implement a software stack
structure or to manipulate data structures in lists or tables, rather than
manipulating bytes or words of data. Anywhere an M68HC11 program
has an increment or decrement index register operation near an indexed
mode instruction, the increment or decrement operation can be
combined with the indexed instruction with no cost in object code size,
as shown in the following code comparison.

The M68HC11 object code requires seven bytes, while the CPU12
requires only two bytes to accomplish the same functions. Three bytes
of M68HC11 code were due to the page prebyte for each Y-related
instruction ($18). CPU12 post-increment indexing capability allowed the
two INY instructions to be absorbed into the LDAA indexed instruction.
The replacement code is not identical to the original 3-instruction
sequence because the Z condition code bit is affected by the M68HC11
INY instructions, while the Z bit in the CPU12 would be determined by
the value loaded into A.

18 A6 00
18 08
18 08

 LDAA 0,Y
 INY
 INY

A6 71 LDAA 2,Y+
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 419

M68HC11 to CPU12 Upgrade Path
B.6.3 Accumulator Offset Indexing

This indexed addressing variation allows the programmer to use either
an 8-bit accumulator (A or B) or the 16-bit D accumulator as the offset
for indexed addressing. This allows for a program-generated offset,
which is more difficult to achieve in the M68HC11. The following code
compares the M68HC11 and CPU12 operations.

The CPU12 object code is only one byte smaller, but the LDX #
instruction is outside the loop. It is not necessary to reload the base
address in the index register on each pass through the loop because the
LDAA B,X instruction does not alter the index register. This reduces the
loop execution time from 15 cycles to six cycles. This reduction,
combined with the 25-MHz bus speed of the HCS12 (M68HC12) Family,
can have significant effects.

B.6.4 Indirect Indexing

The CPU12 allows some forms of indexed indirect addressing where the
instruction points to a location in memory where the address of the
operand is stored. This is an extra level of indirection compared to
ordinary indexed addressing. The two forms of indexed indirect
addressing are 16-bit constant offset indexed indirect and D
accumulator indexed indirect. The reference index register can be X, Y,
SP, or PC as in other CPU12 indexed addressing modes. PC-relative
indirect addressing is one of the more common uses of indexed indirect
addressing. The indirect variations of indexed addressing help in the
implementation of pointers. D accumulator indexed indirect addressing
can be used to implement a runtime computed GOTO function. Indirect
addressing is also useful in high-level language compilers. For instance,
PC-relative indirect indexing can be used to efficiently implement some
C case statements.

C6 05
CE 10 00
3A
A6 00

5A
26 F7

 LDAB #$5 [2]
 LOOP LDX #$1000 [3]
 ABX [3]
 LDAA 0,X [4]
 |
 DECB [2]
 BNE LOOP [3]

C6 05
CE 10 00
A6 E5

04 31 FB

LDAB #$5 [1]
LDX #$1000 [2]
LOOP LDAA B,X [3]

 |
DBNE B,LOOP [3]
Reference Manual S12CPUV2

420 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.7 Improved Performance

The HCS12 uses a system-on-a-chip (SoC) design methodology and is
normally implemented in a 0.25µ FLASH process. HCS12 devices can
operate at up to 25 MHz and are designed to be migrated easily to faster,
smaller silicon process technologies as they are developed.

The M68HC12 improves on M68HC11 performance in several ways.
M68HC12 devices are designed using sub-micron design rules and
fabricated using advanced semiconductor processing, the same
methods used to manufacture the M68HC16 and M68300 Families of
modular microcontrollers. M68HC12 devices have a base bus speed of
8 MHz and are designed to operate over a wide range of supply
voltages.

The 16-bit wide architecture of the CPU12 also increases performance.
Beyond these obvious improvements, the CPU12 uses a reduced
number of cycles for many of its instructions, and a 20-bit ALU makes
certain CPU12 math operations much faster.

B.7.1 Reduced Cycle Counts

No M68HC11 instruction takes less than two cycles, but the CPU12 has
more than 50 opcodes that take only one cycle. Some of the reduction
comes from the instruction queue, which ensures that several program
bytes are available at the start of each instruction. Other cycle reductions
occur because the CPU12 can fetch 16 bits of information at a time,
rather than eight bits at a time.

B.7.2 Fast Math

The CPU12 has some of the fastest math ever designed into a Motorola
general-purpose MCU. Much of the speed is due to a 20-bit ALU that can
perform two smaller operations simultaneously. The ALU can also
perform two operations in a single bus cycle in certain cases.

Table B-3 compares the speed of CPU12 and M68HC11 math
instructions. The CPU12 requires fewer cycles to perform an operation,
and the cycle time is considerably faster than that of the M68HC11.
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 421

M68HC11 to CPU12 Upgrade Path
The IDIVS instruction is included specifically for C compilers, where
word-sized operands are divided to produce a word-sized result (unlike
the 32 ÷ 16 = 16 EDIV). The EMUL and EMULS instructions place the
result in registers so a C compiler can choose to use only 16 bits of the
32-bit result.

B.7.3 Code Size Reduction

CPU12 assembly language programs written from scratch tend to be
30 percent smaller than equivalent programs written for the M68HC11.
This figure has been independently qualified by Motorola programmers
and an independent C compiler vendor. The major contributors to the
reduction appear to be improved indexed addressing and the universal
transfer/exchange instruction.

Table B-3. Comparison of Math Instruction Speeds

Instruction
Mnemonic

Math
Operation

M68HC11
1 Cycle = 250 ns

M68HC11
With Coprocessor
1 Cycle = 250 ns

CPU12
1 Cycle = 40 ns

(125 ns in M68HC12)

MUL
8 × 8 = 16
(signed)

10 cycles — 3 cycles

EMUL
16 × 16 = 32
(unsigned)

— 20 cycles 3 cycles

EMULS
16 × 16 = 32

(signed)
— 20 cycles 3 cycles

IDIV
16 ÷ 16 = 16
(unsigned)

41 cycles — 12 cycles

FDIV
16 ÷ 16 = 16
(fractional)

41 cycles — 12 cycles

EDIV
32 ÷ 16 = 16
(unsigned)

— 33 cycles 11 cycles

EDIVS
32 ÷ 16 = 16

(signed)
— 37 cycles 12 cycles

IDIVS
16 ÷ 16 = 16

(signed)
— — 12 cycles

EMACS
32 × (16 × 16) ⇒ 32

(signed MAC)
— 20 cycles 12 cycles
Reference Manual S12CPUV2

422 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
In some specialized areas, the reduction is much greater. A fuzzy logic
inference kernel requires about 250 bytes in the M68HC11, and the
same program for the CPU12 requires about 50 bytes. The CPU12 fuzzy
logic instructions replace whole subroutines in the M68HC11 version.
Table lookup instructions also greatly reduce code space.

Other CPU12 code space reductions are more subtle. Memory-to-
memory moves are one example. The CPU12 move instruction requires
almost as many bytes as an equivalent sequence of M68HC11
instructions, but the move operations themselves do not require the use
of an accumulator. This means that the accumulator often need not be
saved and restored, which saves instructions.

Arithmetic operations on index pointers are another example. The
M68HC11 usually requires that the content of the index register be
moved into accumulator D, where calculations are performed, then back
to the index register before indexing can take place. In the CPU12, the
LEAS, LEAX, and LEAY instructions perform arithmetic operations
directly on the index pointers. The pre-/post-increment/decrement
variations of indexed addressing also allow index modification to be
incorporated into an existing indexed instruction rather than performing
the index modification as a separate operation.

Transfer and exchange operations often allow register contents to be
temporarily saved in another register rather than having to save the
contents in memory. Some CPU12 instructions such as MIN and MAX
combine the actions of several M68HC11 instructions into a single
operation.

B.8 Additional Functions

The CPU12 incorporates a number of new instructions that provide
added functionality and code efficiency. Among other capabilities, these
new instructions allow efficient processing for fuzzy logic applications
and support subroutine processing in extended memory beyond the
standard 64-Kbyte address map for M68HC12 devices incorporating this
feature. Table B-4 is a summary of these new instructions. Subsequent
paragraphs discuss significant enhancements.
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 423

M68HC11 to CPU12 Upgrade Path
Table B-4. New M68HC12 Instructions (Sheet 1 of 2)

Mnemonic Addressing Modes Brief Functional Description

ANDCC Immediate AND CCR with mask (replaces CLC, CLI, and CLV)

BCLR Extended Bit(s) clear (added extended mode)

BGND Inherent Enter background debug mode, if enabled

BRCLR Extended Branch if bit(s) clear (added extended mode)

BRSET Extended Branch if bit(s) set (added extended mode)

BSET Extended Bit(s) set (added extended mode)

CALL Extended, indexed
Similar to JSR except also stacks PPAGE value; with RTC
instruction, allows easy access to >64-Kbyte space

CPS
Immediate, direct,

extended, and indexed
Compare stack pointer

DBNE Relative Decrement and branch if equal to zero (looping primitive)

DBEQ Relative Decrement and branch if not equal to zero (looping primitive)

EDIV Inherent Extended divide Y:D/X = Y(Q) and D(R) (unsigned)

EDIVS Inherent Extended divide Y:D/X = Y(Q) and D(R) (signed)

EMACS Special Multiply and accumulate 16 × 16 ⇒ 32 (signed)

EMAXD Indexed Maximum of two unsigned 16-bit values

EMAXM Indexed Maximum of two unsigned 16-bit values

EMIND Indexed Minimum of two unsigned 16-bit values

EMINM Indexed Minimum of two unsigned 16-bit values

EMUL Special Extended multiply 16 × 16 ⇒ 32; M(idx) ∗ D ⇒ Y:D

EMULS Special Extended multiply 16 × 16 ⇒ 32 (signed); M(idx) ∗ D ⇒ Y:D

ETBL Special Table lookup and interpolate (16-bit entries)

EXG Inherent Exchange register contents

IBEQ Relative Increment and branch if equal to zero (looping primitive)

IBNE Relative Increment and branch if not equal to zero (looping primitive)

IDIVS Inherent Signed integer divide D/X ⇒ X(Q) and D(R) (signed)

LBCC Relative Long branch if carry clear (same as LBHS)

LBCS Relative Long branch if carry set (same as LBLO)

LBEQ Relative Long branch if equal (Z=1)

LBGE Relative Long branch if greater than or equal to zero

LBGT Relative Long branch if greater than zero

LBHI Relative Long branch if higher

LBHS Relative Long branch if higher or same (same as LBCC)

LBLE Relative Long branch if less than or equal to zero

LBLO Relative Long branch if lower (same as LBCS)
Reference Manual S12CPUV2

424 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
LBLS Relative Long branch if lower or same

LBLT Relative Long branch if less than zero

LBMI Relative Long branch if minus

LBNE Relative Long branch if not equal to zero

LBPL Relative Long branch if plus

LBRA Relative Long branch always

LBRN Relative Long branch never

LBVC Relative Long branch if overflow clear

LBVS Relative Long branch if overflow set

LEAS Indexed Load stack pointer with effective address

LEAX Indexed Load X index register with effective address

LEAY Indexed Load Y index register with effective address

MAXA Indexed Maximum of two unsigned 8-bit values

MAXM Indexed Maximum of two unsigned 8-bit values

MEM Special Determine grade of fuzzy membership

MINA Indexed Minimum of two unsigned 8-bit values

MINM Indexed Minimum of two unsigned 8-bit values

MOVB(W)
Combinations of

immediate, extended,
and indexed

Move data from one memory location to another

ORCC Immediate OR CCR with mask (replaces SEC, SEI, and SEV)

PSHC Inherent Push CCR onto stack

PSHD Inherent Push double accumulator onto stack

PULC Inherent Pull CCR contents from stack

PULD Inherent Pull double accumulator from stack

REV Special Fuzzy logic rule evaluation

REVW Special Fuzzy logic rule evaluation with weights

RTC Inherent
Restore program page and return address from stack
used with CALL instruction, allows easy access to >64-Kbyte space

SEX Inherent Sign extend 8-bit register into 16-bit register

TBEQ Relative Test and branch if equal to zero (looping primitive)

TBL Inherent Table lookup and interpolate (8-bit entries)

TBNE Relative Test register and branch if not equal to zero (looping primitive)

TFR Inherent Transfer register contents to another register

WAV Special Weighted average (fuzzy logic support)

Table B-4. New M68HC12 Instructions (Sheet 2 of 2)

Mnemonic Addressing Modes Brief Functional Description
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 425

M68HC11 to CPU12 Upgrade Path
B.8.1 Memory-to-Memory Moves

The CPU12 has both 8- and 16-bit variations of memory-to-memory
move instructions. The source address can be specified with immediate,
extended, or indexed addressing modes. The destination address can
be specified by extended or indexed addressing mode. The indexed
addressing mode for move instructions is limited to modes that require
no extension bytes (9- and 16-bit constant offsets are not allowed), and
indirect indexing is not allowed for moves. This leaves 5-bit signed
constant offsets, accumulator offsets, and the automatic
increment/decrement modes. The following simple loop is a block move
routine capable of moving up to 256 words of information from one
memory area to another.

LOOP MOVW 2,X+ , 2,Y+ ;move a word and update pointers
DBNE B,LOOP ;repeat B times

The move immediate to extended is a convenient way to initialize a
register without using an accumulator or affecting condition codes.

B.8.2 Universal Transfer and Exchange

The M68HC11 has only eight transfer instructions and two exchange
instructions. The CPU12 has a universal transfer/exchange instruction
that can be used to transfer or exchange data between any two CPU
registers. The operation is obvious when the two registers are the same
size, but some of the other combinations provide very useful results. For
example when an 8-bit register is transferred to a 16-bit register, a
sign-extend operation is performed. Other combinations can be used to
perform a zero-extend operation.

These instructions are used often in CPU12 assembly language
programs. Transfers can be used to make extra copies of data in another
register, and exchanges can be used to temporarily save data during a
call to a routine that expects data in a specific register. This is sometimes
faster and produces more compact object code than saving data to
memory with pushes or stores.
Reference Manual S12CPUV2

426 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
B.8.3 Loop Construct

The CPU12 instruction set includes a new family of six loop primitive
instructions. These instructions decrement, increment, or test a loop
count in a CPU register and then branch based on a zero or non-zero
test result. The CPU registers that can be used for the loop count are A,
B, D, X, Y, or SP. The branch range is a 9-bit signed value (–512 to
+511) which gives these instructions twice the range of a short branch
instruction.

B.8.4 Long Branches

All of the branch instructions from the M68HC11 are also available with
16-bit offsets which allows them to reach any location in the 64-Kbyte
address space.

B.8.5 Minimum and Maximum Instructions

Control programs often need to restrict data values within upper and
lower limits. The CPU12 facilitates this function with 8- and 16-bit
versions of MIN and MAX instructions. Each of these instructions has a
version that stores the result in either the accumulator or in memory.

For example, in a fuzzy logic inference program, rule evaluation consists
of a series of MIN and MAX operations. The min operation is used to
determine the smallest rule input (the running result is held in an
accumulator), and the max operation is used to store the largest rule
truth value (in an accumulator) or the previous fuzzy output value (in a
RAM location) to the fuzzy output in RAM. The following code
demonstrates how MIN and MAX instructions can be used to evaluate a
rule with four inputs and two outputs.

LDY #OUT1 ;Point at first output
LDX #IN1 ;Point at first input value
LDAA #$FF ;start with largest 8-bit number in A
MINA 1,X+ ;A=MIN(A,IN1)
MINA 1,X+ ;A=MIN(A,IN2)
MINA 1,X+ ;A=MIN(A,IN3)
MINA 1,X+ ;A=MIN(A,IN4) so A holds smallest input
MAXM 1,Y+ ;OUT1=MAX(A,OUT1) and A is unchanged
MAXM 1,Y+ ;OUT1=MAX(A,OUT2) A still has min input

Before this sequence is executed, the fuzzy outputs must be cleared to
zeros (not shown). M68HC11 MIN or MAX operations are performed by
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 427

M68HC11 to CPU12 Upgrade Path
executing a compare followed by a conditional branch around a load or
store operation.

These instructions can also be used to limit a data value prior to using it
as an input to a table lookup or other routine. Suppose a table is valid for
input values between $20 and $7F. An arbitrary input value can be
tested against these limits and be replaced by the largest legal value if it
is too big, or the smallest legal value if too small using the following two
CPU12 instructions.

HILIMIT FCB $7F ;comparison value needs to be in mem
LOWLIMIT FCB $20 ;so it can be referenced via indexed

MINA HILIMIT,PCR ;A=MIN(A,$7F)
MAXA LOWLIMIT,PCR ;A=MAX(A,$20)

;A now within the legal range $20 to $7F

The “,PCR” notation is also new for the CPU12. This notation indicates
the programmer wants an appropriate offset from the PC reference to
the memory location (HILIMIT or LOWLIMIT in this example), and then
to assemble this instruction into a PC-relative indexed MIN or MAX
instruction.

B.8.6 Fuzzy Logic Support

The CPU12 includes four instructions (MEM, REV, REVW, and WAV)
specifically designed to support fuzzy logic programs. These instructions
have a very small impact on the size of the CPU and even less impact
on the cost of a complete MCU. At the same time, these instructions
dramatically reduce the object code size and execution time for a fuzzy
logic inference program. A kernel written for the M68HC11 required
about 250 bytes and executed in about 750 milliseconds. The CPU12
kernel uses about 50 bytes and executes in about 16 microseconds (in
a 25-MHz HCS12).

B.8.7 Table Lookup and Interpolation

The CPU12 instruction set includes two instructions (TBL and ETBL) for
lookup and interpolation of compressed tables. Consecutive table
values are assumed to be the x coordinates of the endpoints of a line
segment. The TBL instruction uses 8-bit table entries (y-values) and
returns an 8-bit result. The ETBL instruction uses 16-bit table entries
(y-values) and returns a 16-bit result.
Reference Manual S12CPUV2

428 M68HC11 to CPU12 Upgrade Path MOTOROLA

M68HC11 to CPU12 Upgrade Path
An indexed addressing mode is used to identify the effective address of
the data point at the beginning of the line segment, and the data value
for the end point of the line segment is the next consecutive memory
location (byte for TBL and word for ETBL). In both cases, the B
accumulator represents the ratio of (the x-distance from the beginning of
the line segment to the lookup point) to (the x-distance from the
beginning of the line segment to the end of the line segment). B is treated
as an 8-bit binary fraction with radix point left of the MSB, so each line
segment is effectively divided into 256 pieces. During execution of the
TBL or ETBL instruction, the difference between the end point y-value
and the beginning point y-value (a signed byte for TBL or a signed word
for ETBL) is multiplied by the B accumulator to get an intermediate
delta-y term. The result is the y-value of the beginning point, plus this
signed intermediate delta-y value.

B.8.8 Extended Bit Manipulation

The M68HC11 CPU allows only direct or indexed addressing. This
typically causes the programmer to dedicate an index register to point at
some memory area such as the on-chip registers. The CPU12 allows all
bit manipulation instructions to work with direct, extended, or indexed
addressing modes.

B.8.9 Push and Pull D and CCR

The CPU12 includes instructions to push and pull the D accumulator and
the CCR. It is interesting to note that the order in which 8-bit
accumulators A and B are stacked for interrupts is the opposite of what
would be expected for the upper and lower bytes of the 16-bit D
accumulator. The order used originated in the M6800, an 8-bit
microprocessor developed long before anyone thought 16-bit
single-chip devices would be made. The interrupt stacking order for
accumulators A and B is retained for code compatibility.

B.8.10 Compare SP

This instruction was added to the CPU12 instruction set to improve
orthogonality and high-level language support. One of the most
important requirements for C high-level language support is the ability to
S12CPUV2 Reference Manual

MOTOROLA M68HC11 to CPU12 Upgrade Path 429

M68HC11 to CPU12 Upgrade Path
do arithmetic on the stack pointer for such things as allocating local
variable space on the stack. The LEAS –5,SP instruction is an example
of how the compiler could easily allocate five bytes on the stack for local
variables. LDX 5,SP+ loads X with the value on the bottom of the stack
and deallocates five bytes from the stack in a single operation that takes
only two bytes of object code.

B.8.11 Support for Memory Expansion

Bank switching is a common method of expanding memory beyond the
64-Kbyte limit of a CPU with a 64-Kbyte address space, but there are
some known difficulties associated with bank switching. One problem is
that interrupts cannot take place during the bank switching operation.
This increases worst case interrupt latency and requires extra
programming space and execution time.

Some HCS12 and M68HC12 variants include a built-in bank switching
scheme that eliminates many of the problems associated with external
switching logic. The CPU12 includes CALL and return-from-call (RTC)
instructions that manage the interface to the bank-switching system.
These instructions are analogous to the JSR and RTS instructions,
except that the bank page number is saved and restored automatically
during execution. Since the page change operation is part of an
uninterruptable instruction, many of the difficulties associated with bank
switching are eliminated. On HCS12 and M68HC12 derivatives with
expanded memory capability, bank numbers are specified by on-chip
control registers. Since the addresses of these control registers may not
be the same in all derivatives, the CPU12 has a dedicated control line to
the on-chip integration module that indicates when a memory-expansion
register is being read or written. This allows the CPU to access the
PPAGE register without knowing the register address.

The indexed indirect versions of the CALL instruction access the
address of the called routine and the destination page value indirectly.
For other addressing mode variations of the CALL instruction, the
destination page value is provided as immediate data in the instruction
object code. CALL and RTC execute correctly in the normal 64-Kbyte
address space, thus providing for portable code.
Reference Manual S12CPUV2

430 M68HC11 to CPU12 Upgrade Path MOTOROLA

Reference Manual — S12CPUV2

Appendix C. High-Level Language Support
C.1 Introduction

Many programmers are turning to high-level languages such as C as an
alternative to coding in native assembly languages. High-level language
(HLL) programming can improve productivity and produce code that is
more easily maintained than assembly language programs. The most
serious drawback to the use of HLL in MCUs has been the relatively
large size of programs written in HLL. Larger program ROM size
requirements translate into increased system costs.

Motorola solicited the cooperation of third-party software developers to
assure that the CPU12 instruction set would meet the needs of a more
efficient generation of compilers. Several features of the CPU12 were
specifically designed to improve the efficiency of compiled HLL, and thus
minimize cost.

This appendix identifies CPU12 instructions and addressing modes that
provide improved support for high-level language. C language examples
are provided to demonstrate how these features support efficient HLL
structures and concepts. Since the CPU12 instruction set is a superset
of the M68HC11 instruction set, some of the discussions use the
M68HC11 as a basis for comparison.

C.2 Data Types

The CPU12 supports the bit-sized data type with bit manipulation
instructions which are available in extended, direct, and indexed
variations. The char data type is a simple 8-bit value that is commonly
used to specify variables in a small microcontroller system because it
requires less memory space than a 16-bit integer (provided the variable
has a range small enough to fit into eight bits). The 16-bit CPU12 can
easily handle 16-bit integer types and the available set of conditional
branches (including long branches) allow branching based on signed or
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 431

High-Level Language Support
unsigned arithmetic results. Some of the higher math functions allow for
division and multiplication involving 32-bit values, although it is
somewhat less common to use such long values in a microcontroller
system.

The CPU12 has special sign extension instructions to allow easy
type-casting from smaller data types to larger ones, such as from char
to integer. This sign extension is automatically performed when an 8-bit
value is transferred to a 16-bit register.

C.3 Parameters and Variables

High-level languages make extensive use of the stack, both to pass
variables and for temporary and local storage. It follows that there should
be easy ways to push and pull each CPU register, stack pointer based
indexing should be allowed, and that direct arithmetic manipulation of
the stack pointer value should be allowed. The CPU12 instruction set
provided for all of these needs with improved indexed addressing, the
addition of an LEAS instruction, and the addition of push and pull
instructions for the D accumulator and the CCR.

C.3.1 Register Pushes and Pulls

The M68HC11 has push and pull instructions for A, B, X, and Y, but
requires separate 8-bit pushes and pulls of accumulators A and B to
stack or unstack the 16-bit D accumulator (the concatenated
combination of A:B). The PSHD and PULD instructions allow directly
stacking the D accumulator in the expected 16-bit order.

Adding PSHC and PULC improved orthogonality by completing the set
of stacking instructions so that any of the CPU registers can be pushed
or pulled. These instructions are also useful for preserving the CCR
value during a function call subroutine.
Reference Manual S12CPUV2

432 High-Level Language Support MOTOROLA

High-Level Language Support
C.3.2 Allocating and Deallocating Stack Space

The LEAS instruction can be used to allocate or deallocate space on the
stack for temporary variables:

LEAS –10,S ;Allocate space for 5 16-bit integers
LEAS 10,S ;Deallocate space for 5 16-bit ints

The (de)allocation can even be combined with a register push or pull as
in this example:

LDX 8,S+ ;Load return value and deallocate

X is loaded with the 16-bit integer value at the top of the stack, and the
stack pointer is adjusted up by eight to deallocate space for eight bytes
worth of temporary storage. Post-increment indexed addressing is
used in this example, but all four combinations of pre/post
increment/decrement are available (offsets from –8 to +8 inclusive, from
X, Y, or SP). This form of indexing can often be used to get an index
(or stack pointer) adjustment for free during an indexed operation (the
instruction requires no more code space or cycles than a zero-offset
indexed instruction).

C.3.3 Frame Pointer

In the C language, it is common to have a frame pointer in addition to the
CPU stack pointer. The frame is an area of memory within the system
stack which is used for parameters and local storage of variables used
within a function subroutine. The following is a description of how a
frame pointer can be set up and used.

First, parameters (typically values in CPU registers) are pushed onto the
system stack prior to using a JSR or CALL to get to the function
subroutine. At the beginning of the called subroutine, the frame pointer
of the calling program is pushed onto the stack. Typically, an index
register, such as X, is used as the frame pointer, so a PSHX instruction
would save the frame pointer from the calling program.

Next, the called subroutine establishes a new frame pointer by executing
a TFR S,X. Space is allocated for local variables by executing an
LEAS –n,S, where n is the number of bytes needed for local variables.

Notice that parameters are at positive offsets from the frame pointer
while locals are at negative offsets. In the M68HC11, the indexed
addressing mode uses only positive offsets, so the frame pointer always
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 433

High-Level Language Support
points to the lowest address of any parameter or local. After the function
subroutine finishes, calculations are required to restore the stack pointer
to the mid-frame position between the locals and the parameters before
returning to the calling program. The CPU12 only requires execution of
TFR X,S to deallocate the local storage and return.

The concept of a frame pointer is supported in the CPU12 through a
combination of improved indexed addressing, universal
transfer/exchange, and the LEA instruction. These instructions work
together to achieve more efficient handling of frame pointers. It is
important to consider the complete instruction set as a complex system
with subtle interrelationships rather than simply examining individual
instructions when trying to improve an instruction set. Adding or
removing a single instruction can have unexpected consequences.

C.4 Increment and Decrement Operators

In C, the notation + + i or i – – is often used to form loop counters. Within
limited constraints, the CPU12 loop primitives can be used to speed up
the loop count and branch function.

The CPU12 includes a set of six basic loop control instructions which
decrement, increment, or test a loop count register, and then branch if it
is either equal to zero or not equal to zero. The loop count register can
be A, B, D, X, Y, or SP. A or B could be used if the loop count fits in an
8-bit char variable; the other choices are all 16-bit registers. The relative
offset for the loop branch is a 9-bit signed value, so these instructions
can be used with loops as long as 256 bytes.

In some cases, the pre- or post-increment operation can be combined
with an indexed instruction to eliminate the cost of the increment
operation. This is typically done by post-compile optimization because
the indexed instruction that could absorb the increment/decrement
operation may not be apparent at compile time.

C.5 Higher Math Functions

In the CPU12, subtle characteristics of higher math operations such as
IDIVS and EMUL are arranged so a compiler can handle inputs and
outputs more efficiently.
Reference Manual S12CPUV2

434 High-Level Language Support MOTOROLA

High-Level Language Support
The most apparent case is the IDIVS instruction, which divides two
16-bit signed numbers to produce a 16-bit result. While the same
function can be accomplished with the EDIVS instruction (a 32 by 16
divide), doing so is much less efficient because extra steps are required
to prepare inputs to the EDIVS, and because EDIVS uses the Y index
register. EDIVS uses a 32-bit signed numerator and the C compiler
would typically want to use a 16-bit value (the size of an integer data
type). The 16-bit C value would need to be sign-extended into the upper
16 bits of the 32-bit EDIVS numerator before the divide operation.

Operand size is also a potential problem in the extended multiply
operations but the difficulty can be minimized by putting the results in
CPU registers. Having higher precision math instructions is not
necessarily a requirement for supporting high-level language because
these functions can be performed as library functions. However, if an
application requires these functions, the code is much more efficient if
the MCU can use native instructions instead of relatively large, slow
routines.

C.6 Conditional If Constructs

In the CPU12 instruction set, most arithmetic and data manipulation
instructions automatically update the condition code register, unlike
other architectures that only change condition codes during a few
specific compare instructions. The CPU12 includes branch instructions
that perform conditional branching based on the state of the indicators in
the condition codes register. Short branches use a single byte relative
offset that allows branching to a destination within about ±128 locations
from the branch. Long branches use a 16-bit relative offset that allows
conditional branching to any location in the 64-Kbyte map.

C.7 Case and Switch Statements

Case and switch statements (and computed GOTOs) can use
PC-relative indirect addressing to determine which path to take.
Depending upon the situation, cases can use either the constant offset
variation or the accumulator D offset variation of indirect indexed
addressing.
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 435

High-Level Language Support
C.8 Pointers

The CPU12 supports pointers by allowing direct arithmetic operations on
the 16-bit index registers (LEAS, LEAX, and LEAY instructions) and by
allowing indexed indirect addressing modes.

C.9 Function Calls

Bank switching is a fairly common way of adapting a CPU with a 16-bit
address bus to accommodate more than 64 Kbytes of program memory
space. One of the most significant drawbacks of this technique has been
the requirement to mask (disable) interrupts while the bank page value
was being changed. Another problem is that the physical location of the
bank page register can change from one MCU derivative to another (or
even due to a change to mapping controls by a user program). In these
situations, an operating system program has to keep track of the
physical location of the page register. The CPU12 addresses both of
these problems with the uninterruptible CALL and return-from-call (RTC)
instructions.

The CALL instruction is similar to a JSR instruction, except that the
programmer supplies a destination page value as part of the instruction.
When CALL executes, the old page value is saved on the stack and the
new page value is written to the bank page register. Since the CALL
instruction is uninterruptible, this eliminates the need to separately mask
off interrupts during the context switch.

The CPU12 has dedicated signal lines that allow the CPU to access the
bank page register without having to use an address in the normal
64-Kbyte address space. This eliminates the need for the program to
know where the page register is physically located.

The RTC instruction is similar to the RTS instruction, except that RTC
uses the byte of information that was saved on the stack by the
corresponding CALL instruction to restore the bank page register to its
old value. Although a CALL/RTC pair can be used to access any function
subroutine regardless of the location of the called routine (on the current
bank page or a different page), it is most efficient to access some
subroutines with JSR/RTS instructions when the called subroutine is on
the current page or in an area of memory that is always visible in the
64-Kbyte map regardless of the bank page selection.
Reference Manual S12CPUV2

436 High-Level Language Support MOTOROLA

High-Level Language Support
Push and pull instructions can be used to stack some or all the CPU
registers during a function call. The CPU12 can push and pull any of the
CPU registers A, B, CCR, D, X, Y, or SP.

C.10 Instruction Set Orthogonality

One helpful aspect of the CPU12 instruction set, orthogonality, is difficult
to quantify in terms of direct benefit to an HLL compiler. Orthogonality
refers to the regularity of the instruction set. A completely orthogonal
instruction set would allow any instruction to operate in any addressing
mode, would have identical code sizes and execution times for similar
operations on different registers, and would include both signed and
unsigned versions of all mathematical instructions. Greater regularity of
the instruction set makes it possible to implement compilers more
efficiently, because operation is more consistent, and fewer special
cases must be handled.
S12CPUV2 Reference Manual

MOTOROLA High-Level Language Support 437

High-Level Language Support
Reference Manual S12CPUV2

438 High-Level Language Support MOTOROLA

Reference Manual — S12CPUV2

Index
104
0
105
106

 . 26
5
5
5
107
108
109
110
111
. 63
. 23
. 33
. . 36
 . 37
 . 35

 . 35
 . 37
112
113
114
119
115
116
117
118
119
A

ABA instruction .
Abbreviations for system resources . 2
ABX instruction .
ABY instruction .
Access details . 98–103, 385
Accumulator offset indexed addressing mode . 45
Accumulator offset indexed indirect addressing mode 44
Accumulators .

A . 2, 39
B . 2, 39
D . 2, 39

ADCA instruction .
ADCB instruction .
ADDA instruction .
ADDB instruction .
ADDD instruction .
Addition instructions.
ADDR mnemonic .
Addressing modes .

Direct .
Extended .
Immediate .
Indexed . 26, 38
Inherent .
Relative .

ANDA instruction .
ANDB instruction .
ANDCC instruction .
Arithmetic shift .
ASL instruction .
ASLA instruction .
ASLB instruction .
ASLD instruction. .
ASR instruction .
S12CPUV2 Reference Manual

MOTOROLA Index 439

Index

120
121
. . 23
 . 43

90

122

123
124
125
126

128
129
130

47

131
132

133
134
135
136
137
138
67

139
140
ASRA instruction .
ASRB instruction .
Asserted.
Auto increment .

B

Background debug mode .
Instruction . 90, 127

Base index register . 41–45
BCC instruction. .
BCD instructions. 64, 165
BCLR instruction .
BCS instruction .
BEQ instruction. .
BGE instruction. .
BGND instruction . 90, 127
BGT instruction .
BHI instruction .
BHS instruction .
Binary-coded decimal instructions. 64, 165
Bit manipulation instructions.70, 123, 144, 429, 431

Mask operand .47, 123, 141, 143, 144
Multiple addressing modes .

Bit test instructions . 70, 80, 131, 132, 141, 143
BITA instruction .
BITB instruction .
Bit-condition branches . 80, 141, 143
BLE instruction .
BLO instruction .
BLS instruction .
BLT instruction .
BMI instruction .
BNE instruction .
Boolean logic instructions .

AND . 112, 113, 114
Complement . 158, 159, 160
Exclusive OR . 183, 184
Inclusive OR . 247, 248, 249
Negate . 243, 244, 245

BPL instruction .
BRA instruction .
Branch instructions .37, 55–57, 77, 435
Reference Manual S12CPUV2

440 Index MOTOROLA

Index

. . 38

141
142
143
144

 . 98
413
146
147

. 32
57

 . 115

435
149

150
. 68
152
. . 23
151
319
152
Bit-condition .57, 80, 141, 143
Long .56, 57, 79, 427
Loop primitive . 57, 81, 406
Offset values .78, 79, 80, 81
Offsets .
Short . 56, 57, 78
Signed . 77–79
Simple . 77–79
Subroutine . 82, 145
Summary of complementary branches 122, 200
Taken/not-taken cases . 56, 103
Unary . 77–79
Unsigned . 77–79

Branch offset . 37–38
BRCLR instruction .
BRN instruction. .
BRSET instruction .
BSET instruction. .
BSR instruction . 54, 145
Bus cycles .
Bus structure .
BVC instruction .
BVS instruction .
Byte moves . 62, 240
Byte order in memory .
Byte-sized instructions .

C

C .
C status bit .31, 71, 122, 124
CALL instruction . 48–??, 54, 82, 148, 430, 436
Case statements .
CBA instruction .
CCR (see Condition codes register)
Changes in execution flow . 53–58
CLC instruction .
Clear instructions .
Clear memory .
Cleared .
CLI instruction .
Clock monitor reset .
CLR instruction .
S12CPUV2 Reference Manual

MOTOROLA Index 441

Index

153
154
155
156
157
. 422
158
159
160
. 66
68

 . 30

 . 31

2

. 319
161
162
163
164

421

165
. 23
CLRA instruction .
CLRB instruction .
CLV instruction .
CMPA instruction .
CMPB instruction .
Code size.
COM instruction .
COMA instruction .
COMB instruction .
Compare instructions.
Complement instructions .
Computer operating properly (COP) watchdog 319
Condition codes instructions . . 88, 114, 249, 252, 258, 295, 301, 411, 429
Condition codes register . 25, 27–31

C status bit .31, 71, 122, 124
H status bit . 29, 165
I mask bit . 30, 114, 151, 280, 310, 317, 320
Manipulation .88, 114, 249, 280
N status bit .
S control bit . 28, 286
V status bit. .
X mask bit 29, 186, 258, 274, 286, 295, 300, 310, 317, 319, 320
Z status bit . 30, 125, 138

Conditional 16-bit read cycle . 102, 385
Conditional 8-bit read cycle . 102, 385
Conditional 8-bit write cycle . 102, 385
Conserving power . 89, 286, 310
Constant indirect indexed addressing mode . 4
Constant offset indexed addressing mode. 41, 42
COP reset .
CPD instruction. .
CPS instruction .
CPX instruction .
CPY instruction .
Cycle code letters. 98, 385
Cycle counts .
Cycle-by-cycle operation. 98, 385

D

DAA instruction .
DATA mnemonic .
Data types . 31, 431
Reference Manual S12CPUV2

442 Index MOTOROLA

Index

168
169
170
65

171
172
173
36

187

174
175

177

180
181
182

183
184

 . 32

319

19
. 316
323
DBEQ instruction . 166, 406
DBNE instruction . 167, 406
DEC instruction. .
DECA instruction .
DECB instruction .
Decrement instructions .
Defuzzification . 348, 368–371
DES instruction .
DEX instruction .
DEY instruction .
Direct addressing mode .
Division instructions . 69, 434

16-bit fractional .
16-bit integer . 190, 191
32-bit extended . 174, 175

Double accumulator . 25, 26

E

EDIV instruction .
EDIVS instruction .
Effective address 33, 39, 87, 224, 225, 226, 423, 432–434
EMACS instruction . 76, 176
EMAXD instruction .
EMAXM instruction . 178, 342
EMIND instruction . 179, 341
EMINM instruction .
EMUL instruction .
EMULS instruction .
Enabling maskable interrupts . 30, 151
EORA instruction .
EORB instruction .
ETBL instruction . 76, 185, 342
Even bytes. .
Exceptions . 54, 315

Interrupts .
Maskable interrupts . 320, 321
Non-maskable interrupts . 3
Priority .
Processing flow .
Resets . 315, 318–319
Software interrupts . 83, 293, 322
Unimplemented opcode trap . 315, 317, 322
S12CPUV2 Reference Manual

MOTOROLA Index 443

Index

05
. 98
 . 98
186

. 48

. 48

37
. 69
 . 39
321
27
32
4
29
5
7
29
318

. 421

74

. 377
Vectors . 315, 323
Exchange instructions .61, 186, 423, 426

Postbyte encoding . 4
Execution cycles.
Execution time .
EXG instruction. .
Expanded memory .48, 54, 430, 436

Bank switching .
Instructions .48, 82, 148, 273
Page registers.
Subroutines . 82, 436

Extended addressing mode .
Extended division .
Extension byte .
External interrupts .
External queue reconstruction . 3

HCS12 queue reconstruction . 3
HCS12 reconstruction algorithm . 33
HCS12 timing detail . 3
M68HC12 queue reconstruction . 33
M68HC12 reconstruction algorithm. 33
M68HC12 timing detail . 3

External reset .

F

Fast math.
f-cycle (free cycle) . 98, 385
FDIV instruction . 69, 187
Fractional division . 69, 187
Frame pointer . 433, 434
Free cycle . 98, 385
Fuzzy logic . 341–379

Antecedents . 346, 377
Consequents . 347, 377
Custom programming . 3
Defuzzification .73, 348, 368–373
Fuzzification . 72, 344, 374
Inference kernel . 343, 349
Inputs .
Instructions 72, 73, 237, 262–266, 311, 341, 351–373, 428
Interrupts . 365, 369–371
Knowledge base . 343, 347, 377
Reference Manual S12CPUV2

444 Index MOTOROLA

Index

. 343

25

17

35
36
431
434

190

35
192
193
194
65

85
Membership functions 72, 237, 342, 343, 344, 351–356, 374–376
Outputs . 73, 377
Rule evaluation 72, 262–266, 346, 357–368, 377
Rules . 344, 346, 377
Sets .
Tabular membership functions. 76, 374
Weighted average . 73, 311, 341, 348, 368–373

G

g-cycle (read PPAGE) . 99, 385
General purpose accumulators .
Global interrupt mask . 30, 317

H

H status bit . 29, 165
Highest priority interrupt . 3
High-level language . 431–437

Addressing modes . 431, 433, 435
Condition codes register . 4
Expanded memory . 4
Instructions .
Loop primitives .
Stack . 432, 433

I

I mask bit .30, 114, 151, 280, 317
IBEQ instruction . 188, 406
IBNE instruction . 189, 406
I-cycle (16-bit read indirect) . 99, 385
i-cycle (8-bit read indirect) . 99, 385
IDIV instruction .
IDIVS instruction. 191, 434
Immediate addressing mode .
INC instruction .
INCA instruction .
INCB instruction .
Increment instructions .
Index calculation instructions . 87, 423
Index manipulation instructions .
Index registers .25, 85, 87, 433
S12CPUV2 Reference Manual

MOTOROLA Index 445

Index

42
42
41
41
45
44
3

. 39

 . 40

49
35
195

. . 52

. 52
327

. 83

321

320

321
PC (as an index register) .27, 40, 41, 98
SP (as an index register) .26, 40, 41, 98
X . 26, 40, 98
Y . 26, 40, 98

Indexed addressing modes 26, 38–47, 403, 417–420
16-bit constant indirect .
16-bit constant offset .
5-bit constant offset .
9-bit constant offset .
Accumulator direct .
Accumulator offset .
Auto increment/decrement indexing . 4
Base index register . 41–45
Extension byte .
Limitations for BIT and MOV instructions 123, 141, 143, 144, 240, 241
Postbyte .
Postbyte encoding . 39, 403

Inference kernel, fuzzy logic . 3
Inherent addressing mode .
INS instruction .
Instruction pipe, see Instruction queue
Instruction queue .32, 51, 327, 414

Buffer .
Data movement .
Debugging .
Reconstruction . 327–338
Stages . 52, 327
Status registers. 333, 334, 336
Status signals . 52, 328–338

Instruction set . 59, 91, 387
Integer division . 69, 190–191
Interrupt instructions .
Interrupts . 319–324

Enabling and disabling .29, 30, 151, 280, 320
External .
I mask bit .30, 151, 280, 321
Instructions . 83, 84, 151, 274, 280, 293, 302
Low-power stop . 89, 286
Maskable . 30, 320
Non-maskable. .29, 315–317, 319, 320
Recognition .
Return .29, 30, 84, 274, 321
Service routines .
Reference Manual S12CPUV2

446 Index MOTOROLA

Index

196
197

343

. . 95
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
Software. 83, 293, 322
Stacking order. 321, 382
Vectors . 315, 322, 323
Wait instruction . 89, 310
X mask bit .29, 286, 310, 321

INX instruction .
INY instruction .

J

JMP instruction . 58, 198
JSR instruction . 54, 199
Jump instructions . 58, 82

K

Knowledge base .

L

Label.
LBCC instruction .
LBCS instruction. .
LBEQ instruction .
LBGE instruction .
LBGT instruction. .
LBHI instruction .
LBHS instruction. .
LBLE instruction .
LBLO instruction .
LBLS instruction .
LBLT instruction .
LBMI instruction .
LBNE instruction. .
LBPL instruction .
LBRA instruction. .
LBRN instruction .
LBVC instruction. .
LBVS instruction .
LDAA instruction. .
LDAB instruction. .
LDD instruction .
LDS instruction .
S12CPUV2 Reference Manual

MOTOROLA Index 447

Index

222
223

. 23

. 23

 . 95
. 95
. 60
 . 23
 . 23

. 81
06

228
229
230
231
232
233
234

0

235

1

239
LDX instruction .
LDY instruction .
LEAS instruction . 224, 433, 436
Least significant byte .
Least significant word .
LEAX instruction . 225, 436
LEAY instruction . 226, 436
Legal label .
Literal expression .
Load instructions .
Logic level one .
Logic level zero. .
Loop primitive instructions .57, 81, 406, 427, 434

Offset values .
Postbyte encoding . 4

Low-power stop . 89, 286
LSL instruction . 71, 227
LSLA instruction .
LSLB instruction .
LSLD instruction .
LSR instruction .
LSRA instruction. .
LSRB instruction. .
LSRD instruction .

M

M68HC11 compatibility . 33, 409–430
M68HC11 instruction mnemonics . 41
Maskable interrupts . 30, 320
MAXA instruction .
Maximum instructions . 75, 427

16-bit . 177, 178
8-bit. 235, 236

MAXM instruction . 236, 341
MEM instruction .72, 237, 341, 351–356
Membership functions . 343, 351–356
Memory and addressing symbols . 2
MINA instruction . 238, 341
Minimum instructions . 75, 427

16-bit . 179, 180
8-bit. 238, 239

MINM instruction .
Reference Manual S12CPUV2

448 Index MOTOROLA

Index

. . 92

. 23

. 23
240

 . 45
45
45
45
. . 45
241
242

47
. 45
69

. 242

 . 30

243
244
. 68
. . 23
. 31
245

93
98
21
 . 94

. 95
. 20
Misaligned instructions . 56, 57
Mnemonic .
Most significant byte .
Most significant word .
MOVB instruction .
Move instructions .62, 240, 241, 423, 426

Destination .
Multiple addressing modes .
PC relative addressing .
Reference index register .
Source .

MOVW instruction .
MUL instruction. .
Multiple addressing modes

Bit manipulation instructions. .
Move instructions .

Multiplication instructions .
16-bit . 181, 182
8-bit.

Multiply and accumulate instructions 76, 176, 311, 378

N

N status bit .
n-cycle (write PPAGE). 99, 385
NEG instruction .
NEGA instruction .
Negate instructions .
Negated .
Negative integers .
NEGB instruction .
Non-maskable interrupts . 29, 317, 319
NOP instruction . 90, 246
Notation

Branch taken/not taken . 103, 385
Changes in CCR bits .
Cycle-by-cycle operation. .
Memory and addressing .
Object code .
Operators. 22, 383
Source forms.
System resources .

Null operation instruction . 90, 246
S12CPUV2 Reference Manual

MOTOROLA Index 449

Index

. 94

. . 32

8

247
248
249
437

. . 32

. 436

0

06

3
3

318

3
3
316

17
Numeric range of branch offsets . 38, 78–81

O

Object code notation .
O-cycle (optional program word fetch) 56, 100, 385
Odd bytes .
Offset

Branch . 37–38
Index. 3–42

Opcode map . 401–402
Operators. 22, 383
Optional cycles .56, 57, 100, 385
ORAA instruction .
ORAB instruction .
ORCC instruction .
Orthogonality. .

P

Page 2 prebyte . 56, 100, 402
P-cycle (program word fetch) . 100, 385
Pipeline .
Pointer calculation instructions .87, 224, 225, 226
Pointers .
Postbyte encoding

Exchange instructions . 186, 405
Indexed addressing instructions . 4
Indexed addressing modes . 40, 403
Loop primitive instructions . 4
Transfer instructions . 282, 300, 405

Post-decrement indexed addressing mode . 4
Post-increment indexed addressing mode. 4
Power conservation . 89, 286, 310
Power-on reset .
Prebyte. 56, 100, 402
Pre-decrement indexed addressing mode . 4
Pre-increment indexed addressing mode . 4
Priority, exception. .
Program counter. .25, 27, 39, 127
Program word access cycle . 100, 385
Programming model . 19, 25, 413
Pseudo-non-maskable interrupt. 3
Reference Manual S12CPUV2

450 Index MOTOROLA

Index

250
251
252

254
255
256
257

437
260
261
437

27
32
4
29
5
7
29

. 95
37
 . 37

319
. 319
318
318
273
PSHA instruction .
PSHB instruction .
PSHC instruction .
PSHD instruction . 253, 432
PSHX instruction .
PSHY instruction .
PULA instruction. .
PULB instruction. .
PULC instruction . 258, 432
PULD instruction . 259, 432
Pull instructions .
PULX instruction. .
PULY instruction. .
Push instructions .

Q

Queue reconstruction . 3
HCS12 queue reconstruction . 3
HCS12 reconstruction algorithm . 33
HCS12 timing detail . 3
M68HC12 queue reconstruction . 33
M68HC12 reconstruction algorithm. 33
M68HC12 timing detail . 3

R

R-cycle (16-bit data read) . 101, 385
r-cycle (8-bit data read) . 100, 385
Read 16-bit data cycle. 101, 385
Read 8-bit data cycle . 100, 385
Read indirect pointer cycle . 99, 385
Read indirect PPAGE value cycle . 99, 385
Read PPAGE cycle . 99, 385
Register designators .
Relative addressing mode .
Relative offset .
Resets . 315, 318

Clock monitor .
COP .
External .
Power-on .

Return from call .
S12CPUV2 Reference Manual

MOTOROLA Index 451

Index

274
75

267
268
269
270
271
272
. 71

276
277
278

279
280
315
 . . 23
144
281

. 71
119

 . 31
. 69

293

. 95
283
284
Return from interrupt .
Return from subroutine . 2
REV instruction 72, 262–263, 341, 346, 357–362, 377
REVW instruction 72, 264–266, 341, 346, 363–368, 377
ROL instruction .
ROLA instruction .
ROLB instruction .
ROR instruction .
RORA instruction .
RORB instruction .
Rotate instructions .
RTC instruction . 48, 54, 82, 273, 430, 436
RTI instruction. .30, 84, 274, 321
RTS instruction . 55, 275

S

S control bit . 28, 286
SBA instruction .
SBCA instruction .
SBCB instruction .
S-cycle (16-bit stack write) . 101, 385
s-cycle (8-bit stack write) . 101, 385
SEC instruction .
SEI instruction. .
Service routine .
Set .
Setting memory bits .
SEV instruction .
SEX instruction . 61, 282
Shift instructions .

Arithmetic. .
Sign extension instruction . 61, 282, 432
Signed branches . 77–79
Signed integers. .
Signed multiplication .
Simple branches. 77–79
Software interrupts .
Source code compatibility . 19, 410
Source form notation .
STAA instruction. .
STAB instruction. .
Stack . 26, 415, 416
Reference Manual S12CPUV2

452 Index MOTOROLA

Index

86

 . 86

32
285
286

. 60
287
288
289
290
291
292
82

63

435

294

295
296
Stack 16-bit data cycle . 101, 385
Stack 8-bit data cycle . 101, 385
Stack operation instructions .
Stack pointer .25, 26, 39, 432

Compatibility with HC11 . 415–416
Initialization . 26, 416
Manipulation .
Stacking order. 321, 382

Stack pointer instructions . 86, 429, 432
Standard CPU12 address space .
STD instruction .
STOP continue .
STOP disable . 28, 286
STOP instruction . 28, 89, 286
Store instructions .
STS instruction .
STX instruction .
STY instruction .
SUBA instruction .
SUBB instruction .
SUBD instruction .
Subroutine instructions .
Subroutines . 54, 436

Expanded memory .54, 82, 148, 273, 436
Instructions .82, 145, 148, 199, 436
Return . 273, 275

Subtraction instructions .
SWI instruction . 83, 293, 322
Switch statements .
Symbols and notation . 20, 383

T

TAB instruction .
Table interpolation instructions .76, 185, 298, 428
Tabular membership functions. 374–376
TAP instruction .
TBA instruction .
TBEQ instruction . 297, 406
TBL instruction .76, 298, 342, 374–375
TBNE instruction . 299, 406
T-cycle (16-bit conditional read) . 102, 385
t-cycle (8-bit conditional read) . 102, 385
S12CPUV2 Reference Manual

MOTOROLA Index 453

Index

. 66
300
301

05

303
304
305
306
307
31
308

63
90
64
70
. 67
. . 77
8

. 66
. 88
65
 . 72
85

82
. 60
. 81
75
. . 62
69
76
87
. 71
. 61
 . 86
. 89
. 76
61
Termination of interrupt service routines 84, 274, 321
Termination of subroutines . 273, 275
Test instructions .
TFR instruction .
TPA instruction .
Transfer instructions . 61, 423, 426

Postbyte encoding . 4
TRAP instruction .84, 302, 322, 402
TST instruction .
TSTA instruction .
TSTB instruction .
TSX instruction .
TSY instruction .
Twos-complement form. .
TXS instruction .
Types of instructions

Addition and Subtraction .
Background and null .
Binary-coded decimal .
Bit test and manipulation. .
Boolean logic .
Branch .
Clear, complement, and negate. 6
Compare and test.
Condition code .
Decrement and increment .
Fuzzy logic .
Index manipulation .
Interrupt . 83–84
Jump and subroutine .
Load and store .
Loop primitives .
Maximum and minimum .
Move.
Multiplication and division .
Multiply and accumulate .
Pointer and index calculation .
Shift and rotate .
Sign extension .
Stacking .
Stop and wait .
Table interpolation .
Transfer and exchange .
Reference Manual S12CPUV2

454 Index MOTOROLA

Index

309

69

. 319

. 372
373

. 372
373

311
TYS instruction .

U

U-cycle (16-bit stack read) . 102, 385
u-cycle (8-bit stack read). 101, 385
Unary branches . 77–79
Unimplemented opcode trap 84, 302, 315, 317, 402
Unsigned branches . 77–79
Unsigned multiplication .
Unstack 16-bit data cycle . 102, 385
Unstack 8-bit data cycle . 101, 385
Unweighted rule evaluation 262–263, 346, 357–362, 377

V

V status bit. 31, 88
V-cycle (vector fetch) . 102, 385
Vector fetch cycle . 102, 385
Vectors, exception . 315, 323

W

WAI instruction . 89, 310
Wait instruction . 89, 310
Watchdog .
WAV instruction . 73, 311, 341, 348, 368–371

HCS12 .
M68HC12 .

wavr pseudo-instruction . 369–371
HCS12 .
M68HC12 .

W-cycle (16-bit data write) . 101, 385
w-cycle (8-bit data write) . 101, 385
Weighted average .
Weighted rule evaluation 264–266, 346, 357–359, 363–368, 377
Word moves . 62, 241
Write 16-bit data cycle . 101, 385
Write 8-bit data cycle . 101, 385
Write PPAGE cycle . 99, 385
S12CPUV2 Reference Manual

MOTOROLA Index 455

Index

312
313

36
X

X mask bit . 29, 186, 258, 274, 286, 295, 300, 310
x-cycle (8-bit conditional write). 102, 385
XGDX instruction .
XGDY instruction .

Z

Z status bit . 30, 125, 138
Zero-page addressing .
Reference Manual S12CPUV2

456 Index MOTOROLA

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

S12CPUV2/D
Rev. 0
7/2003

Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

DOCUMENT NUMBER
S12CRGV4/D
CRG

Block User Guide

V04.05

Original Release Date: 29 Feb. 2000
Revised: 2 August 2002

Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

CRG Block User Guide — V04.05
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

1.0 02/16/00 02/16/00 Initial Release

2.0 11/09/00 10/18/00 Initial SRS2.0 compliant release

2.01 03/03/01 03/03/01 Added RSBCK bit.

2.02 03/22/01 Make the content SRS compliant (usable as a customer document)

3.00
10 May
2001

10 May
2001

Modified according to new Pierce Oscillator feature and different
PLLSEL bit write conditions

3.01 13 July 01 13 July 01 Minor corrections

3.02 30 July 01 30 July 01
Enhanced Block diagram (VREG, POR), Corrected register figure
CRGINT to read and write

V03.03 2 Aug. 01 2 Aug. 01
Enhanced Clock Quality Check Diagram. Corrections in Reset
section

V03.04 27 Aug. 01 27 Aug. 01
Improved description of exiting Wait and Pseudo Stop Mode.
Enhanced SCME Bit description.

V03.05 5 Sept. 01 5 Sept. 01 Corrected CDC position in Colpitts Oscillator Connections diagram.

V03.06 1 Oct. 01 1 Oct. 01 Motorola internal: spec tagging

V04.00 10 Oct. 01 10 Oct. 01 Added Low Voltage Reset feature

V04.01 21 Nov. 01 21 Nov. 01
Added Interrupts to Block Diagram. Corrected LVRF flag
description.

V04.02 22 Nov. 01 22 Nov. 01 Re-Corrected LVRF flag description.

V04.03 11 Mar 02 11 Mar 02

Removed document number from all pages except cover page
Replaced fVCOMIN by fSCM.
Added Bus Clock formulas close to PLLCLK formulas.
Spelling improvements

V04.04 03 May 02 03 May 02
Corrected in COPCTL register description: RSBCK is write once
EXTAL signal description: mentioning pull-down resistor which is
active in full stop mode

V04.05 2 Aug.02 2 Aug. 02
Removed oscillator specific information as separate Oscillator
Block Guide is available now.
2

CRG Block User Guide — V04.05
Table of Contents

Section 1 Introduction

1.1 Overview. .9

1.2 Features .9

1.3 Modes of Operation .9

1.4 Block Diagram .10

Section 2 Signal Description

2.1 Overview. .13

2.2 Detailed Signal Descriptions. .13

2.2.1 VDDPLL, VSSPLL .13

2.2.2 XFC .13

2.2.3 RESET .13

Section 3 Memory Map and Registers

3.1 Overview. .15

3.2 Module Memory Map .15

3.3 Register Descriptions .15

3.3.1 CRG Synthesizer Register (SYNR) .15

3.3.2 CRG Reference Divider Register (REFDV) .16

3.3.3 Reserved Register (CTFLG) .17

3.3.4 CRG Flags Register (CRGFLG). .17

3.3.5 CRG Interrupt Enable Register (CRGINT) .19

3.3.6 CRG Clock Select Register (CLKSEL). .19

3.3.7 CRG PLL Control Register (PLLCTL) .21

3.3.8 CRG RTI Control Register (RTICTL) .23

3.3.9 CRG COP Control Register (COPCTL) .24

3.3.10 Reserved Register (FORBYP) .25

3.3.11 Reserved Register (CTCTL) .26

3.3.12 CRG COP Timer Arm/Reset Register (ARMCOP). .26

Section 4 Functional Description

4.1 Functional Blocks .29

4.1.1 Phase Locked Loop (PLL) .29
3

CRG Block User Guide — V04.05
4.1.2 System Clocks Generator .32

4.1.3 Clock Monitor (CM) .33

4.1.4 Clock Quality Checker .33

4.1.5 Computer Operating Properly Watchdog (COP) .35

4.1.6 Real Time Interrupt (RTI) .36

4.2 Operation Modes .37

4.2.1 Normal Mode .37

4.2.2 Self Clock Mode .37

4.3 Low Power Options .37

4.3.1 Run Mode. .37

4.3.2 Wait Mode .37

4.3.3 CPU Stop Mode .42

Section 5 Resets

5.1 General. .47

5.2 Description of Reset Operation .47

5.2.1 Clock Monitor Reset. .48

5.2.2 Computer Operating Properly Watchdog (COP) Reset .49

5.2.3 Power On Reset, Low Voltage Reset. .49

Section 6 Interrupts

6.1 General. .51

6.2 Description of Interrupt Operation .51

6.2.1 Real Time Interrupt .51

6.2.2 PLL Lock Interrupt .51

6.2.3 Self Clock Mode Interrupt. .51
4

CRG Block User Guide — V04.05
List of Figures

Figure 1-1 Block diagram of CRG. .11

Figure 2-1 PLL Loop Filter Connections .13

Figure 3-1 CRG Synthesizer Register (SYNR) .16

Figure 3-2 CRG Reference Divider Register (REFDV) .16

Figure 3-3 Reserved Register (CTFLG) .17

Figure 3-4 CRG Flags Register (CRGFLG) .17

Figure 3-5 CRG Interrupt Enable Register (CRGINT). .19

Figure 3-6 CRG Clock Select Register (CLKSEL) .19

Figure 3-7 CRG PLL Control Register (PLLCTL) .21

Figure 3-8 CRG RTI Control Register (RTICTL) .23

Figure 3-9 CRG COP Control Register (COPCTL) .24

Figure 3-10 Reserved Register (FORBYP). .26

Figure 3-11 Reserved Register (CTCTL) .26

Figure 3-12 ARMCOP Register Diagram .27

Figure 4-1 PLL Functional Diagram .29

Figure 4-2 System Clocks Generator .32

Figure 4-3 Core Clock and Bus Clock relationship .33

Figure 4-4 Check Window Example .34

Figure 4-5 Sequence for Clock Quality Check .34

Figure 4-6 Clock Chain for COP .35

Figure 4-7 Clock Chain for RTI .36

Figure 4-8 Wait Mode Entry/Exit Sequence .39

Figure 4-9 Stop Mode Entry/Exit Sequence .43

Figure 5-1 RESET Timing .48

Figure 5-2 RESET pin tied to VDD (by a pull-up resistor). .49

Figure 5-3 RESET pin held low externally .50
5

CRG Block User Guide — V04.05
6

CRG Block User Guide — V04.05
List of Tables

Table 3-1 CRG Memory Map. .15

Table 3-2 RTI Frequency Divide Rates .23

Table 3-3 COP Watchdog Rates .25

Table 4-1 MCU configuration during Wait Mode .38

Table 4-2 Outcome of Clock Loss in Wait Mode .40

Table 4-3 Outcome of Clock Loss in Pseudo-Stop Mode .44

Table 5-1 Reset Summary .47

Table 5-2 Reset Vector Selection .47

Table 6-1 CRG Interrupt Vectors .51
7

CRG Block User Guide — V04.05
8

CRG Block User Guide — V04.05
Section 1 Introduction

1.1 Overview

This specification describes the function of the Clocks and Reset Generator (CRG).

1.2 Features

The main features of this block are:

• Phase Locked Loop (PLL) frequency multiplier

– Reference divider

– Automatic bandwidth control mode for low-jitter operation

– Automatic frequency lock detector

– CPU interrupt on entry or exit from locked condition

– Self Clock Mode in absence of reference clock

• System Clock Generator

– Clock Quality Check

– Clock switch for either Oscillator or PLL based system clocks

– User selectable disabling of clocks during Wait Mode for reduced power consumption.

• Computer Operating Properly (COP) watchdog timer with time-out clear window.

• System Reset generation from the following possible sources:

– Power on reset

– Low voltage reset
Refer to device specification for availability of this feature.

– COP reset

– Loss of clock reset

– External pin reset

• Real-Time Interrupt (RTI)

1.3 Modes of Operation

This subsection lists and briefly describes all operating modes supported by the CRG.

• Run Mode
9

CRG Block User Guide — V04.05

ity
to be

he

Mode

e RTI

e
zen.

de
ss of
. Self
f the
afety
evere
All functional parts of the CRG are running during normal Run Mode. If RTI or COP functional
is required the individual bits of the associated rate select registers (COPCTL, RTICTL) have
set to a non zero value.

• Wait Mode

This mode allows to disable the system and core clocks depending on the configuration of t
individual bits in the CLKSEL register.

• Stop Mode

Depending on the setting of the PSTP bit Stop Mode can be differentiated between Full Stop
(PSTP=0) and Pseudo Stop Mode (PSTP=1).

– Full Stop Mode

The oscillator is disabled and thus all system and core clocks are stopped. The COP and th
remain frozen.

– Pseudo Stop Mode

The oscillator continues to run and most of the system and core clocks are stopped. If th
respective enable bits are set the COP and RTI will continue to run, else they remain fro

• Self Clock Mode

Self Clock Mode will be entered if the Clock Monitor Enable Bit (CME) and the Self Clock Mo
Enable Bit (SCME) are both asserted and the clock monitor in the oscillator block detects a lo
clock. As soon as Self Clock Mode is entered the CRG starts to perform a clock quality check
Clock Mode remains active until the clock quality check indicates that the required quality o
incoming clock signal is met (frequency and amplitude). Self Clock Mode should be used for s
purposes only. It provides reduced functionality to the MCU in case a loss of clock is causing s
system conditions.

1.4 Block Diagram

Figure 1-1 shows a block diagram of the CRG.
10

CRG Block User Guide — V04.05
Figure 1-1 Block diagram of CRG

CRG

Registers

Clock and Reset

COP

RESET

RTI

PLL

XFC

VDDPLL

VSSPLL

Oscil-EXTAL

XTAL

 Control

Bus Clock

System Reset

Oscillator Clock

PLLCLK

OSCCLK

Core Clock

Clock
Monitor

CM fail

Clock Quality
Checker

Reset
Generator

XCLKS

Power on Reset

Low Voltage Reset 1

C
O

P
 ti

m
eo

ut

1) Refer to device specification for availability
of the low voltage reset feature.

Real Time Interrupt

PLL Lock Interrupt

Self Clock Mode
Interrupt

lator

Voltage
Regulator
11

CRG Block User Guide — V04.05
12

CRG Block User Guide — V04.05

ired

filter
ncy

e

o a
s been
Section 2 Signal Description

2.1 Overview

This section lists and describes the signals that connect off chip.

2.2 Detailed Signal Descriptions

2.2.1 VDDPLL, VSSPLL

These pins provides operating voltage (VDDPLL) and ground (VSSPLL) for the PLL circuitry. This
allows the supply voltage to the PLL to be independently bypassed. Even if PLL usage is not requ
VDDPLL and VSSPLL must be connected to properly.

2.2.2 XFC

A passive external loop filter must be placed on the XFC pin. The filter is a second-order, low-pass
to eliminate the VCO input ripple. The value of the external filter network and the reference freque
determines the speed of the corrections and the stability of the PLL.Refer to device specification for
calculation of PLL Loop Filter (XFC) components. If PLL usage is not required the XFC pin must b
tied to VDDPLL.

Figure 2-1 PLL Loop Filter Connections

2.2.3 RESET

RESET is an active low bidirectional reset pin. As an input it initializes the MCU asynchronously t
known start-up state. As an open-drain output it indicates that an system reset (internal to MCU) ha
triggered.

MCU

XFC

RS

CS

VDDPLL

CP
13

CRG Block User Guide — V04.05
14

CRG Block User Guide — V04.05

op
cy
Section 3 Memory Map and Registers

3.1 Overview

This section provides a detailed description of all registers accessible in the CRG.

3.2 Module Memory Map

Table 3-1 gives an overview on all CRG registers.

NOTE: Register Address = Base Address + Address Offset, where the Base Address is
defined at the MCU level and the Address Offset is defined at the module level.

3.3 Register Descriptions

This section describes in address order all the CRG registers and their individual bits.

3.3.1 CRG Synthesizer Register (SYNR)

The SYNR register controls the multiplication factor of the PLL. If the PLL is on, the count in the lo
divider (SYNR) register effectively multiplies up the PLL clock (PLLCLK) from the reference frequen
by 2 x (SYNR+1). PLLCLK will not be below the minimum VCO frequency (fSCM).

Table 3-1 CRG Memory Map

Address
Offset Use Access

$_00 CRG Synthesizer Register (SYNR) R/W

$_01 CRG Reference Divider Register (REFDV) R/W

$_02 CRG Test Flags Register (CTFLG)1

NOTES:
1. CTFLG is intended for factory test purposes only.

R/W

$_03 CRG Flags Register (CRGFLG) R/W

$_04 CRG Interrupt Enable Register (CRGINT) R/W

$_05 CRG Clock Select Register (CLKSEL) R/W

$_06 CRG PLL Control Register (PLLCTL) R/W

$_07 CRG RTI Control Register (RTICTL) R/W

$_08 CRG COP Control Register (COPCTL) R/W

$_09 CRG Force and Bypass Test Register (FORBYP)2

2. FORBYP is intended for factory test purposes only.

R/W

$_0A CRG Test Control Register (CTCTL)3

3. CTCTL is intended for factory test purposes only.

R/W

$_0B CRG COP Arm/Timer Reset (ARMCOP) R/W
15

CRG Block User Guide — V04.05

nce
NOTE: If PLL is selected (PLLSEL=1), Bus Clock = PLLCLK / 2
Bus Clock must not exceed the maximum operating system frequency.

Figure 3-1 CRG Synthesizer Register (SYNR)

Read: anytime

Write: anytime except if PLLSEL = 1

NOTE: Write to this register initializes the lock detector bit and the track detector bit.

3.3.2 CRG Reference Divider Register (REFDV)

The REFDV register provides a finer granularity for the PLL multiplier steps. The count in the refere
divider divides OSCCLK frequency by REFDV+1.

Figure 3-2 CRG Reference Divider Register (REFDV)

Read: anytime

Write: anytime except when PLLSEL = 1

NOTE: Write to this register initializes the lock detector bit and the track detector bit.

Address Offset: $_00

7 6 5 4 3 2 1 0
R 0 0

SYN5 SYN4 SYN3 SYN2 SYN1 SYN0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Address Offset: $_01

7 6 5 4 3 2 1 0
R 0 0 0 0

REFDV3 REFDV2 REFDV1 REFDV0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

PLLCLK 2xOSCCLKx SYNR 1+()
REFDV 1+()------------------------------------=
16

CRG Block User Guide — V04.05

es.

a 0
3.3.3 Reserved Register (CTFLG)

This register is reserved for factory testing of the CRG module and is not available in normal mod

Figure 3-3 Reserved Register (CTFLG)

Read: always reads $00 in normal modes

Write: unimplemented in normal modes

NOTE: Writing to this register when in special mode can alter the CRG fucntionality.

3.3.4 CRG Flags Register (CRGFLG)

This register provides CRG status bits and flags.

Figure 3-4 CRG Flags Register (CRGFLG)

Read: anytime

Write: refer to each bit for individual write conditions

RTIF — Real Time Interrupt Flag

RTIF is set to 1 at the end of the RTI period. This flag can only be cleared by writing a 1. Writing
has no effect. If enabled (RTIE=1), RTIF causes an interrupt request.

1 = RTI time-out has occurred.
0 = RTI time-out has not yet occurred.

Address Offset: $_02

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Address Offset: $_03

7 6 5 4 3 2 1 0
R

RTIF PORF LVRF LOCKIF
LOCK TRACK

SCMIF
SCM

W
RESET: 0 1

NOTES:
1. PORF is set to 1 when a power on reset occurs. Unaffected by system reset.

2

2. LVRF is set to 1 when a low voltage reset occurs. Unaffected by system reset.

0 0 0 0 0

= Unimplemented or Reserved
17

CRG Block User Guide — V04.05

riting

iting

.

tes

ites

iting
PORF — Power on Reset Flag

PORF is set to 1 when a power on reset occurs. This flag can only be cleared by writing a 1. W
a 0 has no effect.

1 = Power on reset has occurred.
0 = Power on reset has not occurred.

LVRF — Low Voltage Reset Flag

If low voltage reset feature is not available (see device specification) LVRF always reads 0.
LVRF is set to 1 when a low voltage reset occurs. This flag can only be cleared by writing a 1. Wr
a 0 has no effect.

1 = Low voltage reset has occurred.
0 = Low voltage reset has not occurred.

LOCKIF — PLL Lock Interrupt Flag

LOCKIF is set to 1 when LOCK status bit changes. This flag can only be cleared by writing a 1
Writing a 0 has no effect.If enabled (LOCKIE=1), LOCKIF causes an interrupt request.

1 = LOCK bit has changed.
0 = No change in LOCK bit.

LOCK — Lock Status Bit

LOCK reflects the current state of PLL lock condition. This bit is cleared in Self Clock Mode. Wri
have no effect.

1 = PLL VCO is within the desired tolerance of the target frequency.
0 = PLL VCO is not within the desired tolerance of the target frequency.

TRACK — Track Status Bit

TRACK reflects the current state of PLL track condition. This bit is cleared in Self Clock Mode. Wr
have no effect.

1 = Tracking mode status.
0 = Acquisition mode status.

SCMIF — Self Clock Mode Interrupt Flag

SCMIF is set to 1 when SCM status bit changes. This flag can only be cleared by writing a 1. Wr
a 0 has no effect. If enabled (SCMIE=1), SCMIF causes an interrupt request.

1 = SCM bit has changed.
0 = No change in SCM bit.

SCM — Self Clock Mode Status Bit

SCM reflects the current clocking mode. Writes have no effect.
1 = MCU is operating in Self Clock Mode with OSCCLK in an unknown state. All clocks are

derived from PLLCLK running at its minimum frequency fSCM.
0 = MCU is operating normally with OSCCLK available.
18

CRG Block User Guide — V04.05
3.3.5 CRG Interrupt Enable Register (CRGINT)

This register enables CRG interrupt requests.

Figure 3-5 CRG Interrupt Enable Register (CRGINT)

Read: anytime

Write: anytime

RTIE — Real Time Interrupt Enable Bit.
1 = Interrupt will be requested whenever RTIF is set.
0 = Interrupt requests from RTI are disabled.

LOCKIE — Lock Interrupt Enable Bit
1 = Interrupt will be requested whenever LOCKIF is set.
0 = LOCK interrupt requests are disabled.

SCMIE — Self Clock Mode Interrupt Enable Bit
1 = Interrupt will be requested whenever SCMIF is set.
0 = SCM interrupt requests are disabled.

3.3.6 CRG Clock Select Register (CLKSEL)

This register controls CRG clock selection. Refer toFigure 4-2 System Clocks Generator for more
details on the effect of each bit.

Figure 3-6 CRG Clock Select Register (CLKSEL)

Read: anytime

Address Offset: $_04

7 6 5 4 3 2 1 0
R

RTIE
0 0

LOCKIE
0 0

SCMIE
0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Address Offset: $_05

7 6 5 4 3 2 1 0
R

PLLSEL PSTP SYSWAI ROAWAI PLLWAI CWAI RTIWAI COPWAI
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
19

CRG Block User Guide — V04.05

ect
he

ced.

it
EL
Write: refer to each bit for individual write conditions

PLLSEL — PLL Select Bit

Write anytime. Writing a one when LOCK=0 and AUTO=1, or TRACK=0 and AUTO=0 has no eff
This prevents the selection of an unstable PLLCLK as SYSCLK. PLLSEL bit is cleared when t
MCU enters Self Clock Mode, Stop Mode or Wait Mode with PLLWAI bit set.

1 = System clocks are derived from PLLCLK (Bus Clock = PLLCLK / 2).
0 = System clocks are derived from OSCCLK (Bus Clock = OSCCLK / 2).

PSTP — Pseudo Stop Bit

Write: anytime

This bit controls the functionality of the oscillator during Stop Mode.
1 = Oscillator continues to run in Stop Mode (Pseudo Stop). The oscillator amplitude is redu

Refer to oscillator block description for availability of a reduced oscillator amplitude.
0 = Oscillator is disabled in Stop Mode.

NOTE: Pseudo-STOP allows for faster STOP recovery and reduces the mechanical stress
and aging of the resonator in case of frequent STOP conditions at the expense of a
slightly increased power consumption.

Lower oscillator amplitude exhibits lower power consumption but could have
adverse effects during any Electro-Magnetic Susceptibility (EMS) tests.

SYSWAI — System clocks stop in Wait Mode Bit

Write: anytime
1 = In Wait Mode the system clocks stop.
0 = In Wait Mode the system clocks continue to run.

NOTE: RTI and COP are not affected by SYSWAI bit.

ROAWAI — Reduced Oscillator Amplitude in Wait Mode Bit.

Refer to oscillator block description for availability of a reduced oscillator amplitude. If no such
feature exists in the oscillator block then setting this bit to one will not have any effect on power
consumption!

Write: anytime
1 = Reduced oscillator amplitude in Wait Mode.
0 = Normal oscillator amplitude in Wait Mode.

NOTE: Lower oscillator amplitude exhibits lower power consumption but could have
adverse effects during any Electro-Magnetic Susceptibility (EMS) tests.

PLLWAI — PLL stops in Wait Mode Bit

Write: anytime

If PLLWAI is set, the CRG will clear the PLLSEL bit before entering Wait Mode. The PLLON b
remains set during Wait Mode but the PLL is powered down. Upon exiting Wait Mode, the PLLS
bit has to be set manually if PLL clock is required.
20

CRG Block User Guide — V04.05

k

ce or
While the PLLWAI bit is set the AUTO bit is set to 1 in order to allow the PLL to automatically loc
on the selected target frequency after exiting Wait Mode.

1 = PLL stops in Wait Mode.
0 = PLL keeps running in Wait Mode.

CWAI — Core stops in Wait Mode Bit

Write: anytime
1 = Core clock stops in Wait Mode.
0 = Core clock keeps running in Wait Mode.

RTIWAI — RTI stops in Wait Mode Bit

Write: anytime
1 = RTI stops and initializes the RTI dividers whenever the part goes into Wait Mode.
0 = RTI keeps running in Wait Mode.

COPWAI — COP stops in Wait Mode Bit

Normal modes: Write once

Special modes: Write anytime
1 = COP stops and initializes the COP dividers whenever the part goes into Wait Mode.
0 = COP keeps running in Wait Mode.

3.3.7 CRG PLL Control Register (PLLCTL)

This register controls the PLL functionality.

Figure 3-7 CRG PLL Control Register (PLLCTL)

Read: anytime

Write: refer to each bit for individual write conditions

CME — Clock Monitor Enable Bit

CME enables the clock monitor. Write anytime except when SCM = 1.
1 = Clock monitor is enabled. Slow or stopped clocks will cause a clock monitor reset sequen

Self Clock Mode.
0 = Clock monitor is disabled.

Address Offset: $_06

7 6 5 4 3 2 1 0
R

CME PLLON AUTO ACQ
0

PRE PCE SCME
W

RESET: 1 1 1 1 0 0 0 1

= Unimplemented or Reserved
21

CRG Block User Guide — V04.05

ds

de
hen

it.
NOTE: Operating with CME=0 will not detect any loss of clock. In case of poor clock
quality this could cause unpredictable operation of the MCU!

In Stop Mode (PSTP=0) the clock monitor is disabled independently of the CME bit
setting and any loss of clock will not be detected.

PLLON — Phase Lock Loop On Bit

PLLON turns on the PLL circuitry. In Self Clock Mode, the PLL is turned on, but the PLLON bit rea
the last latched value. Write anytime except when PLLSEL = 1.

1 = PLL is turned on. If AUTO bit is set, the PLL will lock automatically.
0 = PLL is turned off.

AUTO — Automatic Bandwidth Control Bit

AUTO selects either the high bandwidth (acquisition) mode or the low bandwidth (tracking) mo
depending on how close to the desired frequency the VCO is running. Write anytime except w
PLLWAI=1, because PLLWAI sets the AUTO bit to 1.

1 = Automatic Mode Control is enabled and ACQ bit has no effect.
0 = Automatic Mode Control is disabled and the PLL is under software control, using ACQ b

ACQ — Acquisition Bit

Write anytime. If AUTO=1 this bit has no effect.
1 = High bandwidth filter is selected.
0 = Low bandwidth filter is selected.

PRE — RTI Enable during Pseudo Stop Bit

PRE enables the RTI during Pseudo Stop Mode. Write anytime.
1 = RTI continues running during Pseudo Stop Mode.
0 = RTI stops running during Pseudo Stop Mode.

NOTE: If the PRE bit is cleared the RTI dividers will go static while Pseudo-Stop Mode is
active. The RTI dividers willnot initialize like in Wait Mode with RTIWAI bit set.

PCE — COP Enable during Pseudo Stop Bit

PCE enables the COP during Pseudo Stop Mode. Write anytime.
1 = COP continues running during Pseudo Stop Mode
0 = COP stops running during Pseudo Stop Mode

NOTE: If the PCE bit is cleared the COP dividers will go static while Pseudo-Stop Mode
is active. The COP dividers willnot initialize like in Wait Mode with COPWAI bit
set.

SCME — Self Clock Mode Enable Bit

Normal modes: Write once

Special modes: Write anytime
SCME can not be cleared while operating in Self Clock Mode (SCM=1).

0 = Detection of crystal clock failure causes clock monitor reset (see5.2.1 Clock Monitor Reset).
22

CRG Block User Guide — V04.05

CLK.
1 = Detection of crystal clock failure forces the MCU in Self Clock Mode (see4.2.2 Self Clock
Mode).

3.3.8 CRG RTI Control Register (RTICTL)

This register selects the timeout period for the Real Time Interrupt.

Figure 3-8 CRG RTI Control Register (RTICTL)

Read: anytime

Write: anytime

NOTE: A write to this register initializes the RTI counter.

RTR[6:4] — Real Time Interrupt Prescale Rate Select Bits

These bits select the prescale rate for the RTI. SeeTable 3-2 .

RTR[3:0] — Real Time Interrupt Modulus Counter Select Bits

These bits select the modulus counter target value to provide additional granularity.Table 3-2 shows
all possible divide values selectable by the RTICTL register. The source clock for the RTI is OSC

Address Offset: $_07

7 6 5 4 3 2 1 0
R 0

RTR6 RTR5 RTR4 RTR3 RTR2 RTR1 RTR0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-2 RTI Frequency Divide Rates

RTR[3:0] RTR[6:4] =

000
(OFF)

001
(210)

010
(211)

011
(212)

100
(213)

101
(214)

110
(215)

111
(216)

0000 (÷1) OFF* 210 211 212 213 214 215 216

0001 (÷2) OFF* 2x210 2x211 2x212 2x213 2x214 2x215 2x216

0010 (÷3) OFF* 3x210 3x211 3x212 3x213 3x214 3x215 3x216

0011 (÷4) OFF* 4x210 4x211 4x212 4x213 4x214 4x215 4x216

0100 (÷5) OFF* 5x210 5x211 5x212 5x213 5x214 5x215 5x216

0101 (÷6) OFF* 6x210 6x211 6x212 6x213 6x214 6x215 6x216
23

CRG Block User Guide — V04.05
3.3.9 CRG COP Control Register (COPCTL)

This register controls the COP (Computer Operating Properly) watchdog.

Figure 3-9 CRG COP Control Register (COPCTL)

Read: anytime

Write: WCOP, CR2, CR1, CR0: once in user mode, anytime in special mode

Write: RSBCK: once

WCOP — Window COP Mode Bit

0110 (÷7) OFF* 7x210 7x211 7x212 7x213 7x214 7x215 7x216

0111 (÷8) OFF* 8x210 8x211 8x212 8x213 8x214 8x215 8x216

1000 (÷9) OFF* 9x210 9x211 9x212 9x213 9x214 9x215 9x216

1001 (÷10) OFF* 10x210 10x211 10x212 10x213 10x214 10x215 10x216

1010 (÷11) OFF* 11x210 11x211 11x212 11x213 11x214 11x215 11x216

1011 (÷12) OFF* 12x210 12x211 12x212 12x213 12x214 12x215 12x216

1100 (÷ 13) OFF* 13x210 13x211 13x212 13x213 13x214 13x215 13x216

1101 (÷14) OFF* 14x210 14x211 14x212 14x213 14x214 14x215 14x216

1110 (÷15) OFF* 15x210 15x211 15x212 15x213 15x214 15x215 15x216

1111 (÷ 16) OFF* 16x210 16x211 16x212 16x213 16x214 16x215 16x216

* Denotes the default value out of reset.This value should be used to disable the RTI to ensure future backwards com-
patibility.

Address Offset: $_08

7 6 5 4 3 2 1 0
R

WCOP RSBCK
0 0 0

CR2 CR1 CR0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-2 RTI Frequency Divide Rates

RTR[3:0] RTR[6:4] =
24

CRG Block User Guide — V04.05

write
 this
logic

ts the
dically
When set, a write to the ARMCOP register must occur in the last 25% of the selected period. A
during the first 75% of the selected period will reset the part. As long as all writes occur during
window, $55 can be written as often as desired. Once $AA is written after the $55, the time-out
restarts and the user must wait until the next window before writing to ARMCOP.Table 3-3 shows
the exact duration of this window for the seven available COP rates.

1 = Window COP operation
0 = Normal COP operation

RSBCK — COP and RTI stop in Active BDM mode Bit
1 = Stops the COP and RTI counters whenever the part is in Active BDM mode.
0 = Allows the COP and RTI to keep running in Active BDM mode.

CR[2:0] — COP Watchdog Timer Rate select

These bits select the COP time-out rate (seeTable 3-3). The COP time-out period is OSCCLK period
divided by CR[2:0] value. Writing a nonzero value to CR[2:0] enables the COP counter and star
time-out period. A COP counter time-out causes a system reset. This can be avoided by perio
(before time-out) reinitializing the COP counter via the ARMCOP register.

3.3.10 Reserved Register (FORBYP)

NOTE: This reserved register is designed for factory test purposes only, and is not intended
for general user access. Writing to this register when in special modes can alter the
CRG’s functionality.

Table 3-3 COP Watchdog Rates 1

NOTES:
1. OSCCLK cycles are referenced

from the previous COP time-out
reset (writing $55/$AA to the
ARMCOP register)

CR2 CR1 CR0
OSCCLK
cycles to
time-out

0 0 0
COP

disabled

0 0 1 2 14

0 1 0 2 16

0 1 1 2 18

1 0 0 2 20

1 0 1 2 22

1 1 0 2 23

1 1 1 2 24
25

CRG Block User Guide — V04.05
Figure 3-10 Reserved Register (FORBYP)

Read: always read $00 except in special modes

Write: only in special modes

3.3.11 Reserved Register (CTCTL)

NOTE: This reserved register is designed for factory test purposes only, and is not intended
for general user access. Writing to this register when in special test modes can alter
the CRG’s functionality.

Figure 3-11 Reserved Register (CTCTL)

Read: always read $80 except in special modes

Write: only in special modes

3.3.12 CRG COP Timer Arm/Reset Register (ARMCOP)

This register is used to restart the COP time-out period.

Address Offset: $_09

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Address Offset: $_0A

7 6 5 4 3 2 1 0
R 1 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
26

CRG Block User Guide — V04.05

d you
rites
COP
is set,
ue in
Figure 3-12 ARMCOP Register Diagram

Read: always reads $00

Write: anytime

When the COP is disabled (CR[2:0] = “000”) writing to this register has no effect.

When the COP is enabled by setting CR[2:0] nonzero, the following applies:

Writing any value other than $55 or $AA causes a COP reset. To restart the COP time-out perio
must write $55 followed by a write of $AA. Other instructions may be executed between these w
but the sequence ($55, $AA) must be completed prior to COP end of time-out period to avoid a
reset. Sequences of $55 writes or sequences of $AA writes are allowed. When the WCOP bit
$55 and $AA writes must be done in the last 25% of the selected time-out period; writing any val
the first 75% of the selected period will cause a COP reset.

Address Offset: $_0B

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
27

CRG Block User Guide — V04.05
28

CRG Block User Guide — V04.05

ased
ffers
...

ing on
een

f

Section 4 Functional Description

4.1 Functional Blocks

4.1.1 Phase Locked Loop (PLL)

The PLL is used to run the MCU from a different time base than the incoming OSCCLK. For incre
flexibility, OSCCLK can be divided in a range of 1 to 16 to generate the reference frequency. This o
a finer multiplication granularity. The PLL can multiply this reference clock by a multiple of 2, 4, 6,
126,128 based on the SYNR register.

CAUTION: Although it is possible to set the two dividers to command a very high clock
frequency, do not exceed the specified bus frequency limit for the MCU.
If (PLLSEL=1), Bus Clock = PLLCLK / 2

The PLL is a frequency generator that operates in either acquisition mode or tracking mode, depend
the difference between the output frequency and the target frequency. The PLL can change betw
acquisition and tracking modes either automatically or manually.

The VCO has a minimum operating frequency, which corresponds to the self clock mode frequencySCM.

Figure 4-1 PLL Functional Diagram

PLLCLK 2 OSCCLK
SYNR 1+[]

REFDV 1+[]------------------------------------××=

REDUCED
CONSUMPTION

OSCILLATOR

EXTAL

XTAL

OSCCLK

PLLCLK

REFERENCE
PROGRAMMABLE

DIVIDER PDET
PHASE

DETECTOR

REFDV <3:0>

LOOP
PROGRAMMABLE

DIVIDER

SYN <5:0>

CPUMP VCO

LOCK

LOOP
FILTER

XFC
PIN

UP

DOWN

LOCK
DETECTOR

REFERENCE

FEEDBACK

VDDPLL

VDDPLL/VSSPLL

CRYSTAL
MONITOR

VDDPLL/VSSPLL

VDD/VSS

supplied by:
29

CRG Block User Guide — V04.05

nd is
,
 in

ulses
ters the
f the
 in the
speed

k.
he

es:

used
ar off
FLG

r is
king
ster.

ly.

en
n the
rupt
f CPU
 or at
s the
clocks
priate
4.1.1.1 PLL Operation

The oscillator output clock signal (OSCCLK) is fed through the reference programmable divider a
divided in a range of 1 to 16 (REFDV+1) to output the REFERENCE clock. The VCO output clock
(PLLCLK) is fed back through the programmable loop divider and is divided in a range of 2 to 128
increments of [2 x (SYNR +1)] to output the FEEDBACK clock. SeeFigure 4-1.

The phase detector then compares the FEEDBACK clock, with the REFERENCE clock. Correction p
are generated based on the phase difference between the two signals. The loop filter then slightly al
DC voltage on the external filter capacitor connected to XFC pin, based on the width and direction o
correction pulse. The filter can make fast or slow corrections depending on its mode, as described
next subsection. The values of the external filter network and the reference frequency determine the
of the corrections and the stability of the PLL.

4.1.1.2 Acquisition and Tracking Modes

The lock detector compares the frequencies of the FEEDBACK clock, and the REFERENCE cloc
Therefore, the speed of the lock detector is directly proportional to the final reference frequency. T
circuit determines the mode of the PLL and the lock condition based on this comparison.

The PLL filter can be manually or automatically configured into one of two possible operating mod

• Acquisition mode

In acquisition mode, the filter can make large frequency corrections to the VCO. This mode is
at PLL start-up or when the PLL has suffered a severe noise hit and the VCO frequency is f
the desired frequency. When in acquisition mode, the TRACK status bit is cleared in the CRG
register.

• Tracking mode

In tracking mode, the filter makes only small corrections to the frequency of the VCO. PLL jitte
much lower in tracking mode, but the response to noise is also slower. The PLL enters trac
mode when the VCO frequency is nearly correct and the TRACK bit is set in the CRGFLG regi

The PLL can change the bandwidth or operational mode of the loop filter manually or automatical

In automatic bandwidth control mode (AUTO = 1), the lock detector automatically switches betwe
acquisition and tracking modes. Automatic bandwidth control mode also is used to determine whe
PLL clock (PLLCLK) is safe to use as the source for the system and core clocks. If PLL LOCK inter
requests are enabled, the software can wait for an interrupt request and then check the LOCK bit. I
interrupts are disabled, software can poll the LOCK bit continuously (during PLL start-up, usually)
periodic intervals. In either case, only when the LOCK bit is set, is the PLLCLK clock safe to use a
source for the system and core clocks. If the PLL is selected as the source for the system and core
and the LOCK bit is clear, the PLL has suffered a severe noise hit and the software must take appro
action, depending on the application.

The following conditions apply when the PLL is in automatic bandwidth control mode (AUTO=1):

• The TRACK bit is a read-only indicator of the mode of the filter.
30

CRG Block User Guide — V04.05

the

 not
elow
n

• The TRACK bit is set when the VCO frequency is within a certain tolerance,∆trk, and is clear when
the VCO frequency is out of a certain tolerance,∆unt.

• The LOCK bit is a read-only indicator of the locked state of the PLL.

• The LOCK bit is set when the VCO frequency is within a certain tolerance,∆Lock, and is cleared
when the VCO frequency is out of a certain tolerance,∆unl.

• CPU interrupts can occur if enabled (LOCKIE = 1) when the lock condition changes, toggling
LOCK bit.

The PLL can also operate in manual mode (AUTO = 0). Manual mode is used by systems that do
require an indicator of the lock condition for proper operation. Such systems typically operate well b
the maximum system frequency (fsys) and require fast start-up. The following conditions apply when i
manual mode:

• ACQ is a writable control bit that controls the mode of the filter. Before turning on the PLL in
manual mode, the ACQ bit should be asserted to configure the filter in acquisition mode.

• After turning on the PLL by setting the PLLON bit software must wait a given time (tacq) before
entering tracking mode (ACQ = 0).

• After entering tracking mode software must wait a given time (tal) before selecting the PLLCLK as
the source for system and core clocks (PLLSEL = 1).
31

CRG Block User Guide — V04.05

 the

k. The

. The
e

ut
rned
um
4.1.2 System Clocks Generator

Figure 4-2 System Clocks Generator

The clock generator creates the clocks used in the MCU (seeFigure 4-2). The gating condition placed on
top of the individual clock gates indicates the dependencies of different modes (STOP, WAIT) and
setting of the respective configuration bits.

The peripheral modules use the Bus Clock. Some peripheral modules also use the Oscillator Cloc
memory blocks use the Bus Clock. If the MCU enters Self Clock Mode (see4.2.2 Self Clock Mode)
Oscillator clock source is switched to PLLCLK running at its minimum frequency fSCM. The Bus Clock
is used to generate the clock visible at the ECLK pin. The Core Clock signal is the clock for the CPU
Core Clock is twice the Bus Clock as shown inFigure 4-3 . But note that a CPU cycle corresponds to on
Bus Clock.

PLL clock mode is selected with PLLSEL bit in the CLKSEL register. When selected, the PLL outp
clock drives SYSCLK for the main system including the CPU and peripherals. The PLL cannot be tu
off by clearing the PLLON bit, if the PLL clock is selected. When PLLSEL is changed, it takes a maxim

OSCILLATOR

PHASE
LOCK
LOOP

EXTAL

XTAL

SYSCLK

RTIOSCCLK

PLLCLK

CLOCK PHASE
GENERATOR

Bus Clock

Clock
Monitor

1

0

PLLSEL or SCM

÷2

Core Clock

COP

Oscillator

Oscillator

= Clock Gate

Gating
Condition

WAIT(CWAI,SYSWAI),
STOP

WAIT(RTIWAI),
STOP(PSTP,PRE),

RTI enable

WAIT(COPWAI),
STOP(PSTP,PCE),

COP enable

WAIT(SYSWAI),
STOP

STOP(PSTP)

1

0

SCM

WAIT(SYSWAI),
STOP

Clock

Clock
(running during

Pseudo Stop Mode
32

CRG Block User Guide — V04.05

 and

k
 reset

ected
ME

er
of 4 OSCCLK plus 4 PLLCLK cycles to make the transition. During the transition, all clocks freeze
CPU activity ceases.

Figure 4-3 Core Clock and Bus Clock relationship

4.1.3 Clock Monitor (CM)

If no OSCCLK edges are detected within a certain time, the clock monitor within the oscillator bloc
generates a clock monitor fail event. The CRG then asserts self clock mode or generates a system
depending on the state of SCME bit. If the clock monitor is disabled or the presence of clocks is det
no failure is indicated by the oscillator block. The clock monitor function is enabled/disabled by the C
control bit.

4.1.4 Clock Quality Checker

The clock monitor performs a coarse check on the incoming clock signal. The clock quality check
provides a more accurate check in addition to the clock monitor.

A clock quality check is triggered by any of the following events:

• Power on reset (POR)

• Low voltage reset (LVR)

• Wake-up from Full Stop Mode (exit full stop)

• Clock Monitor fail indication (CM fail)

A time window of 50000 VCO clock cycles1 is calledcheck window.

A number greater equal than 4096 rising OSCCLK edges within acheck windowis calledosc ok. Note that
osc ok immediately terminates the currentcheck window. SeeFigure 4-4 as an example.

NOTES:
1. VCO clock cycles are generated by the PLL when running at minimum frequency fSCM.

CORE CLOCK:

BUS CLOCK / ECLK
33

CRG Block User Guide — V04.05
Figure 4-4 Check Window Example

The Sequence for clock quality check is shown inFigure 4-5 .

Figure 4-5 Sequence for Clock Quality Check

1 2 49999 50000
VCO
clock

check window

1 2 3 4 5

4095

4096

3

OSCCLK

osc ok

check window

osc ok
?

SCM
active?

Switch to OSCCLK

Exit SCM

Clock OK

num=0

num<50
?

num=num+1

yes

no

yes

SCME=1
?

no

Enter SCM

SCM
active?

yes

Clock Monitor Reset

no

yes

no

num=50

yes

no

POR exit full stop

CM fail

LVR
34

CRG Block User Guide — V04.05

ware

out

ter
ogram
NOTE: Remember that in parallel to additional actions caused by Self Clock Mode or
Clock Monitor Reset1 handling the clock quality checkercontinues to check the
OSCCLK signal.

NOTE: The Clock Quality Checker enables the PLL and the voltage regulator (VREG)
anytime a clock check has to be performed. An ongoing clock quality check could
also cause a running PLL (fSCM) and an active VREG during Pseudo-Stop Mode or
Wait Mode.

4.1.5 Computer Operating Properly Watchdog (COP)

Figure 4-6 Clock Chain for COP

The COP (free running watchdog timer) enables the user to check that a program is running and
sequencing properly. The COP is disabled out of reset. When the COP is being used, software is
responsible for keeping the COP from timing out. If the COP times out it is an indication that the soft
is no longer being executed in the intended sequence; thus a system reset is initiated (see5.2.2 Computer
Operating Properly Watchdog (COP) Reset). The COP runs with a gated OSCCLK (seeFigure 4-6
Clock Chain for COP). Three control bits in the COPCTL register allow selection of seven COP time-
periods.

When COP is enabled, the program must write $55 and $AA (in this order) to the ARMCOP regis
during the selected time-out period. Once this is done, the COP time-out period is restarted. If the pr

NOTES:
1. A Clock Monitor Reset will always set the SCME bit to logical’1’

OSCCLK

CR[2:0]

COP TIMEOUT

0:0:0
0:0:1

0:1:0

0:1:1

1:0:0

1:0:1

1:1:0

1:1:1

÷ 4

÷ 4

÷ 2

÷ 4

÷ 2

÷ 16384

÷ 4

CR[2:0]

= Clock Gate

WAIT(COPWAI),
STOP(PSTP,PCE),

COP enable

gating condition
35

CRG Block User Guide — V04.05

 is

tes to
eriod.

g
ated
fails to do this and the COP times out, the part will reset. Also, if any value other than $55 or $AA
written, the part is immediately reset.

Windowed COP operation is enabled by setting WCOP in the COPCTL register. In this mode, wri
the ARMCOP register to clear the COP timer must occur in the last 25% of the selected time-out p
A premature write will immediately reset the part.

If PCE bit is set, the COP will continue to run in Pseudo-Stop Mode.

4.1.6 Real Time Interrupt (RTI)

The RTI can be used to generate a hardware interrupt at a fixed periodic rate. If enabled (by settin
RTIE=1), this interrupt will occur at the rate selected by the RTICTL register. The RTI runs with a g
OSCCLK (seeFigure 4-7 Clock Chain for RTI). At the end of the RTI time-out period the RTIF flag is
set to one and a new RTI time-out period starts immediately.

A write to the RTICTL register restarts the RTI time-out period.

If the PRE bit is set, the RTI will continue to run in Pseudo-Stop Mode.

.

Figure 4-7 Clock Chain for RTI

OSCCLK

 RTR[6:4]
0:0:0

0:0:1

0:1:0

0:1:1

1:0:0

1:0:1

1:1:0

1:1:1

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

÷ 2

COUNTER (RTR[3:0])
4-BIT MODULUS

÷ 1024

RTI TIMEOUT= Clock Gate

WAIT(RTIWAI),
STOP(PSTP,PRE),

RTI enable

gating condition
36

CRG Block User Guide — V04.05

e
 the

This
ck

ill

ing of

Wait
4.2 Operation Modes

4.2.1 Normal Mode

The CRG block behaves as described within this specification in all normal modes.

4.2.2 Self Clock Mode

The VCO has a minimum operating frequency, fSCM. If the external clock frequency is not available du
to a failure or due to long crystal start-up time, the Bus Clock and the Core Clock are derived from
VCO running at minimum operating frequency; this mode of operation is called Self Clock Mode.
requires CME=1 and SCME=1. If the MCU was clocked by the PLL clock prior to entering Self Clo
Mode, the PLLSEL bit will be cleared. If the external clock signal has stabilized again, the CRG w
automatically select OSCCLK to be the system clock and return to normal mode. See4.1.4 Clock Quality
Checker for more information on entering and leaving Self Clock Mode.

NOTE: In order to detect a potential clock loss the CME bit should be always enabled
(CME=1)!

If CME bit is disabled and the MCU is configured to run on PLL clock (PLLCLK),
a loss of external clock (OSCCLK) will not be detected and will cause the system
clock to drift towards the VCO’s minimum frequency fSCM. As soon as the external
clock is available again the system clock ramps up to its PLL target frequency. If
the MCU is running on external clock any loss of clock will cause the system to go
static.

4.3 Low Power Options

This section summarizes the low power options available in the CRG.

4.3.1 Run Mode

The RTI can be stopped by setting the associated rate select bits to zero.

The COP can be stopped by setting the associated rate select bits to zero.

4.3.2 Wait Mode

The WAI instruction puts the MCU in a low power consumption stand-by mode depending on sett
the individual bits in the CLKSEL register. All individual Wait Mode configuration bits can be
superposed. This provides enhanced granularity in reducing the level of power consumption during
37

CRG Block User Guide — V04.05

ait

RG

ks to
s the
Mode.Table 4-1 lists the individual configuration bits and the parts of the MCU that are affected in W
Mode.

After executing the WAI instruction the core requests the CRG to switch MCU into Wait Mode. The C
then checks whether the PLLWAI, CWAI and SYSWAI bits are asserted (seeFigure 4-8 Wait Mode
Entry/Exit Sequence). Depending on the configuration the CRG switches the system and core cloc
OSCCLK by clearing the PLLSEL bit, disables the PLL, disables the core clocks and finally disable
remaining system clocks. As soon as all clocks are switched off Wait Mode is active.

Table 4-1 MCU configuration during Wait Mode

PLLWAI CWAI SYSWAI RTIWAI COPWAI ROAWAI

PLL stopped - - - - -

Core - stopped stopped - - -

System - - stopped - - -

RTI - - - stopped - -

COP - - - - stopped -

Oscillator - - - - - reduced1

NOTES:
1. Refer to oscillator block description for availability of a reduced oscillator amplitude!
38

CRG Block User Guide — V04.05
Figure 4-8 Wait Mode Entry/Exit Sequence

There are five different scenarios for the CRG to restart the MCU from Wait Mode:

• External Reset

Enter
Wait Mode

PLLWAI=1
?

Exit Wait w.
CMRESET

Exit Wait w.
ext.RESET

Exit
Wait Mode

Enter
SCM

Exit
Wait Mode

Core req’s
Wait Mode.

CWAI or
SYSWAI=1

?

SYSWAI=1
?

Clear PLLSEL,
Disable PLL

Disable
core clocks

Disable
system clocks CME=1

?
INT

?

CM fail
?

SCME=1
?

SCMIE=1
?

Continue w.
normal OP

no

no

no

no

no

no

no

yes

yes

yes

yes

yes

no

yes

yes

yes

Wait Mode left
due to external reset

Generate
SCM Interrupt

(Wakeup from Wait) SCM=1
?

Enter
SCM

no

yes
39

CRG Block User Guide — V04.05

pleting
MCU

G

e. If the
 the

=0,
-up

ith
 and
 bit

til
• Clock Monitor Reset

• COP Reset

• Self Clock Mode Interrupt

• Real Time Interrupt (RTI)

If the MCU gets an external reset during Wait Mode active, the CRG asynchronously restores all
configuration bits in the register space to its default settings and starts the reset generator. After com
the reset sequence processing begins by fetching the normal reset vector. Wait Mode is left and the
is in Run Mode again.

If the clock monitor is enabled (CME=1) the MCU is able to leave Wait-Mode when loss of
oscillator/external clock is detected by a clock monitor fail. If the SCME bit is not asserted the CR
generates a clock monitor fail reset (CMRESET). The CRG’s behavior for CMRESET is the same
compared to external reset, but another reset vector is fetched after completion of the reset sequenc
SCME bit is asserted the CRG generates a SCM interrupt if enabled (SCMIE=1). After generating
interrupt the CRG enters Self-Clock Mode and starts the clock quality checker (see4.1.4 Clock Quality
Checker). Then the MCU continues with normal operation.If the SCM interrupt is blocked by SCMIE
the SCMIF flag will be asserted and clock quality checks will be performed but the MCU will not wake
from Wait-Mode.

If any other interrupt source (e.g. RTI) triggers exit from Wait Mode the MCU immediately continues w
normal operation.If the PLL has been powered-down during Wait-Mode the PLLSEL bit is cleared
the MCU runs on OSCCLK after leaving Wait-Mode. The software must manually set the PLLSEL
again, in order to switch system and core clocks to the PLLCLK.

If Wait Mode is entered from Self-Clock Mode the CRG will continue to check the clock quality un
clock check is successful. The PLL and voltage regulator (VREG) will remain enabled.

Table 4-2 summarizes the outcome of a clock loss while in Wait Mode.

Table 4-2 Outcome of Clock Loss in Wait Mode

CME SCME SCMIE CRG Actions

0 X X
Clock failure -->
 No action, clock loss not detected.

1 0 X
Clock failure -->
 CRG performs Clock Monitor Reset immediately
40

CRG Block User Guide — V04.05
1 1 0

Clock failure -->

 Scenario 1: OSCCLK recovers prior to exiting Wait Mode.
 – MCU remains in Wait Mode,
 – VREG enabled,
 – PLL enabled,
 – SCM activated,
 – Start Clock Quality Check,
 – Set SCMIF interrupt flag.

Some time later OSCCLK recovers.

 – CM no longer indicates a failure,
 – 4096 OSCCLK cycles later Clock Quality Check indicates clock o.k.,
 – SCM deactivated,
 – PLL disabled depending on PLLWAI,
 – VREG remains enabled (never gets disabled in Wait Mode).
 – MCU remains in Wait Mode.

 Some time later either a wakeup interrupt occurs (no SCM interrupt)
 – Exit Wait Mode using OSCCLK as system clock (SYSCLK),
 – Continue normal operation.

 or an External Reset is applied.
 – Exit Wait Mode using OSCCLK as system clock,
 – Start reset sequence.

 Scenario 2: OSCCLK does not recover prior to exiting Wait Mode.
 – MCU remains in Wait Mode,
 – VREG enabled,
 – PLL enabled,
 – SCM activated,
 – Start Clock Quality Check,
 – Set SCMIF interrupt flag,
 – Keep performing Clock Quality Checks (could continue infinitely)
 while in Wait Mode.

 Some time later either a wakeup interrupt occurs (no SCM interrupt)
 – Exit Wait Mode in SCM using PLL clock (fSCM) as system clock,
 – Continue to perform additional Clock Quality Checks until OSCCLK
 is o.k. again.

 or an External RESET is applied.
 – Exit Wait Mode in SCM using PLL clock (fSCM) as system clock,
 – Start reset sequence,
 – Continue to perform additional Clock Quality Checks until OSCCLK
 is o.k.again.

Table 4-2 Outcome of Clock Loss in Wait Mode

CME SCME SCMIE CRG Actions
41

CRG Block User Guide — V04.05

he
en but
de. In
(e.g.
ence

If the
to
nally

the
n
eck
4.3.3 CPU Stop Mode

All clocks are stopped in STOP mode, dependent of the setting of the PCE, PRE and PSTP bit. T
oscillator is disabled in STOP mode unless the PSTP bit is set. All counters and dividers remain froz
do not initialize. If the PRE or PCE bits are set, the RTI or COP continues to run in Pseudo-Stop Mo
addition to disabling system and core clocks the CRG requests other functional units of the MCU
voltage-regulator) to enter their individual powersaving modes (if available). This is the main differ
between Pseudo-Stop Mode and Wait Mode.

After executing the STOP instruction the core requests the CRG to switch the MCU into Stop Mode.
PLLSEL bit is still set when entering Stop-Mode, the CRG will switch the system and core clocks
OSCCLK by clearing the PLLSEL bit. Then the CRG disables the PLL, disables the core clock and fi
disables the remaining system clocks. As soon as all clocks are switched off Stop-Mode is active.

If Pseudo-Stop Mode (PSTP=1) is entered from Self-Clock Mode the CRG will continue to check
clock quality until clock check is successful. The PLL and the voltage regulator (VREG) will remai
enabled. If Full-Stop Mode (PSTP=0) is entered from Self-Clock Mode an ongoing clock quality ch
will be stopped. A complete timeout window check will be started when Stop Mode is left again.

Wake-up from Stop-Mode also depends on the setting of the PSTP bit.

1 1 1

Clock failure -->
 – VREG enabled,
 – PLL enabled,
 – SCM activated,
 – Start Clock Quality Check,
 – SCMIF set.

 SCMIF generates Self Clock Mode wakeup interrupt.

 – Exit Wait Mode in SCM using PLL clock (fSCM) as system clock,
 – Continue to perform a additional Clock Quality Checks until OSCCLK
 is o.k. again.

Table 4-2 Outcome of Clock Loss in Wait Mode

CME SCME SCMIE CRG Actions
42

CRG Block User Guide — V04.05

nt
Figure 4-9 Stop Mode Entry/Exit Sequence

4.3.3.1 Wake-up from Pseudo-Stop (PSTP=1)

Wake-up from Pseudo-Stop is the same as wake-up from Wait-Mode. There are also three differe
scenarios for the CRG to restart the MCU from Pseudo-Stop Mode:

Exit Stop w.
CMRESET

Exit
Stop Mode

Enter
SCM

Exit
Stop Mode

Core req’s
Stop Mode.

Clear PLLSEL,
Disable PLL

CME=1
?

INT
?

CM fail
?

SCME=1
?

SCMIE=1
?

Continue w.
normal OP

no

no

no

no

yes

yes

yes

yes

yes

Generate
SCM Interrupt

(Wakeup from Stop)

Enter
Stop Mode

Exit Stop w.
ext.RESET

Wait Mode left
due to external reset

Clock
OK
?

SCME=1
?

Enter
SCM

yes

no

yes

Exit Stop w.
CMRESET

no

nono

PSTP=1
?

INT
?

yesno

yes

Exit
Stop Mode

Exit
Stop Mode

SCM=1
?

Enter
SCM

no

yes
43

CRG Block User Guide — V04.05

res all
pleting
and the

f
G

e. If the
 the

=0,

e
t set
• External Reset

• Clock Monitor Fail

• Wake-up Interrupt

If the MCU gets an external reset during Pseudo-Stop Mode active, the CRG asynchronously resto
configuration bits in the register space to its default settings and starts the reset generator. After com
the reset sequence processing begins by fetching the normal reset vector. Pseudo-Stop Mode is left
MCU is in Run Mode again.

If the clock monitor is enabled (CME=1) the MCU is able to leave Pseudo-Stop Mode when loss o
oscillator/external clock is detected by a clock monitor fail. If the SCME bit is not asserted the CR
generates a clock monitor fail reset (CMRESET). The CRG’s behavior for CMRESET is the same
compared to external reset, but another reset vector is fetched after completion of the reset sequenc
SCME bit is asserted the CRG generates a SCM interrupt if enabled (SCMIE=1). After generating
interrupt the CRG enters Self-Clock Mode and starts the clock quality checker (see4.1.4 Clock Quality
Checker). Then the MCU continues with normal operation. If the SCM interrupt is blocked by SCMIE
the SCMIF flag will be asserted but the CRG will not wake-up from Pseudo-Stop Mode.

If any other interrupt source (e.g. RTI) triggers exit from Pseudo-Stop Mode the MCU immediately
continues with normal operation. Because the PLL has been powered-down during Stop-Mode th
PLLSEL bit is cleared and the MCU runs on OSCCLK after leaving Stop-Mode. The software mus
the PLLSEL bit again, in order to switch system and core clocks to the PLLCLK.

Table 4-3 summarizes the outcome of a clock loss while in Pseudo-Stop Mode.

Table 4-3 Outcome of Clock Loss in Pseudo-Stop Mode

CME SCME SCMIE CRG Actions

0 X X
Clock failure -->
 No action, clock loss not detected.

1 0 X
Clock failure -->
 CRG performs Clock Monitor Reset immediately
44

CRG Block User Guide — V04.05
1 1 0

Clock Monitor failure -->

 Scenario 1: OSCCLK recovers prior to exiting Pseudo-Stop Mode.
 – MCU remains in Pseudo-Stop Mode,
 – VREG enabled,
 – PLL enabled,
 – SCM activated,
 – Start Clock Quality Check,
 – Set SCMIF interrupt flag.

Some time later OSCCLK recovers.

 – CM no longer indicates a failure,
 – 4096 OSCCLK cycles later Clock Quality Check indicates clock o.k.,
 – SCM deactivated,
 – PLL disabled,
 – VREG disabled.
 – MCU remains in Pseudo-Stop Mode.

 Some time later either a wakeup interrupt occurs (no SCM interrupt)
 – Exit Pseudo-Stop Mode using OSCCLK as system clock (SYSCLK),
 – Continue normal operation.

 or an External Reset is applied.
 – Exit Pseudo-Stop Mode using OSCCLK as system clock,
 – Start reset sequence.

 Scenario 2: OSCCLK does not recover prior to exiting Pseudo-Stop Mode.
 – MCU remains in Pseudo-Stop Mode,
 – VREG enabled,
 – PLL enabled,
 – SCM activated,
 – Start Clock Quality Check,
 – Set SCMIF interrupt flag,
 – Keep performing Clock Quality Checks (could continue infinitely)
 while in Pseudo-Stop Mode.

 Some time later either a wakeup interrupt occurs (no SCM interrupt)
 – Exit Pseudo-Stop Mode in SCM using PLL clock (fSCM) as system clock
 – Continue to perform additional Clock Quality Checks until OSCCLK
 is o.k. again.

 or an External RESET is applied.
 – Exit Pseudo-Stop Mode in SCM using PLL clock (fSCM) as system clock
 – Start reset sequence,
 – Continue to perform additional Clock Quality Checks until OSCCLK
 is o.k.again.

Table 4-3 Outcome of Clock Loss in Pseudo-Stop Mode

CME SCME SCMIE CRG Actions
45

CRG Block User Guide — V04.05

 all
ck

 normal

l
the

set

runs
er to
4.3.3.2 Wake-up from Full Stop (PSTP=0)

The MCU requires an external interrupt or an external reset in order to wake-up from Stop-Mode.

If the MCU gets an external reset during Full Stop Mode active, the CRG asynchronously restores
configuration bits in the register space to its default settings and will perform a maximum of 50 clo
check_windows(see4.1.4 Clock Quality Checker). After completing the clock quality check the CRG
starts the reset generator. After completing the reset sequence processing begins by fetching the
reset vector. Full Stop-Mode is left and the MCU is in Run Mode again.

If the MCU is woken-up by an interrupt, the CRG will also perform a maximum of 50 clock
check_windows (see4.1.4 Clock Quality Checker). If the clock quality check is successful, the CRG wil
release all system and core clocks and will continue with normal operation. If all clock checks within
Timeout-Window are failing, the CRG will switch to Self-Clock Mode or generate a clock monitor re
(CMRESET) depending on the setting of the SCME bit.

Because the PLL has been powered-down during Stop-Mode the PLLSEL bit is cleared and the MCU
on OSCCLK after leaving Stop-Mode. The software must manually set the PLLSEL bit again, in ord
switch system and core clocks to the PLLCLK.

NOTE: In Full Stop Mode the clock monitor is disabled and any loss of clock will not be
detected.

1 1 1

Clock failure -->
 – VREG enabled,
 – PLL enabled,
 – SCM activated,
 – Start Clock Quality Check,
 – SCMIF set.

 SCMIF generates Self Clock Mode wakeup interrupt.

 – Exit Pseudo-Stop Mode in SCM using PLL clock (fSCM) as system clock,
 – Continue to perform a additional Clock Quality Checks until OSCCLK
 is o.k. again.

Table 4-3 Outcome of Clock Loss in Pseudo-Stop Mode

CME SCME SCMIE CRG Actions
46

CRG Block User Guide — V04.05

U. It
this
itions.

s.

ver,
ing
cles

es the
Section 5 Resets

5.1 General

This section describes how to reset the CRG and how the CRG itself controls the reset of the MC
explains all special reset requirements. Since the reset generator for the MCU is part of the CRG
section also describes all automatic actions that occur during or as a result of individual reset cond
The reset values of registers and signals are provided inSection 3 Memory Map and Registers. All reset
sources are listed inTable 5-1 . Refer to MCU specification for related vector addresses and prioritie

5.2 Description of Reset Operation

The reset sequence is initiated by any of the following events:

• Low level is detected at theRESET pin (External Reset).

• Power on is detected.

• Low voltage is detected.

• COP watchdog times out.

• Clock monitor failure is detected and Self-Clock Mode was disabled (SCME=0).

Upon detection of any reset event, an internal circuit drives theRESET pin low for 128 SYSCLK cycles
(seeFigure 5-1). Since entry into reset is asynchronous it does not require a running SYSCLK. Howe
the internal reset circuit of the CRG cannot sequence out of current reset condition without a runn
SYSCLK. The number of 128 SYSCLK cycles might be increased by n=3 to 6 additional SYSCLK cy
depending on the internal synchronization latency. After 128+n SYSCLK cycles theRESET pin is
released. The reset generator of the CRG waits for additional 64 SYSCLK cycles and then sampl
RESET pin to determine the originating source.Table 5-2 shows which vector will be fetched.

Table 5-1Reset Summary

Reset Source Local Enable
Power on Reset None

Low Voltage Reset None

External Reset None

Clock Monitor Reset PLLCTL (CME=1, SCME=0)

COP Watchdog Reset COPCTL (CR[2:0] nonzero)

Table 5-2 Reset Vector Selection

sampled RESET pin
(64 cycles after

release)

Clock Monitor
Reset pending

COP Reset
pending Vector fetch

1 0 0 POR / LVR / External Reset

1 1 X Clock Monitor Reset

1 0 1 COP Reset
47

CRG Block User Guide — V04.05

K long

 too.

h
 CRG
NOTE: External circuitry connected to theRESET pin should not include a large
capacitance that would interfere with the ability of this signal to rise to a valid logic
one within 64 SYSCLK cycles after the low drive is released.

The internal reset of the MCU remains asserted while the reset generator completes the 192 SYSCL
reset sequence. The reset generator circuitry always makes sure the internal reset is deasserted
synchronously after completion of the 192 SYSCLK cycles. In case theRESET pin is externally driven
low for more than these 192 SYSCLK cycles (External Reset), the internal reset remains asserted

Figure 5-1 RESET Timing

5.2.1 Clock Monitor Reset

The CRG generates a Clock Monitor Reset in case all of the following conditions are true:

• Clock monitor is enabled (CME=1)

• Loss of clock is detected

• Self-Clock Mode is disabled (SCME=0).

The reset event asynchronously forces the configuration registers to their default settings (seeSection
Section 3 Memory Map and Registers). In detail the CME and the SCME are reset to logical ‘1’ (whic
doesn’t change the state of the CME bit, because it has already been set). As a consequence the

0 X X
POR / LVR / External Reset

with rise of RESET pin

Table 5-2 Reset Vector Selection

sampled RESET pin
(64 cycles after

release)

Clock Monitor
Reset pending

COP Reset
pending Vector fetch

) () (

)

(

)
SYSCLK

128+n cycles 64 cycles
with n being
min 3 / max 6
cycles depending
on internal
synchronization
delay

CRG drives RESET pin low

possibly
SYSCLK
not
running

possibly
RESET
driven low
externally

)
((

RESET

RESET pin
released
48

CRG Block User Guide — V04.05

ality
o
 reset
When
ircuit.

COP
If the
tten,
r $AA)
te the

clock
tching

power
e CRG
 valid
s the

ck
immediately enters Self Clock Mode and starts its internal reset sequence. In parallel the clock qu
check starts. As soon as clock quality check indicates a valid Oscillator Clock the CRG switches t
OSCCLK and leaves Self Clock Mode. Since the clock quality checker is running in parallel to the
generator, the CRG may leave Self Clock Mode while still completing the internal reset sequence.
the reset sequence is finished the CRG checks the internally latched state of the clock monitor fail c
If a clock monitor fail is indicated processing begins by fetching the Clock Monitor Reset vector.

5.2.2 Computer Operating Properly Watchdog (COP) Reset

When COP is enabled, the CRG expects sequential write of $55 and $AA (in this order) to the ARM
register during the selected time-out period. Once this is done, the COP time-out period restarts.
program fails to do this the CRG will generate a reset. Also, if any value other than $55 or $AA is wri
the CRG immediately generates a reset. In case windowed COP operation is enabled writes ($55 o
to the ARMCOP register must occur in the last 25% of the selected time-out period. A premature wri
CRG will immediately generate a reset.

As soon as the reset sequence is completed the reset generator checks the reset condition. If no
monitor failure is indicated and the latched state of the COP timeout is true, processing begins by fe
the COP vector.

5.2.3 Power On Reset, Low Voltage Reset

The on-chip voltage regulator detects when VDD to the MCU has reached a certain level and asserts
on reset or low voltage reset or both. As soon as a power on reset or low voltage reset is triggered th
performs a quality check on the incoming clock signal. As soon as clock quality check indicates a
Oscillator Clock signal the reset sequence starts using the Oscillator clock. If after 50 check window
clock quality check indicated a non-valid Oscillator Clock the reset sequence starts using Self-Clo
Mode.

Figure 5-2 andFigure 5-3 show the power-up sequence for cases when theRESET pin is tied to VDD
and when theRESET pin is held low.

Figure 5-2 RESET pin tied to VDD (by a pull-up resistor)

RESET

Internal POR

128 SYSCLK

64 SYSCLKInternal RESET

Clock Quality Check
(no Self-Clock Mode)

) (

) (

) (
49

CRG Block User Guide — V04.05
Figure 5-3 RESET pin held low externally

Clock Quality Check
RESET

Internal POR

Internal RESET

128 SYSCLK

64 SYSCLK

(no Self Clock Mode)
) (

) (

) (
50

CRG Block User Guide — V04.05

rrupts
en a

ed for

from
e

ged,
able

reset
re.
Section 6 Interrupts

6.1 General

The interrupts/reset vectors requested by the CRG are listed inTable 6-1 . Refer to MCU specification for
related vector addresses and priorities.

6.2 Description of Interrupt Operation

6.2.1 Real Time Interrupt

The CRG generates a real time interrupt when the selected interrupt time period elapses. RTI inte
are locally disabled by setting the RTIE bit to zero. The real time interrupt flag (RTIF) is set to1 wh
timeout occurs, and is cleared to 0 by writing a 1 to the RTIF bit.

The RTI continues to run during Pseudo Stop Mode if the PRE bit is set to 1. This feature can be us
periodic wakeup from Pseudo Stop if the RTI interrupt is enabled.

6.2.2 PLL Lock Interrupt

The CRG generates a PLL Lock interrupt when the LOCK condition of the PLL has changed, either
a locked state to an unlocked state or vice versa. Lock interrupts are locally disabled by setting th
LOCKIE bit to zero. The PLL Lock interrupt flag (LOCKIF) is set to1 when the LOCK condition has
changed, and is cleared to 0 by writing a 1 to the LOCKIF bit.

6.2.3 Self Clock Mode Interrupt

The CRG generates a Self Clock Mode interrupt when the SCM condition of the system has chan
either entered or exited Self Clock Mode. SCM conditions can only change if the Self Clock Mode en
bit (SCME) is set to 1. SCM conditions are caused by a failing clock quality check after power on
(POR) or low voltage reset (LVR) or recovery from Full Stop Mode (PSTP=0) or Clock Monitor failu
For details on the clock quality check refer to4.1.4 Clock Quality Checker . If the clock monitor is
enabled (CME=1) a loss of external clock will also cause a SCM condition (SCME=1).

Table 6-1 CRG Interrupt Vectors

Interrupt Source CCR
Mask Local Enable

Real time interrupt I bit CRGINT (RTIE)

LOCK interrupt I bit CRGINT (LOCKIE)

SCM interrupt I bit CRGINT (SCMIE)
51

CRG Block User Guide — V04.05

) is
SCM interrupts are locally disabled by setting the SCMIE bit to zero. The SCM interrupt flag (SCMIF
set to1 when the SCM condition has changed, and is cleared to 0 by writing a 1 to the SCMIF bit.
52

CRG Block User Guide — V04.05
53

CRG Block User Guide — V04.05
FINAL PAGE OF
54

PAGES
54

DOCUMENT NUMBER
S12DP256PIMV3/D
MC9S12DP256

Port Integration Module (PIM)

Block Guide

V03.05

Covers also

MC9S12DP512

Original Release Date: 19 NOV 2001
Revised: 24 MAR 2005

Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc.is an Equal
Opportunity/Affirmative Action Employer.

1

©Motorola, Inc., 2001

PIM_9DP256 Block Guide V03.05
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

V02.00
19 FEB
2001

Initial version for 2nd Barracuda revision started from Integration
Guide PIM_9DP256 V01.00.
Summary of changes:
- Added Port A, B, E, K, and BKGD pin.
- Added MODRR register.
- Moved priority information into Table 2-1 and removed Table 4-1
- Removed reference to IPBus from Block Diagram

V02.01
28 MAR

2001
28 MAR

2001
- Updated due to requirements in SRS supplement

V02.02
17 JUL
2001

17 JUL
2001

- 1st official version by Technical Publishing

V02.03
03 AUG

2001
03 AUG

2001

- Capitalized all pin names to match Barracuda DUG.
- Added full register names in memory map table.
- Corrected typo in PPSJ description.

V02.04
11 OCT

2001
11 OCT

2001
- Updated references w.r.t. new family name HCS12.

V02.05
31 OCT

2001
31 OCT

2001
- Minor cleanup.

V02.06
12 NOV

2001
12 NOV

2001
- Removed subsection on unbonded port pins on 80 pin package.
Shall be stated in DUG.

V03.00
19 NOV

2001
11 FEB
2001

- Added CAN0 to PJ[7:6] routing feature.
- Removed table notes from table 3-4 to 3-6.
- Added port ABEK note in Overview.
- Updated block diagram.
- Removed ports ABEK from table 2-1.
- Changed to SRSv3 document format.
- General cosmetic changes.
- Replaced key wakeup limits by variabeles defined in DUG.

V03.01
04 MAR

2002
04 MAR

2002
- Document format updates.

V03.02
23 APR

2002
23 APR

2002
- Corrected PTH I/O register bit swap of bit 7 & 6 (SS2, SCK2).

V03.03
04 NOV

2002
04 NOV

2002
- Made document generic for 9DP256 and 9DT256 derivatives by
introducing conditional text.

V03.04
24 JUL
2003

24 JUL
2003

- Corrected column header in table Pulse Detection Criteria

V03.05
24 MAR

2005
24 JUL
2003

- Added conditional text note on front page of DP256 doc version to
cover also DP512.
2

PIM_9DP256 Block Guide V03.05
Table of Contents

Section 1 Introduction

1.1 Overview. 11

1.2 Features . 11

1.3 Block Diagram . 12

Section 2 External Signal Description

2.1 Overview. 13

2.2 Signal properties. 13

Section 3 Memory Map/Register Definition

3.1 Register Descriptions . 18

3.1.1 Port T Registers . 19

3.1.2 Port S Registers . 22

3.1.3 Port M Registers . 26

3.1.4 Port P Registers . 31

3.1.5 Port H Registers. 35

3.1.6 Port J Registers . 39

Section 4 Functional Description

4.1 General. 43

4.1.1 I/O register . 43

4.1.2 Input register . 43

4.1.3 Data direction register . 43

4.1.4 Reduced drive register . 44

4.1.5 Pull device enable register . 44

4.1.6 Polarity select register . 44

4.2 Port T . 44

4.3 Port S . 45

4.4 Port M. 45

4.4.1 Module Routing Register . 45

4.5 Port P . 45

4.6 Port H . 47

4.7 Port J . 47
3

PIM_9DP256 Block Guide V03.05
4.8 Port A, B, E, K, and BKGD pin . 48

4.9 External Pin Descriptions . 48

4.10 Low Power Options . 48

4.10.1 Run Mode. 48

4.10.2 Wait Mode . 48

4.10.3 Stop Mode . 48

Section 5 Initialization/Application Information
4

PIM_DP256 Block Guide V03.05
List of Figures

Figure 1-1 PIM_9DP256 Block Diagram. 12

Figure 3-1 Port T I/O Register (PTT). 19

Figure 3-2 Port T Input Register (PTIT) . 20

Figure 3-3 Port T Data Direction Register (DDRT) . 20

Figure 3-4 Port T Reduced Drive Register (RDRT) . 21

Figure 3-5 Port T Pull Device Enable Register (PERT) . 21

Figure 3-6 Port T Polarity Select Register (PPST) . 22

Figure 3-7 Port S I/O Register (PTS) . 22

Figure 3-8 Port S Input Register (PTIS) . 23

Figure 3-9 Port S Data Direction Register (DDRS) . 23

Figure 3-10 Port S Reduced Drive Register (RDRS) . 24

Figure 3-11 Port S Pull Device Enable Register (PERS) . 24

Figure 3-12 Port S Polarity Select Register (PPSS) . 25

Figure 3-13 Port S Wired-Or Mode Register (WOMS) . 25

Figure 3-14 Port M I/O Register (PTM) . 26

Figure 3-15 Port M Input Register (PTIM). 27

Figure 3-16 Port M Data Direction Register (DDRM) . 27

Figure 3-17 Port M Reduced Drive Register (RDRM). 28

Figure 3-18 Port M Pull Device Enable Register (PERM). 28

Figure 3-19 Port M Polarity Select Register (PPSM) . 29

Figure 3-20 Port M Wired-Or Mode Register (WOMM). 29

Figure 3-21 Module Routing Register (MODRR) . 30

Figure 3-22 Port P I/O Register (PTP) . 31

Figure 3-23 Port P Input Register (PTIP) . 31

Figure 3-24 Port P Data Direction Register (DDRP) . 32

Figure 3-25 Port P Reduced Drive Register (RDRP) . 32

Figure 3-26 Port P Pull Device Enable Register (PERP) . 33

Figure 3-27 Port P Polarity Select Register (PPSP) . 33

Figure 3-28 Port P Interrupt Enable Register (PIEP) . 34

Figure 3-29 Port P Interrupt Flag Register (PIFP). 34

Figure 3-30 Port H I/O Register (PTH) . 35

Figure 3-31 Port H Input Register (PTIH) . 35

Figure 3-32 Port H Data Direction Register (DDRH). 36
5

PIM_DP256 Block Guide V03.05
Figure 3-33 Port H Reduced Drive Register (RDRH) . 36

Figure 3-34 Port H Pull Device Enable Register (PERH) . 37

Figure 3-35 Port H Polarity Select Register (PPSH) . 37

Figure 3-36 Port H Interrupt Enable Register (PIEH) . 38

Figure 3-37 Port H Interrupt Flag Register (PIFH) . 38

Figure 3-38 Port J I/O Register (PTJ) . 39

Figure 3-39 Port J Input Register (PTIJ) . 39

Figure 3-40 Port J Data Direction Register (DDRJ) . 40

Figure 3-41 Port J Reduced Drive Register (RDRJ) . 40

Figure 3-42 Port J Pull Device Enable Register (PERJ) . 41

Figure 3-43 Port J Polarity Select Register (PPSJ). 41

Figure 3-44 Port J Interrupt Enable Register (PIEJ) . 42

Figure 3-45 Port J Interrupt Flag Register (PIFJ) . 42

Figure 4-1 Illustration of I/O pin functionality. 44

Figure 4-2 Interrupt Glitch Filter on Port P, H and J (PPS=0) . 46

Figure 4-3 Pulse Illustration . 47
6

PIM_DP256 Block Guide V03.05
List of Tables

Table 2-1 Pin Functions and Priorities . 13

Table 3-1 PIM_9DP256 Memory Map . 17

Table 3-2 Pin Configuration Summary. 19

Table 3-3 CAN0 Routing . 30

Table 3-4 CAN4 Routing . 30

Table 3-5 SPI0 Routing . 30

Table 3-6 SPI1 Routing . 30

Table 3-7 SPI2 Routing . 31

Table 4-1 Implemented modules on derivatives . 45

Table 4-2 Pulse Detection Criteria . 46
7

PIM_DP256 Block Guide V03.05
8

PIM_9DP256 Block Guide V03.05
Preface

Terminology

Acronyms and Abbreviations
9

PIM_9DP256 Block Guide V03.05
10

PIM_9DP256 Block Guide V03.05

ins for

terrupt

face.

gth, to
result

pins.
Section 1 Introduction

1.1 Overview

The Port Integration Module establishes the interface between the peripheral modules and the I/O p
all ports except AD0 and AD1.

NOTE: Port A, B, E, and K are related to the core logic and multiplexed bus interface. Refer
to the HCS12 Core User Guide for details.

This section covers:

• Port T connected to the timer module

• The serial port S associated with 2 SCI and 1 SPI modules

• Port M associated with 4 CAN and 1 BDLC module

• Port P connected to the PWM and 2 SPI modules, which also can be used as an external in
source

• The standard I/O ports H and J associated with the first and fifth CAN module and the IIC inter
These ports can also be used as external interrupt sources.

Each I/O pin can be configured by several registers in order to select data direction and drive stren
enable and select pull-up or pull-down resistors. On certain pins also interrupts can be enabled which
in status flags.

The I/O’s of 2 CAN and all 3 SPI modules can be routed from their default location to determined

The implementation of the Port Integration Module is device dependent.

1.2 Features

A standard port pin has the following minimum features:

• Input/output selection

• 5V output drive with two selectable drive strengths

• 5V digital and analog input

• Input with selectable pull-up or pull-down device

Optional features:

• Open drain for wired-or connections

• Interrupt inputs with glitch filtering
11

PIM_9DP256 Block Guide V03.05
1.3 Block Diagram

The following figure is a block diagram of the PIM_9DP256.

Figure 1-1 PIM_9DP256 Block Diagram

P
or

t T

PT0
PT1
PT2
PT3
PT4
PT5
PT6
PT7

T
im

er

IOC0
IOC1
IOC2
IOC3
IOC4
IOC5
IOC6
IOC7

P
or

t P

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7

P
W

M

PWM0
PWM1
PWM2
PWM3
PWM4
PWM5
PWM6
PWM7

P
or

t S

PS0
PS1
PS2
PS3
PS4
PS5
PS6
PS7

RXD
TXD
RXD
TXD

MISO
MOSI
SCK

SS

SCI0

SCI1

SPI0

P
ort H

PH0
PH1
PH2
PH3
PH4
PH5
PH6
PH7

P
ort J

PJ0
PJ1

PJ6

PJ7

P
ort M

PM0

PM1

PM2
PM3
PM4
PM5
PM6
PM7 CAN3TXCAN

RXCAN

CAN1TXCAN
RXCAN

CAN2TXCAN
RXCAN

CAN0TXCAN
RXCAN

BDLCTXB
RXB

IICSCL
SDA

Port Integration Module

Interrupt Logic

CAN4TXCAN
RXCAN

Interrupt Logic

MISO
MOSI
SCK

SSSPI1

In
te

rr
up

t L
og

ic

MISO
MOSI

SCK
SS

SPI2

P
ort B

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

P
ort A

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

P
or

t E

PE0
PE1
PE2
PE3
PE4
PE5
PE6
PE7

P
or

t K

PK0
PK1
PK2
PK3

PK7

PK4
PK5

ADDR8/DATA8
ADDR9/DATA9
ADDR10/DATA10
ADDR11/DATA11
ADDR12/DATA12
ADDR13/DATA13
ADDR14/DATA14
ADDR15/DATA15

ADDR0/DATA0
ADDR1/DATA1
ADDR2/DATA2
ADDR3/DATA3
ADDR4/DATA4
ADDR5/DATA5
ADDR6/DATA6
ADDR7/DATA7

XIRQ
IRQ
R/W

LSTRB/TAGLO
ECLK

IPIPE0/MODA

NOACC/XCLKS
IPIPE1/MODB

XADDR15
XADDR16
XADDR17

ECS/ROMONE

XADRR18
XADDR19

CORE
XADDR14

C
A

N
4

ro
ut

.

C
A

N
0

ro
ut

in
g

BKGD/MODC/TAGHI BKGD

S
P

I0
 ro

ut
.

S
P

I0
 ro

ut
.

S
P

I1
 ro

ut
.

S
P

I2
 ro

ut
.

S
P

I1
 ro

ut
.

S
P

I2
 ro

ut
.

C
A

N
0

ro
ut

.

12

PIM_9DP256 Block Guide V03.05

ore
p

Section 2 External Signal Description

2.1 Overview

This section lists and describes the signals that do connect off-chip.

2.2 Signal properties

Table 2-1 shows all the pins and their functions that are controlled by the PIM_9DP256. If there is m
than one function associated with a pin, the priority is indicated by the position in the table from to
(highest priority) to down (lowest priority).

Table 2-1 Pin Functions and Priorities

Port Pin Name Pin Function
& Priority Description

Pin
Function

after Reset

Port T PT[7:0]
IOC[7:0] Enhanced Capture Timer Channels 7 to 0

GPIO
GPIO General-purpose I/O

Port S

PS7
SS0

Serial Peripheral Interface 0 slave select output in master mode,
input in slave mode or master mode.

GPIO

GPIO General-purpose I/O

PS6
SCK0 Serial Peripheral Interface 0 serial clock pin

GPIO General-purpose I/O

PS5
MOSI0 Serial Peripheral Interface 0 master out/slave in pin

GPIO General-purpose I/O

PS4
MISO0 Serial Peripheral Interface 0 master in/slave out pin

GPIO General-purpose I/O

PS3
TXD1 Serial Communication Interface 1 transmit pin

GPIO General-purpose I/O

PS2
RXD1 Serial Communication Interface 1 receive pin

GPIO General-purpose I/O

PS1
TXD0 Serial Communication Interface 0 transmit pin

GPIO General-purpose I/O

PS0
RXD0 Serial Communication Interface 0 receive pin

GPIO General-purpose I/O
13

PIM_9DP256 Block Guide V03.05
Port M

PM7

TXCAN3 MSCAN3 transmit pin

GPIO

TXCAN4 MSCAN4 transmit pin

GPIO General-purpose I/O

PM6

RXCAN3 MSCAN3 receive pin

RXCAN4 MSCAN4 receive pin

GPIO General-purpose I/O

PM5

TXCAN2 MSCAN2 transmit pin

TXCAN0 MSCAN0 transmit pin

TXCAN4 MSCAN4 transmit pin

SCK0 Serial Peripheral Interface 0 serial clock pin

GPIO General-purpose I/O

PM4

RXCAN2 MSCAN2 receive pin

RXCAN0 MSCAN0 receive pin

RXCAN4 MSCAN4 receive pin

MOSI0 Serial Peripheral Interface 0 master out/slave in pin

GPIO General-purpose I/O

PM3

TXCAN1 MSCAN1 transmit pin

TXCAN0 MSCAN0 transmit pin

SS01 Serial Peripheral Interface 0 slave select output in master mode,
input for slave mode or master mode.

GPIO General-purpose I/O

PM2

RXCAN1 MSCAN1 receive pin

RXCAN0 MSCAN0 receive pin

MISO01 Serial Peripheral Interface 0 master in/slave out pin

GPIO General-purpose I/O

PM1

TXCAN0 MSCAN0 transmit pin

TXB BDLC transmit pin

GPIO General-purpose I/O

PM0

RXCAN0 MSCAN0 receive pin

RXB BDLC receive pin

GPIO General-purpose I/O

Port Pin Name Pin Function
& Priority Description

Pin
Function

after Reset
14

PIM_9DP256 Block Guide V03.05
Port P

PP7

PWM7 Pulse Width Modulator channel 7

GPIO

SCK2 Serial Peripheral Interface 2 serial clock pin

GPIO/KWP7 General-purpose I/O with interrupt

PP6

PWM6 Pulse Width Modulator channel 6

SS2
Serial Peripheral Interface 2 slave select output in master mode,
input for slave mode or master mode.

GPIO/KWP6 General-purpose I/O with interrupt

PP5

PWM5 Pulse Width Modulator channel 5

MOSI2 Serial Peripheral Interface 2 master out/slave in pin

GPIO/KWP5 General-purpose I/O with interrupt

PP4

PWM4 Pulse Width Modulator channel 4

MISO2 Serial Peripheral Interface 2 master in/slave out pin

GPIO/KWP4 General-purpose I/O with interrupt

PP3

PWM3 Pulse Width Modulator channel 3

SS1
Serial Peripheral Interface 1 slave select output in master mode,
input for slave mode or master mode.

GPIO/KWP3 General-purpose I/O with interrupt

PP2

PWM2 Pulse Width Modulator channel 2

SCK1 Serial Peripheral Interface 1 serial clock pin

GPIO/KWP2 General-purpose I/O with interrupt

PP1

PWM1 Pulse Width Modulator channel 1

MOSI1 Serial Peripheral Interface 1 master out/slave in pin

GPIO/KWP1 General-purpose I/O with interrupt

PP0

PWM0 Pulse Width Modulator channel 0

MISO1 Serial Peripheral Interface 1 master in/slave out pin

GPIO/KWP0 General-purpose I/O with interrupt

Port Pin Name Pin Function
& Priority Description

Pin
Function

after Reset
15

PIM_9DP256 Block Guide V03.05
Port H

PH7
SS2

Serial Peripheral Interface 2 slave select output in master mode,
input for slave mode or master mode.

GPIO

GPIO/KWH7 General-purpose I/O with interrupt

PH6
SCK2 Serial Peripheral Interface 2 serial clock pin

GPIO/KWH6 General-purpose I/O with interrupt

PH5
MOSI2 Serial Peripheral Interface 2 master out/slave in pin

GPIO/KWH5 General-purpose I/O with interrupt

PH4
MISO2 Serial Peripheral Interface 2 master in/slave out pin

GPIO/KWH4 General-purpose I/O with interrupt

PH3
SS1

Serial Peripheral Interface 1 slave select output in master mode,
input for slave mode or master mode.

GPIO/KWH3 General-purpose I/O with interrupt

PH2
SCK1 Serial Peripheral Interface 1 serial clock pin

GPIO/KWH2 General-purpose I/O with interrupt

PH1
MOSI1 Serial Peripheral Interface 1 master out/slave in pin

GPIO/KWH1 General-purpose I/O with interrupt

PH0
MISO1 Serial Peripheral Interface 1 master in/slave out pin

GPIO/KWH0 General-purpose I/O with interrupt

Port J

PJ7

TXCAN4 MSCAN4 transmit pin

GPIO

SCL Inter Integrated Circuit serial clock line

TXCAN0 MSCAN0 transmit pin

GPIO/KWJ7 General-purpose I/O with interrupt

PJ6

RXCAN4 MSCAN4 receive pin

SDA Inter Integrated Circuit serial data line

RXCAN0 MSCAN0 receive pin

GPIO/KWJ6 General-purpose I/O with interrupt

PJ[1:0] GPIO/KWJ[1:0] General-purpose I/O with interrupt

NOTES:
1. If CAN0 is routed to PM[3:2] the SPI0 can still be used in bidirectional master mode. Refer to SPI Block Guide for details.

Port Pin Name Pin Function
& Priority Description

Pin
Function

after Reset
16

PIM_9DP256 Block Guide V03.05
Section 3 Memory Map/Register Definition

This section provides a detailed description of all registers.

The following table shows the register map of the Port Integration Module.

Table 3-1 PIM_9DP256 Memory Map
Address offset Use Access

$00 Port T I/O Register (PTT) RW

$01 Port T Input Register (PTIT) R

$02 Port T Data Direction Register (DDRT) RW

$03 Port T Reduced Drive Register (RDRT) RW

$04 Port T Pull Device Enable Register (PERT) RW

$05 Port T Polarity Select Register (PPST) RW

$06 Reserved -

$07 Reserved -

$08 Port S I/O Register (PTS) RW

$09 Port S Input Register (PTIS) R

$0A Port S Data Direction Register (DDRS) RW

$0B Port S Reduced Drive Register (RDRS) RW

$0C Port S Pull Device Enable Register (PERS) RW

$0D Port S Polarity Select Register (PPSS) RW

$0E Port S Wired-Or Mode Register (WOMS) RW

$0F Reserved -

$10 Port M I/O Register (PTM) RW

$11 Port M Input Register (PTIM) R

$12 Port M Data Direction Register (DDRM) RW

$13 Port M Reduced Drive Register (RDRM) RW

$14 Port M Pull Device Enable Register (PERM) RW

$15 Port M Polarity Select Register (PPSM) RW

$16 Port M Wired-Or Mode Register (WOMM) RW

$17 Module Routing Register (MODRR) RW

$18 Port P I/O Register (PTP) RW

$19 Port P Input Register (PTIP) R

$1A Port P Data Direction Register (DDRP) RW

$1B Port P Reduced Drive Register (RDRP) RW

$1C Port P Pull Device Enable Register (PERP) RW

$1D Port P Polarity Select Register (PPSP) RW

$1E Port P Interrupt Enable Register (PIEP) RW

$1F Port P Interrupt Flag Register (PIFP) RW

$20 Port H I/O Register (PTH) RW

$21 Port H Input Register (PTIH) R

$22 Port H Data Direction Register (DDRH) RW

$23 Port H Reduced Drive Register (RDRH) RW

$24 Port H Pull Device Enable Register (PERH) RW

$25 Port H Polarity Select Register (PPSH) RW
17

PIM_9DP256 Block Guide V03.05

utput
orts.
NOTE: Register Address = Base Address + Address Offset, where the Base Address is
defined at the MCU level and the Address Offset is defined at the module level.

3.1 Register Descriptions

The following table summarizes the effect on the various configuration bits, data direction (DDR), o
level (I/O), reduced drive (RDR), pull enable (PE), pull select (PS) and interrupt enable (IE) for the p
The configuration bit PS is used for two purposes:

1. Configure the sensitive interrupt edge (rising or falling), if interrupt is enabled.

2. Select either a pull-up or pull-down device if PE is active.

$26 Port H Interrupt Enable Register (PIEH) RW

$27 Port H Interrupt Flag Register (PIFH) RW

$28 Port J I/O Register (PTJ) RW1

$29 Port J Input Register (PTIJ) R

$2A Port J Data Direction Register (DDRJ) RW1

$2B Port J Reduced Drive Register (RDRJ) RW1

$2C Port J Pull Device Enable Register (PERJ) RW1

$2D Port J Polarity Select Register (PPSJ) RW1

$2E Port J Interrupt Enable Register (PIEJ) RW1

$2F Port J Interrupt Flag Register (PIFJ) RW1

$30 - $3F Reserved -

NOTES:
1. Write access not applicable for one or more register bits. Please refer to detailed signal descrip-

tion.
18

PIM_9DP256 Block Guide V03.05
Table 3-2 Pin Configuration Summary

NOTE: All bits of all registers in this module are completely synchronous to internal clocks
during a register read.

3.1.1 Port T Registers

Figure 3-1 Port T I/O Register (PTT)

Read:Anytime.

Write:Anytime.

DDR IO RDR PE PS IE1

NOTES:
1. Applicable only on port P, H and J.

Function Pull Device Interrupt

0 X X 0 X 0 Input Disabled Disabled

0 X X 1 0 0 Input Pull Up Disabled

0 X X 1 1 0 Input Pull Down Disabled

0 X X 0 0 1 Input Disabled falling edge

0 X X 0 1 1 Input Disabled rising edge

0 X X 1 0 1 Input Pull Up falling edge

0 X X 1 1 1 Input Pull Down rising edge

1 0 0 X X 0 Output, full drive to 0 Disabled Disabled

1 1 0 X X 0 Output, full drive to 1 Disabled Disabled

1 0 1 X X 0 Output, reduced drive to 0 Disabled Disabled

1 1 1 X X 0 Output, reduced drive to 1 Disabled Disabled

1 0 0 X 0 1 Output, full drive to 0 Disabled falling edge

1 1 0 X 1 1 Output, full drive to 1 Disabled rising edge

1 0 1 X 0 1 Output, reduced drive to 0 Disabled falling edge

1 1 1 X 1 1 Output, reduced drive to 1 Disabled rising edge

Address Offset: $__00

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PTT7 PTT6 PTT5 PTT4 PTT3 PTT2 PTT1 PTT0
Write
ECT: IOC7 IOC6 IOC5 IOC4 IOC3 IOC2 IOC1 IOC0

Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
19

PIM_9DP256 Block Guide V03.05

gister,

verload

mpare.

pare

d on
If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port re
otherwise the value at the pins is read.

Figure 3-2 Port T Input Register (PTIT)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can also be used to detect o
or short circuit conditions on output pins.

Figure 3-3 Port T Data Direction Register (DDRT)

Read:Anytime.

Write:Anytime.

This register configures each port T pin as either input or output.
The ECT forces the I/O state to be an output for each timer port associated with an enabled output co
In these cases the data direction bits will not change.
The DDRT bits revert to controlling the I/O direction of a pin when the associated timer output com
is disabled.
The timer input capture always monitors the state of the pin.

DDRT[7:0] — Data Direction Port T
1 = Associated pin is configured as output.
0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is rea
PTT or PTIT registers, when changing the DDRT register.

Address Offset: $__01

Bit 7 6 5 4 3 2 1 Bit 0
Read: PTIT7 PTIT6 PTIT5 PTIT4 PTIT3 PTIT2 PTIT1 PTIT0
Write:
Reset: - - - - - - - -

= Reserved or unimplemented

Address Offset: $__02

Bit 7 6 5 4 3 2 1 Bit 0
Read:

DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
20

PIM_9DP256 Block Guide V03.05

ort is

 input.
Figure 3-4 Port T Reduced Drive Register (RDRT)

Read:Anytime.

Write:Anytime.

This register configures the drive strength of each port T output pin as either full or reduced. If the p
used as input this bit is ignored.

RDRT[7:0] — Reduced Drive Port T
1 = Associated pin drives at about 1/3 of the full drive strength.
0 = Full drive strength at output.

Figure 3-5 Port T Pull Device Enable Register (PERT)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as
This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERT[7:0] — Pull Device Enable Port T
1 = Either a pull-up or pull-down device is enabled.
0 = Pull-up or pull-down device is disabled.

Address Offset: $__03

Bit 7 6 5 4 3 2 1 Bit 0
Read:

RDRT7 RDRT6 RDRT5 RDRT4 RDRT3 RDRT2 RDRT1 RDRT0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__04

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PERT7 PERT6 PERT5 PERT4 PERT3 PERT2 PERT1 PERT0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
21

PIM_9DP256 Block Guide V03.05

bit in

bit in

gister,

nabled.
.

Figure 3-6 Port T Polarity Select Register (PPST)

Read:Anytime.

Write:Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin.

PPST[7:0] — Pull Select Port T
1 = A pull-down device is connected to the associated port T pin, if enabled by the associated

register PERT and if the port is used as input.
0 = A pull-up device is connected to the associated port T pin, if enabled by the associated

register PERT and if the port is used as input.

3.1.2 Port S Registers

Figure 3-7 Port S I/O Register (PTS)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port re
otherwise the value at the pins is read.
The SPI pins (PS[7:4]) configuration is determined by several status bits in the SPI module.Refer to SPI
Block Guide for details.
The SCI ports associated with transmit pins 3 and 1 are configured as outputs if the transmitter is e
The SCI ports associated with receive pins 2 and 0 are configured as inputs if the receiver is enabledRefer
to SCI Block Guide for details.

Address Offset: $__05

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PPST7 PPST6 PPST5 PPST4 PPST3 PPST2 PPST1 PPST0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__08

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PTS7 PTS6 PTS5 PTS4 PTS3 PTS2 PTS1 PTS0
Write:

SPI/SCI SS0 SCK0 MOSI0 MISO0 TXD1 RXD1 TXD0 RXD0
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
22

PIM_9DP256 Block Guide V03.05

verload

he pin
ceive

led.

n PTS
Figure 3-8 Port S Input Register (PTIS)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This also can be used to detect o
or short circuit conditions on output pins.

Figure 3-9 Port S Data Direction Register (DDRS)

Read:Anytime.

Write:Anytime.

This register configures each port S pin as either input or output
If SPI is enabled, the SPI determines the pin direction.Refer to SPI Block Guide for details.
If the associated SCI transmit or receive channel is enabled this register has no effect on the pins. T
is forced to be an output if a SCI transmit channel is enabled, it is forced to be an input if the SCI re
channel is enabled.
The DDRS bits revert to controlling the I/O direction of a pin when the associated channel is disab

DDRS[7:0] — Data Direction Port S
1 = Associated pin is configured as output.
0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read o
or PTIS registers, when changing the DDRS register.

Address Offset: $__09

Bit 7 6 5 4 3 2 1 Bit 0
Read: PTIS7 PTIS6 PTIS5 PTIS4 PTIS3 PTIS2 PTIS1 PTIS0
Write:
Reset: - - - - - - - -

= Reserved or unimplemented

Address Offset:$__0A

Bit 7 6 5 4 3 2 1 Bit 0
Read:

DDRS7 DDRS6 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
23

PIM_9DP256 Block Guide V03.05

ort is

ut or
t. Out
Figure 3-10 Port S Reduced Drive Register (RDRS)

Read:Anytime.

Write:Anytime.

This register configures the drive strength of each port S output pin as either full or reduced. If the p
used as input this bit is ignored.

RDRS[7:0] — Reduced Drive Port S
1 = Associated pin drives at about 1/3 of the full drive strength.
0 = Full drive strength at output.

Figure 3-11 Port S Pull Device Enable Register (PERS)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as inp
as output in wired-or (open drain) mode. This bit has no effect if the port is used as push-pull outpu
of reset a pull-up device is enabled.

PERS[7:0] — Pull Device Enable Port S
1 = Either a pull-up or pull-down device is enabled.
0 = Pull-up or pull-down device is disabled.

Address Offset: $__0B

Bit 7 6 5 4 3 2 1 Bit 0
Read:

RDRS7 RDRS6 RDRS5 RDRS4 RDRS3 RDRS2 RDRS1 RDRS0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__0C

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PERS7 PERS6 PERS5 PERS4 PERS3 PERS2 PERS1 PERS0
Write:
Reset: 1 1 1 1 1 1 1 1

= Reserved or unimplemented
24

PIM_9DP256 Block Guide V03.05

bit in

 bit in

s a
Figure 3-12 Port S Polarity Select Register (PPSS)

Read:Anytime.

Write:Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin.

PPSS[7:0] — Pull Select Port S
1 = A pull-down device is connected to the associated port S pin, if enabled by the associated

register PERS and if the port is used as input.
0 = A pull-up device is connected to the associated port S pin, if enabled by the associated

register PERS and if the port is used as input or as wired-or output.

Figure 3-13 Port S Wired-Or Mode Register (WOMS)

Read:Anytime.

Write:Anytime.

This register configures the output pins as wired-or. If enabled the output is driven active low only
(open-drain). A logic level of “1” is not driven. It applies also to the SPI and SCI outputs and allow
multipoint connection of several serial modules. This bit has no influence on pins used as inputs.

WOMS[7:0] — Wired-Or Mode Port S
1 = Output buffers operate as open-drain outputs.
0 = Output buffers operate as push-pull outputs.

Address Offset: $__0D

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PPSS7 PPSS6 PPSS5 PPSS4 PPSS3 PPSS2 PPSS1 PPSS0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__0E

Bit 7 6 5 4 3 2 1 Bit 0
Read:

WOMS7 WOMS6 WOMS5 WOMS4 WOMS3 WOMS2 WOMS1 WOMS0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
25

PIM_9DP256 Block Guide V03.05

gister,

l

ction

and

he

e I/O

 the

he

rpose

PI0
3.1.3 Port M Registers

Figure 3-14 Port M I/O Register (PTM)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port re
otherwise the value at the pins is read.

PM[7:6]

The CAN3 function (TXCAN3 and RXCAN3) takes precedence over the CAN4 and the genera
purpose I/O function if the CAN3 module is enabled.
The CAN4 function (TXCAN4 and RXCAN4) takes precedence over the general purpose I/O fun
if the CAN4 module is enabled.Refer to MSCAN Block Guide for details.

PM[5:4]

The CAN2 function (TXCAN2 and RXCAN2) takes precedence over the CAN0, CAN4, the SPI0
the general purpose I/O function if the CAN2 module is enabled.
The CAN0 function (TXCAN0 and RXCAN0) takes precedence over the CAN4, the SPI0 and t
general purpose I/O function if the CAN0 module is enabled.
The CAN4 function (TXCAN4 and RXCAN4) takes precedence over the SPI and general purpos
function if the CAN4 module is enabled.Refer to MSCAN Block Guide for details.
The SPI0 function (SCK0 and MOSI0) takes precedence of the general purpose I/O function if
SPI0 is enabled.Refer to SPI Block Guide for details.

PM[3:2]

The CAN1 function (TXCAN1 and RXCAN1) takes precedence over the CAN0, the SPI0 and t
general purpose I/O function if the CAN1 module is enabled.
The CAN0 function (TXCAN0 and RXCAN0) takes precedence over the SPI0 and the general pu
I/O function if the CAN0 module is enabled. Refer to MSCAN Block Guide for details.
The SPI0 function (SS0 and MISO0) takes precedence of the general purpose I/O function if the S
is enabled and not in bidirectional mode.Refer to SPI Block Guide for details.

Address Offset: $__10

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PTM7 PTM6 PTM5 PTM4 PTM3 PTM2 PTM1 PTM0
Write:
CAN: TXCAN3 RXCAN3 TXCAN2 RXCAN2 TXCAN1 RXCAN1 TXCAN0 RXCAN0
BDLC: TXB RXB
CAN0: TXCAN0 RXCAN0 TXCAN0 RXCAN0
CAN4: TXCAN4 RXCAN4 TXCAN4 RXCAN4
SPI0: SCK0 MOSI0 SS0 MISO0
Reset 0 0 0 0 0 0 0 0

= Reserved or unimplemented
26

PIM_9DP256 Block Guide V03.05

l

led.

verload

utput
bled

ule is
PM[1:0]

The CAN0 function (TXCAN0 and RXCAN0) takes precedence over the BDLC and the genera
purpose I/O function if the CAN0 module is enabled. Refer to MSCAN Block Guide for details.
The BDLC function takes precedence over the general purpose I/O function associated if enab
Refer to BDLC Block Guide for details.

Figure 3-15 Port M Input Register (PTIM)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can also be used to detect o
or short circuit conditions on output pins.

Figure 3-16 Port M Data Direction Register (DDRM)

Read:Anytime.

Write:Anytime.

This register configures each port M pin as either input or output.
The CAN/BDLC forces the I/O state to be an output for each port line associated with an enabled o
(TXCAN[3:0], TXB). It also forces the I/O state to be an input for each port line associated with an ena
input (RXCAN[3:0], RXB). In those cases the data direction bits will not change.
The DDRM bits revert to controlling the I/O direction of a pin when the associated peripheral mod
disabled.

DDRM[7:0] — Data Direction Port M
1 = Associated pin is configured as output.
0 = Associated pin is configured as input.

Address Offset: $__11

Bit 7 6 5 4 3 2 1 Bit 0
Read: PTIM7 PTIM6 PTIM5 PTIM4 PTIM3 PTIM2 PTIM1 PTIM0
Write:
Reset: - - - - - - - -

= Reserved or unimplemented

Address Offset: $__12

Bit 7 6 5 4 3 2 1 Bit 0
Read:

DDRM7 DDRM6 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
27

PIM_9DP256 Block Guide V03.05

d on

ort is

ut or
ice is
Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is rea
PTM or PTIM registers, when changing the DDRM register.

Figure 3-17 Port M Reduced Drive Register (RDRM)

Read:Anytime.

Write:Anytime.

This register configures the drive strength of each port M output pin as either full or reduced. If the p
used as input this bit is ignored.

RDRM[7:0] — Reduced Drive Port M
1 = Associated pin drives at about 1/3 of the full drive strength.
0 = Full drive strength at output.

Figure 3-18 Port M Pull Device Enable Register (PERM)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as inp
wired-or output. This bit has no effect if the port is used as push-pull output. Out of reset no pull dev
enabled.

PERM[7:0] — Pull Device Enable Port M
1 = Either a pull-up or pull-down device is enabled.
0 = Pull-up or pull-down device is disabled.

Address Offset: $__13

Bit 7 6 5 4 3 2 1 Bit 0
Read:

RDRM7 RDRM6 RDRM5 RDRM4 RDRM3 RDRM2 RDRM1 RDRM0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__14

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PERM7 PERM6 PERM5 PERM4 PERM3 PERM2 PERM1 PERM0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
28

PIM_9DP256 Block Guide V03.05

ive a

ted bit

 bit in
LC.

ws
.

Figure 3-19 Port M Polarity Select Register (PPSM)

Read:Anytime.

Write:Anytime.

This register selects whether a pull-down or a pull-up device is connected to the pin. If CAN is act
pull-up device can be activated on the RXCAN[3:0] inputs, but not a pull-down. If BDLC is active a
pull-down device can be activated on the RXB pin but not a pull-up.

PPSM[7:0] — Pull Select Port M
1 = A pull-down device is connected to the associated port M pin, if enabled by the associa

in register PERM and if the port is used as a general purpose or BDLC input but not as
RXCAN.

0 = A pull-up device is connected to the associated port M pin, if enabled by the associated
register PERM and if the port is used as general purpose or RXCAN input but not as BD

Figure 3-20 Port M Wired-Or Mode Register (WOMM)

Read:Anytime.

Write:Anytime.

This register configures the output pins as wired-or. If enabled the output is driven active low only
(open-drain). A logic level of “1” is not driven. It applies also to the CAN and BDLC outputs and allo
a multipoint connection of several serial modules. This bit has no influence on pins used as inputs

WOMM[7:0] — Wired-Or Mode Port M
1 = Output buffers operate as open-drain outputs.
0 = Output buffers operate as push-pull outputs.

Address Offset: $__15

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PPSM7 PPSM6 PPSM5 PPSM4 PPSM3 PPSM2 PPSM1 PPSM0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__16

Bit 7 6 5 4 3 2 1 Bit 0
Read:

WOMM7 WOMM6 WOMM5 WOMM4 WOMM3 WOMM2 WOMM1 WOMM0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
29

PIM_9DP256 Block Guide V03.05

.

Figure 3-21 Module Routing Register (MODRR)

Read:Anytime.

Write:Anytime.

This register configures the re-routing of CAN0, CAN4, SPI0, SPI1, and SPI2 on defined port pins

MODRR[1:0] — CAN0 Routing

MODRR[3:2] — CAN4 Routing

MODRR[4] — SPI0 Routing

MODRR[5] — SPI1 Routing

Address Offset: $__17

Bit 7 6 5 4 3 2 1 Bit 0
Read: 0

MODRR6 MODRR5 MODRR4 MODRR3 MODRR2 MODRR1 MODRR0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Table 3-3 CAN0 Routing

MODRR[1] MODRR[0] RXCAN0 TXCAN0

0 0 PM0 PM1

0 1 PM2 PM3

1 0 PM4 PM5

1 1 PJ6 PJ7

Table 3-4 CAN4 Routing

MODRR[3] MODRR[2] RXCAN4 TXCAN4

0 0 PJ6 PJ7

0 1 PM4 PM5

1 0 PM6 PM7

1 1 Reserved

Table 3-5 SPI0 Routing

MODRR[4] MISO0 MOSI0 SCK0 SS0

0 PS4 PS5 PS6 PS7

1 PM2 PM4 PM5 PM3

Table 3-6 SPI1 Routing

MODRR[5] MISO1 MOSI1 SCK1 SS1

0 PP0 PP1 PP2 PP3

1 PH0 PH1 PH2 PH3
30

PIM_9DP256 Block Guide V03.05

gister,

hannel
PWM

.

MODRR[6] — SPI2 Routing

3.1.4 Port P Registers

Figure 3-22 Port P I/O Register (PTP)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port re
otherwise the value at the pins is read.
The PWM function takes precedence over the general purpose I/O function if the associated PWM c
is enabled. While channels 6-0 are output only if the respective channel is enabled, channel 7 can be
output or input if the shutdown feature is enabled.Refer to PWM Block Guide for details.
The SPI function takes precedence over the general purpose I/O function associated with if enabledRefer
to SPI Block Guide for details.
If both PWM and SPI are enabled the PWM functionality takes precedence.

Figure 3-23 Port P Input Register (PTIP)

Read:Anytime.

Write:Never, writes to this register have no effect.

Table 3-7 SPI2 Routing

MODRR[6] MISO2 MOSI2 SCK2 SS2

0 PP4 PP5 PP7 PP6

1 PH4 PH5 PH6 PH7

Address Offset: $__18

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PTP7 PTP6 PTP5 PTP4 PTP3 PTP2 PTP1 PTP0
Write:
PWM: PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0
SPI: SCK2 SS2 MOSI2 MISO2 SS1 SCK1 MOSI1 MISO1

Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__19

Bit 7 6 5 4 3 2 1 Bit 0
Read: PTIP7 PTIP6 PTIP5 PTIP4 PTIP3 PTIP2 PTIP1 PTIP0
Write:
Reset: - - - - - - - -

= Reserved or unimplemented
31

PIM_9DP256 Block Guide V03.05

verload

7-0

s

n PTP

ort is
This register always reads back the status of the associated pins. This can be also used to detect o
or short circuit conditions on output pins.

Figure 3-24 Port P Data Direction Register (DDRP)

Read:Anytime.

Write:Anytime.

This register configures each port P pin as either input or output.
If the associated PWM channel or SPI module is enabled this register has no effect on the pins.
The PWM forces the I/O state to be an output for each port line associated with an enabled PWM
channel. Channel 7 can force the pin to input if the shutdown feature is enabled.
If a SPI module is enabled, the SPI determines the pin direction.Refer to SPI Block Guide for details.
The DDRM bits revert to controlling the I/O direction of a pin when the associated PWM channel i
disabled.

DDRP[7:0] — Data Direction Port P
1 = Associated pin is configured as output.
0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read o
or PTIP registers, when changing the DDRP register.

Figure 3-25 Port P Reduced Drive Register (RDRP)

Read:Anytime.

Write:Anytime.

This register configures the drive strength of each port P output pin as either full or reduced. If the p
used as input this bit is ignored.

Address Offset: $__1A

Bit 7 6 5 4 3 2 1 Bit 0
Read:

DDRP7 DDRP6 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__1B

Bit 7 6 5 4 3 2 1 Bit 0
Read:

RDRP7 RDRP6 RDRP5 RDRP4 RDRP3 RDRP2 RDRP1 RDRP0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
32

PIM_9DP256 Block Guide V03.05

 input.

lecting

r.A
 bit in

r.A
t in
RDRP[7:0] — Reduced Drive Port P
1 = Associated pin drives at about 1/3 of the full drive strength.
0 = Full drive strength at output.

Figure 3-26 Port P Pull Device Enable Register (PERP)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as
This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERP[7:0] — Pull Device Enable Port P
1 = Either a pull-up or pull-down device is enabled.
0 = Pull-up or pull-down device is disabled.

Figure 3-27 Port P Polarity Select Register (PPSP)

Read:Anytime.

Write:Anytime.

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as se
a pull-up or pull-down device if enabled.

PPSP[7:0] — Polarity Select Port P
1 = Rising edge on the associated port P pin sets the associated flag bit in the PIFP registe

pull-down device is connected to the associated port P pin, if enabled by the associated
register PERP and if the port is used as input.

0 = Falling edge on the associated port P pin sets the associated flag bit in the PIFP registe
pull-up device is connected to the associated port P pin, if enabled by the associated bi
register PERP and if the port is used as input.

Address Offset: $__1C

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PERP7 PERP6 PERP5 PERP4 PERP3 PERP2 PERP1 PERP0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__1D

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PPSP7 PPSP6 PPSP5 PPSP4 PPSP3 PPSP2 PPSP1 PPSP0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
33

PIM_9DP256 Block Guide V03.05

ith port

based
ister.

nable
Figure 3-28 Port P Interrupt Enable Register (PIEP)

Read:Anytime.

Write:Anytime.

This register disables or enables on a per pin basis the edge sensitive external interrupt associated w
P.

PIEP[7:0] — Interrupt Enable Port P
1 = Interrupt is enabled.
0 = Interrupt is disabled (interrupt flag masked).

Figure 3-29 Port P Interrupt Flag Register (PIFP)

Read:Anytime.

Write:Anytime.

Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge
on the state of the PPSP register. To clear this flag, write “1” to the corresponding bit in the PIFP reg
Writing a “0” has no effect.

PIFP[7:0] — Interrupt Flags Port P
1 = Active edge on the associated bit has occurred (an interrupt will occur if the associated e

bit is set).
Writing a “1” clears the associated flag.

0 = No active edge pending.
Writing a “0” has no effect.

Address Offset: $__1E

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PIEP7 PIEP6 PIEP5 PIEP4 PIEP3 PIEP2 PIEP1 PIEP0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__1F

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PIFP7 PIFP6 PIFP5 PIFP4 PIFP3 PIFP2 PIFP1 PIFP0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
34

PIM_9DP256 Block Guide V03.05

gister,

.

verload
3.1.5 Port H Registers

Figure 3-30 Port H I/O Register (PTH)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port re
otherwise the value at the pins is read.

The SPI function takes precedence over the general purpose I/O function associated with if enabledRefer
to SPI Block Guide for details.

Figure 3-31 Port H Input Register (PTIH)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can also be used to detect o
or short circuit conditions on output pins.

Address Offset:$__20

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PTH7 PTH6 PTH5 PTH4 PTH3 PTH2 PTH1 PTH0
Write:
SPI: SS2 SCK2 MOSI2 MISO2 SS1 SCK1 MOSI1 MISO1

Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__21

Bit 7 6 5 4 3 2 1 Bit 0
Read: PTIH7 PTIH6 PTIH5 PTIH4 PTIH3 PTIH2 PTIH1 PTIH0
Write:
Reset: - - - - - - - -

= Reserved or unimplemented
35

PIM_9DP256 Block Guide V03.05

d on

ort is
Figure 3-32 Port H Data Direction Register (DDRH)

Read:Anytime.

Write:Anytime.

This register configures each port H pin as either input or output.

DDRH[7:0] — Data Direction Port H
1 = Associated pin is configured as output.
0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is rea
PTH or PTIH registers, when changing the DDRH register.

Figure 3-33 Port H Reduced Drive Register (RDRH)

Read:Anytime.

Write:Anytime.

This register configures the drive strength of each port H output pin as either full or reduced. If the p
used as input this bit is ignored.

RDRH[7:0] — Reduced Drive Port H
1 = Associated pin drives at about 1/3 of the full drive strength.
0 = Full drive strength at output.

Address Offset: $__22

Bit 7 6 5 4 3 2 1 Bit 0
Read:

DDRH7 DDRH6 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__23

Bit 7 6 5 4 3 2 1 Bit 0
Read:

RDRH7 RDRH6 RDRH5 RDRH4 RDRH3 RDRH2 RDRH1 RDRH0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
36

PIM_9DP256 Block Guide V03.05

 input.

lecting

r.
ted bit

r.
 bit in
Figure 3-34 Port H Pull Device Enable Register (PERH)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as
This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERH[7:0] — Pull Device Enable Port H
1 = Either a pull-up or pull-down device is enabled.
0 = Pull-up or pull-down device is disabled.

Figure 3-35 Port H Polarity Select Register (PPSH)

Read:Anytime.

Write:Anytime.

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as se
a pull-up or pull-down device if enabled.

PPSH[7:0] — Polarity Select Port H
1 = Rising edge on the associated port H pin sets the associated flag bit in the PIFH registe

A pull-down device is connected to the associated port H pin, if enabled by the associa
in register PERH and if the port is used as input.

0 = Falling edge on the associated port H pin sets the associated flag bit in the PIFH registe
A pull-up device is connected to the associated port H pin, if enabled by the associated
register PERH and if the port is used as input.

Address Offset: $__24

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PERH7 PERH6 PERH5 PERH4 PERH3 PERH2 PERH1 PERH0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__25

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PPSH7 PPSH6 PPSH5 PPSH4 PPSH3 PPSH2 PPSH1 PPSH0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
37

PIM_9DP256 Block Guide V03.05

ith port

based
ister.

nable
Figure 3-36 Port H Interrupt Enable Register (PIEH)

Read:Anytime.

Write:Anytime.

This register disables or enables on a per pin basis the edge sensitive external interrupt associated w
H.

PIEH[7:0] — Interrupt Enable Port H
1 = Interrupt is enabled.
0 = Interrupt is disabled (interrupt flag masked).

Figure 3-37 Port H Interrupt Flag Register (PIFH)

Read:Anytime.

Write:Anytime.

Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge
on the state of the PPSH register. To clear this flag, write “1” to the corresponding bit in the PIFH reg
Writing a “0” has no effect.

PIFH[7:0] — Interrupt Flags Port H
1 = Active edge on the associated bit has occurred (an interrupt will occur if the associated e

bit is set).
Writing a “1” clears the associated flag.

0 = No active edge pending.
Writing a “0” has no effect.

Address Offset: $__26

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PIEH7 PIEH6 PIEH5 PIEH4 PIEH3 PIEH2 PIEH1 PIEH0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented

Address Offset: $__27

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PIFH7 PIFH6 PIFH5 PIFH4 PIFH3 PIFH2 PIFH1 PIFH0
Write:
Reset: 0 0 0 0 0 0 0 0

= Reserved or unimplemented
38

PIM_9DP256 Block Guide V03.05

gister,

ction
ed as

ction

load or
3.1.6 Port J Registers

Figure 3-38 Port J I/O Register (PTJ)

Read:Anytime.

Write:Anytime.

If the data direction bits of the associated I/O pins are set to 1, a read returns the value of the port re
otherwise the value at the pins is read.

PJ[7:6]

The CAN4 function (TXCAN4 and RXCAN4) takes precedence over the IIC, the CAN0 and the
general purpose I/O function if the CAN4 module is enabled.

The IIC function (SCL and SDA) takes precedence over CAN0 and the general purpose I/O fun
if the IIC is enabled. If the IIC module takes precedence the SDA and SCL outputs are configur
open drain outputs.Refer to IIC Block Guide for details.
The CAN0 function (TXCAN0 and RXCAN0) takes precedence over the general purpose I/O fun
if the CAN0 module is enabled.Refer to MSCAN Block Guide for details.

Figure 3-39 Port J Input Register (PTIJ)

Read:Anytime.

Write:Never, writes to this register have no effect.

This register always reads back the status of the associated pins. This can be used to detect over
short circuit conditions on output pins.

Address Offset: $__28

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PTJ7 PTJ6
0 0 0 0

PTJ1 PTJ0
Write:
CAN4: TXCAN4 RXCAN4

IIC: SCL SDA
CAN0: TXCAN0 RXCAN0
Reset: 0 0 - - - - 0 0

= Reserved or unimplemented

Address Offset: $__29

Bit 7 6 5 4 3 2 1 Bit 0
Read: PTIJ7 PTIJ6 0 0 0 0 PTIJ1 PTIJ0
Write:
Reset: - - - - - - - -

= Reserved or unimplemented
39

PIM_9DP256 Block Guide V03.05

The
DRJ

ed.

n PTJ

ort is
Figure 3-40 Port J Data Direction Register (DDRJ)

Read:Anytime.

Write:Anytime.

This register configures each port J pin as either input or output.
The CAN forces the I/O state to be an output on PJ7 (TXCAN4) and an input on pin PJ6 (RXCAN4).
IIC takes control of the I/O if enabled. In these cases the data direction bits will not change. The D
bits revert to controlling the I/O direction of a pin when the associated peripheral module is disabl

DDRJ[7:6][1:0] — Data Direction Port J
1 = Associated pin is configured as output.
0 = Associated pin is configured as input.

Due to internal synchronization circuits, it can take up to 2 bus cycles until the correct value is read o
or PTIJ registers, when changing the DDRJ register.

Figure 3-41 Port J Reduced Drive Register (RDRJ)

Read:Anytime.

Write:Anytime.

This register configures the drive strength of each port J output pin as either full or reduced. If the p
used as input this bit is ignored.

RDRJ[7:6][1:0] — Reduced Drive Port J
1 = Associated pin drives at about 1/3 of the full drive strength.
0 = Full drive strength at output.

Address Offset: $__2A

Bit 7 6 5 4 3 2 1 Bit 0
Read:

DDRJ7 DDRJ6
0 0 0 0

DDRJ1 DDRJ0
Write:
Reset: 0 0 - - - - 0 0

= Reserved or unimplemented

Address Offset: $__2B

Bit 7 6 5 4 3 2 1 Bit 0
Read:

RDRJ7 RDRJ6
0 0 0 0

RDRJ1 RDRJ0
Write:
Reset: 0 0 - - - - 0 0

= Reserved or unimplemented
40

PIM_9DP256 Block Guide V03.05

ut or
evice

lecting

.
bit in

r.
bit in
Figure 3-42 Port J Pull Device Enable Register (PERJ)

Read:Anytime.

Write:Anytime.

This register configures whether a pull-up or a pull-down device is activated, if the port is used as inp
as wired-or output. This bit has no effect if the port is used as push-pull output. Out of reset a pull-up d
is enabled.

PERJ[7:6][1:0] — Pull Device Enable Port J
1 = Either a pull-up or pull-down device is enabled.
0 = Pull-up or pull-down device is disabled.

Figure 3-43 Port J Polarity Select Register (PPSJ)

Read:Anytime.

Write:Anytime.

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as se
a pull-up or pull-down device if enabled.

PPSJ[7:6][1:0] — Polarity Select Port J
1 = Rising edge on the associated port J pin sets the associated flag bit in the PIFJ register

A pull-down device is connected to the associated port J pin, if enabled by the associated
register PERJ and if the port is used as input.

0 = Falling edge on the associated port J pin sets the associated flag bit in the PIFJ registe
A pull-up device is connected to the associated port J pin, if enabled by the associated
register PERJ and if the port is used as general purpose input or as IIC port.

Address Offset: $__2C

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PERJ7 PERJ6
0 0 0 0

PERJ1 PERJ0
Write:
Reset: 1 1 - - - - 1 1

= Reserved or unimplemented

Address Offset: $__2D

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PPSJ7 PPSJ6
0 0 0 0

PPSJ1 PPSJ0
Write:
Reset: 0 0 - - - - 0 0

= Reserved or unimplemented
41

PIM_9DP256 Block Guide V03.05

ith port

based
ister.

nable
Figure 3-44 Port J Interrupt Enable Register (PIEJ)

Read:Anytime.

Write:Anytime.

This register disables or enables on a per pin basis the edge sensitive external interrupt associated w
J.

PIEJ[7:6][1:0] — Interrupt Enable Port J
1 = Interrupt is enabled.
0 = Interrupt is disabled (interrupt flag masked).

Figure 3-45 Port J Interrupt Flag Register (PIFJ)

Read:Anytime.

Write:Anytime.

Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge
on the state of the PPSJ register. To clear this flag, write “1” to the corresponding bit in the PIFJ reg
Writing a “0” has no effect.

PIFJ[7:6][1:0] — Interrupt Flags Port J
1 = Active edge on the associated bit has occurred (an interrupt will occur if the associated e

bit is set).
Writing a “1” clears the associated flag.

0 = No active edge pending.
Writing a “0” has no effect.

Address Offset: $__2E

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PIEJ7 PIEJ6
0 0 0 0

PIEJ1 PIEJ0
Write:
Reset: 0 0 - - - - 0 0

= Reserved or unimplemented

Address Offset: $__2F

Bit 7 6 5 4 3 2 1 Bit 0
Read:

PIFJ7 PIFJ6
0 0 0 0

PIFJ1 PIFJ0
Write:
Reset: 0 0 - - - - 0 0

= Reserved or unimplemented
42

PIM_9DP256 Block Guide V03.05

odule

ver a

h-pull

When
.

ndent
Section 4 Functional Description

4.1 General

Each pin can act as general purpose I/O. In addition the pin can act as an output from a peripheral m
or an input to a peripheral module.

A set of configuration registers is common to all ports. All registers can be written at any time, howe
specific configuration might not become active.

Example:

Selecting a pull-up resistor. This resistor does not become active while the port is used as a pus
output.

4.1.1 I/O register

This register holds the value driven out to the pin if the port is used as a general purpose I/O.

Writing to this register has only an effect on the pin if the port is used as general purpose output.
reading this address, the value of the pins is returned if the data direction register bits are set to 0

If the data direction register bits are set to 1, the contents of the I/O register is returned. This is indepe
of any other configuration (Figure 4-1).

4.1.2 Input register

This is a read-only register and always returns the value of the pin (Figure 4-1).

4.1.3 Data direction register

This register defines whether the pin is used as an input or an output.

If a peripheral module controls the pin the contents of the data direction register is ignored (Figure 4-1).
43

PIM_9DP256 Block Guide V03.05

ed as

ced
Figure 4-1 Illustration of I/O pin functionality

4.1.4 Reduced drive register

If the port is used as an output the register allows the configuration of the drive strength.

4.1.5 Pull device enable register

This register turns on a pull-up or pull-down device.

It becomes only active if the pin is used as an input or as a wired-or output.

4.1.6 Polarity select register

This register selects either a pull-up or pull-down device if enabled.

It becomes only active if the pin is used as an input. A pull-up device can be activated if the pin is us
a wired-or output.

4.2 Port T

This port is associated with the ECT module.

Port T pins PT[7:0] can be used for either general-purpose I/O, or with the channels of the Enhan
Capture Timer.

During reset, port T pins are configured as high-impedance inputs.

PT

DDR

output enable

module enable

1

0

1

1

0

0

PAD

PTI

data out

Module
44

PIM_9DP256 Block Guide V03.05

s.

ems.

enabled
ut. If
4.3 Port S

This port is associated with SCI0, SCI1 and SPI0.

Port S pins PS[7:0] can be used either for general-purpose I/O, or with the SCI and SPI subsystem

During reset, port S pins are configured as inputs with pull-up.

The SPI0 pins can be re-routed. Refer toFigure 3-21 .

4.4 Port M

This port is associated with the BDLC, CAN4-0 and SPI0.

Port M pins PM[7:0] can be used for either general purpose I/O, or with the CAN, J1850 and SPI
subsystems.

During reset, port M pins are configured as high-impedance inputs.

The CAN0, CAN4 and SPI0 pins can be re-routed. Refer toFigure 3-21 .

4.4.1 Module Routing Register

This register allows to re-route the CAN0, CAN4, SPI0, SPI1, and SPI2 pins to predefined pins.

NOTE: The purpose of the Module Routing Register is to provide maximum flexibility for
future derivatives of the MC9S12DP256 with a lower number of MSCAN and SPI
modules.

Table 4-1 Implemented modules on derivatives

4.5 Port P

This port is associated with the PWM, SPI1 and SPI2.

Port P pins PP[7:0] can be used for either general purpose I/O, or with the PWM and SPI subsyst

The pins are shared between the PWM channels and the SPI1 and SPI2 modules. If the PWM is
the pins become PWM output channels with the exception of pin 7 which can be PWM input or outp

Number of modules
MSCAN modules SPI modules

CAN0 CAN1 CAN2 CAN4 SPI0 SPI1 SPI2

4 X X X X - - -

3 X X - X X X X

2 X - - X X X -

1 X - - - X - -
45

PIM_9DP256 Block Guide V03.05

everal

nable
All 8
s or

rrupt
 STOP

n

SPI1 or SPI2 are enabled and PWM is disabled, the respective pin configuration is determined by s
status bits in the SPI modules.

During reset, port P pins are configured as high-impedance inputs.

The SPI1 and SPI2 pins can be re-routed. Refer toFigure 3-21 .

Port P offers 8 I/O pins with edge triggered interrupt capability in wired-or fashion. The interrupt e
as well as the sensitivity to rising or falling edges can be individually configured on per pin basis.
bits/pins share the same interrupt vector. Interrupts can be used with the pins configured as input
outputs.

An interrupt is generated when a bit in the port interrupt flag register and its corresponding port inte
enable bit are both set. This external interrupt feature is capable to wake up the CPU when it is in
or WAIT mode.

A digital filter on each pin prevents pulses (Figure 4-3) shorter than a specified time from generating a
interrupt. The minimum time varies over process conditions, temperature and voltage (Figure 4-2 and
Table 4-2).

Figure 4-2 Interrupt Glitch Filter on Port P, H and J (PPS=0)

Table 4-2 Pulse Detection Criteria

Pulse

Mode

STOP STOP1

Unit

Ignored tpulse ≤ 3 bus clocks tpulse ≤ tpign

Uncertain 3 < tpulse < 4 bus clocks tpign < tpulse < tpval

Valid tpulse ≥ 4 bus clocks tpulse ≥ tpval

Glitch, filtered out, no interrupt flag set

Valid pulse, interrupt flag set

tpign

tpval

uncertain
46

PIM_9DP256 Block Guide V03.05

lock
e RC

IC
Figure 4-3 Pulse Illustration

A valid edge on an input is detected if 4 consecutive samples of a passive level are followed by 4
consecutive samples of an active level directly or indirectly.

The filters are continuously clocked by the bus clock in RUN and WAIT mode. In STOP mode the c
is generated by a single RC oscillator in the Port Integration Module. To maximize current saving th
oscillator runs only if the following condition is true on any pin:

Sample count <= 4 and port interrupt enabled (PIE=1) and port interrupt flag not set (PIF=0).

4.6 Port H

This port is associated with the SPI1 and SPI2.

Port H pins PH[7:0] can be used for either general purpose I/O, or with the SPI subsystems.

During reset, port H pins are configured as high-impedance inputs.

Port H pins can be used with the routed SPI1 and SPI2 modules. Refer toFigure 3-21 .

Port H offers 8 I/O ports with the same interrupt features as port P.

4.7 Port J

This port is associated with the CAN4, CAN0 and the IIC.

Port J pins PJ[7:6] and PJ[1:0] can be used for either general purpose I/O, or with the CAN and I
subsystems.

During reset, port J pins are configured as inputs with pull-up.

If IIC takes precedence the pins become IIC open-drain output pins.

The CAN4 pins can be re-routed. Refer toFigure 3-21 .

Port J pins can be used with the routed CAN0 modules. Refer toFigure 3-21 .

Port J offers 4 I/O ports with the same interrupt features as port P.

NOTES:
1. These values include the spread of the oscillator frequency over temper-

ature, voltage and process.

tpulse
47

PIM_9DP256 Block Guide V03.05

s.

and J.
4.8 Port A, B, E, K, and BKGD pin

All port and pin logic is located in the core module.Refer to MEBI in HCS12 Core User Guide for detail

4.9 External Pin Descriptions

All ports start up as general purpose inputs on reset.

4.10 Low Power Options

4.10.1 Run Mode

No low power options exist for this module in run mode.

4.10.2 Wait Mode

No low power options exist for this module in wait mode.

4.10.3 Stop Mode

All clocks are stopped. There are asynchronous paths to generate interrupts from STOP on port P, H
48

PIM_9DP256 Block Guide V03.05
Section 5 Initialization/Application Information

TBD
49

PIM_9DP256 Block Guide V03.05
50

PIM_9DP256 Block Guide V03.05
Index

–I–

Initialization/application information 49
51

PIM_9DP256 Block Guide V03.05
52

PIM_9DP256 Block Guide V03.05
Block Guide End Sheet
53

PIM_9DP256 Block Guide V03.05
FINAL PAGE OF
54

PAGES
54

DOCUMENT NUMBER
S12ECT16B8CV1/D
ECT_16B8C

Block User Guide

V01.06

Original Release Date: 2-Sep-1999
Revised: Jul 05, 2004

Motorola Inc.
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

ECT_16B8C Block User Guide V01.06

et

2

in

the

.

d

ReviRevision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

0.1 2-Sep-99 2-Sep-99
Original draft. Distributed only within Motorola

QS9000 Verified.

0.2 24-Sep-99 24-Sep-99

• Changed the specs as per MSRS format.

• Modified ECT16b8c Block diagram.

• Modified IP Bus signal names and their description.

• Modified ECT output signal names.

• Deleted bits 3-0 of TSCR1 register in Register Map(She
1 of 2).

• Modified register addresses in the description of
TSFRZ,WAIT,NORMAL mode(Modes of Operation).

• In Figure 1-6 changed text font to Halvetica.

• Renamed TMSK1 and TMSK2 register as TIE and TSCR
also renamed TSCR as TSCR1.

• Modified TFLG2 bit setting sentence.

• Added explanation about the abbreviation(M
clock,PACLK) used.

• Removed duplication of lines at the end of register
description of PACN3/PACN2.

• Corrected the reset value of MCCNT from $FF to $FFFF
the description of register MCCTL.

• Corrected Table format for delay counter select and
Modulus counter Prescalar Select.

• Corrected all the cross-references used in section 3 of
document.

• Deleted and added some module specific signals.

• Changed all interrupts from active LOW to active HIGH

• Added description about successful output comapre an
forced output compare taking place simultaneously and
their effect on flag.

• Added abbreviation section.

• In Fig 1-3 changed host data bus to IPbus.

0.3 25-Oct-99 25-Oct-99

• Changed block name in Section 2.

• Removed signals ipp_ect_ic_ibe and ipp_ect_ic_offval
from port list.

0.4 11-Nov-99 11-Nov-99
• Removed signal ipb_read & ipb_write from portlist.

ipb_rwb added
2

ECT_16B8C Block User Guide V01.06

on

es,

e

1.3
0.5 1-Dec-99 1-Dec-99
• Incorporated feedback received from Joachim Kruecken

30-Nov-99

01.00 10-May-01 11-May-01

• formal changes for SRS compliance (cover, master pag
paragraph formats, register templates)

• updated cross-references

• marked TIMTST register description with ’non_cust’ tag

01.01 19-July-01

• Document names have been added

• Names and Variable definitions have been
hidden

01.02 10-Jan-02 10-Jan-02 • Note added in Section 3.3.18 for PACN1/PACN0

01.03 18-Jul-02 18-Jul-02
• Changed the register bit information of MCCTL on bits

• ICLAT and FLMC
01.04 11-Nov-02 11-Nov-02 • Eliminated all references of "n" to "x" .e.g. IOSn to IOSx

01.05 12-Mar-04 12-Mar-04
• Description of OC7M and TCTL1 registers modified, not

on OC added in section 4.

01.06 05-Jul-04 05-Jul-04

• Included description about delay counter in section 4.2.

• Modified the description about TCNT in section
3. 3.5

Version
Number

Revision
Date

Effective
Date Author Description of Changes
3

ECT_16B8C Block User Guide V01.06
4

ECT_16B8C Block User Guide V01.06
Table of Contents

Section 1 Introduction

1.1 Overview. .13

1.2 Features .13

1.3 Modes of Operation .13

1.4 Block Diagram .14

Section 2 Signal Description

2.1 Overview. .15

2.2 Detailed Signal Descriptions. .15

2.2.1 IOC7 - Input capture and Output compare channel 7 .15

2.2.2 IOC6 - Input capture and Output compare channel 6 .15

2.2.3 IOC5 - Input capture and Output compare channel 5 .15

2.2.4 IOC4 - Input capture and Output compare channel 4 .15

2.2.5 IOC3 - Input capture and Output compare channel 3 .15

2.2.6 IOC2 - Input capture and Output compare channel 2 .15

2.2.7 IOC1 - Input capture and Output compare channel 1 .15

2.2.8 IOC0 - Input capture and Output compare channel 0 .15

Section 3 Memory Map and Registers

3.1 Overview. .17

3.2 Module Memory Map .17

3.3 Register Descriptions .19

3.3.1 TIOS — Timer Input Capture/Output Compare Select Register 19

3.3.2 CFORC — Timer Compare Force Register .20

3.3.3 OC7M — Output Compare 7 Mask Register .20

3.3.4 OC7D — Output Compare 7 Data Register .21

3.3.5 TCNT — Timer Count Register .21

3.3.6 TSCR1 — Timer System Control Register 1 .22

3.3.7 TTOV — Timer Toggle On Overflow Register 1 .23

3.3.8 TCTL1/TCTL2 — Timer Control Register 1/Timer Control Register 223

3.3.9 TCTL3/TCTL4 — Timer Control Register 3/Timer Control Register 424

3.3.10 TIE — Timer Interrupt Enable Register .25

3.3.11 TSCR2 — Timer System Control Register 2 .25
5

ECT_16B8C Block User Guide V01.06
3.3.12 TFLG1 — Main Timer Interrupt Flag 1 .26

3.3.13 TFLG2 — Main Timer Interrupt Flag 2 .27

3.3.14 Timer Input Capture/Output Compare Registers 0-7 .28

3.3.15 PACTL — 16-Bit Pulse Accumulator A Control Register .29

3.3.16 PAFLG — Pulse Accumulator A Flag Register .31

3.3.17 PACN3, PACN2 — Pulse Accumulators Count Registers .32

3.3.18 PACN1, PACN0 — Pulse Accumulators Count Registers .33

3.3.19 MCCTL — 16-Bit Modulus Down-Counter Control Register 33

3.3.20 MCFLG — 16-Bit Modulus Down-Counter FLAG Register .35

3.3.21 ICPAR — Input Control Pulse Accumulators Register. .36

3.3.22 DLYCT — Delay Counter Control Register .36

3.3.23 ICOVW — Input Control Overwrite Register .37

3.3.24 ICSYS — Input Control System Control Register .37

3.3.25 TIMTST — Timer Test Register .39

3.3.26 PBCTL — 16-Bit Pulse Accumulator B Control Register .39

3.3.27 PBFLG — Pulse Accumulator B Flag Register .40

3.3.28 PA3H–PA0H — 8-Bit Pulse Accumulators Holding Registers41

3.3.29 MCCNT — Modulus Down-Counter Count Register .42

3.3.30 Timer Input Capture Holding Registers 0-3 .43

Section 4 Functional Description

4.1 General. .45

4.2 Enhanced Capture Timer Modes of Operation. .50

4.2.1 IC Channels .50

4.2.1.1 Non-Buffered IC Channels. .51

4.2.1.2 Buffered IC Channels. .51

4.2.1.3 Delayed IC channels .51

4.2.2 Pulse Accumulators .52

4.2.2.1 Pulse Accumulator latch mode .53

4.2.2.2 Pulse Accumulator queue mode .53

4.2.3 Modulus Down-Counter .53

4.2.4 Channel Configurations .53

Section 5 Reset

5.1 General. .55
6

ECT_16B8C Block User Guide V01.06
Section 6 Interrupts

6.1 General. .57

6.2 Description of Interrupt Operation .57

6.2.1 Channel [7:0] Interrupt .57

6.2.2 Modulus Counter Interrupt .57

6.2.3 Pulse Accumulator B Overflow Interrupt) .57

6.2.4 Pulse Accumulator A Input Interrupt .57

6.2.5 Pulse Accumulator A Overflow Interrupt .58

6.2.6 Timer Overflow Interrupt .58
7

ECT_16B8C Block User Guide V01.06
8

ECT_16B8C Block User Guide V01.06
List of Figures

Figure 1-1 Timer Block Diagram . 14

Figure 3-1 Timer Input Capture/Output Compare Register (TIOS) 19

Figure 3-2 Timer Compare Force Register (CFORC) 20

Figure 3-3 Output Compare 7 Mask Register (OC7M) 20

Figure 3-4 Output Compare 7 Data Register (OC7D). 21

Figure 3-5 Timer Count Register (TCNT) . 21

Figure 3-6 Timer System Control Register 1 (TSCR1) 22

Figure 3-7 Timer Toggle On Overflow Register 1 (TTOV) 23

Figure 3-8 Timer Control Register 1/Timer Control Register 2 (TCTL1/TCTL2)23

Figure 3-9 Timer Control Register 3/Timer Control Register 4 (TCTL3/TCTL4)24

Figure 3-10 Timer Interrupt Enable Register (TIE) 25

Figure 3-11 Timer System Control Register 2 (TSCR2) 25

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1). 26

Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2). 27

Figure 3-14 Timer Input Capture/Output Compare Registers 0-7. 29

Figure 3-15 16-Bit Pulse Accumulator Control Register (PACTL) 29

Figure 3-16 Pulse Accumulator A Flag Register (PAFLG) 31

Figure 3-17 Pulse Accumulators Count Register 3 (PACN3) 32

Figure 3-18 Pulse Accumulators Count Register 2 (PACN2) 32

Figure 3-19 Pulse Accumulators Count Register 1 (PACN1) 33

Figure 3-20 Pulse Accumulators Count Register 0 (PACN0) 33

Figure 3-21 16-Bit Modulus Down-Counter Control Register (MCCTL) . . . 33

Figure 3-22 16-Bit Modulus Down-Counter FLAG Register (MCFLG) 35

Figure 3-23 Input Control Pulse Accumulators Register (ICPAR). 36

Figure 3-24 Delay Counter Control Register (DLYCT) 36

Figure 3-25 Input Control Overwrite Register (ICOVW) 37

Figure 3-26 Input Control System Register (ICSYS). 37

Figure 3-27 Timer Test Register (TIMTST). 39

Figure 3-28 16-Bit Pulse Accumulator B Control Register (PBCTL) 39

Figure 3-29 Pulse Accumulator B Flag Register (PBFLG) 40

Figure 3-30 8-Bit Pulse Accumulators Holding Register 3 (PA3H) 41

Figure 3-31 8-Bit Pulse Accumulators Holding Register 2 (PA2H) 41

Figure 3-32 8-Bit Pulse Accumulators Holding Register 1 (PA1H) 41
9

ECT_16B8C Block User Guide V01.06
Figure 3-33 8-Bit Pulse Accumulators Holding Register 0 (PA0H) 41

Figure 3-34 Modulus Down-Counter Count Register (MCCNT) 42

Figure 3-35 Timer Input Capture Holding Register 0 (TC0H) 43

Figure 3-36 Timer Input Capture Holding Register 1 (TC1H) 43

Figure 3-37 Timer Input Capture Holding Register 2 (TC2H) 43

Figure 3-38 Timer Input Capture Holding Register 3 (TC3H) 43

Figure 4-1 Detailed Timer Block Diagram in Latch mode 46

Figure 4-2 Detailed Timer Block Diagram in Queue mode 47

Figure 4-3 8-Bit Pulse Accumulators Block Diagram 48

Figure 4-4 16-Bit Pulse Accumulators Block Diagram 49

Figure 4-5 Block Diagram for Port7 with Output compare/Pulse Accumulator A50

Figure 4-6 Channel Input validity with delay counter feature 52
10

ECT_16B8C Block User Guide V01.06
List of Tables

Table 3-1 Module Memory Map .17

Table 3-2 Compare Result Output Action .24

Table 3-3 Edge Detector Circuit Configuration .24

Table 3-4 Prescaler Selection .26

Table 3-5 Pin Action .30

Table 3-6 Clock Selection .30

Table 3-7 Modulus Counter Prescaler Select .34

Table 3-8 Delay Counter Select .37

Table 6-1 ECT Interrupts .57
11

ECT_16B8C Block User Guide V01.06
12

ECT_16B8C Block User Guide V01.06

dule
otive

er can
ting an

lace in
ld the

 one.
Section 1 Introduction

1.1 Overview

The HCS12 Enhanced Capture Timer module has the features of the HCS12 Standard Timer mo
enhanced by additional features in order to enlarge the field of applications, in particular for autom
ABS applications.

This design specification describes the standard timer as well as the additional features.

The basic timer consists of a 16-bit, software-programmable counter driven by a prescaler. This tim
be used for many purposes, including input waveform measurements while simultaneously genera
output waveform. Pulse widths can vary from microseconds to many seconds.

A full access for the counter registers or the input capture/output compare registers should take p
one clock cycle. Accessing high byte and low byte separately for all of these registers may not yie
same result as accessing them in one word.

1.2 Features

• 16-Bit Buffer Register for four Input Capture (IC) channels.

• Four 8-Bit Pulse Accumulators with 8-bit buffer registers associated with the four buffered IC
channels. Configurable also as two 16-Bit Pulse Accumulators.

• 16-Bit Modulus Down-Counter with 4-bit Prescaler.

• Four user selectable Delay Counters for input noise immunity increase.

1.3 Modes of Operation

STOP: Timer and modulus counter are off since clocks are stopped.

FREEZE: Timer and modulus counter keep on running, unless TSFRZ in TSCR($06) is set to

WAIT: Counters keep on running, unless TSWAI in TSCR ($06) is set to one.

NORMAL: Timer and modulus counter keep on running, unless TEN in TSCR($06) respectively
MCEN in MCCTL ($26) are cleared.
13

ECT_16B8C Block User Guide V01.06
1.4 Block Diagram

Figure 1-1 Timer Block Diagram

Prescaler

16-bit Counter

Input capture
Output compare

16-bit
Pulse accumulator B

IOC0

IOC2

IOC1

IOC5

IOC3

IOC4

IOC6

IOC7

PA input
interrupt

PA overflow
interrupt

Timer overflow
interrupt
Timer channel 0
interrupt

Timer channel 7
interrupt

Registers

Bus clock

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Input capture
Output compare

Channel 0

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Channel 6

Channel 7

16-bit
Pulse accumulator A

PB overflow
interrupt

16-bit Modulus CounterModulus counter
Interrupt
14

ECT_16B8C Block User Guide V01.06
Section 2 Signal Description

2.1 Overview

The ECT_16B8C module has a total 8 external pins.

2.2 Detailed Signal Descriptions

2.2.1 IOC7 - Input capture and Output compare channel 7

This pin serves as input capture or output compare for channel 7.

2.2.2 IOC6 - Input capture and Output compare channel 6

This pin serves as input capture or output compare for channel 6.

2.2.3 IOC5 - Input capture and Output compare channel 5

This pin serves as input capture or output compare for channel 7.

2.2.4 IOC4 - Input capture and Output compare channel 4

This pin serves as input capture or output compare for channel 4.

2.2.5 IOC3 - Input capture and Output compare channel 3

This pin serves as input capture or output compare for channel 3.

2.2.6 IOC2 - Input capture and Output compare channel 2

This pin serves as input capture or output compare for channel 2.

2.2.7 IOC1 - Input capture and Output compare channel 1

This pin serves as input capture or output compare for channel 1.

2.2.8 IOC0 - Input capture and Output compare channel 0

This pin serves as input capture or output compare for channel 0.

NOTE: For the description of interrupts see Section 6 Interrupts.
15

ECT_16B8C Block User Guide V01.06
16

ECT_16B8C Block User Guide V01.06

r
module
Section 3 Memory Map and Registers

3.1 Overview

This section provides a detailed description of all memory and registers.

3.2 Module Memory Map

The memory map for the ECT module is given below inTable 3-1 . The Address listed for each registe
is the address offset. The total address for each register is the sum of the base address for the ECT
and the address offset for each register.

Table 3-1 Module Memory Map

Offset Use Access
$_00 Timer Input Capture/Output Compare Select (TIOS) Read/Write

$_01 Timer Compare Force Register (CFORC) Read/Write1

$_02 Output Compare 7 Mask Register (OC7M) Read/Write

$_03 Output Compare 7 Data Register (OC7D) Read/Write

$_04 Timer Count Register High (TCNT) Read/Write2

$_05 Timer Count Register Low (TCNT) Read/Write2

$_06 Timer System Control Register1 (TSCR1) Read/Write

$_07 Timer Toggle Overflow Register (TTOV) Read/Write

$_08 Timer Control Register1 (TCTL1) Read/Write

$_09 Timer Control Register2 (TCTL2) Read/Write

$_0A Timer Control Register3 (TCTL3) Read/Write

$_0B Timer Control Register4 (TCTL4) Read/Write

$_0C Timer Interrupt Enable Register (TIE) Read/Write

$_0D Timer System Control Register2 (TSCR2) Read/Write

$_0E Main Timer Interrupt Flag1 (TFLG1) Read/Write

$_0F Main Timer Interrupt Flag2 (TFLG2) Read/Write

$_10
Timer Input Capture/Output Compare Register0 High

(TC0) Read/Write3

$_11
Timer Input Capture/Output Compare Register0 Low

(TC0) Read/Write3

$_12
Timer Input Capture/Output Compare Register1 High

(TC1) Read/Write3

$_13
Timer Input Capture/Output Compare Register1 Low

(TC1) Read/Write3

$_14
Timer Input Capture/Output Compare Register2 High

(TC2) Read/Write3

$_15
Timer Input Capture/Output Compare Register2 Low

(TC2) Read/Write3

$_16
Timer Input Capture/Output Compare Register3 High

(TC3) Read/Write3
17

ECT_16B8C Block User Guide V01.06
$_17
Timer Input Capture/Output Compare Register3 Low

(TC3) Read/Write3

$_18
Timer Input Capture/Output Compare Register4 High

(TC4) Read/Write3

$_19
Timer Input Capture/Output Compare Register4 Low

(TC4) Read/Write3

$_1A
Timer Input Capture/Output Compare Register5 High

(TC5) Read/Write3

$_1B
Timer Input Capture/Output Compare Register5 Low

(TC5) Read/Write3

$_1C
Timer Input Capture/Output Compare Register6 High

(TC6) Read/Write3

$_1D
Timer Input Capture/Output Compare Register6 Low

(TC6) Read/Write3

$_1E
Timer Input Capture/Output Compare Register7 High

(TC7) Read/Write3

$_1F
Timer Input Capture/Output Compare Register7 Low

(TC7) Read/Write3

$_20
16-Bit Pulse Accumulator A Control Register

(PACTL)
Read/Write

$_21 Pulse Accumulator A Flag Register (PAFLG) Read/Write

$_22 Pulse Accumulator Count Register3 (PACN3) Read/Write

$_23 Pulse Accumulator Count Register2 (PACN2) Read/Write

$_24 Pulse Accumulator Count Register1 (PACN1) Read/Write

$_25 Pulse Accumulator Count Register0 (PACN0) Read/Write

$_26 16-Bit Modulus Down Counter Register (MCCTL) Read/Write

$_27
16-Bit Modulus Down Counter Flag Register

(MCFLG)
Read/Write

$_28 Input Control Pulse Accumulator Register (ICPAR) Read/Write

$_29 Delay Counter Control Register (DLYCT) Read/Write

$_2A Input Control Overwrite Register (ICOVW) Read/Write

$_2B Input Control System Control Register (ICSYS) Read/Write4

$_2C Reserved --

$_2D Timer Test Register (TIMTST) Read/Write2

$_2E Reserved --

$_2F Reserved --

$_30
16-Bit Pulse Accumulator B Control Register

(PBCTL)
Read/Write

$_31 16-Bit Pulse Accumulator B Flag Register (PBFLG) Read/Write

$_32 8-Bit Pulse Accumulator Holding Register3 (PA3H) Read/Write5

$_33 8-Bit Pulse Accumulator Holding Register2 (PA2H) Read/Write5

$_34 8-Bit Pulse Accumulator Holding Register1 (PA1H) Read/Write5

$_35 8-Bit Pulse Accumulator Holding Register0 (PA0H) Read/Write5

$_36
Modulus Down-Counter Count Register High

(MCCNT)
Read/Write

Table 3-1 Module Memory Map
18

ECT_16B8C Block User Guide V01.06

register
ter
1. Always read $00.
2. Only writable in special modes (test_mode = 1).
3. Write to these registers have no meaning or effect during input capture.
4. May be written once (test_mode = 0) but writes are always permitted when test_mode = 0
5. Write has no effect.

3.3 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard
diagram with an associated figure number. Details of register bit and field function follow the regis
diagrams, in bit order.

3.3.1 TIOS — Timer Input Capture/Output Compare Select Register

Figure 3-1 Timer Input Capture/Output Compare Register (TIOS)

Read or write anytime.

IOS[7:0] — Input Capture or Output Compare Channel Configuration
0 = The corresponding channel acts as an input capture
1 = The corresponding channel acts as an output compare.

$_37
Modulus Down-Counter Count Register Low

(MCCNT)
Read/Write

$_38 Timer Input Capture Holding Register0 High (TC0H) Read/Write5

$_39 Timer Input Capture Holding Register0 Low (TC0H) Read/Write5

$_3A Timer Input Capture Holding Register1 High(TC1H) Read/Write5

$_3B Timer Input Capture Holding Register1 Low (TC1H) Read/Write5

$_3C Timer Input Capture Holding Register2 High (TC2H) Read/Write5

$_3D Timer Input Capture Holding Register2 Low (TC2H) Read/Write5

$_3E Timer Input Capture Holding Register3 High (TC3H) Read/Write5

$_3F Timer Input Capture Holding Register3 Low (TC3H) Read/Write5

Register offset: $_00

BIT7 6 5 4 3 2 1 BIT0
R

IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0
W

RESET: 0 0 0 0 0 0 0 0

Table 3-1 Module Memory Map
19

ECT_16B8C Block User Guide V01.06

mmed

t.

t to be
ister
3.3.2 CFORC — Timer Compare Force Register

Figure 3-2 Timer Compare Force Register (CFORC)

Read anytime but will always return $00 (1 state is transient). Write anytime.

FOC[7:0] — Force Output Compare Action for Channel 7-0

A write to this register with the corresponding data bit(s) set causes the action which is progra
for output compare “n” to occur immediately. The action taken is the same as if a successful
comparison had just taken place with the TCn register except the interrupt flag does not get se

NOTE: A successful channel 7 output compare overrides any channel 6:0 compares.If
forced output compare on any channel occurs at the same time as the successful
output compare then forced output compare action will take precedence and
interrupt flag won’t get set.

3.3.3 OC7M — Output Compare 7 Mask Register

Figure 3-3 Output Compare 7 Mask Register (OC7M)

Read or write anytime.

Setting the OC7Mn (n ranges from 0 to 6) bit of OC7M register configures the corresponding por
an output port when the IOS7 bit and the corresponding IOSn (n ranges from 0 to 6) bit of TIOS reg
are set to be an output compare. Refer to the note on Section4.2.4 for more insight.

NOTE: A successful channel 7 output compare overrides any channel 6:0 compares. For
each OC7M bit that is set, the output compare action reflects the corresponding
OC7D bit.

Register offset: $_01

BIT7 6 5 4 3 2 1 BIT0
R 0 0 0 0 0 0 0 0
W FOC7 FOC6 FOC5 FOC4 FOC3 FOC2 FOC1 FOC0

RESET: 0 0 0 0 0 0 0 0

Register offset: $_02

BIT7 6 5 4 3 2 1 BIT0

R
OC7M7 OC7M6 OC7M5 OC7M4 OC7M3 OC7M2 OC7M1 OC7M0

W

RESET: 0 0 0 0 0 0 0 0
20

ECT_16B8C Block User Guide V01.06

e timer

ode)/
ord.

).

write
3.3.4 OC7D — Output Compare 7 Data Register

Figure 3-4 Output Compare 7 Data Register (OC7D)

Read or write anytime.

A channel 7 output compare can cause bits in the output compare 7 data register to transfer to th
port data register depending on the output compare 7 mask register.

3.3.5 TCNT — Timer Count Register

Figure 3-5 Timer Count Register (TCNT)

The 16-bit main timer is an up counter.

A full access for the counter register should take place in one clock cycle. A separate read (any m
write (test mode) for high byte and low byte will give a different result than accessing them as a w

Read anytime.

Write has no meaning or effect in the normal mode; only writable in special modes (test_mode = 1

The period of the first count after a write to the TCNT registers may be a different size because the
is not synchronized with the prescaler clock.

Register offset: $_03

BIT7 6 5 4 3 2 1 BIT0

R
OC7D7 OC7D6 OC7D5 OC7D4 OC7D3 OC7D2 OC7D1 OC7D0

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_04-$_05

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R tcnt
15

tcnt
14

tcnt
13

tcnt
12

tcnt
11

tcnt
10

tcnt
9

tcnt
8

tcnt
7

tcnt
6

tcnt
5

tcnt
4

tcnt
3

tcnt
2

tcnt
1

tcnt
0W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21

ECT_16B8C Block User Guide V01.06

ption.

used

seful

l
), any
and
21).
e
parate
d

3.3.6 TSCR1 — Timer System Control Register 1

Figure 3-6 Timer System Control Register 1 (TSCR1)

Read or write anytime.

TEN — Timer Enable
0 = Disables the main timer, including the counter. Can be used for reducing power consum
1 = Allows the timer to function normally.

If for any reason the timer is not active, there is no÷64 clock for the pulse accumulator since the÷64
is generated by the timer prescaler.

TSWAI — Timer Module Stops While in Wait
0 = Allows the timer module to continue running during wait.
1 = Disables the timer module when the MCU is in the wait mode. Timer interrupts cannot be

to get the MCU out of wait.

TSWAI also affects pulse accumulators and modulus down counters.

TSFRZ — Timer and Modulus Counter Stop While in Freeze Mode
0 = Allows the timer and modulus counter to continue running while in freeze mode.
1 = Disables the timer and modulus counter whenever the MCU is in freeze mode. This is u

for emulation.

TSFRZ does not stop the pulse accumulator.

TFFCA — Timer Fast Flag Clear All
0 = Allows the timer flag clearing to function normally.
1 = For TFLG1($0E), a read from an input capture or a write to the output compare channe

($10–$1F) causes the corresponding channel flag, CnF, to be cleared. For TFLG2 ($0F
access to the TCNT register ($04, $05) clears the TOF flag. Any access to the PACN3
PACN2 registers ($22, $23) clears the PAOVF and PAIF flags in the PAFLG register ($
Any access to the PACN1 and PACN0 registers ($24, $25) clears the PBOVF flag in th
PBFLG register ($31). This has the advantage of eliminating software overhead in a se
clear sequence. Extra care is required to avoid accidental flag clearing due to unintende
accesses.

Register offset: $_06

BIT7 6 5 4 3 2 1 BIT0

R
TEN TSWAI TSFRZ TFFCA

0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
22

ECT_16B8C Block User Guide V01.06

pare
vents.

lt of a
iated
t and
3.3.7 TTOV — Timer Toggle On Overflow Register 1

Figure 3-7 Timer Toggle On Overflow Register 1 (TTOV)

Read or write anytime.

TOVn — Toggle On Overflow Bits

TOVn toggles output compare pin on overflow. This feature only takes effect when in output com
mode. When set, it takes precedence over forced output compare but not channel 7 override e

0 = Toggle output compare pin on overflow feature disabled
1 = Toggle output compare pin on overflow feature enabled

3.3.8 TCTL1/TCTL2 — Timer Control Register 1/Timer Control Register 2

Figure 3-8 Timer Control Register 1/Timer Control Register 2 (TCTL1/TCTL2)

Read or write anytime.

OMn — Output Mode

OLn — Output Level

These eight pairs of control bits are encoded to specify the output action to be taken as a resu
successful OCn(n varies from 0 to 7) compare. When either OMn or OLn is one, the port assoc
with OCn becomes an output tied to OCn when the corresponding IOSn bit of TIOS register is se
TEN bit of TSCR1 register is set. Refer to the note on Section4.2.4 for more insight.

Register offset: $_07

BIT7 6 5 4 3 2 1 BIT0

R
TOV7 TOV6 TOV5 TOV4 TOV3 TOV2 TOV1 TOV0

W

RESET: 0 0 0 0 0 0 0 0

Register offset:$_08

BIT7 6 5 4 3 2 1 BIT0

R
OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4

W

RESET 0 0 0 0 0 0 0 0

Register offset:$_09

BIT7 6 5 4 3 2 1 BIT0

R
OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0

W

RESET 0 0 0 0 0 0 0 0
23

ECT_16B8C Block User Guide V01.06

pture
n = 0

ive
NOTE: To enable output action by OMn and OLn bits on timer port, the corresponding bit
in OC7M should be cleared.

To operate the 16-bit pulse accumulators A and B (PACA and PACB) independently of input ca
or output compare 7 and 0 respectively the user must set the corresponding bits IOSn = 1, OM
and OLn = 0. OC7M7 or OC7M0 in the OC7M register must also be cleared.

3.3.9 TCTL3/TCTL4 — Timer Control Register 3/Timer Control Register 4

Figure 3-9 Timer Control Register 3/Timer Control Register 4 (TCTL3/TCTL4)

Read or write anytime.

EDGnB, EDGnA — Input Capture Edge Control

These eight pairs of control bits configure the input capture edge detector circuits.

The four pairs of control bits of TCTL4 also configure the 8 bit pulse accumulators PAC0 - 3.

For 16 - bit pulse accumulator PACB, EDGE0B & EDGE0A, control bits of TCTL4 will decide the act
edge.

Table 3-2 Compare Result Output Action

OMn OLn Action
0 0 Timer disconnected from output pin logic

0 1 Toggle OCn output line

1 0 Clear OCn output line to zero

1 1 Set OCn output line to one

Register offset: $_0A

BIT7 6 5 4 3 2 1 BIT0

R
EDG7B EDG7A EDG6B EDG6A EDG5B EDG5A EDG4B EDG4A

W

RESET: 0 0 0 0 0 0 0 0

 Register offset: $_0B

BIT7 6 5 4 3 2 1 BIT0

R
EDG3B EDG3A EDG2B EDG2A EDG1B EDG1A EDG0B EDG0A

W

RESET: 0 0 0 0 0 0 0 0

Table 3-3 Edge Detector Circuit Configuration

EDGnB EDGnA Configuration
0 0 Capture disabled

0 1 Capture on rising edges only

1 0 Capture on falling edges only

1 1 Capture on any edge (rising or falling)
24

ECT_16B8C Block User Guide V01.06

abled

e of

=

3.3.10 TIE — Timer Interrupt Enable Register

Figure 3-10 Timer Interrupt Enable Register (TIE)

Read or write anytime.

The bits in TIE correspond bit-for-bit with the bits in the TFLG1 status register. If cleared, the
corresponding flag is disabled from causing a hardware interrupt. If set, the corresponding flag is en
to cause a interrupt.

C7I–C0I — Input Capture/Output Compare “n” Interrupt Enable

3.3.11 TSCR2 — Timer System Control Register 2

Figure 3-11 Timer System Control Register 2 (TSCR2)

Read or write anytime.

TOI — Timer Overflow Interrupt Enable
0 = Interrupt inhibited
1 = Hardware interrupt requested when TOF flag set

TCRE — Timer Counter Reset Enable

This bit allows the timer counter to be reset by a successful output compare 7 event. This mod
operation is similar to an up-counting modulus counter.

0 = Counter reset inhibited and counter free runs
1 = Counter reset by a successful output compare 7

If TC7 = $0000 and TCRE = 1, TCNT will stay at $0000 continuously. If TC7 = $FFFF and TCRE
1, TOF will never be set when TCNT is reset from $FFFF to $0000.

PR2, PR1, PR0 — Timer Prescaler Select

Register offset: $_0C

BIT7 6 5 4 3 2 1 BIT0

R
C7I C6I C5I C4I C3I C2I C1I C0I

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_0D

BIT7 6 5 4 3 2 1 BIT0

R
TOI

0 0 0
TCRE PR2 PR1 PR0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
25

ECT_16B8C Block User Guide V01.06

the

all

a one

ter
g

red).

mpare

pulse
These three bits specify the number of÷2 stages that are to be inserted between the bus clock and
main timer counter.

The newly selected prescale factor will not take effect until the next synchronized edge where
prescale counter stages equal zero.

3.3.12 TFLG1 — Main Timer Interrupt Flag 1

Figure 3-12 Main Timer Interrupt Flag 1 (TFLG1)

TFLG1 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write
to the bit.

Use of the TFMOD bit in the ICSYS register ($2B) in conjunction with the use of the ICOVW regis
($2A) allows a timer interrupt to be generated after capturing two values in the capture and holdin
registers instead of generating an interrupt for every capture.

Read anytime. Write used in the clearing mechanism (set bits cause corresponding bits to be clea
Writing a zero will not affect current status of the bit.

When TFFCA bit in TSCR register is set, a read from an input capture or a write into an output co
channel ($10–$1F) will cause the corresponding channel flag CnF to be cleared.

C7F–C0F — Input Capture/Output Compare Channel “n” Flag.

C0F can also be set by 16 - bit Pulse Accumulator B (PACB). C3F - C0F can also be set by 8 - bit
accumulators PAC3 - PAC0.

Table 3-4 Prescaler Selection

PR2 PR1 PR0 Prescale Factor
0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128

Register offset: $_0E

BIT7 6 5 4 3 2 1 BIT0

R
C7F C6F C5F C4F C3F C2F C1F C0F

W

RESET: 0 0 0 0 0 0 0 0
26

ECT_16B8C Block User Guide V01.06

e bit

).

ally
3.3.13 TFLG2 — Main Timer Interrupt Flag 2

Figure 3-13 Main Timer Interrupt Flag 2 (TFLG2)

TFLG2 indicates when interrupt conditions have occurred. To clear a bit in the flag register, write th
to one.

Read anytime. Write used in clearing mechanism (set bits cause corresponding bits to be cleared

Any access to TCNT will clear TFLG2 register if the TFFCA bit in TSCR register is set.

TOF — Timer Overflow Flag

Set when 16-bit free-running timer overflows from $FFFF to $0000. This bit is cleared automatic
by a write to the TFLG2 register with bit 7 set. (See also TCRE control bit explanation.)

Register offset: $_0F

BIT7 6 5 4 3 2 1 BIT0

R
TOF

0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
27

ECT_16B8C Block User Guide V01.06
3.3.14 Timer Input Capture/Output Compare Registers 0-7

TC0 — Timer Input Capture/Output Compare Register 0 Register offset: $_10–$_11

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc0
15

tc0
14

tc0
13

tc0
12

tc0
11

tc0
10

tc0
9

tc0
8

tc0
7

tc0
6

tc0
5

tc0
4

tc0
3

tc0
2

tc0
1

tc0
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TC1 — Timer Input Capture/Output Compare Register 1 Register offset: $_12–$_13

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc1
15

tc1
14

tc1
13

tc1
12

tc1
11

tc1
10

tc1
9

tc1
8

tc1
7

tc1
6

tc1
5

tc1
4

tc1
3

tc1
2

tc1
1

tc1
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TC2 — Timer Input Capture/Output Compare Register 2 Register offset: $_14–$_15

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc2
15

tc2
14

tc2
13

tc2
12

tc2
11

tc2
10

tc2
9

tc2
8

tc2
7

tc2
6

tc2
5

tc2
4

tc2
3

tc2
2

tc2
1

tc2
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TC3 — Timer Input Capture/Output Compare Register 3 Register offset: $_16–$_17

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc3
15

tc3
14

tc3
13

tc3
12

tc3
11

tc3
10

tc3
9

tc3
8

tc3
7

tc3
6

tc3
5

tc3
4

tc3
3

tc3
2

tc3
1

tc3
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TC4 — Timer Input Capture/Output Compare Register 4 Register offset: $_18–$_19

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc4
15

tc4
14

tc4
13

tc4
12

tc4
11

tc4
10

tc4
9

tc4
8

tc4
7

tc4
6

tc4
5

tc4
4

tc4
3

tc4
2

tc4
1

tc4
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TC5 — Timer Input Capture/Output Compare Register 5 Register offset: $_1A–$_1B

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc5
15

tc5
14

tc5
13

tc5
12

tc5
11

tc5
10

tc5
9

tc5
8

tc5
7

tc5
6

tc5
5

tc5
4

tc5
3

tc5
2

tc5
1

tc5
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TC6 — Timer Input Capture/Output Compare Register 6 Register offset: $_1C–$_1D

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc6
15

tc6
14

tc6
13

tc6
12

tc6
11

tc6
10

tc6
9

tc6
8

tc6
7

tc6
6

tc6
5

tc6
4

tc6
3

tc6
2

tc6
1

tc6
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28

ECT_16B8C Block User Guide V01.06

e of the
etector

ing or

nd

their

nd
, the
CA.

less
Figure 3-14 Timer Input Capture/Output Compare Registers 0-7

Depending on the TIOS bit for the corresponding channel, these registers are used to latch the valu
free-running counter when a defined transition is sensed by the corresponding input capture edge d
or to trigger an output action for output compare.

Read anytime. Write anytime for output compare function. Writes to these registers have no mean
effect during input capture. All timer input capture/output compare registers are reset to $0000.

3.3.15 PACTL — 16-Bit Pulse Accumulator A Control Register

Figure 3-15 16-Bit Pulse Accumulator Control Register (PACTL)

16-Bit Pulse Accumulator A (PACA) is formed by cascading the 8-bit pulse accumulators PAC3 a
PAC2.

When PAEN is set, the PACA is enabled. The PACA shares the input pin with IC7.

Read: any time
Write: any time

PAEN— Pulse Accumulator A System Enable
0 = 16-Bit Pulse Accumulator A system disabled. 8-bit PAC3 and PAC2 can be enabled when

related enable bits in ICPAR ($28) are set.
Pulse Accumulator Input Edge Flag (PAIF) function is disabled.

1 = 16-Bit Pulse Accumulator A system enabled. The two 8-bit pulse accumulators PAC3 a
PAC2 are cascaded to form the PACA 16-bit pulse accumulator. When PACA in enabled
PACN3 and PACN2 registers contents are respectively the high and low byte of the PA
PA3EN and PA2EN control bits in ICPAR ($28) have no effect.
Pulse Accumulator Input Edge Flag (PAIF) function is enabled.

PAEN is independent from TEN. With timer disabled, the pulse accumulator can still function un
pulse accumulator is disabled.

TC7 — Timer Input Capture/Output Compare Register 7 Register offset: $_1E–$_1F

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

tc7
15

tc7
14

tc7
13

tc7
12

tc7
11

tc7
10

tc7
9

tc7
8

tc7
7

tc7
6

tc7
5

tc7
4

tc7
3

tc7
2

tc7
1

tc7
0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Register offset: $_20

BIT7 6 5 4 3 2 1 BIT0

R 0
PAEN PAMOD PEDGE CLK1 CLK0 PAOVI PAI

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
29

ECT_16B8C Block User Guide V01.06

lling

sing

ed as
PAMOD — Pulse Accumulator Mode

This bit is active only when the Pulse Accumulator A is enabled (PAEN = 1).
0 = event counter mode
1 = gated time accumulation mode

PEDGE— Pulse Accumulator Edge Control

This bit is active only when the Pulse Accumulator A is enabled (PAEN = 1).

For PAMOD bit = 0 (event counter mode).
0 = falling edges on PT7 pin cause the count to be incremented
1 = rising edges on PT7 pin cause the count to be incremented

For PAMOD bit = 1 (gated time accumulation mode).
0 = PT7 input pin high enables bus clock divided by 64 to Pulse Accumulator and the trailing fa

edge on PT7 sets the PAIF flag.
1 = PT7 input pin low enables bus clock divided by 64 to Pulse Accumulator and the trailing ri

edge on PT7 sets the PAIF flag
Table 3-5 Pin Action

If the timer is not active (TEN = 0 in TSCR), there is no divide-by-64 since the÷64 clock is generated
by the timer prescaler.

CLK1, CLK0 — Clock Select Bits
Table 3-6 Clock Selection

For the description of PACLK please referFigure 4-4 .

If the pulse accumulator is disabled (PAEN = 0), the prescaler clock from the timer is always us
an input clock to the timer counter. The change from one selected clock to the other happens
immediately after these bits are written.

PAOVI — Pulse Accumulator A Overflow Interrupt enable
0 = interrupt inhibited
1 = interrupt requested if PAOVF is set

PAI — Pulse Accumulator Input Interrupt enable
0 = interrupt inhibited
1 = interrupt requested if PAIF is set

PAMOD PEDGE Pin Action
0 0 Falling edge

0 1 Rising edge

1 0 Div. by 64 clock enabled with pin high level

1 1 Div. by 64 clock enabled with pin low level

CLK1 CLK0 Clock Source
0 0 Use timer prescaler clock as timer counter clock

0 1 Use PACLK as input to timer counter clock

1 0 Use PACLK/256 as timer counter clock frequency

1 1 Use PACLK/65536 as timer counter clock frequency
30

ECT_16B8C Block User Guide V01.06

gister

FF

rs PAIF
ggers

it in
3.3.16 PAFLG — Pulse Accumulator A Flag Register

Figure 3-16 Pulse Accumulator A Flag Register (PAFLG)

Read or write anytime. When the TFFCA bit in the TSCR register is set, any access to the PACNT re
will clear all the flags in the PAFLG register.

PAOVF— Pulse Accumulator A Overflow Flag

Set when the 16-bit pulse accumulator A overflows from $FFFF to $0000,or when 8-bit pulse
accumulator 3 (PAC3) overflows from $FF to $00.

When PACMX = 1, PAOVF bit can also be set if 8 - bit pulse accumulator 3 (PAC3) reaches $
followed by an active edge on PT3.

This bit is cleared automatically by a write to the PAFLG register with bit 1 set.

PAIF — Pulse Accumulator Input edge Flag

Set when the selected edge is detected at the PT7 input pin. In event mode the event edge trigge
and in gated time accumulation mode the trailing edge of the gate signal at the PT7 input pin tri
PAIF.

This bit is cleared by a write to the PAFLG register with bit 0 set.
Any access to the PACN3, PACN2 registers will clear all the flags in this register when TFFCA b
register TSCR($06) is set.

Register offset: $_21

BIT7 6 5 4 3 2 1 BIT0

R 0 0 0 0 0 0
PAOVF PAIF

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
31

ECT_16B8C Block User Guide V01.06

nd low

es
3.3.17 PACN3, PACN2 — Pulse Accumulators Count Registers

Figure 3-17 Pulse Accumulators Count Register 3 (PACN3)

Figure 3-18 Pulse Accumulators Count Register 2 (PACN2)

Read or write any time.

The two 8-bit pulse accumulators PAC3 and PAC2 are cascaded to form the PACA 16-bit pulse
accumulator. When PACA in enabled (PAEN=1 in PACTL, $20) the PACN3 and PACN2 registers
contents are respectively the high and low byte of the PACA.

When PACN3 overflows from $FF to $00, the Interrupt flag PAOVF in PAFLG ($21) is set.

Full count register access should take place in one clock cycle. A separate read/write for high byte a
byte will give a different result than accessing them as a word.

 NOTE : When clocking pulse and write to the registers occurs simultaneously , write tak

 priority and the register is not incremented.

Register offset: $_22

BIT7 6 5 4 3 2 1 BIT0

R
pacnt7(15) pacnt6(14) pacnt5(13) pacnt4(12) pacnt3(11) pacnt2(10) pacnt1(9) pacnt0(8)

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_23

BIT7 6 5 4 3 2 1 BIT0

R
pacnt7 pacnt6 pacnt5 pacnt4 pacnt3 pacnt2 pacnt1 pacnt0

W

RESET: 0 0 0 0 0 0 0 0
32

ECT_16B8C Block User Guide V01.06

s

nd low

es
3.3.18 PACN1, PACN0 — Pulse Accumulators Count Registers

Figure 3-19 Pulse Accumulators Count Register 1 (PACN1)

Figure 3-20 Pulse Accumulators Count Register 0 (PACN0)

Read or write any time.

The two 8-bit pulse accumulators PAC1 and PAC0 are cascaded to form the PACB 16-bit pulse
accumulator. When PACB in enabled, (PBEN=1 in PBCTL, $30) the PACN1 and PACN0 register
contents are respectively the high and low byte of the PACB.

When PACN1 overflows from $FF to $00, the Interrupt flag PBOVF in PBFLG ($31) is set.

Full count register access should take place in one clock cycle. A separate read/write for high byte a
byte will give a different result than accessing them as a word

 NOTE : When clocking pulse and write to the registers occurs simultaneously , write tak

 priority and the register is not incremented.

3.3.19 MCCTL — 16-Bit Modulus Down-Counter Control Register

Figure 3-21 16-Bit Modulus Down-Counter Control Register (MCCTL)

Read or write any time.

MCZI — Modulus Counter Underflow Interrupt Enable
0 = Modulus counter interrupt is disabled.

Register offset: $_24

BIT7 6 5 4 3 2 1 BIT0

R
pacnt7(15) pacnt6(14) pacnt5(13) pacnt4(12) pacnt3(11) pacnt2(10) pacnt1(9) pacnt0(8)

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_25

BIT7 6 5 4 3 2 1 BIT0

R
pacnt7 pacnt6 pacnt5 pacnt4 pacnt3 pacnt2 pacnt1 pacnt0

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_26

BIT7 6 5 4 3 2 1 BIT0

R
MCZI MODMC RDMCL

0 0
MCEN MCPR1 MCPR0

W ICLAT FLMC

RESET: 0 0 0 0 0 0 0 0
33

ECT_16B8C Block User Guide V01.06

latest

one

e pulse

esets

the

o the
1 = Modulus counter interrupt is enabled.

MODMC — Modulus Mode Enable
0 = The counter counts once from the value written to it and will stop at $0000.
1 = Modulus mode is enabled. When the counter reaches $0000, the counter is loaded with the

value written to the modulus count register.

NOTE: For proper operation, the MCEN bit should be cleared before modifying the
MODMC bit in order to reset the modulus counter to $FFFF.

RDMCL — Read Modulus Down-Counter Load
0 = Reads of the modulus count register will return the present value of the count register.
1 = Reads of the modulus count register will return the contents of the load register.

ICLAT — Input Capture Force Latch Action

When input capture latch mode is enabled (LATQ and BUFEN bit in ICSYS ($2B) are set, a write
to this bit immediately forces the contents of the input capture registers TC0 to TC3 and their
corresponding 8-bit pulse accumulators to be latched into the associated holding registers. Th
accumulators will be automatically cleared when the latch action occurs.

Writing zero to this bit has no effect. Read of this bit will return always zero.

FLMC — Force Load Register into the Modulus Counter Count Register

This bit is active only when the modulus down-counter is enabled (MCEN=1).

A write one into this bit loads the load register into the modulus counter count register. This also r
the modulus counter prescaler.

Write zero to this bit has no effect.

When MODMC=0, counter starts counting and stops at $0000.

Read of this bit will return always zero.

MCEN — Modulus Down-Counter Enable
0 = Modulus counter disabled.
1 = Modulus counter is enabled.

When MCEN=0, the counter is preset to $FFFF. This will prevent an early interrupt flag when
modulus down-counter is enabled.

MCPR1, MCPR0— Modulus Counter Prescaler select

These two bits specify the division rate of the modulus counter prescaler.

The newly selected prescaler division rate will not be effective until a load of the load register int
modulus counter count register occurs.

Table 3-7 Modulus Counter Prescaler Select

MCPR1 MCPR0 Prescaler division rate
0 0 1
34

ECT_16B8C Block User Guide V01.06

after
3.3.20 MCFLG — 16-Bit Modulus Down-Counter FLAG Register

Figure 3-22 16-Bit Modulus Down-Counter FLAG Register (MCFLG)

Read: any time
Write: Only for clearing bit 7

MCZF — Modulus Counter Underflow Flag

The flag is set when the modulus down-counter reaches $0000.

A write one to this bit clears the flag. Write zero has no effect.

Any access to the MCCNT register will clear the MCZF flag in this register when TFFCA bit in
register TSCR($06) is set.

POLF3 – POLF0 — First Input Capture Polarity Status

This are read only bits. Write to these bits has no effect.

Each status bit gives the polarity of the first edge which has caused an input capture to occur
capture latch has been read.

Each POLFn corresponds to a timer PORTn input.
0 = The first input capture has been caused by a falling edge.
1 = The first input capture has been caused by a rising edge.

0 1 4

1 0 8

1 1 16

Register offset: $_27

BIT7 6 5 4 3 2 1 BIT0

R
MCZF

0 0 0 POLF3 POLF2 POLF1 POLF0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-7 Modulus Counter Prescaler Select

MCPR1 MCPR0 Prescaler division rate
35

ECT_16B8C Block User Guide V01.06

ared.

ared.

elected
 if the
void

r delay.
3.3.21 ICPAR — Input Control Pulse Accumulators Register

Figure 3-23 Input Control Pulse Accumulators Register (ICPAR)

The 8-bit pulse accumulators PAC3 and PAC2 can be enabled only if PAEN in PATCL ($20) is cle
If PAEN is set, PA3EN and PA2EN have no effect.

The 8-bit pulse accumulators PAC1 and PAC0 can be enabled only if PBEN in PBTCL ($30) is cle
If PBEN is set, PA1EN and PA0EN have no effect.

Read or write any time.

PAnEN — 8-Bit Pulse Accumulator Enable
0 = 8-Bit Pulse Accumulator is disabled.
1 = 8-Bit Pulse Accumulator is enabled.

3.3.22 DLYCT — Delay Counter Control Register

Figure 3-24 Delay Counter Control Register (DLYCT)

Read or write any time.

If enabled, after detection of a valid edge on input capture pin, the delay counter counts the pre-s
number of bus clock cycles, then it will generate a pulse on its output. The pulse is generated only
level of input signal, after the preset delay, is the opposite of the level before the transition.This will a
reaction to narrow input pulses.

After counting, the counter will be cleared automatically.

Delay between two active edges of the input signal period should be longer than the selected counte

Register offset: $_28

BIT7 6 5 4 3 2 1 BIT0

R 0 0 0 0
PA3EN PA2EN PA1EN PA0EN

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_29

BIT7 6 5 4 3 2 1 BIT0

R 0 0 0 0 0 0
DLY1 DLY0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
36

ECT_16B8C Block User Guide V01.06

 a new

y are
il
DLYn — Delay Counter Select

3.3.23 ICOVW — Input Control Overwrite Register

Figure 3-25 Input Control Overwrite Register (ICOVW)

Read or write any time.

An IC register is empty when it has been read or latched into the holding register.

A holding register is empty when it has been read.

NOVWn — No Input Capture Overwrite
0 = The contents of the related capture register or holding register can be overwritten when

input capture or latch occurs.
1 = The related capture register or holding register cannot be written by an event unless the

empty (see4.2.1 IC Channels). This will prevent the captured value to be overwritten unt
it is read or latched in the holding register.

3.3.24 ICSYS — Input Control System Control Register

Figure 3-26 Input Control System Register (ICSYS)

Read: any time
Write: Can be written once (test_mode =0). Writes are always permitted when test_mode =1.

SHxy — Share Input action of Input Capture Channels x and y

Table 3-8 Delay Counter Select

DLY1 DLY0 Delay
0 0 Disabled (bypassed)

0 1 256 bus clock cycles

1 0 512 bus clock cycles

1 1 1024 bus clock cycles

Register offset: $_2A

BIT7 6 5 4 3 2 1 BIT0

R
NOVW7 NOVW6 NOVW5 NOVW4 NOVW3 NOVW2 NOVW1 NOVW0

W

RESET: 0 0 0 0 0 0 0 0

Register offset: $_2B

BIT7 6 5 4 3 2 1 BIT0

R
SH37 SH26 SH15 SH04 TFMOD PACMX BUFEN LATQ

W

RESET: 0 0 0 0 0 0 0 0
37

ECT_16B8C Block User Guide V01.06

ter
lding

lding
ith the
Cn is

the

set

r

next

rther.

 is

t

of

lding

ero or

erred
0 = Normal operation
1 = The channel input ‘x’ causes the same action on the channel ‘y’. The port pin ‘x’ and the

corresponding edge detector is used to be active on the channel ‘y’.

TFMOD — Timer Flag-setting Mode

Use of the TFMOD bit in the ICSYS register ($2B) in conjunction with the use of the ICOVW regis
($2A) allows a timer interrupt to be generated after capturing two values in the capture and ho
registers instead of generating an interrupt for every capture.

By setting TFMOD in queue mode, when NOVW bit is set and the corresponding capture and ho
registers are emptied, an input capture event will first update the related input capture register w
main timer contents. At the next event the TCn data is transferred to the TCnH register, The T
updated and the CnF interrupt flag is set.

In all other input capture cases the interrupt flag is set by a valid external event on PTn.
0 = The timer flags C3F–C0F in TFLG1 ($0E) are set when a valid input capture transition on

corresponding port pin occurs.
1 = If in queue mode (BUFEN=1 and LATQ=0), the timer flags C3F–C0F in TFLG1 ($0E) are

only when a latch on the corresponding holding register occurs.
If the queue mode is not engaged, the timer flags C3F–C0F are set the same way as fo
TFMOD=0.

PACMX — 8-Bit Pulse Accumulators Maximum Count
0 = Normal operation. When the 8-bit pulse accumulator has reached the value $FF, with the

active edge, it will be incremented to $00.
1 = When the 8-bit pulse accumulator has reached the value $FF, it will not be incremented fu

The value $FF indicates a count of 255 or more.

BUFEN — IC Buffer Enable
0 = Input Capture and pulse accumulator holding registers are disabled.
1 = Input Capture and pulse accumulator holding registers are enabled. The latching mode

defined by LATQ control bit.
Write one into ICLAT bit in MCCTL ($26), when LATQ is set will produce latching of inpu
capture and pulse accumulators registers into their holding registers.

LATQ — Input Control Latch or Queue Mode Enable

The BUFEN control bit should be set in order to enable the IC and pulse accumulators holding
registers. Otherwise LATQ latching modes are disabled.

Write one into ICLAT bit in MCCTL ($26), when LATQ and BUFEN are set will produce latching
input capture and pulse accumulators registers into their holding registers.

0 = Queue Mode of Input Capture is enabled.
The main timer value is memorized in the IC register by a valid input pin transition.
With a new occurrence of a capture, the value of the IC register will be transferred to its ho
register and the IC register memorizes the new timer value.

1 = Latch Mode is enabled. Latching function occurs when modulus down-counter reaches z
a zero is written into the count register MCCNT (see4.2.1.2 Buffered IC Channels).
With a latching event the contents of IC registers and 8-bit pulse accumulators are transf
to their holding registers. 8-bit pulse accumulators are cleared.
38

ECT_16B8C Block User Guide V01.06

the

in

nd

 their
3.3.25 TIMTST — Timer Test Register

Figure 3-27 Timer Test Register (TIMTST)

Read: any time
Write: only in special mode (test_mode = 1).

TCBYP — Main Timer Divider Chain Bypass
0 = Normal operation
1 = For testing only. The 16-bit free-running timer counter is divided into two 8-bit halves and

prescaler is bypassed. The clock drives both halves directly.
When the high byte of timer counter TCNT ($04) overflows from $FF to $00, the TOF flag
TFLG2 ($0F) will be set.

3.3.26 PBCTL — 16-Bit Pulse Accumulator B Control Register

Figure 3-28 16-Bit Pulse Accumulator B Control Register (PBCTL)

Read or write any time.

16-Bit Pulse Accumulator B (PACB) is formed by cascading the 8-bit pulse accumulators PAC1 a
PAC0.

When PBEN is set, the PACB is enabled. The PACB shares the input pin with IC0.

PBEN — Pulse Accumulator B System Enable
0 = 16-bit Pulse Accumulator system disabled. 8-bit PAC1 and PAC0 can be enabled when

related enable bits in ICPAR ($28) are set.

Register offset: $_2D

BIT7 6 5 4 3 2 1 BIT0

R 0 0 0 0 0 0
TCBYP

0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_30

BIT7 6 5 4 3 2 1 BIT0

R 0
PBEN

0 0 0 0
PBOVI

0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
39

ECT_16B8C Block User Guide V01.06

0 are
1 and

less

-bit

and
1 = Pulse Accumulator B system enabled. The two 8-bit pulse accumulators PAC1 and PAC
cascaded to form the PACB 16-bit pulse accumulator. When PACB in enabled, the PACN
PACN0 registers contents are respectively the high and low byte of the PACB.
PA1EN and PA0EN control bits in ICPAR ($28) have no effect.

PBEN is independent from TEN. With timer disabled, the pulse accumulator can still function un
pulse accumulator is disabled.

PBOVI — Pulse Accumulator B Overflow Interrupt enable
0 = interrupt inhibited
1 = interrupt requested if PBOVF is set

3.3.27 PBFLG — Pulse Accumulator B Flag Register

Figure 3-29 Pulse Accumulator B Flag Register (PBFLG)

Read or write any time.

PBOVF — Pulse Accumulator B Overflow Flag

This bit is set when the 16-bit pulse accumulator B overflows from $FFFF to $0000, or when 8
pulse accumulator 1 (PAC1) overflows from $FF to $00.

This bit is cleared by a write to the PBFLG register with bit 1 set.

Any access to the PACN1 and PACN0 registers will clear the PBOVF flag in this register when
TFFCA bit in register TSCR($06) is set.

When PACMX = 1, PBOVF bit can also be set if 8 - bit pulse accumulator 1 (PAC1) reaches $FF
followed an active edge comes on PT1.

Register offset: $_31

BIT7 6 5 4 3 2 1 BIT0

R 0 0 0 0 0 0
PBOVF

0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
40

ECT_16B8C Block User Guide V01.06
3.3.28 PA3H–PA0H — 8-Bit Pulse Accumulators Holding Registers

Figure 3-30 8-Bit Pulse Accumulators Holding Register 3 (PA3H)

Figure 3-31 8-Bit Pulse Accumulators Holding Register 2 (PA2H)

Figure 3-32 8-Bit Pulse Accumulators Holding Register 1 (PA1H)

Figure 3-33 8-Bit Pulse Accumulators Holding Register 0 (PA0H)

Register offset: $_32

BIT7 6 5 4 3 2 1 BIT0

R PA3H7 PA3H6 PA3H5 PA3H4 PA3H3 PA3H2 PA3H1 PA3H0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_33

BIT7 6 5 4 3 2 1 BIT0

R PA2H7 PA2H6 PA2H5 PA2H4 PA2H3 PA2H2 PA2H1 PA2H0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_34

BIT7 6 5 4 3 2 1 BIT0

R PA1H7 PA1H6 PA1H5 PA1H4 PA1H3 PA1H2 PA1H1 PA1H0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_35

BIT7 6 5 4 3 2 1 BIT0

R PA0H7 PA0H6 PA0H5 PA0H4 PA0H3 PA0H2 PA0H1 PA0H0

W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
41

ECT_16B8C Block User Guide V01.06

d bits in

r high

lue
ad

ter

flag

 the

alue

ill
0.
Read: any time
Write: has no effect.

These registers are used to latch the value of the corresponding pulse accumulator when the relate
register ICPAR ($28) are enabled (see4.2.2 Pulse Accumulators).

3.3.29 MCCNT — Modulus Down-Counter Count Register

Figure 3-34 Modulus Down-Counter Count Register (MCCNT)

Read or write any time.

A full access for the counter register should take place in one clock cycle. A separate read/write fo
byte and low byte will give different result than accessing them as a word.

If the RDMCL bit in MCCTL register is cleared, reads of the MCCNT register will return the present va
of the count register. If the RDMCL bit is set, reads of the MCCNT will return the contents of the lo
register.

If a $0000 is written into MCCNT and modulus counter while LATQ and BUFEN in ICSYS ($2B) regis
are set, the input capture and pulse accumulator registers will be latched.

With a $0000 write to the MCCNT, the modulus counter will stay at zero and does not set the MCZF
in MCFLG register.

If modulus mode is enabled (MODMC=1), a write to this address will update the load register with
value written to it. The count register will not be updated with the new value until the next counter
underflow.

The FLMC bit in MCCTL ($26) can be used to immediately update the count register with the new v
if an immediate load is desired.

If modulus mode is not enabled (MODMC=0), a write to this address will clear the prescaler and w
immediately update the counter register with the value written to it and down-counts once to $000

Register address:$_36-$_37

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R
W

mccnt
15

mccnt
14

mccnt
13

mccnt
12

mccnt
11

mccnt
10

mccnt
9

mccnt
8

mccnt
7

mccnt
6

mccnt
5

mccnt
4

mccnt
3

mccnt
2

mccnt
1

mccnt
0

RESET 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
42

ECT_16B8C Block User Guide V01.06
3.3.30 Timer Input Capture Holding Registers 0-3

Figure 3-35 Timer Input Capture Holding Register 0 (TC0H)

Figure 3-36 Timer Input Capture Holding Register 1 (TC1H)

Figure 3-37 Timer Input Capture Holding Register 2 (TC2H)

Figure 3-38 Timer Input Capture Holding Register 3 (TC3H)

Register offset: $_38-$_39

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_3A-$_3B

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_3C-$_3D

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register offset: $_3E-$_3F

BIT15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 BIT0

R TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
43

ECT_16B8C Block User Guide V01.06

onding
Read: any time
Write: has no effect.

These registers are used to latch the value of the input capture registers TC0 – TC3. The corresp
IOSn bits in TIOS ($00) should be cleared (see4.2.1 IC Channels).
44

ECT_16B8C Block User Guide V01.06

f the
Section 4 Functional Description

4.1 General

This section provides a complete functional description of the ECT block, detailing the operation o
design from the end user perspective in a number of subsections.
45

ECT_16B8C Block User Guide V01.06
Refer to the Timer Block Diagrams fromFigure 4-1 to Figure 4-5 as necessary.

Figure 4-1 Detailed Timer Block Diagram in Latch mode

16 BIT MAIN TIMER

P1

Comparator

TC0H hold register

P0

P3

P2

P4

P5

P6

P7

EDG0

EDG1

EDG2

EDG3

MUX

Prescalerbus clock

16-bit load register

16-bit modulus

0 RESET

EDG0

EDG1

EDG2

EDG4

EDG5

EDG3

EDG6

EDG7

÷ 1, 4, 8, 16

16-bit Free-running

LA
TC

H

 U
nd

er
flo

w

main timer

Prescaler

TC0 capture/compare register

Comparator

TC1 capture/compare register

Comparator

TC2 capture/compare register

Comparator

TC3 capture/compare register

Comparator

TC4 capture/compare register

Comparator

TC5 capture/compare register

Comparator

TC6 capture/compare register

Comparator

TC7 capture/compare register

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Delay counter

Delay counter

Delay counter

Delay counter

TC1H hold register

TC2H hold register

TC3H hold register

MUX

MUX

MUX

PA0H hold register

PAC0

0 RESET

PA1H hold register

PAC1

0 RESET

PA2H hold register

PAC2

0 RESET

PA3H hold register

PAC3

Write $0000
to modulus counter

ICLAT, LATQ, BUFEN
(force latch)

LATQ
(MDC latch enable)

down counter

SH04

SH15

SH26

SH37

bus clock

÷ 1, 2, ..., 128
TIMCLK

PCLK
46

ECT_16B8C Block User Guide V01.06
Figure 4-2 Detailed Timer Block Diagram in Queue mode

16 BIT MAIN TIMER

P1

Comparator

TC0H hold register

P0

P3

P2

P4

P5

P6

P7

EDG0

EDG1

EDG2

EDG3

MUX

Prescalerbus clock

16-bit load register

16-bit modulus

0 RESET

EDG0

EDG1

EDG2

EDG4

EDG5

EDG3

EDG6

EDG7

÷1, 2, ..., 128
÷ 1, 4, 8, 16

16-bit Free-running

LA
TC

H
0

main timer

Prescaler

TC0 capture/compare register

Comparator

TC1 capture/compare register

Comparator

TC2 capture/compare register

Comparator

TC3 capture/compare register

Comparator

TC4 capture/compare register

Comparator

TC5 capture/compare register

Comparator

TC6 capture/compare register

Comparator

TC7 capture/compare register

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Pin logic

Delay counter

Delay counter

Delay counter

Delay counter

 bus clock

TC1H hold register

TC2H hold register

TC3H hold register

MUX

MUX

MUX

PA0H hold register

PAC0

0 RESET

PA1H hold register

PAC1

0 RESET

PA2H hold register

PAC2

0 RESET

PA3H hold register

PAC3

LA
TC

H
1

LA
TC

H
3

LA
TC

H
2

LATQ, BUFEN
(queue mode)

Read TC3H
hold register

Read TC2H
hold register

Read TC1H
hold register

Read TC0H
hold register

down counter

SH04

SH15

SH26

SH37

PCLK

TIMCLK
47

ECT_16B8C Block User Guide V01.06
Figure 4-3 8-Bit Pulse Accumulators Block Diagram

P0

Load holding register and reset pulse accumulator

0

0

EDG3

EDG2

EDG1

EDG0
Edge detector Delay counter

Interrupt

Interrupt

P1 Edge detector Delay counter

P2 Edge detector Delay counter

P3 Edge detector Delay counter

PA0H holding register

0

8-bit PAC1 (PACN1)

PA1H holding register

0

8-bit PAC2 (PACN2)

PA2H holding register

0

8-bit PAC3 (PACN3)

PA3H holding register

8-bit PAC0 (PACN0)
48

ECT_16B8C Block User Guide V01.06
Figure 4-4 16-Bit Pulse Accumulators Block Diagram

Edge detector

8-bit PAC28-bit PAC3

P7

P0

bus clockDivide by 64

Clock select

CLK0
CLK1 4:1 MUX

TIMCLK

PA
C

LK

PA
C

LK
 /

25
6

PA
C

LK
 /

65
53

6Prescaled clock
(PCLK)

(Timer clock)

Interrupt

MUX

(PAMOD)

Edge detector

PACA

Delay counter

(PACN3) (PACN2)

8-bit PAC08-bit PAC1

Interrupt

PACB

(PACN1) (PACN0)
49

ECT_16B8C Block User Guide V01.06

n the
by

morizes

g

ulator
e

se
zero.

ability.
Figure 4-5 Block Diagram for Port7 with Output compare/Pulse Accumulator A

4.2 Enhanced Capture Timer Modes of Operation

The Enhanced Capture Timer has 8 Input Capture, Output Compare (IC/OC) channels same as o
HC12 standard timer (timer channels TC0 to TC7). When channels are selected as input capture
selecting the IOSn bit in TIOS register, they are called Input Capture (IC) channels.

Four IC channels are the same as on the standard timer with one capture register each which me
the timer value captured by an action on the associated input pin.

Four other IC channels, in addition to the capture register, have also one buffer each called holdin
register. This permits to memorize two different timer values without generation of any interrupt.

Four 8-bit pulse accumulators are associated with the four buffered IC channels. Each pulse accum
has a holding register to memorize their value by an action on its external input. Each pair of puls
accumulators can be used as a 16-bit pulse accumulator.

The 16-bit modulus down-counter can control the transfer of the IC registers contents and the pul
accumulators to the respective holding registers for a given period, every time the count reaches

The modulus down-counter can also be used as a stand-alone time base with periodic interrupt cap

4.2.1 IC Channels

The IC channels are composed of four standard IC registers and four buffered IC channels.

An IC register is empty when it has been read or latched into the holding register.

A holding register is empty when it has been read.

Pn Edge detector Delay counter

16-bit Main Timer

TCn Input Capture Reg.

TCnH I.C. Holding Reg. BUFEN • LATQ • TFMOD

Set CnF Interrupt
50

ECT_16B8C Block User Guide V01.06

ding
IC

iven
AT in

ture,
lding

ister

ture,
e new

ister

ts

ature is
4.2.1.1 Non-Buffered IC Channels

The main timer value is memorized in the IC register by a valid input pin transition. If the correspon
NOVWx bit of the ICOVW register is cleared, with a new occurrence of a capture, the contents of
register are overwritten by the new value.

If the corresponding NOVWx bit of the ICOVW register is set, the capture register cannot be
written unless it is empty.

This will prevent the captured value to be overwritten until it is read.

4.2.1.2 Buffered IC Channels

There are two modes of operations for the buffered IC channels.

• IC Latch Mode:

When enabled (LATQ=1), the main timer value is memorized in the IC register by a valid input pin
transition. SeeFigure 4-1

The value of the buffered IC register is latched to its holding register by the Modulus counter for a g
period when the count reaches zero, by a write $0000 to the modulus counter or by a write to ICL
the MCCTL register.

If the corresponding NOVWn bit of the ICOVW register is cleared, with a new occurrence of a cap
the contents of IC register are overwritten by the new value. In case of latching, the contents of its ho
register are overwritten.

If the corresponding NOVWn bit of the ICOVW register is set, the capture register or its holding reg
cannot be written by an event unless they are empty (see4.2.1). This will prevent the captured value to be
overwritten until it is read or latched in the holding register.

• IC queue mode:

When enabled (LATQ=0), the main timer value is memorized in the IC register by a valid input pin
transition. SeeFigure 4-2

If the corresponding NOVWn bit of the ICOVW register is cleared, with a new occurrence of a cap
the value of the IC register will be transferred to its holding register and the IC register memorizes th
timer value.

If the corresponding NOVWn bit of the ICOVW register is set, the capture register or its holding reg
cannot be written by an event unless they are empty (see4.2.1).

In queue mode, reads of holding register will latch the corresponding pulse accumulator value to i
holding register.

4.2.1.3 Delayed IC channels

There are four delay counters in this module associated with IC channels 0 - 3. The use of this fe
51

ECT_16B8C Block User Guide V01.06

r

or

nel.

SYS
explained in the diagram and notes below.

Figure 4-6 Channel Input validity with delay counter feature

In the diagram above a delay counter value of 256 bus cycles is considered.

1. Input pulses with a duration of (DLY_CNT - 1) cycles or shorter are rejected.

2. Inputpulseswithadurationbetween (DLY_CNT-1)andDLY_CNTcyclesmaybe rejectedo

 accepted, depending on their relative alignment with the sample points.

3. Input pulses with a duration between (DLY_CNT - 1) and DLY_CNT cycles may be rejected

 accepted, depending on their relative alignment with the sample points.

4. Input pulses with a duration of DLY_CNT or longer are accepted.

4.2.2 Pulse Accumulators

There are four 8-bit pulse accumulators with four 8-bit holding registers associated with the four IC
buffered channels. A pulse accumulator counts the number of active edges at the input of its chan

The user can prevent 8-bit pulse accumulators counting further than $FF by PACMX control bit in IC
($2B). In this case a value of $FF means that 255 counts or more have occurred.

Each pair of pulse accumulators can be used as a 16-bit pulse accumulator. SeeFigure 4-4

There are two modes of operation for the pulse accumulators.

1 2 3 253 254 255 256

BUS CLOCK

DLY_CNT

INPUT ON
CH0-3

rejected

accepted
INPUT ON

CH0-3

INPUT ON
CH0-3

accepted

INPUT ON
CH0-3

rejected

0

255 cycles

255.5 cycles

255.5 cycles

256 cycles
52

ECT_16B8C Block User Guide V01.06

ounter
ritten.

 of the

be used

ing are

es an

ecutive
tarts
4.2.2.1 Pulse Accumulator latch mode

The value of the pulse accumulator is transferred to its holding register when the modulus down-c
reaches zero, a write $0000 to the modulus counter or when the force latch control bit ICLAT is w

At the same time the pulse accumulator is cleared.

4.2.2.2 Pulse Accumulator queue mode

When queue mode is enabled, reads of an input capture holding register will transfer the contents
associated pulse accumulator to its holding register.

At the same time the pulse accumulator is cleared.

4.2.3 Modulus Down-Counter

The modulus down-counter can be used as a time base to generate a periodic interrupt. It can also
to latch the values of the IC registers and the pulse accumulators to their holding registers.

The action of latching can be programmed to be periodic or only once.

4.2.4 Channel Configurations

Timer Channels can be configured as input capture channels or output compare channels. Follow
the ways a port can be configured as an output for OC.

The pin associated with channel 7 becomes output-tied to OC7 when

• TEN = 1, IOS7 = 1, and either or both of OM7 and OL7 are set. or

• OC7M7 =1 and IOS7 = 1.

When masking, the timer does not have to be enabled so that the pin associated with OCn becom
output tied to OCn.

The pins associated with channels 0-6 become output-tied to OCn (n=0..6) when

• TEN = 1, IOSn = 1, and either or both of OMn and OLn are set or

• OC7Mn =1, IOS7 = 1 and IOSn = 1

Once the pin is configured as OC, its initial state is zero and its status is changed (if needed) on cons
clock cycles following the write which enabled the ECT to drive the pin. In other words after a pin s
to be driven by ECT OC logic, it is forced low for at least one clock cycle.
53

ECT_16B8C Block User Guide V01.06
54

ECT_16B8C Block User Guide V01.06
Section 5 Reset

5.1 General

The reset state of each individual bit is listed within the Register Description section (Section 3 Memory
Map and Registers) which details the registers and their bit-fields.
55

ECT_16B8C Block User Guide V01.06
56

ECT_16B8C Block User Guide V01.06

errupt

ule
and

 be

errupt

rflow

t

Section 6 Interrupts

6.1 General

This section describes interrupts originated by the ECT_16B8C block.The MCU must service the int
requests.Table 6-1 lists the interrupts generated by the ECT to communicate with the MCU.

Table 6-1 ECT Interrupts

6.2 Description of Interrupt Operation

The ECT_16B8C only originates interrupt requests. The following is a description of how the mod
makes a request and how the MCU should acknowledge that request. The interrupt vector offset
interrupt number are chip dependent.

6.2.1 Channel [7:0] Interrupt

This active high output will be asserted by the module to request a timer channel 7 - 0 interrupt to
serviced by the system controller.

6.2.2 Modulus Counter Interrupt

This active high output will be asserted by the module to request a modulus counter underflow int
to be serviced by the system controller.

6.2.3 Pulse Accumulator B Overflow Interrupt)

This active high output will be asserted by the module to request a timer pulse accumulator B ove
interrupt to be serviced by the system controller.

6.2.4 Pulse Accumulator A Input Interrupt

This active high output will be asserted by the module to request a timer pulse accumulator A inpu
interrupt to be serviced by the system controller.

Interrupt Source Description
Timer Channel 7-0 Active high timer channel interrupts 7-0

Modulus counter
underflow

Active high modulus counter interrupt

Pulse Accumulator B
Overflow

Active high pulse accumulator B interrupt

Pulse Accumulator A
Input

Active high pulse accumulator A input
interrupt

Pulse Accumulator A
Overflow

Pulse accumulator overflow interrupt

Timer Overflow Timer Overflow interrupt
57

ECT_16B8C Block User Guide V01.06

rflow

viced
6.2.5 Pulse Accumulator A Overflow Interrupt

This active high output will be asserted by the module to request a timer pulse accumulator A ove
interrupt to be serviced by the system controller.

6.2.6 Timer Overflow Interrupt

This active high output will be asserted by the module to request a timer overflow interrupt to be ser
by the system controller.
58

ECT_16B8C Block User Guide V01.06
User Guide End Sheet
59

ECT_16B8C Block User Guide V01.06
FINAL PAGE OF
60

PAGES
60

DOCUMENT NUMBER
S12EETS4KV2/D
EETS4K

Block User Guide

V02.07

Original Release Date: 22 FEB 2001
Revised: 8 APR 2003

Motorola, Inc
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

EETS4K Block User Guide V02.07
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

V01.00 22FEB01 15NOV00 Initial Version.

V02.00 22MAY01 27MAR01
Do not set PVIOL for erase verify command if address written to is
in a protected area.
Allow data writes of $00 and $40 to ECLKDIV.

V02.01 25MAY01
Make formats SRS V2 compliant.
Reorder and restructure document.
Add overview block diagram.

V02.02 19JUL01
Add document names.
Hide names and variable definitions.

V02.03 29OCT01 Minor cleanup.

V02.04 11MAR02
Modify document number.
Fix cross references.

V02.05 09JUL02
Modify document number.
Rearrange Section 3.2 Module Memory Map .

V02.06 23JAN03 Add description of EADDR and EDATA registers.

V02.07 08APR03

Modify description of 3.3.5 EPROT — EEPROM Protection
Register to clarify mass erase restrictions.
Modify description of CBEIF and CCIF flags in 3.3.6 ESTAT —
EEPROM Status Register .
2

EETS4K Block User Guide V02.07
Table of Contents

Section 1 Introduction

1.1 Overview. .9

1.1.1 Glossary .9

1.2 Features .9

1.3 Modes of Operation .10

1.4 Block Diagram .10

Section 2 External Signal Description

2.1 Overview. .11

Section 3 Memory Map and Registers

3.1 Overview. .13

3.2 Module Memory Map .13

3.3 Register Descriptions .16

3.3.1 ECLKDIV — EEPROM Clock Divider Register .16

3.3.2 RESERVED1 .16

3.3.3 RESERVED2 .17

3.3.4 ECNFG — EEPROM Configuration Register. .17

3.3.5 EPROT — EEPROM Protection Register .18

3.3.6 ESTAT — EEPROM Status Register. .19

3.3.7 ECMD — EEPROM Command Register .21

3.3.8 RESERVED3 .21

3.3.9 EADDR — EEPROM Address Register. .22

3.3.10 EDATA — EEPROM Data Register .22

Section 4 Functional Description

4.1 Program and Erase Operation .25

4.1.1 Writing the ECLKDIV Register .25

4.1.2 Program and Erase .28

4.1.3 Valid EEPROM Commands .30

4.1.4 Illegal EEPROM Operations. .30

4.2 Wait Mode .31

4.3 Stop Mode .31
3

EETS4K Block User Guide V02.07
4.4 Background Debug Mode. .32

Section 5 Resets

5.1 General. .33

Section 6 Interrupts

6.1 General. .35

6.2 Description of Interrupt Operation .35
4

Block User Guide — S12EETS4KV2/D V02.07
List of Figures

Figure 1-1 Module Block Diagram. .10

Figure 3-1 EEPROM Memory Map .14

Figure 3-2 EEPROM Clock Divider Register (ECLKDIV) .16

Figure 3-3 RESERVED1. .16

Figure 3-4 RESERVED2. .17

Figure 3-5 EEPROM Configuration Register (ECNFG) .17

Figure 3-6 EEPROM Protection Register (EPROT) .18

Figure 3-7 EEPROM Status Register (ESTAT). .19

Figure 3-8 EEPROM Command Register (ECMD) .21

Figure 3-9 RESERVED3. .21

Figure 3-10 EEPROM Address High Register (EADDRHI). .22

Figure 3-11 EEPROM Address Low Register (EADDRLO) .22

Figure 3-12 EEPROM Data High Register (EDATAHI). .22

Figure 3-13 EEPROM Data Low Register (EDATALO) .23

Figure 4-1 PRDIV8 and EDIV bits Determination Procedure .27

Figure 4-2 Example Program Algorithm .29
5

EETS4K Block User Guide V02.07
6

Block User Guide — S12EETS4KV2/D V02.07
List of Tables

Table 3-1 EEPROM Protection/Reserved Field .13

Table 3-2 EEPROM Register Memory Map. .15

Table 3-3 EEPROM Address Range Protection .19

Table 3-4 EEPROM Normal Mode Commands .21

Table 4-1 Valid EEPROM Commands. .30

Table 6-1 EEPROM Interrupt Sources. .35
7

EETS4K Block User Guide V02.07
8

Block User Guide — S12EETS4KV2/D V02.07

The
 of
d as
 bytes).

ss time

d mass
it reads
ps.
Section 1 Introduction

1.1 Overview

This document describes the EETS4K module which is a 4K byte EEPROM (Non-Volatile) memory.
EETS4K block uses a small sector Flash memory to emulate EEPROM functionality. It is an array
electrically erasable and programmable, non-volatile memory. The EEPROM memory is organize
2048 rows of 2 bytes (1 word). The EEPROM memory’s erase sector size is 2 rows or 2 words (4

The EEPROM memory may be read as either bytes, aligned words or misaligned words. Read acce
is one bus cycle for byte and aligned word, and two bus cycles for misaligned words.

Program and erase functions are controlled by a command driven interface. Both sector erase an
erase of the entire EEPROM memory are supported. An erased bit reads ‘1’ and a programmed b
‘0’. The high voltage required to program and erase is generated internally by on-chip charge pum

It is not possible to read from the EEPROM memory while it is being erased or programmed.

The EEPROM memory is ideal for data storage for single-supply applications allowing for field
reprogramming without requiring external programming voltage sources.

WARNING
A word must be erased before being programmed. Cumulative programming of bits within a word
is not allowed.

1.1.1 Glossary

Command Sequence

A three-step MCU instruction sequence to program, erase or erase-verify the EEPROM.

1.2 Features

• 4K bytes of EEPROM memory.

• Minimum erase sector of 4 bytes.

• Automated program and erase algorithms.

• Interrupts on EEPROM command completion and command buffer empty.

• Fast sector erase and word program operation.

• 2-stage command pipeline.

• Flexible protection scheme for protection against accidental program or erase.

• Single power supply program and erase.
9

EETS4K Block User Guide V02.07
1.3 Modes of Operation

• Program and erase operation (please refer to4.1 for details).

1.4 Block Diagram

Figure 1-1 shows a block diagram of the EETS4K module.

Figure 1-1 Module Block Diagram

EETS4K

EEPROM Array
2048 * 16 Bits

row0
row1

row2047

Oscillator Clock
DividerClock

Command
Interface

Command Pipeline

comm2

Command
Complete
Interrupt

Command
Buffer Empty
Interrupt

Registers

EECLK

addr2
data2

comm1
addr1
data1
10

Block User Guide — S12EETS4KV2/D V02.07
Section 2 External Signal Description

2.1 Overview

The EETS4K module contains no signals that connect off chip.
11

EETS4K Block User Guide V02.07
12

Block User Guide — S12EETS4KV2/D V02.07

ap
fined
and

ROM

ected
otected
in the
Section 3 Memory Map and Registers

3.1 Overview

This section describes the EETS4K memory map and registers.

3.2 Module Memory Map

Figure 3-1 shows the EETS4K memory map. Location of the EEPROM array in the MCU memory m
is defined in the specific MCU Device User Guide and is reflected in the INITEE register contents de
in the HCS12 Core User Guide. Shown within the EEPROM array are a protection/reserved field
user-defined EEPROM protected sectors. The 16 byte protection/reserved field is located in the EEP
array from address $_FF0 to $_FFF. A description of this protection/reserved field is given inTable 3-1 .

The EEPROM module has hardware interlocks which protect data from accidental corruption. A prot
sector is located at the higher address end of the EEPROM array, just below address $_FFF. The pr
sector in the EEPROM array can be sized from 64 bytes to 512 bytes. In addition, the EPOPEN bit
EPROT register (see section3.3.5) can globally protect the entire EEPROM array.

NOTE
Chip security is defined at the MCU level.

Table 3-1 EEPROM Protection/Reserved Field

Array Address Size
(bytes) Description

$_FF0 - $FFC 13 Reserved

$_FFD 1 EEPROM Protection byte

$_FFE - $_FFF 2 Reserved
13

EETS4K Block User Guide V02.07
Figure 3-1 EEPROM Memory Map

EEPROM Registers
REGISTER BASE + $_110

EEPROM BASE + $_FFF

$_FC0

$_FF0 - $_FFF, EEPROM Protection/Reserved Field

REGISTER BASE + $_11B

$_F80

$_E00

(12 bytes)

$_F00 EEPROM Protected High Sectors
64, 128, 192, 256, 320, 384, 448, 512 bytes

EEPROM BASE + $_000

3.5K bytes

$_F40

$_EC0

$_E40

$_E80

EEPROM Array
14

Block User Guide — S12EETS4KV2/D V02.07

e BASE
The EEPROM module also contains a set of 12 control and status registers located in address spac
+ $110 to BASE + $11B.

Table 3-2 gives an overview on all EETS4K registers.

NOTE: Register Address = Register Base Address + $110 + Address Offset, where the
Register Base Address is defined by the HCS12 Core INITRG register and the
Address Offset is defined by the EEPROM module.

Table 3-2 EEPROM Register Memory Map

Address
Offset Use Access

$_00 EEPROM Clock Divider Register (ECLKDIV) R/W

$_01 RESERVED11

NOTES:
1. Intended for factory test purposes only.

R

$_02 RESERVED21 R

$_03 EEPROM Configuration Register (ECNFG) R/W

$_04 EEPROM Protection Register (EPROT) R/W

$_05 EEPROM Status Register (ESTAT) R/W

$_06 EEPROM Command Register (ECMD) R/W

$_07 RESERVED31 R

$_08 EEPROM High Address Register (EADDRHI) R/W

$_09 EEPROM Low Address Register (EADDRLO) R/W

$_0A EEPROM High Data Register (EDATAHI) R/W

$_0B EEPROM Low Data Register (EDATALO) R/W
15

EETS4K Block User Guide V02.07

ding

tor
 to
3.3 Register Descriptions

3.3.1 ECLKDIV — EEPROM Clock Divider Register

The ECLKDIV register is used to control timed events in program and erase algorithms.

Figure 3-2 EEPROM Clock Divider Register (ECLKDIV)

All bits in the ECLKDIV register are readable, bits 6-0 are write once and bit 7 is not writable.

EDIVLD — Clock Divider Loaded.
1 = Register has been written to since the last reset.
0 = Register has not been written.

PRDIV8 — Enable Prescaler by 8.
1 = Enables a prescaler by 8, to divide the EEPROM module input oscillator clock before fee

into the CLKDIV divider.
0 = The input oscillator clock is directly fed into the ECLKDIV divider.

EDIV[5:0] — Clock Divider Bits.

The combination of PRDIV8 and EDIV[5:0] effectively divides the EEPROM module input oscilla
clock down to a frequency of 150kHz - 200kHz. The maximum divide ratio is 512. Please refer
section4.1.1 for more information.

3.3.2 RESERVED1

This register is reserved for factory testing and is not accessible to the user.

Figure 3-3 RESERVED1

All bits read zero and are not writable.

Register address BASE + $110

7 6 5 4 3 2 1 0
R EDIVLD

PRDIV8 EDIV5 EDIV4 EDIV3 EDIV2 EDIV1 EDIV0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address BASE + $111

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
16

Block User Guide — S12EETS4KV2/D V02.07

.

3.3.3 RESERVED2

This register is reserved for factory testing and is not accessible to the user.

Figure 3-4 RESERVED2

All bits read zero and are not writable.

3.3.4 ECNFG — EEPROM Configuration Register

The ECNFG register enables the EEPROM interrupts.

Figure 3-5 EEPROM Configuration Register (ECNFG)

CBEIE and CCIE are readable and writable. Bits 5-0 read zero and are not writable.

CBEIE — Command Buffer Empty Interrupt Enable.

The CBEIE bit enables the interrupts in case of an empty command buffer in the EEPROM.
1 = An interrupt will be requested whenever the CBEIF flag,Figure 3-7 , is set.
0 = Command Buffer Empty interrupts disabled.

CCIE — Command Complete Interrupt Enable.

The CCIE bit enables the interrupts in case of all commands being completed in the EEPROM
1 = An interrupt will be requested whenever the CCIF,Figure 3-7 , flag is set.
0 = Command Complete interrupts disabled.

Register address BASE + $112

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address BASE + $113

7 6 5 4 3 2 1 0
R

CBEIE CCIE
0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
17

EETS4K Block User Guide V02.07

he “F”

bits
ritten
[2:0]

st first

fined

set
fully
hile

ction

ss map.
3.3.5 EPROT — EEPROM Protection Register

The EPROT register defines which EEPROM sectors are protected against program or erase.

Figure 3-6 EEPROM Protection Register (EPROT)

The EPROT register is loaded from EEPROM array address $_FFD during reset, as indicated by t
in Figure 3-6 .

All bits in the EPROT register are readable. Bits NV[6:4] are not writable. The EPOPEN and EPDIS
in the EPROT register can only be written to the protected state (i.e. 0). The EP[2:0] bits can be w
anytime until bit EPDIS is cleared. If the EPOPEN bit is cleared, then the state of the EPDIS and EP
bits is irrelevant.

To change the EEPROM protection that will be loaded on reset, the upper sector of EEPROM mu
be unprotected, then the EEPROM Protect byte located at address $_FFD must be written to.

A protected EEPROM sector is disabled by the EPDIS bit while the size of the protected sector is de
by the EP bits in the EPROT register.

Trying to alter any of the protected areas will result in a protect violation error and PVIOL flag will be
in the ESTAT register. A mass erase of a whole EEPROM block is only possible when protection is
disabled by setting the EPOPEN and EPDIS bits. An attempt to mass erase an EEPROM block w
protection is enabled will set the PVIOL flag in the ESTAT register.

EPOPEN — Opens the EEPROM for program or erase.
1 = The EEPROM sectors not protected are enabled for program or erase.
0 = The whole EEPROM array is protected. In this case the EPDIS and EP bits within the prote

register are ignored.

EPDIS — EEPROM Protection address range Disable.

The EPDIS bit determines whether there is a protected area in the space of the EEPROM addre
1 = Protection disabled.
0 = Protection enabled.

EP[2:0] — EEPROM Protection Address Size.

The EP[2:0] bits determine the size of the protected sector. Refer toTable 3-3 .

Register address BASE + $114

7 6 5 4 3 2 1 0
R

EPOPEN
NV6 NV5 NV4

EPDIS EP2 EP1 EP0
W

Reset: F F F F F F F F

= Unimplemented or Reserved
18

Block User Guide — S12EETS4KV2/D V02.07

cess,

able

ng a
rd
d cause
NV[6:4] — Non-Volatile Flag Bits.

These three bits are available to the user as non-volatile flags.

3.3.6 ESTAT — EEPROM Status Register

The ESTAT register defines the EEPROM state machine command status and EEPROM array ac
protection and erase verify status.

Figure 3-7 EEPROM Status Register (ESTAT)

Register bits CBEIF, PVIOL and ACCERR are readable and writable, bits CCIF and BLANK are read
and not writable, bits 3, 1 and 0 read zero and are not writable.

CBEIF — Command Buffer Empty Interrupt Flag.

The CBEIF flag indicates that the address, data and command buffers are empty so that a new
command sequence can be started. The CBEIF flag is cleared by writing a “1” to CBEIF. Writi
“0” to the CBEIF flag has no effect on CBEIF. Writing a “0” to CBEIF after writing an aligned wo
to the EEPROM address space but before CBEIF is cleared will abort a command sequence an

Table 3-3 EEPROM Address Range Protection

EP[2:0]
Protected
Address
Range

Protected Size

000 $_FC0-$_FFF 64 bytes

001 $_F80-$_FFF 128 bytes

010 $_F40-$_FFF 192 bytes

011 $_F00-$_FFF 256 bytes

100 $_EC0-$_FFF 320 bytes

101 $_E80-$_FFF 384 bytes

110 $_E40-$_FFF 448 bytes

111 $_E00-$_FFF 512 bytes

Register address BASE + $115

7 6 5 4 3 2 1 0
R

CBEIF
CCIF

PVIOL ACCERR
0 BLANK 0 0

W

Reset: 1 1 0 0 0 0 0 0

= Unimplemented or Reserved
19

EETS4K Block User Guide V02.07

d
 the

hen
. The
d from
h the

PROM

egal
PU

iting
is

ound
valid

ANK
the ACCERR flag in the ESTAT register to be set. Writing a “0” to CBEIF outside of a comman
sequence will not set the ACCERR flag. The CBEIF flag is used together with the CBEIE bit in
ECNFG register to generate an interrupt request.

1 = Buffers are ready to accept a new command.
0 = Buffers are full.

CCIF — Command Complete Interrupt Flag.

The CCIF flag indicates that there are no more commands pending. The CCIF flag is cleared w
CBEIF is cleared and sets automatically upon completion of all active and pending commands
CCIF flag does not set when an active command completes and a pending command is fetche
the command buffer. Writing to the CCIF flag has no effect. The CCIF flag is used together wit
CCIE bit in the ECNFG register to generate an interrupt request.

1 = All commands are completed.
0 = Command in progress.

PVIOL — Protection Violation.

The PVIOL flag indicates an attempt was made to program or erase an address in a protected EE
memory area (see4.1.4 Illegal EEPROM Operations) . The PVIOL flag is cleared by writing a “1”
to PVIOL. Writing a “0” to the PVIOL flag has no effect on PVIOL. While PVIOL is set, it is not
possible to launch another command in the EEPROM.

1 = A protection violation has occurred.
0 = No failure.

ACCERR — EEPROM Access Error.

The ACCERR flag indicates an illegal access to the selected EEPROM array (see4.1.4 Illegal
EEPROM Operations) . This can be either a violation of the command sequence, issuing an ill
command (illegal combination of the CMDBx bits in the ECMD register) or the execution of a C
STOP instruction while a command is executing (CCIF=0). The ACCERR flag is cleared by wr
a “1” to ACCERR. Writing a “0” to the ACCERR flag has no effect on ACCERR. While ACCERR
set, it is not possible to launch another command in the EEPROM.

1 = Access error has occurred.
0 = No failure.

BLANK — Array has been verified as erased.

The BLANK flag indicates that an erase verify command has checked the EEPROM array and f
it to be erased. The BLANK flag is cleared by hardware when CBEIF is cleared as part of a new
command sequence. Writing to the BLANK flag has no effect on BLANK.

1 = EEPROM array verifies as erased.
0 = If an erase verify command has been requested, and the CCIF flag is set, then a zero in BL

indicates array is not erased.
20

Block User Guide — S12EETS4KV2/D V02.07

able
3.3.7 ECMD — EEPROM Command Register

The ECMD register defines the EEPROM commands.

Figure 3-8 EEPROM Command Register (ECMD)

Bits 7, 4, 3 and 1 read zero and are not writable. Bits CMDB6, CMDB5, CMDB2 and CMDB0 are read
and writable during a command sequence.

CMDB — Valid normal mode commands are shown inTable 3-4 . Any other command than those
mentioned inTable 3-4 sets the ACCERR bit in the ESTAT register (3.3.6).

3.3.8 RESERVED3

This register is reserved for factory testing and is not accessible to the user.

Figure 3-9 RESERVED3

All bits read zero and are not writable.

Register address BASE + $116

7 6 5 4 3 2 1 0
R 0

CMDB6 CMDB5
0 0

CMDB2
0

CMDB0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-4 EEPROM Normal Mode Commands

Command Meaning

$05 Erase Verify

$20 Word Program

$40 Sector Erase

$41 Mass Erase

$60 Sector Modify

Register address BASE + $117

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
21

EETS4K Block User Guide V02.07

:3]
3.3.9 EADDR — EEPROM Address Register

EADDRHI and EADDRLO are the EEPROM address registers.

Figure 3-10 EEPROM Address High Register (EADDRHI)

Figure 3-11 EEPROM Address Low Register (EADDRLO)

In normal modes, all EADDRHI and EADDRLO bits read zero and are not writable.

In special modes, all EADDRHI and EADDRLO bits are readable and writable except EADDRHI[7
which are not writable and always read zero.

For sector erase, the MCU address bits AB[1:0] are ignored.

For mass erase, any address within the block is valid to start the command.

3.3.10 EDATA — EEPROM Data Register

EDATAHI and EDATALO are the EEPROM data registers.

Figure 3-12 EEPROM Data High Register (EDATAHI)

Register address Base + $118

7 6 5 4 3 2 1 0
R 0 0 0 0 0

EABHI
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address Base + $119

7 6 5 4 3 2 1 0
R

EABLO
W

Reset: 0 0 0 0 0 0 0 0

Register address BASE + $11A

7 6 5 4 3 2 1 0
R

EDHI
W

Reset: 0 0 0 0 0 0 0 0
22

Block User Guide — S12EETS4KV2/D V02.07
Figure 3-13 EEPROM Data Low Register (EDATALO)

In normal modes, all EDATAHI and EDATALO bits read zero and are not writable.

In special modes, all EDATAHI and EDATALO bits are readable and writable.

Register address BASE + $11B

7 6 5 4 3 2 1 0
R

EDLO
W

Reset: 0 0 0 0 0 0 0 0
23

EETS4K Block User Guide V02.07
24

Block User Guide — S12EETS4KV2/D V02.07

ection.
illator
ata
cessary
elined

etion
d if

r to
also a
unt.

]
 As a
Section 4 Functional Description

4.1 Program and Erase Operation

Write and read operations are both used for the program and erase algorithms described in this s
These algorithms are controlled by a state machine whose timebase EECLK is derived from the osc
clock via a programmable divider. The command register as well as the associated address and d
registers operate as a buffer and a register (2-stage FIFO) so that a new command along with the ne
data and address can be stored to the buffer while the previous command is still in progress. The pip
operation allows a simplification of command launching. Buffer empty as well as command compl
are signalled by flags in the EEPROM status register. Interrupts for the EEPROM will be generate
enabled.

The next four subsections describe:

• How to write the ECLKDIV register.

• The write sequences used to program and erase the EEPROM, but also to perform more
sophisticated commands like sector modify and erase verify.

• Valid EEPROM commands.

• Errors resulting from illegal EEPROM operations.

4.1.1 Writing the ECLKDIV Register

Prior to issuing any program or erase command, it is first necessary to write the ECLKDIV registe
divide the oscillator down to within 150kHz to 200kHz range. The program and erase timings are
function of the bus clock, such that the ECLKDIV determination must take this information into acco
If we define:

• EECLK as the clock of the EEPROM timing control block

• Tbus as the period of the bus clock

• INT(x) as taking the integer part of x (e.g. INT(4.323)=4),

then ECLKDIV register bits PRDIV8 and EDIV[5:0] are to be set as described inFigure 4-1 .

For example, if the oscillator clock is 950kHz and the bus clock is 10MHz, ECLKDIV bits EDIV[5:0
should be set to 4 (binary 000100) and bit PRDIV8 set to 0. The resulting EECLK is then 190kHz.
result, the EEPROM algorithm timings are increased over optimum target by:

NOTE
Command execution time will increase proportionally with the period of EECLK.

200 190–() 200⁄ 100× 5%=
25

EETS4K Block User Guide V02.07

as
ter has
WARNING
Because of the impact of clock synchronization on the accuracy of the functional timings,
programming or erasing the EEPROM cannot be performed if the bus clock runs at less than 1
MHz. Programming the EEPROM with an oscillator clock < 150kHz should be avoided. Setting
ECLKDIV to a value such that EECLK < 150kHz can reduce the lifetime of the EEPROM due to
overstress. Setting ECLKDIV to a value such that (1/EECLK+Tbus) < 5µs can result in incomplete
programming or erasure of the memory array cells.

If the ECLKDIV register is written, the bit EDIVLD is set automatically. If this bit is zero, the register h
not been written since the last reset. Program and erase commands will not be executed if this regis
not been written to.
26

Block User Guide — S12EETS4KV2/D V02.07
Figure 4-1 PRDIV8 and EDIV bits Determination Procedure

PRDIV8=1

yes

no

PRDIV8=0 (reset)

12.8MHz?

EECLK=(PRDCLK)/(1+EDIV[5:0])

PRDCLK=oscillator clockPRDCLK=oscillator clock/8

PRDCLK[MHz]*(5+Tbus[µs])
no

EDIV[5:0]=PRDCLK[MHz]*(5+Tbus[µs])-1

yes

START

Tbus< 1µs?

an integer?

EDIV[5:0]=INT(PRDCLK[MHz]*(5+Tbus[µs]))

1/EECLK[MHz] + Tbus[µs] > 5
AND

EECLK > 0.15MHz
?

END
yes

no

EDIV[5:0] > 4?

PROGRAM/ERASE IMPOSSIBLE

yes

no

PROGRAM/ERASE IMPOSSIBLE

no

TRY TO DECREASE Tbus

yes

oscillator clock
27

EETS4K Block User Guide V02.07

re
mand
e

and
rite

ted
he

ddress
, the
vailable

ed,
. The

a new

en all

e
us
CERR

F flag
writing
flag
4.1.2 Program and Erase

A Command State Machine is used to supervise the write sequencing for program and erase. Mo
specialized commands like sector modify or erase verify follow the same flow. Before starting a com
sequence, it is necessary to check that there is no pending access error or protection violation (th
ACCERR and PVIOL flags should be cleared in the ESTAT register).

 After this initial step, the CBEIF flag should be tested to ensure that the address, data and comm
buffers are empty. If so, the command sequence can be started. The following 3-step command w
sequence must be strictly adhered to and no intermediate access to the EEPROM array is permit
between the 3 steps. It is possible to read any EEPROM register during a command sequence. T
command sequence is as follows:

1. Write the aligned data word to be programmed to the valid EEPROM address space. The a
and data will be stored in internal buffers. For program, all address bits are valid. For erase
value of the data bytes is don’t care. For mass erase, the address can be anywhere in the a
address space of the array. For sector erase, the address bits[1:0] are ignored.

2. Write the program or erase command to the command buffer. These commands are listed inTable
4-1.

3. Clear the CBEIF flag by writing a “1” to it to launch the command. When the CBEIF flag is clear
the CCIF flag is cleared by hardware indicating that the command was successfully launched
CBEIF flag will be set again indicating the address, data and command buffers are ready for
command sequence to begin.

The completion of the command is indicated by the CCIF flag setting. The CCIF flag only sets wh
active and pending commands have been completed.

NOTE
The Command State Machine will flag errors in program or erase write sequences by means of th
ACCERR (access error) and PVIOL (protection violation) flags in the ESTAT register. An erroneo
command write sequence will abort and set the appropriate flag. If set, the user must clear the AC
or PVIOL flags before commencing another command write sequence. By writing a 0 to the CBEI
the command sequence can be aborted after the word write to the EEPROM address space or after
a command to the ECMD register and before the command is launched. Writing a “0” to the CBEIF
in this way will set the ACCERR flag.

A summary of the program algorithm is shown inFigure 4-2 . For the erase algorithm, the user writes
either a mass erase or sector erase command to the ECMD register.
28

Block User Guide — S12EETS4KV2/D V02.07
Figure 4-2 Example Program Algorithm

Write: Register ECLKDIV

Read: Register ECLKDIV

Bit EDIVLD set?

Write: Array Address and

Write: Register ECMD
Program Command $20

Write: Register ESTAT

yes

no

Clear bit CBEIF $80

CBEIF
Set?

Bit yes

Clock Register
Written
Check

1.

2.

3.

Clear bit ACCERR $10
Write: Register ESTAT

no

yes

no

Protection
Violation Check

Access
Error Check

Read: Register ESTAT

CCIF
Set?

Bit no

no

Address, Data,
Command
Buffer Empty Check

Next Write?

yes

EXIT

no

Program Data

Clear bit PVIOL $20
Write: Register ESTATyes PVIOL

Set?

Bit

 ACCERR
Set?

Bit

Bit Polling for
Command
Completion Check

Read: Register ESTAT

yes

NOTE: command sequence
aborted by writing $00 to
ESTAT register.

NOTE: command sequence
aborted by writing $00 to
ESTAT register.
29

EETS4K Block User Guide V02.07

ds on

f
erased
starts
n. By
letely

ess
4.1.3 Valid EEPROM Commands

Table 4-1 summarizes the valid EEPROM commands. Also shown are the effects of the comman
the EEPROM array.

WARNING
It is not permitted to program an EEPROM word without first erasing the sector in which that word
resides.

The sector modify command executes a two-step algorithm which first erases a sector (2 words) o
EEPROM array and then re-programs one of the words in that sector. The EEPROM sector which is
by the sector modify command is the sector containing the address of the aligned array write which
the valid command sequence. That same address is re-programmed with the data that was writte
launching a sector modify command and then pipelining a program command, it is possible to comp
replace the contents of an EEPROM sector.

4.1.4 Illegal EEPROM Operations

The ACCERR flag will be set during the command write sequence if any of the following illegal
operations are performed causing the command write sequence to immediately abort:

1. Writing to the EEPROM address space before initializing ECLKDIV.

2. Writing a misaligned word or a byte to the valid EEPROM address space.

3. Writing to the EEPROM address space while CBEIF is not set.

4. Writing a second word to the EEPROM address space before executing a program or erase
command on the previously written word.

5. Writing to any EEPROM register other than ECMD after writing a word to the EEPROM addr
space.

6. Writing a second command to the ECMD register before executing the previously written

Table 4-1 Valid EEPROM Commands

ECMD Meaning Function on EEPROM Array

$05
Erase
Verify

Verify all memory bytes of the EEPROM array are erased.
If the array is erased, the BLANK bit will set in the ESTAT register upon command completion.

$20 Program Program a word (two bytes).

$40
Sector
Erase

Erase two words (four bytes) of EEPROM array.

$41
Mass
Erase

Erase all of the EEPROM array.
A mass erase of the full array is only possible when EPDIS and EPOPEN are set.

$60
Sector
Modify

Erase two words of EEPROM,
re-program one word.
30

Block User Guide — S12EETS4KV2/D V02.07

and

nd is

w),

not

M
s are

sible

y

rted,
ill be
, the
ared
command.

7. Writing an invalid command to the ECMD register in normal mode.

8. Writing to any EEPROM register other than ESTAT (to clear CBEIF) after writing to the comm
register (ECMD).

9. The part enters STOP mode and a program or erase command is in progress. The comma
aborted and any pending command is killed.

10. A “0” is written to the CBEIF bit in the ESTAT register.

The ACCERR flag will not be set if any EEPROM register is read during the command sequence.

If the EEPROM array is read during execution of an algorithm (i.e. CCIF bit in the ESTAT register is lo
the read will return non-valid data and the ACCERR flag will not be set.

When an ACCERR flag is set in the ESTAT register, the Command State Machine is locked. It is
possible to launch another command until the ACCERR flag is cleared.

The PVIOL flag will be set during the command write sequence after the word write to the EEPRO
address space and the command sequence will be aborted if any of the following illegal operation
performed.

1. Writing a EEPROM address to program in a protected area of the EEPROM.

2. Writing a EEPROM address to erase in a protected area of the EEPROM.

3. Writing the mass erase command to ECMD while any protection is enabled.

When the PVIOL flag is set in the ESTAT register the Command State Machine is locked. It is not pos
to launch another command until the PVIOL flag is cleared.

4.2 Wait Mode

When the MCU enters WAIT mode and if any command is active (CCIF=0), that command and an
pending command will be completed.

The EETS4K module can recover the MCU from WAIT if the interrupts are enabled (seeSection 6).

4.3 Stop Mode

If a command is active (CCIF = 0) when the MCU enters the STOP mode, the command will be abo
and the data being programmed or erased is lost. The high voltage circuitry to the EEPROM array w
switched off when entering STOP mode. CCIF and ACCERR flags will be set. Upon exit from STOP
CBEIF flag is set and any pending command will not be executed. The ACCERR flag must be cle
before returning to normal operation.
31

EETS4K Block User Guide V02.07

n.

all
WARNING
As active commands are immediately aborted when the MCU enters STOP mode, it is strongly
recommended that the user does not use the STOP command during program and erase executio

4.4 Background Debug Mode

In Background Debug Mode (BDM), the EPROT register is writable. If the chip is unsecured then
EEPROM commands listed inTable 4-1 can be executed. In special single chip mode if the chip is
secured then the only possible command to execute is mass erase.
32

Block User Guide — S12EETS4KV2/D V02.07

state
Section 5 Resets

5.1 General

If a reset occurs while any command is in progress that command will be immediately aborted. The
of the word being programmed or the sector / block being erased is not guaranteed.
33

EETS4K Block User Guide V02.07
34

Block User Guide — S12EETS4KV2/D V02.07

ata and

ROM
Section 6 Interrupts

6.1 General

The EETS4K block can generate an interrupt when all commands are completed or the address, d
command buffers are empty.

NOTE
Vector addresses and their relative interrupt priority are determined at the MCU level.

6.2 Description of Interrupt Operation

For a detailed description of the register bits, refer to the EEPROM Configuration register and EEP
Status register sections (respectively3.3.4 and3.3.6).

Table 6-1 EEPROM Interrupt Sources

Interrupt Source Interrupt Flag Local Enable Global (CCR)
Mask

EEPROM Address, Data
and Command Buffers

empty

CBEIF
(ESTAT register)

CBEIE I Bit

All Commands are
completed on EEPROM

CCIF
(ESTAT register)

CCIE I Bit
35

EETS4K Block User Guide V02.07
36

Block User Guide — S12EETS4KV2/D V02.07
Block Guide End Sheet
37

EETS4K Block User Guide V02.07
FINAL PAGE OF
38

PAGES
38

DOCUMENT NUMBER
S12FTS512K4V1/D
FTS512K4

Block User Guide

V01.06

Original Release Date: 08 FEB 2001
Revised: 01 APR 2003

Motorola, Inc
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

FTS512K4 Block User Guide V01.06
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

V01.00 30MAY01 30MAY01

Generated from generic HCS12 block guide(V02.00)
Made formats SRS V2 compliant.
Remove non-customer information.
Reorder and restructure document.
Add overview block diagram.

V01.01 19JUL01 19JUL01
Add document names.
Hide names and variable definitions.

V01.02 30JAN02 30JAN02
Add description of WRALL bit.
Add description of the Address and Data registers.
Modify for use of 64Kx16 arrays.

v01.03 23MAR02 23MAR02

Modify FSEC register to include KEYEN[1:0].
Update security restrictions found in 4.5 Flash Security :
(i) $0000 and $FFFF keys are illegal.
(ii) No back-to-back writes of keys allowed.
(iii) Writing more than 4 keys in a sequence will not unsecure.
(iv) Incorrect key sequence results in lock-up with exit by reset only.

V01.04 02AUG02
Modify document number.
Fix Table 3-2 entry for MCU Address Range $C000-$FFFF.

V01.05 02DEC02 Fix bit 15 entry in Figure 3-10 .

V01.06 01APR03

Fix sector size in Table 4-1 .
Modify description of CBEIF and CCIF flags in 3.3.6 FSTAT —
Flash Status Register .
Modify description of 3.3.5 FPROT — Flash Protection Register
to clarify mass erase restrictions.
2

FTS512K4 Block User Guide V01.06
Table of Contents

Section 1 Introduction

1.1 Overview. .9

1.1.1 Glossary .9

1.2 Features .9

1.3 Modes of Operation .10

1.4 Block Diagram .11

Section 2 External Signal Description

2.1 Overview. .13

Section 3 Memory Map and Registers

3.1 Overview. .15

3.2 Modules Memory Map .15

3.3 Register Descriptions .21

3.3.1 FCLKDIV — Flash Clock Divider Register .21

3.3.2 FSEC — Flash Security Register. .21

3.3.3 FTSTMOD — Flash Test Mode Register .23

3.3.4 FCNFG — Flash Configuration Register .23

3.3.5 FPROT — Flash Protection Register .24

3.3.6 FSTAT — Flash Status Register .26

3.3.7 FCMD — Flash Command Register .28

3.3.8 RESERVED1 .28

3.3.9 FADDR — Flash Address Register .29

3.3.10 FDATA — Flash Data Register .29

3.3.11 RESERVED2 .30

3.3.12 RESERVED3 .30

3.3.13 RESERVED4 .31

3.3.14 RESERVED5 .31

Section 4 Functional Description

4.1 Program and Erase Operation .33

4.1.1 Writing the FCLKDIV Register .33

4.1.2 Program and Erase Sequences in Normal Mode. .36
3

FTS512K4 Block User Guide V01.06
4.1.3 Valid Flash Commands .38

4.1.4 Illegal Flash Operations .38

4.2 Wait Mode .39

4.3 Stop Mode .39

4.4 Background Debug Mode. .40

4.5 Flash Security. .40

4.5.1 Unsecuring via the Backdoor Key Access .40

Section 5 Resets

5.1 General. .43

Section 6 Interrupts

6.1 General. .45

6.2 Description of Interrupt Operation .45
4

FTS512K4 Block User Guide V01.06
List of Figures

Figure 1-1 Module Block Diagram. .11

Figure 3-1 Flash Memory Map .16

Figure 3-2 Flash Clock Divider Register (FCLKDIV). .21

Figure 3-3 Flash Security Register (FSEC). .21

Figure 3-4 Flash Test Mode Register (FTSTMOD). .23

Figure 3-5 Flash Configuration Register (FCNFG) .23

Figure 3-6 Flash Protection Register (FPROT). .24

Figure 3-7 Flash Status Register (FSTAT) .26

Figure 3-8 Flash Command Buffer and Register (FCMD). .28

Figure 3-9 RESERVED1. .28

Figure 3-10 Flash Address High Register (FADDRHI) .29

Figure 3-11 Flash Address Low Register (FADDRLO) .29

Figure 3-12 Flash Data High Register (FDATAHI) .29

Figure 3-13 Flash Data Low Register (FDATALO) .30

Figure 3-14 RESERVED2. .30

Figure 3-15 RESERVED3. .30

Figure 3-16 RESERVED4. .31

Figure 3-17 RESERVED5. .31

Figure 4-1 PRDIV8 and FDIV bits Determination Procedure .35

Figure 4-2 Example Program Algorithm .37

Figure 6-1 Flash Interrupt Implementation .46
5

FTS512K4 Block User Guide V01.06
6

FTS512K4 Block User Guide V01.06
List of Tables

Table 3-1 Flash Protection/Options Field. .15

Table 3-2 Flash Memory Map Summary .17

Table 3-3 Flash Register Memory Map .20

Table 3-4 Flash KEYEN States .22

Table 3-5 Flash Security States. .22

Table 3-6 Flash Register Bank Selects .24

Table 3-7 Loading of the Protection Register from Flash. .25

Table 3-8 Flash Higher Address Range Protection .25

Table 3-9 Flash Lower Address Range Protection .26

Table 3-10 Flash Normal Mode Commands .28

Table 4-1 Valid Flash Commands .38

Table 6-1 Flash Interrupt Sources .45
7

FTS512K4 Block User Guide V01.06
8

FTS512K4 Block User Guide V01.06

. The
s. The

 time is

d mass
it reads
ps.

d from

field

egisters
nked
Section 1 Introduction

1.1 Overview

This document describes the FTS512K4 module which is a 512K byte Flash (Non-Volatile) memory
Flash memory contains 4 blocks of 128K bytes with each block organized as 1024 rows of 128 byte
Flash block’s erase sector size is 8 rows (1024 bytes).

The Flash memory may be read as either bytes, aligned words or misaligned words. Read access
one bus cycle for byte and aligned word, and two bus cycles for misaligned words.

Program and erase functions are controlled by a command driven interface. Both sector erase an
erase of an entire 128K byte Flash block are supported. An erased bit reads ‘1’ and a programmed b
‘0’. The high voltage required to program and erase is generated internally by on-chip charge pum

All Flash blocks can be programmed or erased at the same time. However, it is not possible to rea
a Flash block while it is being erased or programmed.

The Flash memory is ideal for program and data storage for single-supply applications allowing for
reprogramming without requiring external programming voltage sources.

WARNING
A word must be erased before being programmed. Cumulative programming of bits within a word
is not allowed.

1.1.1 Glossary

Banked Register

A register operating on one Flash block which shares the same register address as the equivalent r
for the other Flash blocks. The active register bank is selected by two bank-select bits in the unba
register space.

Common Register

A register which operates on all Flash blocks.

Command Sequence

A three-step MCU instruction sequence to program, erase or erase-verify a Flash block.

1.2 Features

• 512K bytes of flash memory comprising four 128k byte blocks.

• Each block in the Flash module can be read, programmed or erased concurrently.
9

FTS512K4 Block User Guide V01.06
• Automated program and erase algorithm.

• Interrupts on Flash command completion and command buffer empty.

• Fast sector erase and word program operation.

• 2-stage command pipeline.

• Flexible protection scheme for protection against accidental program or erase.

• Single power supply program and erase.

• Security feature.

1.3 Modes of Operation

• Program and erase operation (please refer to4.1 for details).
10

FTS512K4 Block User Guide V01.06
1.4 Block Diagram

Figure 1-1 shows a block diagram of the FTS512K4 module.

Figure 1-1 Module Block Diagram

FTS512K4 Flash-0 Array
64k * 16 Bits

row0
row1

row1023

Oscillator
Clock
Divider

Clock

Command
Interface

Command Pipelines

comm2

Command
Complete
Interrupt

Command
Buffer Empty
Interrupt

Common

FCLK

addr2
data2

comm1
addr1
data1

Flash-1 Array
64k * 16 Bits

row0
row1

row1023

Flash-2 Array
64k * 16 Bits

row0
row1

row1023

64k * 16 Bits

row0
row1

row1023

Flash-3 Array

Flash 0-3

Registers

Banked
Registers

Protection

Security
11

FTS512K4 Block User Guide V01.06
12

FTS512K4 Block User Guide V01.06
Section 2 External Signal Description

2.1 Overview

The FTS512K4 module contains no signals that connect off-chip.
13

FTS512K4 Block User Guide V01.06
14

FTS512K4 Block User Guide V01.06

resses
12 Core
any
d,

g
arting
h block
to hold

in the
Section 3 Memory Map and Registers

3.1 Overview

This section describes the FTS512K4 memory map and registers

3.2 Modules Memory Map

Figure 3-1 shows the FTS512K4 memory map The HCS12 architecture places the Flash array add
between $4000 and $FFFF, which corresponds to three 16K byte pages. The content of the HCS
PPAGE register is used to map the logical middle page ranging from address $8000 to $BFFF to
physical 16K byte page in the physical memory.1 Shown within the pages are a protection/options fiel
described inTable 3-1 ,and user defined Flash protected sectors, described inTable 3-2

The FPOPEN bit in the FPROT register (see3.3.5) can globally protect the entirety of the correspondin
Flash block However, for all Flash blocks, two protected areas, one starting from the Flash block st
address (called lower) towards higher addresses and the other one growing downward from the Flas
end address (called higher) can be activated For Flash block 0, the higher page is mainly targeted
the boot loader code since it covers the vector space.

Security information that allows the MCU to prevent intrusive access to the Flash module is stored
Flash Protection/Options field of Flash block 0 as described inTable 3-1 .

NOTES:
1. By placing $3F or $3E in the PPAGE register, the bottom respectively top “fixed” 16Kbytes pages can be seen twice in the

MCU memory map.

Table 3-1 Flash Protection/Options Field

Array Address Size
(bytes) Description

$FF00 - $FF07 8 Backdoor Comparison Keys

$FF08 - $FF09 2 Reserved

$FF0A 1 Block 3 Flash Protection byte
Refer to Section 3.3.5

$FF0B 1 Block 2 Flash Protection byte
Refer to Section 3.3.5

$FF0C 1 Block 1 Flash Protection byte
Refer to Section 3.3.5

$FF0D 1 Block 0 Flash Protection byte
Refer to Section 3.3.5

$FF0E 1 Reserved

$FF0F 1 Flash Options/Security byte
Refer to Section 3.3.2
15

FTS512K4 Block User Guide V01.06
Figure 3-1 Flash Memory Map

Flash Registers
BASE + $100

$FF00 - $FF0F, Flash Protection/Security Field

BASE + $10F

$8000

(16 bytes)

Flash Protected Low Sectors
1K, 2K, 4K, 8K bytes

FLASH_START = $4000

$5000

$4400

$6000

8K

16K PAGED

MEMORY

$3E

Note: $20-$3F correspond to the PPAGE register content

FLASH_END = $FFFF

$F800

$F000

$C000

$E000 $3F

$4800

Flash Array

$20 $21 $22 $23 $24 $25 $26 $27

Block 3

$28 $29 $2A $2B $2C $2D $2E $2F

Block 2

$30 $31 $32 $33 $34 $35 $36 $37

Block 1

F
la

sh
 P

ro
te

ct
ed

 H
ig

h
S

ec
to

rs
2K

, 4
K

, 8
K

, 1
6K

 b
yt

es

$38 $39 $3A $3B $3C $3D $3E $3F

Block 0
16

FTS512K4 Block User Guide V01.06
Table 3-2 Flash Memory Map Summary

MCU Address
Range PPAGE Protectable

Low Range
Protectable
High Range

Flash
Block

Block Relative
Address 1

$4000-$7FFF
Unpaged

($3E)

$4000-$43FF

N.A. 0 $18000-$1BFFF
$4000-$47FF

$4000-$4FFF

$4000-$5FFF

$8000-$BFFF

$20 N.A. N.A.

3

$00000-$03FFF

$21 N.A. N.A. $04000-$07FFF

$22 N.A. N.A. $08000-$0BFFF

$23 N.A. N.A. $0C000-$0FFFF

$24 N.A. N.A. $10000-$13FFF

$25 N.A. N.A. $14000-$17FFF

$26

$8000-$83FF

N.A. $18000-$1BFFF
$8000-$87FF

$8000-$8FFF

$8000-$9FFF

$27 N.A.

$B800-$BFFF

$1C000-$1FFFF
$B000-$BFFF

$A000-$BFFF

$8000-$BFFF

$8000-$BFFF

$28 N.A. N.A.

2

$00000-$03FFF

$29 N.A. N.A. $04000-$07FFF

$2A N.A. N.A. $08000-$0BFFF

$2B N.A. N.A. $0C000-$0FFFF

$2C N.A. N.A. $10000-$13FFF

$2D N.A. N.A. $14000-$17FFF

$2E

$8000-$83FF

N.A. $18000-$1BFFF
$8000-$87FF

$8000-$8FFF

$8000-$9FFF

$2F N.A.

$B800-$BFFF

$1C000-$1FFFF
$B000-$BFFF

$A000-$BFFF

$8000-$BFFF
17

FTS512K4 Block User Guide V01.06
$8000-$BFFF

$30 N.A. N.A.

1

$00000-$03FFF

$31 N.A. N.A. $04000-$07FFF

$32 N.A. N.A. $08000-$0BFFF

$33 N.A. N.A. $0C000-$0FFFF

$34 N.A. N.A. $10000-$13FFF

$35 N.A. N.A. $14000-$17FFF

$36

$8000-$83FF

N.A. $18000-$1BFFF
$8000-$87FF

$8000-$8FFF

$8000-$9FFF

$37 N.A.

$B800-$BFFF

$1C000-$1FFFF
$B000-$BFFF

$A000-$BFFF

$8000-$BFFF

$8000-$BFFF

$38 N.A. N.A.

0

$00000-$03FFF

$39 N.A. N.A. $04000-$07FFF

$3A N.A. N.A. $08000-$0BFFF

$3B N.A. N.A. $0C000-$0FFFF

$3C N.A. N.A. $10000-$13FFF

$3D N.A. N.A. $14000-$17FFF

$3E

$8000-$83FF

N.A. $18000-$1BFFF
$8000-$87FF

$8000-$8FFF

$8000-$9FFF

$3F N.A.

$B800-$BFFF

$1C000-$1FFFF
$B000-$BFFF

$A000-$BFFF

$8000-$BFFF

$C000-$FFFF
Unpaged

($3F)
N.A.

$F800-$FFFF

0 $1C000-$1FFFF
$F000-$FFFF

$E000-$FFFF

$C000-$FFFF

Table 3-2 Flash Memory Map Summary

MCU Address
Range PPAGE Protectable

Low Range
Protectable
High Range

Flash
Block

Block Relative
Address 1
18

FTS512K4 Block User Guide V01.06
NOTES:
1. Inside each Flash block of size 128 Kbyte.
19

FTS512K4 Block User Guide V01.06

BASE +
pace,
ed by
ers is
The Flash module also contains a set of 16 control and status registers located in address space
$100 to BASE + $10F In order to accommodate four Flash blocks with a minimum register address s
a set of registers (BASE+$104 to BASE+$10B) is duplicated in four banks The active bank is select
the BKSEL bits in the unbanked Flash Configuration Register (FCNFG) A summary of these regist
given inTable 3-3 .

NOTE: Register Address = Register Base Address + $100 + Address Offset, where the
Register Base Address is defined by the HCS12 Core INITRG register and the
Address Offset is defined by the Flash module.

Table 3-3 Flash Register Memory Map

Address
Offset Use Access

$_00 Flash Clock Divider Register (FCLKDIV) R/W

$_01 Flash Security Register (FSEC) R

$_02 Flash Test Mode Register (FTSTMOD)1

NOTES:
1. Intended for factory test purposes only.

R

$_03 Flash Configuration Register (FCNFG) R/W

$_04 Flash Protection Register (FPROT) R/W

$_05 Flash Status Register (FSTAT) R/W

$_06 Flash Command Register (FCMD) R/W

$_07 RESERVED11 R

$_08 Flash High Address Register (FADDRHI)1 R

$_09 Flash Low Address Register (FADDRLO)1 R

$_0A Flash High Data Register (FDATAHI)1 R

$_0B Flash Low Data Register (FDATALO)1 R

$_0C RESERVED21 R

$_0D RESERVED31 R

$_0E RESERVED41 R

$_0F RESERVED51 R
20

FTS512K4 Block User Guide V01.06

.

g into

o

3.3 Register Descriptions

3.3.1 FCLKDIV — Flash Clock Divider Register

The unbanked FCLKDIV register is used to control timed events in program and erase algorithms

Figure 3-2 Flash Clock Divider Register (FCLKDIV)

All bits in the FCLKDIV register are readable, bits 6-0 are write once and bit 7 is not writable

FDIVLD — Clock Divider Loaded
1 = Register has been written to since the last reset
0 = Register has not been written

PRDIV8 — Enable Prescaler by 8
1 = Enables a prescaler by 8, to divide the Flash module input oscillator clock before feedin

the CLKDIV divider
0 = The input oscillator clock is directly fed into the FCLKDIV divider

FDIV[5:0] — Clock Divider Bits

The combination of PRDIV8 and FDIV[5:0] effectively divides the Flash module input oscillator
clock down to a frequency of 150kHz - 200kHz The maximum divide ratio is 512 Please refer t
section4.1.1 for more information

3.3.2 FSEC — Flash Security Register

This unbanked FSEC register holds all bits associated with the security of the MCU.

Figure 3-3 Flash Security Register (FSEC)

All bits in the FSEC register are readable but not writable.

Register address BASE + $100

7 6 5 4 3 2 1 0
R FDIVLD

PRDIV8 FDIV5 FDIV4 FDIV3 FDIV2 FDIV1 FDIV0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address BASE + $101

7 6 5 4 3 2 1 0
R KEYEN1 KEYEN0 NV5 NV4 NV3 NV2 SEC1 SEC0
W

Reset: F F F F F F F F

= Unimplemented or Reserved
21

FTS512K4 Block User Guide V01.06

t

own
The FSEC register is loaded from the Flash Protection/Options field byte at $FF0F during the rese
sequence, indicated by “F” inFigure 3-3

KEYEN[1:0]— Backdoor Key Security Enable Bits.

The KEYEN[1:0] bits define the enabling of the Backdoor Key Access to the Flash module as sh
in Table 3-4

NV[5:2] — Non-Volatile Flag Bits

These 4 bits are available to the user as non-volatile flags

SEC[1:0] — Flash Security Bits

The SEC[1:0] bits define the security state of the MCU as shown inTable 3-5 If the Flash module is
unsecured using the Backdoor Key Access, the SEC bits are forced to “10”.

The security function in the Flash module is described in section4.5.

Table 3-4 Flash KEYEN States

KEYEN[1:0] Description

00 Backdoor Key Access to Flash module DISABLED

01 Backdoor Key Access to Flash module DISABLED

10 Backdoor Key Access to Flash module ENABLED

11 Backdoor Key Access to Flash module DISABLED

Table 3-5 Flash Security States

SEC[1:0] Description

00 secured

01 secured

10 unsecured

11 secured
22

FTS512K4 Block User Guide V01.06

t is
rallel.

ritten

selects

e not

.

3.3.3 FTSTMOD — Flash Test Mode Register

The unbanked FTSTMOD register is used primarily to control the Flash Special modes.

Figure 3-4 Flash Test Mode Register (FTSTMOD)

In normal modes, all bits in the FTSTMOD register read zero and are not writable. The WRALL bi
writable only in special modes. The purpose of this bit is to launch a command on all blocks in pa
This can be useful for mass erase and erase verify operations. All other bits in this register must be w
to zero at all times.

WRALL —Write to all register banks.

If this bit is set, all banked registers sharing the same address will be written simultaneously.
1 = Write to all register banks.
0 = Write only to the bank selected via BKSEL.

3.3.4 FCNFG — Flash Configuration Register

The unbanked FCNFG register enables the Flash interrupts, gates the security backdoor writes and
the register bank to be operated on.

Figure 3-5 Flash Configuration Register (FCNFG)

CBEIE, CCIE, KEYACC, BKSEL1 and BKSEL0 are readable and writable. Bits 4-2 read zero and ar
writable.

CBEIE — Command Buffer Empty Interrupt Enable.

The CBEIE bit enables the interrupts in case of an empty command buffer in the Flash module
1 = An interrupt will be requested whenever the CBEIF flag,Figure 3-7 , is set.
0 = Command Buffer Empty interrupts disabled.

Register address BASE + $102

7 6 5 4 3 2 1 0
R

N/A N/A N/A WRALL
0 0 0

N/A
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address BASE + $103

7 6 5 4 3 2 1 0
R

CBEIE CCIE KEYACC
0 0 0

BKSEL1 BKSEL0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
23

FTS512K4 Block User Guide V01.06

dule.

array

 Flash

HDIS
0] can
S is
CCIE — Command Complete Interrupt Enable.

The CCIE bit enables the interrupts in case of all commands being completed in the Flash mo
1 = An interrupt will be requested whenever the CCIF,Figure 3-7 , flag is set.
0 = Command Complete interrupts disabled.

KEYACC — Enable Security Key Writing.
1 = Writes to Flash array are interpreted as keys to open the backdoor. Reads of the Flash

return invalid data.
0 = Flash module writes are interpreted as the start of a program or erase sequence.

BKSEL[1:0] — Register Bank Select.

These bits are used to select one of the four register banks. The register bank associated with
block 0 is the default out of reset. The bank selection is according toTable 3-6 .

3.3.5 FPROT — Flash Protection Register

The banked FPROT register defines which Flash sectors are protected against program or erase.

Figure 3-6 Flash Protection Register (FPROT)

The FPROT register is readable in normal and special modes. Bit NV6 is not writable. FPOPEN, FP
and FPLDIS bits in the FPROT register can only be written to the protected state (i.e. 0). FPLS[1:
be written anytime until bit FPLDIS is cleared. FPHS[1:0] bits can be written anytime until bit FPHDI

Table 3-6 Flash Register Bank Selects

BKSEL[1:0] Selected Register
Bank

00 Flash 0

01 Flash 1

10 Flash 2

11 Flash 3

Register address BASE + $104

7 6 5 4 3 2 1 0
R

FPOPEN NV6 FPHDIS FPHS1 FPHS0 FPLDIS FPLS1 FPLS0
W

Reset: F F F F F F F F

= Unimplemented or Reserved
24

FTS512K4 Block User Guide V01.06

S[1:0]

t be

sector

set

erase
.

ck.
cleared. If the FPOPEN bit is cleared, then the state of the FPHDIS, FPHS[1:0], FPLDIS and FPL
bits is irrelevant. The FPROT register is loaded from Flash block 0 during reset as shown inTable 3-7 .

To change the Flash protection that will be loaded on reset, the upper sector of Flash block 0 mus
unprotected, then the Flash Protect/Security byte located as described inTable 3-1 must be written.

A protected Flash sector is disabled by the bits FPHDIS and FPLDIS while the size of the protected
is defined by FPHS[1:0] and FPLS[1:0] in the FPROT register.

Trying to alter any of the protected areas will result in a protect violation error and bit PVIOL will be
in the Flash Status Register (FSTAT). A mass erase of a whole Flash block is only possible when
protection is fully disabled by setting the FPOPEN, FPLDIS, and FPHDIS bits. An attempt to mass
a Flash block while protection is enabled in that block will set the PVIOL bit in the FSTAT register

FPOPEN — Opens the Flash array for program or erase.
1 = The Flash sectors not protected are enabled for program or erase.
0 = The whole Flash array is protected. In this case the FPHDIS, FPHS[1:0], FPLDIS and

FPLS[1:0] bits within the protection register are ignored.

FPHDIS — Flash Protection Higher address range Disable.
The FPHDIS bit determines whether there is a protected area in the higher space of the Flash blo

1 = Protection disabled.
0 = Protection enabled.

FPHS[1:0] — Flash Protection Higher Address Size.
The FPHS[1:0] bits determine the size of the protected sector. Refer toTable 3-8 .

Table 3-7 Loading of the Protection Register from Flash

Flash Address Protection byte for

$FF0D Flash 0

$FF0C Flash 1

$FF0B Flash 2

$FF0A Flash 3

Table 3-8 Flash Higher Address Range Protection

FPHS[1:0]
Protected
Address
Range

Protected Size

00

see Table 3-2

2K bytes

01 4K

10 8K

11 16K
25

FTS512K4 Block User Guide V01.06

ck.

cess,

able

ng a
rd
use the
FPLDIS — Flash Protection Lower address range Disable.
The FPLDIS bit determines whether there is a protected sector in the lower space of the Flash blo

1 = Protection disabled.
0 = Protection enabled.

FPLS[1:0] — Flash Protection Lower Address Size.
The FPLS[1:0] bits determine the size of the protected sector. Refer toTable 3-9 .

NV6 — Non-Volatile Flag Bit.

The NV6 bit should remain in the erased state “1” for future enhancements.

3.3.6 FSTAT — Flash Status Register

The banked FSTAT register defines the Flash state machine command status and Flash array ac
protection and erase verify status.

Figure 3-7 Flash Status Register (FSTAT)

Register bits CBEIF, PVIOL and ACCERR are readable and writable, bits CCIF and BLANK are read
and not writable, bits 3, 1 and 0 read zero and are not writable.

CBEIF — Command Buffer Empty Interrupt Flag.

The CBEIF flag indicates that the address, data and command buffers are empty so that a new
command sequence can be started. The CBEIF flag is cleared by writing a “1” to CBEIF. Writi
"0" to the CBEIF flag has no effect on CBEIF. Writing a "0" to CBEIF after writing an aligned wo
to the Flash address space but before CBEIF is cleared will abort a command sequence and ca

Table 3-9 Flash Lower Address Range Protection

FPLS[1:0]
Protected
Address
Range

Protected Size

00

see Table 3-2

1K Bytes

01 2K

10 4K

11 8K

Register address BASE + $105

7 6 5 4 3 2 1 0
R

CBEIF
CCIF

PVIOL ACCERR
0 BLANK 0 0

W

Reset: 1 1 0 0 0 0 0 0

= Unimplemented or Reserved
26

FTS512K4 Block User Guide V01.06

ence
G

hen
CCIF
m the
CIE

 Flash
g
nch

lation
n the
=0).
o

nch

d it to
lid

ANK
ACCERR flag in the FSTAT register to be set. Writing a "0" to CBEIF outside of a command sequ
will not set the ACCERR flag. The CBEIF flag is used together with the CBEIE bit in the FCNF
register to generate an interrupt request (see alsoFigure 6-1).

1 = Buffers are ready to accept a new command.
0 = Buffers are full.

CCIF — Command Complete Interrupt Flag.

The CCIF flag indicates that there are no more commands pending. The CCIF flag is cleared w
CBEIF is clear and sets automatically upon completion of all active and pending commands. The
flag does not set when an active commands completes and a pending command is fetched fro
command buffer. Writing to the CCIF flag has no effect. The CCIF flag is used together with the C
bit in the FCNFG register to generate an interrupt request (see alsoFigure 6-1).

1 = All commands are completed.
0 = Command in progress.

PVIOL — Protection Violation.

The PVIOL flag indicates an attempt was made to program or erase an address in a protected
memory area. The PVIOL flag is cleared by writing a “1” to PVIOL. Writing a “0” to the PVIOL fla
has no effect on PVIOL. While PVIOL is set in any of the FSTAT registers, it is not possible to lau
another command in any of the Flash blocks.

1 = A protection violation has occurred.
0 = No failure.

ACCERR — Flash Access Error.

The ACCERR flag indicates an illegal access to the selected Flash block caused by either a vio
of the command sequence, issuing an illegal command (illegal combination of the CMDBx bits i
FCMD register) or the execution of a CPU STOP instruction while a command is executing (CCIF
The ACCERR flag is cleared by writing a “1” to ACCERR. Writing a “0” to the ACCERR flag has n
effect on ACCERR. While ACCERR is set in any of the FSTAT registers, it is not possible to lau
another command in any of the Flash blocks.

1 = Access error has occurred.
0 = No failure.

BLANK — Array has been verified as erased.

The BLANK flag indicates that an erase verify command has checked the Flash block and foun
be erased. The BLANK flag is cleared by hardware when CBEIF is cleared as part of a new va
command sequence. Writing to the BLANK flag has no effect on BLANK.

1 = Flash block verifies as erased.
0 = If an erase verify command has been requested, and the CCIF flag is set, then a zero in BL

indicates the block is not erased.
27

FTS512K4 Block User Guide V01.06

able
3.3.7 FCMD — Flash Command Register

The banked FCMD register defines the Flash commands.

Figure 3-8 Flash Command Buffer and Register (FCMD)

Bits 7, 4, 3 and 1 read zero and are not writable. Bits CMDB6, CMDB5, CMDB2 and CMDB0 are read
and writable during a command sequence.

CMDB — Valid normal mode commands are shown inTable 3-10 . Any commands other than those
mentioned inTable 3-10 sets the ACCERR bit in the FSTAT register (3.3.6).

3.3.8 RESERVED1

This register is reserved for factory testing and is not accessible to the user.

Figure 3-9 RESERVED1

All bits read zero and are not writable.

Register address BASE + $106

7 6 5 4 3 2 1 0
R 0

CMDB6 CMDB5
0 0

CMDB2
0

CMDB0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-10 Flash Normal Mode Commands

Command Meaning

$05 Erase Verify

$20 Word Program

$40 Sector Erase

$41 Mass Erase

Register address BASE + $107

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
28

FTS512K4 Block User Guide V01.06

SE +
3.3.9 FADDR — Flash Address Register

FADDRHI and FADDRLO are the banked Flash address registers.

Figure 3-10 Flash Address High Register (FADDRHI)

Figure 3-11 Flash Address Low Register (FADDRLO)

In normal modes, the FADDR (FADDRHI, FADDRLO) register reads zeros and is not writable.

The FADDRHI and FADDRLO registers can be written in special modes by writing to address BA
$108 and BASE + $109 in the register space.

For sector erase, the MCU address bits AB[9:0] are ignored.

For mass erase, any address within the block is valid to start the command.

3.3.10 FDATA — Flash Data Register

FDATAHI and FDATALO are the banked Flash data registers.

Figure 3-12 Flash Data High Register (FDATAHI)

Register address Base + $108

15 14 13 12 11 10 9 8
R

FABHI
W

Reset: 0 0 0 0 0 0 0 0

Register address Base + $109

15 14 13 12 11 10 9 8
R

FABLO
W

Reset: 0 0 0 0 0 0 0 0

Register address BASE + $10A

7 6 5 4 3 2 1 0
R

FDHI
W

Reset: 0 0 0 0 0 0 0 0
29

FTS512K4 Block User Guide V01.06

Flash
Figure 3-13 Flash Data Low Register (FDATALO)

In normal modes, all FDATA bits read zero and are not writable.

In special modes, all FDATA bits are readable and writable when writing to an address within the
address range.

3.3.11 RESERVED2

This register is reserved for factory testing and is not accessible to the user.

Figure 3-14 RESERVED2

All bits read zero and are not writable.

3.3.12 RESERVED3

This register is reserved for factory testing and is not accessible to the user.

Figure 3-15 RESERVED3

All bits read zero and are not writable.

Register address BASE + $10B

7 6 5 4 3 2 1 0
R

FDLO
W

Reset: 0 0 0 0 0 0 0 0

Register address BASE + $10C

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address BASE + $10D

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
30

FTS512K4 Block User Guide V01.06
3.3.13 RESERVED4

This register is reserved for factory testing and is not accessible to the user.

Figure 3-16 RESERVED4

All bits read zero and are not writable.

3.3.14 RESERVED5

This register is reserved for factory testing and is not accessible to the user.

Figure 3-17 RESERVED5

All bits read zero and are not writable.

Register address BASE + $10E

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address BASE + $10F

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
31

FTS512K4 Block User Guide V01.06
32

FTS512K4 Block User Guide V01.06

ection.
cillator
ata
cessary
elined
high
n also
alled

r to
also

unt.

. As
Section 4 Functional Description

4.1 Program and Erase Operation

Write and read operations are both used for the program and erase algorithms described in this s
These algorithms are controlled by a state machine whose timebase FCLK is derived from the os
clock via a programmable divider. The command register as well as the associated address and d
registers operate as a buffer and a register (2-stage FIFO) so that a new command along with the ne
data and address can be stored to the buffer while the previous command is still in progress. This pip
operation allows a time optimization when programming more than one word on a specific row, as the
voltage generation can be kept ON in between two programming commands. The pipelined operatio
allows a simplification of command launching. Buffer empty as well as command completion are sign
by flags in the Flash status register. Interrupts for the Flash will be generated if enabled.

The next four subsections describe:

• How to write the FCLKDIV register.

• The write sequences used to program, erase and erase-verify the Flash.

• Valid Flash commands.

• Errors resulting from illegal Flash operations.

4.1.1 Writing the FCLKDIV Register

Prior to issuing any program or erase command, it is first necessary to write the FCLKDIV registe
divide the oscillator down to within the 150kHz to 200kHz range. The program and erase timings are
a function of the bus clock, such that the FCLKDIV determination must take this information into acco
If we define:

• FCLK as the clock of the Flash timing control block

• Tbus as the period of the bus clock

• INT(x) as taking the integer part of x (e.g. INT(4.323)=4),

then FCLKDIV register bits PRDIV8 and FDIV[5:0] are to be set as described inFigure 4-1 .

For example, if the oscillator clock frequency is 4Mz and the bus clock is 25MHz, FCLKDIV bits
FDIV[5:0] should be set to 20 (010100) and bit PRDIV8 set to 0. The resulting FCLK is then 190kHz
a result, the Flash algorithm timings are increased over optimum target by:

NOTE
Command execution time will increase proportionally with the period of FCLK.

200 190–() 200⁄ 100× 5%=
33

FTS512K4 Block User Guide V01.06

as
ter has
WARNING
Because of the impact of clock synchronization on the accuracy of the functional timings,
programming or erasing the Flash cannot be performed if the bus clock runs at less than 1 MHz.
Programming or erasing the Flash with an input clock < 150kHz should be avoided. Setting
FCLKDIV to a value such that FCLK < 150kHz can destroy the Flash due to overstress. Setting
FCLKDIV to a value such that (1/FCLK+Tbus) < 5µs can result in incomplete programming or
erasure of the memory array cells.

If the FCLKDIV register is written, the bit FDIVLD is set automatically. If this bit is zero, the register h
not been written since the last reset. Program and erase commands will not be executed if this regis
not been written to.
34

FTS512K4 Block User Guide V01.06
Figure 4-1 PRDIV8 and FDIV bits Determination Procedure

PRDIV8=1

yes

no

PRDIV8=0 (reset)

12.8MHz?

FCLK=(PRDCLK)/(1+FDIV[5:0])

PRDCLK=oscillator clockPRDCLK=oscillator clock/8

PRDCLK[MHz]*(5+Tbus[µs])
no

FDIV[5:0]=PRDCLK[MHz]*(5+Tbus[µs])-1

yes

START

Tbus< 1µs?

an integer?

FDIV[5:0]=INT(PRDCLK[MHz]*(5+Tbus[µs]))

1/FCLK[MHz] + Tbus[µs] > 5
AND

FCLK > 0.15MHz
?

END
yes

no

FDIV[5:0] > 4?

PROGRAM/ERASE IMPOSSIBLE

yes

no

PROGRAM/ERASE IMPOSSIBLE

no

TRY TO DECREASE Tbus

yes

oscillator clock
35

FTS512K4 Block User Guide V01.06

 erase
re are
flags
CS12

tion

is
ster.

o the

he

, data
ce can
ediate
y Flash

ss and
 value
 address

ed,
. The

a new

hen

e
us
CERR

flag,
riting a
4.1.2 Program and Erase Sequences in Normal Mode

A Command State Machine is used to supervise the write sequencing for program and erase. The
verify command follows the same flow. Before starting a command sequence, it is required that the
no pending access error or protection violations in any of the Flash blocks (the ACCERR and PVIOL
should be cleared in the FSTAT registers). It is also required that the Flash FCNFG register and the H
Core PPAGE register are set to select the Flash array address space to operate on. This initializa
procedure is as follows:

1. Verify that the ACCERR and PVIOL flags in the FSTAT register are cleared in all banks. Th
requires a check of the FSTAT content for all conditions of the BKSEL bits in the FCNFG regi

2. Write to the BKSEL bit in the FCNFG register to select the bank of registers corresponding t
Flash block to be programmed or erased (seeTable 3-6).

3. Write to the HCS12 Core PPAGE register ($x030) to select one of the 16K byte pages to be
programmed, if programming in the $8000-$BFFF address range. There is no need to set t
PPAGE register when programming in the $4000-$7FFF or $C000-$FFFF address ranges.

 After this optional initialization step, the CBEIF flag should be tested to ensure that the address
and command buffers are empty. If the CBEIF flag is set, the program/erase command write sequen
be started. The following 3-step command write sequence must be strictly adhered to and no interm
writes to the Flash module are permitted between the steps. However, the user is allowed to read an
register during a command write sequence. The command write sequence is as follows:

1. Write the aligned data word to be programmed to the valid Flash address space. The addre
data will be stored in internal buffers. For program, all address bits are valid. For erase, the
of the data bytes is ignored. For mass erase, the address can be anywhere in the available
space of the block to be erased. For sector erase, the address bits[9:0] are ignored.

2. Write the program or erase command to the command buffer. These commands are listed inTable
4-1.

3. Clear the CBEIF flag by writing a “1” to it to launch the command. When the CBEIF flag is clear
the CCIF flag is cleared by hardware indicating that the command was successfully launched
CBEIF flag will be set again indicating the address, data and command buffers are ready for
command sequence to begin.

The completion of the command is indicated by the setting of the CCIF flag. The CCIF flag only sets w
all active and pending commands have been completed.

NOTE
The Command State Machine will flag errors in program or erase write sequences by means of th
ACCERR (access error) and PVIOL (protection violation) flags in the FSTAT register. An erroneo
command write sequence will abort and set the appropriate flag. If set, the user must clear the AC
or PVIOL flags before commencing another command write sequence. By writing a “0” to the CBEIF
the command sequence can be aborted after the word write to the Flash address space or after w
36

FTS512K4 Block User Guide V01.06

g in
command to the FCMD register and before the command is launched. Writing a “0” to the CBEIF fla
this way will set the ACCERR flag.

A summary of the program algorithm is shown inFigure 4-2 . For the erase algorithm, the user writes
either a mass or sector erase command to the FCMD register.

Figure 4-2 Example Program Algorithm

Write: Register FCLKDIV

Read: Register FCLKDIV

Bit FDIVLD set?

Write: Array Address and

Write: Register FCMD
Program Command $20

Write: Register FSTAT

yes

no

Clear bit CBEIF $80

CBEIF
Set?

Bit yes

Clock Register
Written
Check

1.

2.

3.

Clear bit ACCERR $10
Write: Register FSTAT

no

yes

no

Protection
Violation Check

Access
Error Check

Read: Register FSTAT

CCIF
Set?

Bit no

no

Address, Data,
Command
Buffer Empty Check

Next Write?

yes

EXIT

no

Program Data

Clear bit PVIOL $20
Write: Register FSTATyes PVIOL

Set?

Bit

 ACCERR
Set?

Bit

Bit Polling for
Command
Completion Check

Read: Register FSTAT

yes

NOTE: command sequence
aborted by writing $00 to
FSTAT register.

NOTE: command sequence
aborted by writing $00 to
FSTAT register.
37

FTS512K4 Block User Guide V01.06

n the

E
NFG

he

and on

ce.

d

4.1.3 Valid Flash Commands

Table 4-1 summarizes the valid Flash commands. Also shown are the effects of the commands o
Flash array.

WARNING
It is not permitted to program a Flash word without first erasing the sector in which that word
resides.

4.1.4 Illegal Flash Operations

The ACCERR flag will be set during the command write sequence if any of the following illegal
operations are performed causing the command write sequence to immediately abort:

1. Writing to the Flash address space before initializing FCLKDIV.

2. Writing to the Flash address space in the range $8000-$BFFF when the HCS12 Core PPAG
register does not select a 16K byte page in the Flash block selected by the BKSEL bit in the FC
register.

3. Writing to the Flash address space $4000-$7FFF or $C000-$FFFF with the BKSEL bits in t
FCNFG register not selecting Flash block 0.

4. Writing a misaligned word or a byte to the valid Flash address space.

5. Writing to the Flash address space while CBEIF is not set.

6. Writing a second word to the Flash address space before executing a program or erase comm
the previously written word.

7. Writing to any Flash register other than FCMD after writing a word to the Flash address spa

8. Writing a second command to the FCMD register before executing the previously written
command.

9. Writing an invalid command to the FCMD register.

10. Writing to any Flash register other than FSTAT (to clear CBEIF) after writing to the comman

Table 4-1 Valid Flash Commands

FCMD Meaning Function on Flash Array

$05
Erase
Verify

Verify all memory bytes of the Flash block are erased.
If the block is erased, the BLANK bit will set in the FSTAT register upon command completion.

$20 Program Program a word (two bytes).

$40
Sector
Erase

Erase 512 words of Flash.

$41
Mass
Erase

Erase all of the Flash block.
A mass erase of the full block is only possible when FPLDIS, FPHDIS and FPOPEN are set.
38

FTS512K4 Block User Guide V01.06

nd is

emory

, the

. It is

dress

gister

ot

y

borted
l be
ive in
Upon
flags
register (FCMD).

11. The part enters STOP mode and a program or erase command is in progress. The comma
aborted and any pending command is killed.

12. When security is enabled, a command other than mass erase originating from a non-secure m
or from the Background Debug Mode is written to FCMD.

13. A “0” is written to the CBEIF bit in the FSTAT register.

The ACCERR flag will not be set if any Flash register is read during the command sequence.

If the Flash array is read during execution of an algorithm (i.e. CCIF bit in the FSTAT register is low)
read will return non-valid data and the ACCERR flag will not be set.

If an ACCERR flag is set in either of the FSTAT registers, the Command State Machine is locked
not possible to launch another command on any block until the ACCERR flag is cleared.

The PVIOL flag will be set during the command write sequence after the word write to the Flash ad
space if any of the following illegal operations are performed, causing the command sequence to
immediately abort:

1. Writing a Flash address to program in a protected area of the Flash block.

2. Writing a Flash address to erase in a protected area of the Flash block.

3. Writing the mass erase command to FCMD while any protection is enabled. See Protection re
description in3.3.5.

If a PVIOL flag is set in any of the FSTAT registers, the Command State Machine is locked. It is n
possible to launch another command on any block until the PVIOL flag is cleared.

4.2 Wait Mode

When the MCU enters WAIT mode and if any command is active (CCIF=0), that command and an
pending command will be completed.

The FTS512K4 module can recover the part from WAIT if the interrupts are enabled (seeSection 6).

4.3 Stop Mode

If a command is active (CCIF = 0) when the MCU enters the STOP mode, the command will be a
and the data being programmed or erased is lost. The high voltage circuitry to the Flash block wil
switched off when entering STOP mode. CCIF and ACCERR flags will be set. If commands are act
multiple blocks when STOP occurs, then all the corresponding CCIF and ACCERR flags will be set.
exit from STOP, the CBEIF flag is set and any pending command will not be executed. All ACCERR
must be cleared before returning to normal operation.
39

FTS512K4 Block User Guide V01.06

n.

n all
hip

lash

ust be
ctor is
MCU

ledge
). If

gers
 four
ackdoor

r Keys
itted.

an
.

uence

with

 the
f “10”.
WARNING
As active commands are immediately aborted when the MCU enters STOP mode, it is strongly
recommended that the user does not use the STOP command during program and erase executio

4.4 Background Debug Mode

In Background Debug Mode (BDM), the FPROT registers are writable. If the MCU is unsecured, the
Flash commands listed inTable 4-1 can be executed. If the MCU is secured and is in Special Single C
mode, the only possible command to execute is mass erase.

4.5 Flash Security

The Flash module provides the necessary security information to the MCU. After each reset, the F
module determines the security state of the MCU as defined in section3.3.2.

The contents of the Flash Protection/Options byte at $FF0F in the Flash Protection/Options Field m
changed directly by programming $FF0F when the device is unsecured and the higher address se
unprotected. If the Flash Protection/Options byte is left in the secure state, any reset will cause the
to return to the secure operating mode.

4.5.1 Unsecuring via the Backdoor Key Access

The MCU may only be unsecured by using the Backdoor Key Access feature which requires know
of the contents of the Backdoor Keys (four 16-bit words programmed at addresses $FF00 - $FF07
KEYEN[1:0]=10 and the KEYACC bit is set, a write to a Backdoor Key address in the Flash array trig
a comparison between the written data and the Backdoor Key data stored in the Flash array. If all
words of data are written to the correct addresses in the correct order and the data matches the B
Keys stored in the Flash array, the MCU will be unsecured. The data must be written to the Backdoo
sequentially staring with $FF00-1 and ending with $FF06-7. $0000 and $FFFF keys are not perm
When the KEYACC bit is set, reads of the Flash array will return invalid data.

The user code stored in the Flash array must have a method of receiving the Backdoor Key from
external stimulus. This external stimulus would typically be through one of the on-chip serial ports

If KEYEN[1:0]=10 in the FSEC register, the MCU can be unsecured by the Backdoor Access Seq
described below:

1. Set the KEYACC bit in the Flash Configuration Register (FCNFG).

2. Write the correct four 16-bit words to Flash addresses $FF00 - $FF07 sequentially starting
$FF00.

3. Clear the KEYACC bit.

4. If all four 16-bit words match the Backdoor Keys stored in Flash addresses $FF00 - $FF07,
MCU is unsecured and bits SEC[1:0] in the FSEC register are forced to the unsecure state o
40

FTS512K4 Block User Guide V01.06

ration
CU in
allow

curity

array.

Flash

kdoor
ected by
dule is
ffect on

ce via
The Backdoor Access Sequence is monitored by the internal Security State Machine. An illegal ope
during the Backdoor Access Sequence will cause the Security State Machine to lock, leaving the M
the secured state. A reset of the MCU will cause the Security State Machine to exit the lock state and
a new Backdoor Access Sequence to be attempted. The following illegal operations will lock the Se
State Machine:

1. If any of the four 16-bit words does not match the backdoor keys programmed in the Flash

2. If the four 16-bit words are written in the wrong sequence.

3. If more than four 16-bit words are written.

4. If any of the four 16-bit words written are $0000 or $FFFF.

5. If the KEYACC bit does not remain set while the four 16-bit words are written.

After the Backdoor Access Sequence has been correctly matched, the MCU will be unsecured. The
security byte can be programmed to the unsecure state, if desired.

In the unsecure state, the user has full control of the contents of the four word Backdoor Key by
programming it in bytes $FF00 - $FF07 of the Flash Protection/Options Field.

The security as defined in the Flash Security/Options byte ($FF0F) is not changed by using the Bac
Access Sequence to unsecure. The Backdoor Keys stored in addresses $FF00 - $FF07 are unaff
the Backdoor Access Sequence. After the next reset sequence, the security state of the Flash mo
determined by the Flash Security/Options byte ($FF0F). The Backdoor Access Sequence has no e
the program and erase protections defined in the Flash Protection Register (FPROT).

It is not possible to unsecure the MCU in Special Single Chip mode by the Backdoor Access Sequen
the Background Debug Mode.
41

FTS512K4 Block User Guide V01.06
42

FTS512K4 Block User Guide V01.06

state
Section 5 Resets

5.1 General

If a reset occurs while any command is in progress that command will be immediately aborted. The
of the word being programmed or the sector / block being erased is not guaranteed.
43

FTS512K4 Block User Guide V01.06
44

FTS512K4 Block User Guide V01.06

ddress,

n
sible
empty
Section 6 Interrupts

6.1 General

The FTS512K4 module can generate an interrupt when all Flash commands are completed or the a
data and command buffers are empty.

NOTE
Vector addresses and their relative interrupt priority are determined at the MCU level

6.2 Description of Interrupt Operation

Figure 6-1 shows the logic used for generating interrupt via the relevant block.

This system uses the CBEIF and CCIF flags in combination with the enable bits CBIE and CCIE i
addition to the BKSEL bits) to discriminate for the interrupt generation. By taking account of the pos
selected bank, the system is prevented from generating false interrupts when the command buffer is
in an unselected bank.

Table 6-1 Flash Interrupt Sources

Interrupt Source Interrupt Flag Local Enable Global (CCR)
Mask

Flash Address, Data and
Command Buffers empty

CBEIF
(FSTAT from any Flash block)

CBEIE I Bit

All Commands are
completed on Flash

CCIF
(FSTAT from any Flash block)

CCIE I Bit
45

FTS512K4 Block User Guide V01.06

tatus
Figure 6-1 Flash Interrupt Implementation

For a detailed description of the register bits, refer to the Flash Configuration register and Flash S
register sections (respectively3.3.4 and3.3.6).

Flash 0 CBEIF

Flash 1 CBEIF

Flash Interrupt Request

Block 0 select

Block 1 select

CBEIE

Flash 2 CBEIF

Flash 3 CBEIF

Block 2 select

Block 3 select

Flash 0 CCIF

Flash 1 CCIF

Block 0 select

Block 1 select

CCIE

Flash 2 CCIF

Flash 3 CCIF

Block 2 select

Block 3 select
46

FTS512K4 Block User Guide V01.06
Block Guide End Sheet
47

FTS512K4 Block User Guide V01.06
FINAL PAGE OF
48

PAGES
48

DOCUMENT NUMBER
S12IICV2/D
HCS12 Inter-Integrated Circuit(IIC)

Block Guide

V02.08

Original Release Date: 08 SEP 1999
Revised: Jun 3, 2004

8/16 Bit Division,TSPG
Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

1

©Motorola, Inc., 2002

Block Guide — S12IICV2/D V02.08
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

0.1 8-Sep-99
Vipin Agrawal,
Puneet Goel

Original draft. Distributed only within Motorola

0.2 30-Sep-99 Puneet Goel Minor corrections as suggested by Joachim Kruecken.

2.0 12-Feb-01
Gautam Kar,

Gurdarshan Kalra
Reformatted for SRS v2.0

2.1
2-Mar-200

1
Gurdarshan Kalra Minor corrections as suggested by Jens Winkler

2.2
6-Mar-200

1
Gurdarshan Kalra Minor corrections as suggested by Jens Winkler

2.03
26-Mar-20

01
Gurdarshan Kalra

Jens Winkler
Minor updates in format

2.04
19-July-20

01
Dirk Rowald

Document names have been added, Names and variable
definitions have been hidden

2.05
7-Mar-200

2
Stephen Zhou Minor updates in format

2.06
18-Aug-20

02
Stephen Zhou

Reformated for SRS3.0,and add examples for programing general
use and some diagrams to make it more user friendly as suggested
by Joachim

2.07
11-Apr-20

03
Stephen Zhou

Clearly claim support 400kps;
Add notes for TCF bit in Section 5.1.3
Correct Section 7 for IBIF is cleared by writing ‘1’

2.08
3-Jun-200

4
Vicers Cai

Correct the wrong divider
values for SDA Hold from IBC=$60 to IBC=$7F
2

Block Guide — IIC V02.08
Table of Contents

Section 1 Introduction

1.1 Overview. 11

1.2 Features . 11

1.3 Modes of Operation . 11

1.4 Block Diagram . 12

Section 2 External Signal Description

2.1 Overview. 14

2.2 Detailed Signal Descriptions. 14

2.2.1 SCL . 14

2.2.2 SDA . 14

Section 3 Memory Map/Register Definition

3.1 Overview. 15

3.2 Module Memory Map . 15

3.3 Register Descriptions . 15

3.3.1 IIC Address Register . 15

3.3.2 IIC Frequency Divider Register . 16

3.3.3 IIC Control Register . 25

3.3.4 IIC Status Register . 27

3.3.5 IIC Data I/O Register . 29

Section 4 Functional Description

4.1 General. 30

4.2 I-Bus Protocol . 30

4.2.1 START Signal . 31

4.2.2 Slave Address Transmission . 31

4.2.3 Data Transfer . 32

4.2.4 STOP Signal . 32

4.2.5 Repeated START Signal . 32

4.2.6 Arbitration Procedure . 32

4.2.7 Clock Synchronization . 33

4.2.8 Handshaking . 33
3

Block Guide — IIC V02.08
4.2.9 Clock Stretching . 33

4.3 Modes of Operation . 34

4.3.1 Run Mode. 34

4.3.2 Wait Mode . 34

4.3.3 Stop Mode . 34

Section 5 Initialization/Application Information

5.1 IIC Programming Examples . 35

5.1.1 Initialization Sequence . 35

5.1.2 Generation of START. 35

5.1.3 Post-Transfer Software Response . 35

5.1.4 Generation of STOP. 36

5.1.5 Generation of Repeated START . 37

5.1.6 Slave Mode . 37

5.1.7 Arbitration Lost . 37

Section 6 Resets

6.1 General. 40

Section 7 Interrupts

7.1 General. 41

7.2 Interrupt Description . 41
4

Block Guide — IIC V02.08
List of Figures

Figure 1-1 IIC Block Diagram . 12

Figure 3-1 IIC Bus Address Register (IBAD). 15

Figure 3-2 IIC Bus Frequency Divider Register (IBFD). 16

Figure 3-3 SCL divider and SDA hold . 18

Figure 3-4 IIC-Bus Control Register (IBCR) . 25

Figure 3-5 IIC Bus Status Register (IBSR) . 27

Figure 3-6 IIC Bus Data I/O Register (IBDR) . 29

Figure 4-1 IIC-Bus Transmission Signals . 30

Figure 4-2 Start and Stop conditions. 31

Figure 4-3 IIC-Bus Clock Synchronization . 33

Figure 5-1 Flow-Chart of Typical IIC Interrupt Routine . 39
5

Block Guide — IIC V02.08
6

Block Guide — IIC V02.08
List of Tables

Table 3-1 Module Memory Map . 15

Table 3-2 I-Bus Tap and Prescale Values . 16

Table 3-3 Multiplier Factor . 17

Table 3-4 IIC Divider and Hold Values. 18

Table 7-1 Interrupt Summary . 41
7

Block Guide — IIC V02.08
8

Block Guide — IIC V02.08
Preface

N/A.
9

Block Guide — IIC V02.08
10

Block Guide — IIC V02.08
Section 1 Introduction

1.1 Overview

The Inter-IC Bus (IIC or I2C) is a two-wire, bidirectional serial bus that provides a simple, efficient
method of data exchange between devices Being a two-wire device, the IIC Bus minimizes the need for
large numbers of connections between devices, and eliminates the need for an address decoder.

This bus is suitable for applications requiring occasional communications over a short distance between a
number of devices. It also provides flexibility, allowing additional devices to be connected to the bus for
further expansion and system development.

The interface will operate at baud rates of up to 100kbps with maximum capacitive bus loading.With
reduced bus slew rate, the device is capable of operating at higher baud rates, up to a maximum of
[MCUbus]clock/20. The module can operate up to a baud rate of 400kbps provided the IIC bus slew rate
is less than 100ns. The maximum communication interconnect length and the number of devices that can
be connected to the bus are limited by a maximum bus capacitance of 400pF in all instances.

1.2 Features

The IIC module has the following key features:

• Compatible with I2C Bus standard

• Multi-master operation

• Software programmable for one of 256 different serial clock frequencies

• Software selectable acknowledge bit

• Interrupt driven byte-by-byte data transfer

• Arbitration lost interrupt with automatic mode switching from master to slave

• Calling address identification interrupt

• Start and stop signal generation/detection

• Repeated start signal generation

• Acknowledge bit generation/detection

• Bus busy detection

1.3 Modes of Operation

The IIC functions the same in normal, special, and emulation modes. It has two low power modes, wait
and stop modes.
11

Block Guide — IIC V02.08
• Run Mode

This is the basic mode of operation.

• Wait Mode

IIC operation in wait mode can be configured. Depending on the state of internal bits, the IIC can
operate normally when the CPU is in wait mode or the IIC clock generation can be turned off and
the IIC module enters a power conservation state during wait mode. In the latter case, any
transmission or reception in progress stops at wait mode entry.

• Stop Mode

The IIC is inactive in stop mode for reduced power consumption. The STOP instruction does not
affect IIC register states.

1.4 Block Diagram

The block diagram of the IIC module is shown in Figure 1-1

Figure 1-1 IIC Block Diagram

In/Out
Data
Shift
Register

Address
Compare

SDA

Interrupt

Clock
Control

Start
Stop
Arbitration
Control

SCL

bus_clock

IIC

Registers
12

Block Guide — IIC V02.08
Input
Sync

In/Out
Data
Shift
Register

Address

Compare

SDA

IIC-interrupt
Address

Clock

Control

Start
Stop
Arbitration
Control

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

ADDR_DECODE DATA_MUX

Data-bus

SCL
13

Block Guide — IIC V02.08
Section 2 External Signal Description

2.1 Overview

The IIC module has a total of 2 external pins.

2.2 Detailed Signal Descriptions

2.2.1 SCL

This is the bidirectional Serial Clock Line (SCL) of the module, compatible to the IIC-Bus specification.

2.2.2 SDA

This is the bidirectional Serial Data line (SDA) of the module, compatible to the IIC-Bus specification.
14

Block Guide — IIC V02.08
Section 3 Memory Map/Register Definition

3.1 Overview

This section provides a detailed description of all memory and registers for the IIC module.

3.2 Module Memory Map

The memory map for the IIC module is given below in Table 3-1. The Address listed for each register is
the address offset.The total address for each register is the sum of the base address for the IIC module and
the address offset for each register.

3.3 Register Descriptions

This section consists of register descriptions in address order.Each description includes a standard register
diagram with an associated figure number. Details of register bit and field function follow the register
diagrams, in bit order.

3.3.1 IIC Address Register

Figure 3-1 IIC Bus Address Register (IBAD)

Read and write anytime{iic_regs}

This register contains the address the IIC Bus will respond to when addressed as a slave; note that it is not
the address sent on the bus during the address transfer.{iic_slave}

ADR7–ADR1 — Slave Address

Table 3-1 Module Memory Map

Address Use Access

Base Address + $_0 IIC-Bus Address Register (IBAD) Read/Write

Base Address + $_1 IIC-Bus Frequency Divider Register (IBFD) Read/Write

Base Address + $_2 IIC-Bus Control Register (IBCR) Read/Write

Base Address + $_3 IIC-Bus Status Register (IBSR) Read/Write

Base Address + $_4 IIC-Bus Data I/O Register (IBDR) Read/Write

Register address: Base Address + $0000)

7 6 5 4 3 2 1 0
R

ADR7 ADR6 ADR5 ADR4 ADR3 ADR2 ADR1
0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
15

Block Guide — IIC V02.08
Bit 1 to bit 7 contain the specific slave address to be used by the IIC Bus module.{iic_slave}

The default mode of IIC Bus is slave mode for an address match on the bus.

RESERVED

Bit 0 of the IBAD is reserved for future compatibility. This bit will always read 0.{iic_regs}

3.3.2 IIC Frequency Divider Register

Figure 3-2 IIC Bus Frequency Divider Register (IBFD)

Read and write anytime{iic_regs}

IBC7–IBC0 — I-Bus Clock Rate 7–0

This field is used to prescale the clock for bit rate selection. {iic_div} The bit clock generator is
implemented as a prescale divider - IBC7-6, prescaled shift register - IBC5-3 select the prescaler
divider and IBC2-0 select the shift register tap point. {iic_div}The IBC bits are decoded to give the
Tap and Prescale values as shown in Table 3-2 {iic_div}

Register address: Base address + $0001
7 6 5 4 3 2 1 0

R
IBC7 IBC6 IBC5 IBC4 IBC3 IBC2 IBC1 IBC0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Table 3-2 I-Bus Tap and Prescale Values

IBC2-0
(bin)

SCL Tap
(clocks)

SDA Tap
(clocks)

000 5 1

001 6 1

010 7 2

011 8 2

100 9 3

101 10 3

110 12 4

111 15 4
16

Block Guide — IIC V02.08
The number of clocks from the falling edge of SCL to the first tap (Tap[1]) is defined by the values shown
in the scl2tap column of Table 3-2, all subsequent tap points are separated by 2IBC5-3 as shown in the
tap2tap column in Table 3-2.{iic_div} The SCL Tap is used to generated the SCL period and the SDA
Tap is used to determine the delay from the falling edge of SCL to SDA changing, the SDA hold
time.{iic_div}

IBC7-6 defines the multiplier factor MUL. {iic_div, iic_ack_addon}The values of MUL are shown in the
Table 3-3{iic_div, iic_ack_addon}

IBC5-3
(bin)

scl2start
(clocks)

scl2stop
(clocks)

scl2tap
(clocks)

tap2tap
(clocks)

000 2 7 4 1

001 2 7 4 2

010 2 9 6 4

011 6 9 6 8

100 14 17 14 16

101 30 33 30 32

110 62 65 62 64

111 126 129 126 128

Table 3-3 Multiplier Factor

IBC7-6 MUL

00 01

01 02

10 04

11 RESERVED
17

Block Guide — IIC V02.08
Figure 3-3 SCL divider and SDA hold

The equation used to generate the divider values from the IBFD bits is:

SCL Divider = MUL x {2 x (scl2tap + [(SCL_Tap -1) x tap2tap] + 2)}{iic_div}

The SDA hold delay is equal to the CPU clock period multiplied by the SDA Hold value shown in
Table 3-4. {iic_div}The equation used to generate the SDA Hold value from the IBFD bits is:

 SCL Divider

SDA Hold

SCL

SDA

SDA

 SCL

START condition STOP condition

SCL Hold(start) SCL Hold(stop)
18

Block Guide — IIC V02.08
SDA Hold = MUL x {scl2tap + [(SDA_Tap - 1) x tap2tap] + 3} {iic_div}

The equation for SCL Hold values to generate the start and stop conditions from the IBFD bits is:

SCL Hold(start) = MUL x [scl2start + (SCL_Tap - 1) x tap2tap] {iic_div}

SCL Hold(stop) = MUL x [scl2stop + (SCL_Tap - 1) x tap2tap] {iic_div}

Table 3-4 IIC Divider and Hold Values
IBC[7:0]

(hex)
SCL Divider

(clocks)
SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)

MUL=1

00 20 7 6 11

01 22 7 7 12

02 24 8 8 13

03 26 8 9 14

04 28 9 10 15

05 30 9 11 16

06 34 10 13 18

07 40 10 16 21

08 28 7 10 15

09 32 7 12 17

0A 36 9 14 19

0B 40 9 16 21

0C 44 11 18 23

0D 48 11 20 25

0E 56 13 24 29

0F 68 13 30 35

10 48 9 18 25

11 56 9 22 29

12 64 13 26 33

13 72 13 30 37

14 80 17 34 41

15 88 17 38 45

16 104 21 46 53

17 128 21 58 65
19

Block Guide — IIC V02.08
18 80 9 38 41

19 96 9 46 49

1A 112 17 54 57

1B 128 17 62 65

1C 144 25 70 73

1D 160 25 78 81

1E 192 33 94 97

1F 240 33 118 121

20 160 17 78 81

21 192 17 94 97

22 224 33 110 113

23 256 33 126 129

24 288 49 142 145

25 320 49 158 161

26 384 65 190 193

27 480 65 238 241

28 320 33 158 161

29 384 33 190 193

2A 448 65 222 225

2B 512 65 254 257

2C 576 97 286 289

2D 640 97 318 321

2E 768 129 382 385

2F 960 129 478 481

30 640 65 318 321

31 768 65 382 385

32 896 129 446 449

33 1024 129 510 513

34 1152 193 574 577

35 1280 193 638 641

36 1536 257 766 769

37 1920 257 958 961

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
20

Block Guide — IIC V02.08
38 1280 129 638 641

39 1536 129 766 769

3A 1792 257 894 897

3B 2048 257 1022 1025

3C 2304 385 1150 1153

3D 2560 385 1278 1281

3E 3072 513 1534 1537

3F 3840 513 1918 1921

MUL=2

40 40 14 12 22

41 44 14 14 24

42 48 16 16 26

43 52 16 18 28

44 56 18 20 30

45 60 18 22 32

46 68 20 26 36

47 80 20 32 42

48 56 14 20 30

49 64 14 24 34

4A 72 18 28 38

4B 80 18 32 42

4C 88 22 36 46

4D 96 22 40 50

4E 112 26 48 58

4F 136 26 60 70

50 96 18 36 50

51 112 18 44 58

52 128 26 52 66

53 144 26 60 74

54 160 34 68 82

55 176 34 76 90

56 208 42 92 106

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
21

Block Guide — IIC V02.08
57 256 42 116 130

58 160 18 76 82

59 192 18 92 98

5A 224 34 108 114

5B 256 34 124 130

5C 288 50 140 146

5D 320 50 156 162

5E 384 66 188 194

5F 480 66 236 242

60 320 34 156 162

61 384 34 188 194

62 448 66 220 226

63 512 66 252 258

64 576 98 284 290

65 640 98 316 322

66 768 130 380 386

67 960 130 476 482

68 640 66 316 322

69 768 66 380 386

6A 896 130 444 450

6B 1024 130 508 514

6C 1152 194 572 578

6D 1280 194 636 642

6E 1536 258 764 770

6F 1920 258 956 962

70 1280 130 636 642

71 1536 130 764 770

72 1792 258 892 898

73 2048 258 1020 1026

74 2304 386 1148 1154

75 2560 386 1276 1282

76 3072 514 1532 1538

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
22

Block Guide — IIC V02.08
77 3840 514 1916 1922

78 2560 258 1276 1282

79 3072 258 1532 1538

7A 3584 514 1788 1794

7B 4096 514 2044 2050

7C 4608 770 2300 2306

7D 5120 770 2556 2562

7E 6144 1026 3068 3074

7F 7680 1026 3836 3842

MUL=4

80 80 28 24 44

81 88 28 28 48

82 96 32 32 52

83 104 32 36 56

84 112 36 40 60

85 120 36 44 64

86 136 40 52 72

87 160 40 64 84

88 112 28 40 60

89 128 28 48 68

8A 144 36 56 76

8B 160 36 64 84

8C 176 44 72 92

8D 192 44 80 100

8E 224 52 96 116

8F 272 52 120 140

90 192 36 72 100

91 224 36 88 116

92 256 52 104 132

93 288 52 120 148

94 320 68 136 164

95 352 68 152 180

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
23

Block Guide — IIC V02.08
96 416 84 184 212

97 512 84 232 260

98 320 36 152 164

99 384 36 184 196

9A 448 68 216 228

9B 512 68 248 260

9C 576 100 280 292

9D 640 100 312 324

9E 768 132 376 388

9F 960 132 472 484

A0 640 68 312 324

A1 768 68 376 388

A2 896 132 440 452

A3 1024 132 504 516

A4 1152 196 568 580

A5 1280 196 632 644

A6 1536 260 760 772

A7 1920 260 952 964

A8 1280 132 632 644

A9 1536 132 760 772

AA 1792 260 888 900

AB 2048 260 1016 1028

AC 2304 388 1144 1156

AD 2560 388 1272 1284

AE 3072 516 1528 1540

AF 3840 516 1912 1924

B0 2560 260 1272 1284

B1 3072 260 1528 1540

B2 3584 516 1784 1796

B3 4096 516 2040 2052

B4 4608 772 2296 2308

B5 5120 772 2552 2564

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
24

Block Guide — IIC V02.08
3.3.3 IIC Control Register

Figure 3-4 IIC-Bus Control Register (IBCR)

Read and write anytime{iic_regs}

IBEN — I-Bus Enable

This bit controls the software reset of the entire IIC Bus module.
0 = The module is reset and disabled.{iic_disable} This is the power-on reset situation. When low

the interface is held in reset but registers can still be accessed{iic_disable}
1 = The IIC Bus module is enabled. {iic_div, iic_ack, iic_receive, iic_transmit}This bit must be set

before any other IBCR bits have any effect{iic_disable}

If the IIC Bus module is enabled in the middle of a byte transfer the interface behaves as follows: slave
mode ignores the current transfer on the bus and starts operating whenever a subsequent start condition is
detected.Master mode will not be aware that the bus is busy, hence if a start cycle is initiated then the
current bus cycle may become corrupt. This would ultimately result in either the current bus master or the
IIC Bus module losing arbitration, after which bus operation would return to normal.

IBIE — I-Bus Interrupt Enable
0 = Interrupts from the IIC Bus module are disabled. {iic_int} Note that this does not clear any

currently pending interrupt condition.{iic_int}

B6 6144 1028 3064 3076

B7 7680 1028 3832 3844

B8 5120 516 2552 2564

B9 6144 516 3064 3076

BA 7168 1028 3576 3588

BB 8192 1028 4088 4100

BC 9216 1540 4600 4612

BD 10240 1540 5112 5124

BE 12288 2052 6136 6148

BF 15360 2052 7672 7684

Register address: Base address + $0002
7 6 5 4 3 2 1 0

R
IBEN IBIE MS/SL Tx/Rx TXAK

0 0
IBSWAI

W RSTA
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

IBC[7:0]
(hex)

SCL Divider
(clocks)

SDA Hold
(clocks)

SCL Hold
(start)

SCL Hold
(stop)
25

Block Guide — IIC V02.08
1 = Interrupts from the IIC Bus module are enabled. {iic_int}An IIC Bus interrupt occurs provided
the IBIF bit in the status register is also set.{iic_int}

MS/SL — Master/Slave mode select bit

Upon reset, this bit is cleared. When this bit is changed from 0 to 1, a START signal is generated on
the bus, and the master mode is selected.{iic_receive, iic_transmit} When this bit is changed from 1
to 0, a STOP signal is generated and the operation mode changes from master to slave.{iic_receive,
iic_transmit} A STOP signal should only be generated if the IBIF flag is set. MS/SL is cleared without
generating a STOP signal when the master loses arbitration.

0 = Slave Mode
1 = Master Mode

Tx/Rx — Transmit/Receive mode select bit

This bit selects the direction of master and slave transfers. {iic_receive, iic_transmit} When addressed
as a slave this bit should be set by software according to the SRW bit in the status register. In master
mode this bit should be set according to the type of transfer required. Therefore, for address cycles,
this bit will always be high.

0 = Receive
1 = Transmit

TXAK — Transmit Acknowledge enable

This bit specifies the value driven onto SDA during data acknowledge cycles for both master and slave
receivers.{iic_receive, iic_transmit} The IIC module will always acknowledge address matches,
provided it is enabled, regardless of the value of TXAK. {iic_ack}Note that values written to this bit
are only used when the IIC Bus is a receiver, not a transmitter.

0 = An acknowledge signal will be sent out to the bus at the 9th clock bit after receiving one byte
data{iic_receive, iic_transmit}

1 = No acknowledge signal response is sent (i.e., acknowledge bit = 1){iic_receive, iic_transmit}

RSTA — Repeat Start

Writing a 1 to this bit will generate a repeated START condition on the bus, provided it is the current
bus master. {iic_receive, iic_transmit}This bit will always be read as a low.{iic_regs, iic_receive,
iic_transmit} Attempting a repeated start at the wrong time, if the bus is owned by another master, will
result in loss of arbitration.

1 = Generate repeat start cycle

RESERVED

Bit 1 of the IBCR is reserved for future compatibility. This bit will always read 0.

{iic_regs}

IBSWAI — I-Bus Interface Stop in WAIT mode
0 = IIC Bus module clock operates normally{iic_wait}
1 = Halt IIC Bus module clock generation in WAIT mode{iic_wait}

Wait mode is entered via execution of a CPU WAI instruction. In the event that the IBSWAI bit is set, all
clocks internal to the IIC will be stopped and any transmission currently in progress will halt.{iic_wait} If
26

Block Guide — IIC V02.08
the CPU were woken up by a source other than the IIC module, then clocks would restart and the IIC would
continue where it left off in the previous transmission.{iic_wait} It is not possible for the IIC to wake up
the CPU when its internal clocks are stopped.

If it were the case that the IBSWAI bit was cleared when the WAI instruction was executed, the IIC
internal clocks and interface would remain alive, continuing the operation which was currently underway.
It is also possible to configure the IIC such that it will wake up the CPU via an interrupt at the conclusion
of the current operation. See the discussion on the IBIF and IBIE bits in the IBSR and IBCR, respectively.

3.3.4 IIC Status Register

Figure 3-5 IIC Bus Status Register (IBSR)

This status register is read-only with exception of bit 1 (IBIF) and bit 4 (IBAL), which are software
clearable{iic_regs}

TCF — Data transferring bit

While one byte of data is being transferred, this bit is cleared. It is set by the falling edge of the 9th
clock of a byte transfer. Note that this bit is only valid during or immediately following a transfer to
the IIC module or from the IIC module.{iic_int}

0 = Transfer in progress
1 = Transfer complete

IAAS — Addressed as a slave bit

When its own specific address (I-Bus Address Register) is matched with the calling address, this bit is
set.{iic_slave}The CPU is interrupted provided the IBIE is set.{iic_int}Then the CPU needs to check
the SRW bit and set its Tx/Rx mode accordingly.Writing to the I-Bus Control Register clears this
bit.{iic_int}

0 = Not addressed
1 = Addressed as a slave

IBB — Bus busy bit

This bit indicates the status of the bus. When a START signal is detected, the IBB is set. If a
STOP signal is detected, IBB is cleared and {iic_receive, iic_transmit}

0 = the bus enters idle state.
1 = Bus is busy

IBAL — Arbitration Lost

Register address: Base address + $0003

7 6 5 4 3 2 1 0
R TCF IAAS IBB

IBAL
0 SRW

IBIF
RXAK

W
RESET: 1 0 0 0 0 0 0 0

= Unimplemented or Reserved
27

Block Guide — IIC V02.08
The arbitration lost bit (IBAL) is set by hardware when the arbitration procedure is lost. Arbitration is
lost in the following circumstances:

1. SDA sampled low when the master drives a high during an address or data transmit cycle.{iic_arb}

2. SDA sampled low when the master drives a high during the acknowledge bit of a data receive
cycle.{iic_arb}

3. A start cycle is attempted when the bus is busy.{iic_arb}

4. A repeated start cycle is requested in slave mode.{iic_arb}

5. A stop condition is detected when the master did not request it.{iic_arb}

This bit must be cleared by software, by writing a one to it. A write of zero has no effect on this bit.

RESERVED

Bit 3 of IBSR is reserved for future use. A read operation on this bit will return 0.{iic_regs}

SRW — Slave Read/Write

When IAAS is set this bit indicates the value of the R/W command bit of the calling address sent from
the master. {iic_receive, iic_transmit}

This bit is only valid when the I-Bus is in slave mode, a complete address transfer has occurred with
an address match and no other transfers have been initiated.

Checking this bit, the CPU can select slave transmit/receive mode according to the command of the
master.

0 = Slave receive, master writing to slave
1 = Slave transmit, master reading from slave

IBIF — I-Bus Interrupt

The IBIF bit is set when one of the following conditions occurs:

– arbitration lost (IBAL bit set)

– byte transfer complete (TCF bit set)

– addressed as slave (IAAS bit set)

It will cause a processor interrupt request if the IBIE bit is set. This bit must be cleared by software,
writing a one to it. A write of zero has no effect on this bit.

RXAK — Received Acknowledge

The value of SDA during the acknowledge bit of a bus cycle. If the received acknowledge bit (RXAK)
is low, it indicates an acknowledge signal has been received after the completion of 8 bits data
transmission on the bus.{iic_ack} If RXAK is high, it means no acknowledge signal is detected at the
9th clock.{iic_ack}

0 = Acknowledge received
1 = No acknowledge received
28

Block Guide — IIC V02.08
3.3.5 IIC Data I/O Register

Figure 3-6 IIC Bus Data I/O Register (IBDR)

In master transmit mode, when data is written to the IBDR a data transfer is initiated. {iic_transmit}The
most significant bit is sent first. In master receive mode, reading this register initiates next byte data
receiving.{iic_receive} In slave mode, the same functions are available after an address match has
occurred.{iic_receive, iic_transmit}Note that the Tx/Rx bit in the IBCR must correctly reflect the desired
direction of transfer in master and slave modes for the transmission to begin. {iic_receive, iic_transmit}
For instance, if the IIC is configured for master transmit but a master receive is desired, then reading the
IBDR will not initiate the receive.

Reading the IBDR will return the last byte received while the IIC is configured in either master receive or
slave receive modes. {iic_receive}The IBDR does not reflect every byte that is transmitted on the IIC bus,
nor can software verify that a byte has been written to the IBDR correctly by reading it back.

In master transmit mode, the first byte of data written to IBDR following assertion of MS/SL is used for
the address transfer and should com.prise of the calling address (in position D7-D1) concatenated with the
required R/W bit (in position D0).

Register address

7 6 5 4 3 2 1 0
R

D7 D6 D5 D4 D3 D2 D1 D0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
29

Block Guide — IIC V02.08
Section 4 Functional Description

4.1 General

This section provides a complete functional description of the IIC.

4.2 I-Bus Protocol

The IIC Bus system uses a Serial Data line (SDA) and a Serial Clock Line (SCL) for data transfer. All
devices connected to it must have open drain or open collector outputs. Logic AND function is exercised
on both lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: START signal, slave address
transmission, data transfer and STOP signal. They are described briefly in the following sections and
illustrated in Figure 4-1.

Figure 4-1 IIC-Bus Transmission Signals

SCL

SDA

Start
Signal

Ack
Bit

1 2 3 4 5 6 7 8

MSB LSB

1 2 3 4 5 6 7 8

MSB LSB

Stop
Signal

No

SCL

SDA

1 2 3 4 5 6 7 8

MSB LSB

1 2 5 6 7 8

MSB LSB

Repeated

3 4

9 9

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W XXX D7 D6 D5 D4 D3 D2 D1 D0

Calling Address Read/ Data Byte

AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W AD7 AD6 AD5 AD4 AD3 AD2 AD1 R/W

New Calling Address

9 9

XX

Ack
BitWrite

Start
Signal

Start
Signal

Ack
Bit

Calling Address Read/
Write

Stop
Signal

No
Ack
Bit

Read/
Write
30

Block Guide — IIC V02.08
4.2.1 START Signal

When the bus is free, i.e. no master device is engaging the bus (both SCL and SDA lines are at logical
high), a master may initiate communication by sending a START signal.As shown in Figure 4-1, a START
signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning
of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of
their idle states.

Figure 4-2 Start and Stop conditions

4.2.2 Slave Address Transmission

The first byte of data transfer immediately after the START signal is the slave address transmitted by the
master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.
0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master will respond by
sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 4-1).

No two slaves in the system may have the same address. If the IIC Bus is master, it must not transmit an
address that is equal to its own slave address. The IIC Bus cannot be master and slave at the same
time.However, if arbitration is lost during an address cycle the IIC Bus will revert to slave mode and
operate correctly even if it is being addressed by another master.

SDA

 SCL

START condition STOP condition
31

Block Guide — IIC V02.08
4.2.3 Data Transfer

Once successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction
specified by the R/W bit sent by the calling master

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address
information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while
SCL is high as shown in Figure 4-1. There is one clock pulse on SCL for each data bit, the MSB being
transferred first. Each data byte has to be followed by an acknowledge bit, which is signalled from the
receiving device by pulling the SDA low at the ninth clock. So one complete data byte transfer needs nine
clock pulses.

If the slave receiver does not acknowledge the master, the SDA line must be left high by the slave. The
master can then generate a stop signal to abort the data transfer or a start signal (repeated start) to
commence a new calling.

If the master receiver does not acknowledge the slave transmitter after a byte transmission, it means 'end
of data' to the slave, so the slave releases the SDA line for the master to generate STOP or START signal.

4.2.4 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the
master may generate a START signal followed by a calling command without generating a STOP signal
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while
SCL at logical “1” (see Figure 4-1).

The master can generate a STOP even if the slave has generated an acknowledge at which point the slave
must release the bus.

4.2.5 Repeated START Signal

As shown in Figure 4-1, a repeated START signal is a START signal generated without first generating
a STOP signal to terminate the communication. This is used by the master to communicate with another
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

4.2.6 Arbitration Procedure

The Inter-IC bus is a true multi-master bus that allows more than one master to be connected on it. If two
or more masters try to control the bus at the same time, a clock synchronization procedure determines the
bus clock, for which the low period is equal to the longest clock low period and the high is equal to the
shortest one among the masters. The relative priority of the contending masters is determined by a data
arbitration procedure, a bus master loses arbitration if it transmits logic “1” while another master transmits
logic “0”. The losing masters immediately switch over to slave receive mode and stop driving SDA output.
In this case the transition from master to slave mode does not generate a STOP condition. Meanwhile, a
status bit is set by hardware to indicate loss of arbitration.
32

Block Guide — IIC V02.08
4.2.7 Clock Synchronization

Since wire-AND logic is performed on SCL line, a high-to-low transition on SCL line affects all the
devices connected on the bus. The devices start counting their low period and once a device's clock has
gone low, it holds the SCL line low until the clock high state is reached.However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is still within its
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see Figure 4-2). When all devices
concerned have counted off their low period, the synchronized clock SCL line is released and pulled high.
There is then no difference between the device clocks and the state of the SCL line and all the devices start
counting their high periods.The first device to complete its high period pulls the SCL line low again.

Figure 4-3 IIC-Bus Clock Synchronization

4.2.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.

4.2.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it.If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.

SCL1

SCL2

SCL

Internal Counter Reset

WAIT Start Counting High Period
33

Block Guide — IIC V02.08
4.3 Modes of Operation

The IIC functions the same in normal, special, and emulation modes. It has two low power modes, wait
and stop modes

4.3.1 Run Mode

This is the basic mode of operation.

4.3.2 Wait Mode

IIC operation in wait mode can be configured. Depending on the state of internal bits, the IIC can operate
normally when the CPU is in wait mode or the IIC clock generation can be turned off and the IIC module
enters a power conservation state during wait mode. In the later case, any transmission or reception in
progress stops at wait mode entry.

4.3.3 Stop Mode

The IIC is inactive in stop mode for reduced power consumption. The STOP instruction does not affect
IIC register states.
34

Block Guide — IIC V02.08
Section 5 Initialization/Application Information

5.1 IIC Programming Examples

5.1.1 Initialization Sequence

Reset will put the IIC Bus Control Register to its default status. Before the interface can be used to transfer
serial data, an initialization procedure must be carried out, as follows:

1. Update the Frequency Divider Register (IBFD) and select the required division ratio to obtain SCL
frequency from system clock.

2. Update the IIC Bus Address Register (IBAD) to define its slave address.

3. Set the IBEN bit of the IIC Bus Control Register (IBCR) to enable the IIC interface system.

4. Modify the bits of the IIC Bus Control Register (IBCR) to select Master/Slave mode,
Transmit/Receive mode and interrupt enable or not.

5.1.2 Generation of START

After completion of the initialization procedure, serial data can be transmitted by selecting the 'master
transmitter' mode. If the device is connected to a multi-master bus system, the state of the IIC Bus Busy
bit (IBB) must be tested to check whether the serial bus is free.

If the bus is free (IBB=0), the start condition and the first byte (the slave address) can be sent. The data
written to the data register comprises the slave calling address and the LSB set to indicate the direction of
transfer required from the slave.

The bus free time (i.e., the time between a STOP condition and the following START condition) is built
into the hardware that generates the START cycle. Depending on the relative frequencies of the system
clock and the SCL period it may be necessary to wait until the IIC is busy after writing the calling address
to the IBDR before proceeding with the following instructions. This is illustrated in the following example.

An example of a program which generates the START signal and transmits the first byte of data (slave
address) is shown below:

5.1.3 Post-Transfer Software Response

Successful transmission or reception of a byte will set the TCF (data transferring) bit and the IBIF
(interrupt flag) bit in the IBSR status register. An interrupt service routine can be called by this action if

CHFLAG BRSET IBSR,#$20,* ;WAIT FOR IBB FLAG TO CLEAR

TXSTART BSET IBCR,#$30 ;SET TRANSMIT AND MASTER MODE;i.e. GENERATE START CONDITION

MOVB CALLING,IBDR ;TRANSMIT THE CALLING ADDRESS, D0=R/W

IBFREE BRCLR IBSR,#$20,* ;WAIT FOR IBB FLAG TO SET
35

Block Guide — IIC V02.08
the IBIE (interrupt enable) bit in the IBCR control register is set. The IBIF (interrupt flag) bit can be
cleared by writing 1 (in the interrupt service routine, if interrupts are used).

The TCF bit will be cleared to indicate data transfer in progress by reading the IBDR data register in
receive mode or writing the IBDR in transmit mode. The TCF bit should not be used as a data transfer
complete flag as the flag timing is dependent on a number of factors including the IIC bus frequency. This
bit may not conclusively provide an indication of a transfer complete situation. It is recommended that
transfer complete situations are detected using the IBIF flag

Software may service the IIC I/O in the main program by monitoring the IBIF bit if the interrupt function
is disabled. Note that polling should monitor the IBIF bit rather than the TCF bit since their operation is
different when arbitration is lost.

Note that when an interrupt occurs at the end of the address cycle the master will always be in transmit
mode, i.e. the address is transmitted. If master receive mode is required, indicated by R/W bit in IBDR,
then the Tx/Rx bit should be toggled at this stage.

During slave mode address cycles (IAAS=1) the SRW bit in the status register is read to determine the
direction of the subsequent transfer and the Tx/Rx bit is programmed accordingly. For slave mode data
cycles (IAAS=0) the SRW bit is not valid, the Tx/Rx bit in the control register should be read to determine
the direction of the current transfer.

The following is an example of a software response by a 'master transmitter' in the interrupt routine .

5.1.4 Generation of STOP

A data transfer ends with a STOP signal generated by the 'master' device. A master transmitter can simply
generate a STOP signal after all the data has been transmitted. The following is an example showing how
a stop condition is generated by a master transmitter.

If a master receiver wants to terminate a data transfer, it must inform the slave transmitter by not
acknowledging the last byte of data which can be done by setting the transmit acknowledge bit (TXAK)

ISR BCLR IBSR,#$02 ;CLEAR THE IBIF FLAG
BRCLR IBCR,#$20,SLAVE ;BRANCH IF IN SLAVE MODE
BRCLR IBCR,#$10,RECEIVE ;BRANCH IF IN RECEIVE MODE
BRSET IBSR,#$01,END ;IF NO ACK, END OF TRANSMISSION

TRANSMIT MOVB DATABUF,IBDR ;TRANSMIT NEXT BYTE OF DATA

MASTX TST TXCNT ;GET VALUE FROM THE TRANSMITING COUNTER
BEQ END ;END IF NO MORE DATA
BRSET IBSR,#$01,END ;END IF NO ACK
MOVB DATABUF,IBDR ;TRANSMIT NEXT BYTE OF DATA
DEC TXCNT ;DECREASE THE TXCNT
BRA EMASTX ;EXIT

END BCLR IBCR,#$20 ;GENERATE A STOP CONDITION
EMASTX RTI ;RETURN FROM INTERRUPT
36

Block Guide — IIC V02.08
before reading the 2nd last byte of data. Before reading the last byte of data, a STOP signal must be
generated first. The following is an example showing how a STOP signal is generated by a master receiver.

5.1.5 Generation of Repeated START

At the end of data transfer, if the master still wants to communicate on the bus, it can generate another
START signal followed by another slave address without first generating a STOP signal. A program
example is as shown.

5.1.6 Slave Mode

In the slave interrupt service routine, the module addressed as slave bit (IAAS) should be tested to check
if a calling of its own address has just been received . If IAAS is set, software should set the
transmit/receive mode select bit (Tx/Rx bit of IBCR) according to the R/W command bit (SRW). Writing
to the IBCR clears the IAAS automatically. Note that the only time IAAS is read as set is from the interrupt
at the end of the address cycle where an address match occurred, interrupts resulting from subsequent data
transfers will have IAAS cleared. A data transfer may now be initiated by writing information to IBDR,
for slave transmits, or dummy reading from IBDR, in slave receive mode. The slave will drive SCL low
in-between byte transfers, SCL is released when the IBDR is accessed in the required mode.

In slave transmitter routine, the received acknowledge bit (RXAK) must be tested before transmitting the
next byte of data. Setting RXAK means an 'end of data' signal from the master receiver, after which it must
be switched from transmitter mode to receiver mode by software. A dummy read then releases the SCL
line so that the master can generate a STOP signal.

MASR DEC RXCNT ;DECREASE THE RXCNT
BEQ ENMASR ;LAST BYTE TO BE READ
MOVB RXCNT,D1 ;CHECK SECOND LAST BYTE
DEC D1 ;TO BE READ
BNE NXMAR ;NOT LAST OR SECOND LAST

LAMAR BSET IBCR,#$08 ;SECOND LAST, DISABLE ACK
;TRANSMITTING

BRA NXMAR
ENMASR BCLR IBCR,#$20 ;LAST ONE, GENERATE ‘STOP’ SIGNAL
NXMAR MOVB IBDR,RXBUF ;READ DATA AND STORE

RTI

RESTART BSET IBCR,#$04 ;ANOTHER START (RESTART)
MOVB CALLING,IBDR ;TRANSMIT THE CALLING ADDRESS;D0=R/W
37

Block Guide — IIC V02.08
5.1.7 Arbitration Lost

If several masters try to engage the bus simultaneously, only one master wins and the others lose
arbitration. The devices which lost arbitration are immediately switched to slave receive mode by the
hardware. Their data output to the SDA line is stopped, but SCL is still generated until the end of the byte
during which arbitration was lost. An interrupt occurs at the falling edge of the ninth clock of this transfer
with IBAL=1 and MS/SL=0. If one master attempts to start transmission while the bus is being engaged
by another master, the hardware will inhibit the transmission; switch the MS/SL bit from 1 to 0 without
generating STOP condition; generate an interrupt to CPU and set the IBAL to indicate that the attempt to
engage the bus is failed. When considering these cases, the slave service routine should test the IBAL first
and the software should clear the IBAL bit if it is set.
38

Block Guide — IIC V02.08
Figure 5-1 Flow-Chart of Typical IIC Interrupt Routine

Clear

Master
Mode

?

Tx/Rx
?

Last Byte
Transmitted

?

RXAK=0
?

End Of
Addr Cycle
(Master Rx)

?

Write Next
Byte To IBDR

Switch To
Rx Mode

Dummy Read
From IBDR

Generate
Stop Signal

Read Data
From IBDR
And Store

Set TXAK =1 Generate
Stop Signal

2nd Last
Byte To Be Read

?

Last
Byte To Be Read

?

Arbitration
Lost

?

Clear IBAL

IAAS=1
?

IAAS=1
?

SRW=1
?

TX/RX
?

Set TX
Mode

Write Data
To IBDR

Set RX
Mode

Dummy Read
From IBDR

ACK From
Receiver

?

Tx Next
Byte

Read Data
From IBDR
And Store

Switch To
Rx Mode

Dummy Read
From IBDR

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

N

IBIF

Address Transfer Data Transfer
39

Block Guide — IIC V02.08
Section 6 Resets

6.1 General

The reset state of each individual bit is listed within the Register Description section (see Section 3
Memory Map/Register Definition) which details the registers and their bit-fields.
40

Block Guide — IIC V02.08
Section 7 Interrupts

7.1 General

IIC uses only one interrupt vector.

Table 7-1 Interrupt Summary

7.2 Interrupt Description

Internally there are three types of interrupts in IIC. The interrupt service routine can determine the interrupt
type by reading the Status Register.

IIC Interrupt can be generated on

1. Arbitration Lost condition (IBAL bit set)

2. Byte Transfer condition (TCF bit set)

3. Address Detect condition (IAAS bit set)

The IIC interrupt is enabled by the IBIE bit in the IIC Control Register. It must be cleared by writing ‘1’
to the IBIF bit in the interrupt service routine.

Interrupt Offset Vector Priority Source Description

IIC
Interrupt

- - -
IBAL, TCF, IAAS

bits in IBSR
register

When either of IBAL, TCF or IAAS bits is set
may cause an interrupt based on Arbitration
lost, Transfer Complete or Address Detect
conditions.
41

Block Guide — IIC V02.08
42

Block Guide — S12IICV2/D V02.08
43

Block Guide — S12IICV2/D V02.08
44

Block Guide — IIC V02.08
Block Guide End Sheet
45

Block Guide — IIC V02.08
FINAL PAGE OF
46

PAGES
46

MOTOROLA.COM/SEMICONDUCTORS

HCS12
Microcontrollers

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

S12INTV1/D
Rev. 1.00

Interrupt (INT)
Module V1

5/2003

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12INT V1

2

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc. © Motorola, Inc., 2003

Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

1.02 5/1/2003 5/1/2003 John Langan

Creation of block user guide from core user guide version 1.5
(Oct. 12, 2001). Changes include: updating format and making
end-customer friendly.
Original release.

B
lock G

uide —
 S

12IN
T

 V
1

TROLLED COPY" IN RED

T
able of C

ontents
PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CON

3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12INT V1
List of Figures

Figure 1-1 Interrupt Block Diagram. 5

Figure 3-1 Interrupt Register Summary. 11

Figure 3-2 Interrupt Test Control Register (ITCR). 11

Figure 3-3 Interrupt TEST Registers (ITEST) . 12

Figure 3-4 Highest Priority I Interrupt Register (HPRIO). 13

List of Tables

Table 4-1 Exception Vector Map and Priority. 16

Section 1 Introduction to Interrupt (INT)

1.1 Overview. 8

1.2 Features . 8

1.3 Modes of Operation . 8

1.3.1 Normal Operation. 8

1.3.2 Special Operation. 8

1.3.3 Emulation Modes . 9

1.4 Low-Power Options . 9

1.4.1 Run Mode. 9

1.4.2 Wait Mode . 9

1.4.3 Stop Mode . 9

Section 2 External Signal Description

Section 3 Memory Map/Register Definition

3.1 Interrupt Test Control Register . 13

3.2 Interrupt Test Registers . 14

3.3 Highest Priority I Interrupt (Optional) . 15

Section 4 Functional Description

4.1 Interrupt Exception Requests . 17

4.1.1 Interrupt Registers . 17

4.1.2 Highest Priority I-Bit Maskable Interrupt. 17

4.1.3 Interrupt Priority Decoder . 17
4

Block Guide — S12INT V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

4.2 Reset Exception Requests . 18

4.3 Exception Priority . 18
5

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12IN

T
 V

1

6

Block Guide — S12INT V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
Section 1 Introduction to Interrupt (INT)

This section describes the functionality of the Interrupt (INT) sub-block of the S12 Core Platform.

A block diagram of the Interrupt sub-block is shown inFigure 1-1 .

Figure 1-1 Interrupt Block Diagram

HPRIO (OPTIONAL)

INT

PRIORITY DECODER

VECTOR REQUEST

INTERRUPTS

RESET FLAGS

WRITE DATA BUS

H
PR

IO
 V

EC
TO

R
XMASK

IMASK

QUALIFIED

INTERRUPT INPUT REGISTERS

INTERRUPTS

AND CONTROL REGISTERS

HIGHEST PRIORITY
I-INTERRUPT

READ DATA BUS

WAKEUP

VECTOR ADDRESS

INTERRUPT PENDING
7

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12INT V1

licable
ts, a
nd
ests are

or

e

he

s that
1.1 Overview

The Interrupt sub-block decodes the priority of all system exception requests and provides the app
vector for processing the exception. The INT supports I-bit maskable and X-bit maskable interrup
nonmaskable Unimplemented Opcode Trap, a nonmaskable software interrupt (SWI) or Backgrou
Debug Mode request, and three system reset vector requests. All interrupt related exception requ
handled by the Interrupt sub-block (INT).

1.2 Features

The INT includes these features:

• Provides two to 122 I-bit maskable interrupt vectors ($FF00–$FFF2)

• Provides one X-bit maskable interrupt vector ($FFF4)

• Provides a nonmaskable software interrupt (SWI) or Background Debug Mode request vect
($FFF6)

• Provides a nonmaskable Unimplemented Opcode Trap (TRAP) vector ($FFF8)

• Provides three system reset vectors ($FFFA–$FFFE) (Reset, CMR, and COP)

• Determines the appropriate vector and drives it onto the address bus at the appropriate tim

• Signals the CPU that interrupts are pending

• Provides control registers which allow testing of interrupts

• Provides additional input signals which prevents requests for servicing I and X interrupts

• Wakes the system from stop or wait mode when an appropriate interrupt occurs or wheneverXIRQ
is active, even ifXIRQ is masked

• Provides asynchronous path for all I and X interrupts, ($FF00–$FFF4)

• (Optional) Selects and stores the highest priority I interrupt based on the value written into t
HPRIO register

1.3 Modes of Operation

The functionality of the INT sub-block in various modes of operation is discussed in the subsection
follow.

1.3.1 Normal Operation

The INT operates the same in all normal modes of operation.

1.3.2 Special Operation

Interrupts may be tested in special modes through the use of the interrupt test registers.
8

Block Guide — S12INT V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

ion of

ill be

ill be
1.3.3 Emulation Modes

The INT operates the same in emulation modes as in normal modes.

1.4 Low-Power Options

The INT does not contain any user-controlled options for reducing power consumption. The operat
the INT in low-power modes is discussed in the following subsections.

1.4.1 Run Mode

The INT does not contain any options for reducing power in run mode.

1.4.2 Wait Mode

Clocks to the INT can be shut off during system wait mode and the asynchronous interrupt path w
used to generate the wake-up signal upon recognition of a valid interrupt or anyXIRQ request.

1.4.3 Stop Mode

Clocks to the INT can be shut off during system stop mode and the asynchronous interrupt path w
used to generate the wake-up signal upon recognition of a valid interrupt or anyXIRQ request.
9

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12IN

T
 V

1

10

Block Guide — S12INT V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

eive
Section 2 External Signal Description

Most interfacing with the Interrupt sub-block is done within the Core. However, the Interrupt does rec
direct input from the Multiplexed External Bus Interface (MEBI) sub-block of the Core for theIRQ and
XIRQ pin data.
11

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12IN

T
 V

1

12

Block Guide — S12INT V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
Section 3 Memory Map/Register Definition

A summary of the registers associated with the Interrupt sub-block is shown inFigure 3-1 . Detailed
descriptions of the registers and associated bits are given in the subsections that follow.

Figure 3-1 Interrupt Register Summary

3.1 Interrupt Test Control Register

Figure 3-2 Interrupt Test Control Register (ITCR)

Read: see individual bit descriptions

Write: see individual bit descriptions

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0015 ITCR
Read 0 0 0

WRTINT ADR3 ADR2 ADR1 ADR0
Write

$0016 ITEST
Read

INTE INTC INTA INT8 INT6 INT4 INT2 INT0
Write

$001F HPRIO
Read

PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1
0

Write

= Unimplemented

Register address: Base + $0015

7 6 5 4 3 2 1 0

R 0 0 0
WRTINT ADR3 ADR2 ADR1 ADR0

W

Reset: 0 0 0 0 1 1 1 1

= Unimplemented or Reserved
13

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12INT V1

 the

errupt

ritten
ritten
ct

errupt
ill

of the
 one
an be
t
 this
WRTINT — Write to the Interrupt Test Registers

Read: anytime

Write: only in special modes and with I-bit mask and X-bit mask set.
1 = Disconnect the interrupt inputs from the priority decoder and use the values written into

ITEST registers instead.
0 = Disables writes to the test registers; reads of the test registers will return the state of the int

inputs.

NOTE: Any interrupts which are pending at the time that WRTINT is set will remain until
they are overwritten.

ADR3–ADR0 — Test Register Select Bits

Read: anytime

Write: anytime

These bits determine which test register is selected on a read or write. The hexadecimal value w
here will be the same as the upper nibble of the lower byte of the vector selects. That is, an “F” w
into ADR3–ADR0 will select vectors $FFFE–$FFF0 while a “7” written to ADR3–ADR0 will sele
vectors $FF7E–$FF70.

3.2 Interrupt Test Registers

Figure 3-3 Interrupt TEST Registers (ITEST)

Read: Only in special modes. Reads will return either the state of the interrupt inputs of the Int
sub-block (WRTINT = 0) or the values written into the TEST registers (WRTINT = 1). Reads w
always return zeroes in normal modes.

Write: Only in special modes and with WRTINT = 1 and CCR I mask = 1.

INTE–INT0 — Interrupt TEST Bits

These registers are used in special modes for testing the interrupt logic and priority independent
system configuration. Each bit is used to force a specific interrupt vector by writing it to a logic
state. Bits are named INTE through INT0 to indicate vectors $FFxE through $FFx0. These bits c
written only in special modes and only with the WRTINT bit set (logic one) in the Interrupt Tes
Control Register (ITCR). In addition, I interrupts must be masked using the I bit in the CCR. In

Register address: Base + $0016

7 6 5 4 3 2 1 0

R
INTE INTC INTA INT8 INT6 INT4 INT2 INT0

W

Reset: 0 0 0 0 0 0 0 0
14

Block Guide — S12INT V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

ts will
terrupt

isters
of the

riority
te of
 a non
hest
state, the interrupt input lines to the Interrupt sub-block will be disconnected and interrupt reques
be generated only by this register. These bits can also be read in special modes to view that an in
requested by a system block (such as a peripheral block) has reached the INT module.

There is a test register implemented for every 8 interrupts in the overall system. All of the test reg
share the same address and are individually selected using the value stored in the ADR3–ADR0 bits
Interrupt Test Control Register (ITCR).

NOTE: When ADR3–ADR0 have the value of $F, only bits 2–0 in the ITEST register will
be accessible. That is, vectors higher than $FFF4 cannot be tested using the test
registers and bits 7–3 will always read as a logic zero. If ADR3–ADR0 point to an
unimplemented test register, writes will have no effect and reads will always return
a logic zero value.

3.3 Highest Priority I Interrupt (Optional)

Figure 3-4 Highest Priority I Interrupt Register (HPRIO)

Read: anytime

Write: only if I mask in CCR = 1

PSEL7–PSEL1 — Highest Priority I Interrupt Select Bits

The state of these bits determines which I-bit maskable interrupt will be promoted to highest p
(of the I-bit maskable interrupts). To promote an interrupt, the user writes the least significant by
the associated interrupt vector address to this register. If an unimplemented vector address or
I-bit masked vector address (value higher than $F2) is written, IRQ ($FFF2) will be the default hig
priority interrupt.

Register address: Base + $001F

7 6 5 4 3 2 1 0

R
PSEL7 PSEL6 PSEL5 PSEL4 PSEL3 PSEL2 PSEL1

0

W

Reseet: 1 1 1 1 0 0 1 0

= Unimplemented or Reserved
15

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12IN

T
 V

1

16

Block Guide — S12INT V1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

lude
priority

s
te

kable
s and
aces

n the
pt

riority
In this
ad of

r the
of the
errupt
errupt
Section 4 Functional Description

The Interrupt sub-block processes all exception requests made by the CPU. These exceptions inc
interrupt vector requests and reset vector requests. Each of these exception types and their overall
level is discussed in the subsections below.

4.1 Interrupt Exception Requests

As shown in the block diagram inFigure 1-1 , the INT contains a register block to provide interrupt statu
and control, an optional Highest Priority I Interrupt (HPRIO) block, and a priority decoder to evalua
whether pending interrupts are valid and assess their priority.

4.1.1 Interrupt Registers

The INT registers are accessible only in special modes of operation and function as described in
3.1 Interrupt Test Control Register and3.2 Interrupt Test Registers previously.

4.1.2 Highest Priority I-Bit Maskable Interrupt

When the optional HPRIO block is implemented, the user is allowed to promote a single I-bit mas
interrupt to be the highest priority I interrupt. The HPRIO evaluates all interrupt exception request
passes the HPRIO vector to the priority decoder if the highest priority I interrupt is active. RTI repl
the promoted interrupt source.

4.1.3 Interrupt Priority Decoder

The priority decoder evaluates all interrupts pending and determines their validity and priority. Whe
CPU requests an interrupt vector, the decoder will provide the vector for the highest priority interru
request. Because the vector is not supplied until the CPU requests it, it is possible that a higher p
interrupt request could override the original exception that caused the CPU to request the vector.
case, the CPU will receive the highest priority vector and the system will process this exception inste
the original request.

NOTE: Care must be taken to ensure that all exception requests remain active until the
system begins execution of the applicable service routine; otherwise, the exception
request may not get processed.

If for any reason the interrupt source is unknown (e.g., an interrupt request becomes inactive afte
interrupt has been recognized but prior to the vector request), the vector address will default to that
last valid interrupt that existed during the particular interrupt sequence. If the CPU requests an int
vector when there has never been a pending interrupt request, the INT will provide the Software Int
(SWI) vector address.
17

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12INT V1

eset
tion

provide

quest
4.2 Reset Exception Requests

The INT supports three system reset exception request types: normal system reset or power-on-r
request, Crystal Monitor reset request, and COP Watchdog reset request. The type of reset excep
request must be decoded by the system and the proper request made to the Core. The INT will then
the service routine address for the type of reset requested.

4.3 Exception Priority

The priority (from highest to lowest) and address of all exception vectors issued by the INT upon re
by the CPU is shown inTable 4-1 .

Table 4-1 Exception Vector Map and Priority

Vector Address Source

$FFFE–$FFFF System reset

$FFFC–$FFFD Crystal monitor reset

$FFFA–$FFFB COP reset

$FFF8–$FFF9 Unimplemented opcode trap

$FFF6–$FFF7 Software interrupt instruction (SWI) or BDM vector request

$FFF4–$FFF5 XIRQ signal

$FFF2–$FFF3 IRQ signal

$FFF0–$FF00 Device-specific I-bit maskable interrupt sources (priority in descending order)
18

TROLLED COPY" IN RED

B
lock G

uide —
 S

12IN
T

 V
1

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CON

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
 HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

S12INTV1/D
Rev. 1.00
5/2003

Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

MOTOROLA.COM/SEMICONDUCTORS

HCS12
Microcontrollers

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

S12MEBIV3/D
Rev. 3.00

Multiplexed External
Bus Interface (MEBI)

Block User Guide

Module V3

2/2003

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3

2

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2003

Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

3.00 2/5/2003 2/5/2003 John Langan Original release

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Table of Contents

Section 1 Introduction

1.1 Overview. 6

1.2 Features . 6

1.3 Modes of Operation . 6

Section 2 External Signal Description

2.1 Overview. 9

2.2 Detailed Signal Descriptions. 11

Section 3 Memory Map/Register Definition

3.1 Register Descriptions . 14

3.1.1 Port A Data Register (PORTA) . 14

3.1.2 Port B Data Register (PORTB) . 15

3.1.3 Data Direction Register A (DDRA) . 15

3.1.4 Data Direction Register B (DDRB) . 16

3.1.5 Reserved Registers . 17

3.1.6 Port E Data Register (PORTE) . 17

3.1.7 Data Direction Register E (DDRE) . 18

3.1.8 Port E Assignment Register (PEAR) . 19

3.1.9 MODE Register (MODE) . 21

3.1.10 Pull-Up Control Register (PUCR). 24

3.1.11 Reduced Drive Register (RDRIV) . 25

3.1.12 External Bus Interface Control Register (EBICTL). 26

3.1.13 Reserved Register . 27

3.1.14 IRQ Control Register (IRQCR). 27

3.1.15 Port K Data Register (PORTK). 28

3.1.16 Port K Data Direction Register (DDRK) . 29

Section 4 Functional Description

4.1 External Bus Control. 31

4.1.1 Detecting Access Type from External Signals . 31

4.1.2 Stretched Bus Cycles. 32

4.2 External Data Bus Interface . 32

4.2.1 Internal Visibility . 32
3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
4.2.2 Secure Mode . 32

4.3 Control . 33

4.3.1 Low-Power Options . 33

4.3.1.1 Run Mode . 33

4.3.1.2 Wait Mode . 33

4.3.1.3 Stop Mode . 33

4.4 Registers . 33

List of Figures

Figure 1-1 MEBI Block Diagram . 5

Figure 3-1 MEBI Register Map Summary . 13

Figure 3-2 Port A Data Register (PORTA) . 14

Figure 3-3 Port B Data Register (PORTB) . 15

Figure 3-4 Data Direction Register A (DDRA). 15

Figure 3-5 Data Direction Register B (DDRB). 16

Figure 3-6 Reserved Registers . 17

Figure 3-7 Port E Data Register (PORTE) . 17

Figure 3-8 Data Direction Register E (DDRE). 18

Figure 3-9 Port E Assignment Register (PEAR) . 19

Figure 3-10 MODE Register (MODE) . 21

Figure 3-11 Pullup Control Register (PUCR) . 24

Figure 3-12 Reduced Drive Register (RDRIV) . 25

Figure 3-13 External Bus Interface Control Register (EBICTL) . 26

Figure 3-14 Reserved Register . 27

Figure 3-15 IRQ Control Register (IRQCR) . 27

Figure 3-16 Port K Data Register (PORTK) . 28

Figure 3-17 Port K Data Direction Register (DDRK) . 29

List of Tables

Table 2-1 External System Pins Associated With MEBI . 9

Table 3-1 MODC, MODB, and MODA Write Capability . 22

Table 3-2 Mode Select and State of Mode Bits . 23

Table 4-1 Access Type vs. Bus Control Pins. 31
4

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Section 1 Introduction

This section describes the functionality of the Multiplexed External Bus Interface (MEBI) sub-block of

the S12 Core Platform. The functionality of the module is closely coupled with the S12 CPU and the

Memory Map Controller (MMC) sub-blocks.

Figure 1-1 is a block diagram of the MEBI. In Figure 1-1, the signals on the right hand side represent

pins that are accessible externally. On some chips, these may not all be bonded out.

Figure 1-1 MEBI Block Diagram

C
O

N
TR

O
L

REGISTERS

PO
RT

 K
PO

RT
 E

PO
RT

 A

D
D

R
 K

D
D

R
 E

D
D

R
 A

PO
RT

 B

D
D

R
 B

8

8

6

8

16

16

16 DATA

8

8

8

8

8

8

8

8

8

16

16

16

16

8

2
PE7–PE2/(BUS SIGNALS)

PE1/IRQ
PE0/XIRQ

BKGD/...

PK7–PK0/CS.../XA...mmccs.../mmcxa...

extbdm

altsz8
altrw

irq_t4
xirq_t4

ab[15:0]
int_mem_sel

rw
sz8

cpu_pipe[1:0]

mdrste

db[15:0]

clock

reg_select

reset

altab[15:0]

altwdb[15:0]

altrdb[15:0] EXTERNAL
DATA BUS

INTERFACE

PA7–PA0/A15–A8/
D15–D8/D7–D0

PB7–PB0/A7–A0/D7–D0

EXTERNAL
BUS CONTROL

SYNC/CAPTURE

PORT K
CONTROL

BK
G

D
 P

IN
IN

TE
R

FA
C

E

5

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
1.1 Overview

The MEBI sub-block of the Core serves to provide access and/or visibility to internal Core data

manipulation operations including timing reference information at the external boundary of the Core

and/or system. Depending upon the system operating mode and the state of bits within the control registers

of the MEBI, the internal 16-bit read and write data operations will be represented in 8-bit or 16-bit

accesses externally. Using control information from other blocks within the system, the MEBI will

determine the appropriate type of data access to be generated.

1.2 Features

The block name includes these distinctive features:

• External bus controller with four 8-bit Ports A,B, E, and K

• Data and data direction registers for Ports A, B, E, and K when used as general-purpose I/O

• Control register to enable/disable alternate functions on Ports E and K

• Mode control register

• Control register to enable/disable pull-ups on Ports A, B, E, and K

• Control register to enable/disable reduced output drive on Ports A, B, E, and K

• Control register to configure external clock behavior

• Control register to configure IRQ pin operation

• Logic to capture and synchronize external interrupt pin inputs

1.3 Modes of Operation

• Normal Expanded Wide Mode

Ports A and B are configured as a 16-bit multiplexed address and data bus and Port E provides bus

control and status signals. This mode allows 16-bit external memory and peripheral devices to be

interfaced to the system.

• Normal Expanded Narrow Mode

Ports A and B are configured as a 16-bit address bus and Port A is multiplexed with 8-bit data.

Port E provides bus control and status signals. This mode allows 8-bit external memory and

peripheral devices to be interfaced to the system.

• Normal Single-Chip Mode

There is no external expansion bus in this mode. The processor program is executed from internal

memory. Ports A, B, K, and most of E are available as general-purpose I/O.
6

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

• Special Single-Chip Mode

This mode is generally used for debugging single-chip operation, boot-strapping, or security related

operations. The active background mode is in control of CPU execution and BDM firmware is

waiting for additional serial commands through the BKGD pin. There is no external expansion bus

after reset in this mode.

• Emulation Expanded Wide Mode

Developers use this mode for emulation systems in which the users target application is Normal

Expanded Wide Mode.

• Emulation Expanded Narrow Mode

Developers use this mode for emulation systems in which the users target application is Normal

Expanded Narrow Mode.

• Special Test Mode

Ports A and B are configured as a 16-bit multiplexed address and data bus and Port E provides bus

control and status signals. In special test mode, the write protection of many control bits is lifted so

that they can be thoroughly tested without needing to go through reset.

• Special Peripheral Mode

This mode is intended for Motorola factory testing of the system. The CPU is inactive and an

external (tester) bus master drives address, data, and bus control signals.
7

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lo
ck G

u
id

e —
 S

12M
E

B
I V

3

8

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Section 2 External Signal Description

2.1 Overview

In typical implementations, the MEBI sub-block of the Core interfaces directly with external system pins.

Some pins may not be bonded out in all implementations.

Table 2-1 outlines the pin names and functions and gives a brief description of their operation Reset state

of these pins and associated pull-ups or pull-downs is dependent on the mode of operation and on the

integration of this block at the chip level (chip dependent).

.
Table 2-1 External System Pins Associated With MEBI (Sheet 1 of 3)

Pin Name Pin Functions Description

BKGD/MODC/
TAGHI

MODC
At the rising edge on RESET, the state of this pin is registered into the

MODC bit to set the mode. (This pin always has an internal pullup.)

BKGD
Pseudo open-drain communication pin for the single-wire background

debug mode. There is an internal pull-up resistor on this pin.

TAGHI
When instruction tagging is on, a zero at the falling edge of E tags the

high half of the instruction word being read into the instruction queue.

PA7/A15/D15/D7
thru

PA0/A8/D8/D0

PA7–PA0 General-purpose I/O pins, see PORTA and DDRA registers.

A15–A8
High-order address lines multiplexed during ECLK low. Outputs except in

special peripheral mode where they are inputs from an external tester
system.

D15–D8

High-order bidirectional data lines multiplexed during ECLK high in
expanded wide modes, special peripheral mode, and visible internal
accesses (IVIS = 1) in emulation expanded narrow mode. Direction of
data transfer is generally indicated by R/W.

D15/D7
thru

D8/D0

Alternate high-order and low-order bytes of the bidirectional data lines
multiplexed during ECLK high in expanded narrow modes and narrow
accesses in wide modes. Direction of data transfer is generally
indicated by R/W.

PB7/A7/D7
thru

PB0/A0/D0

PB7–PB0 General-purpose I/O pins, see PORTB and DDRB registers.

A7–A0
Low-order address lines multiplexed during ECLK low. Outputs except in

special peripheral mode where they are inputs from an external tester
system.

D7–D0

Low-order bidirectional data lines multiplexed during ECLK high in
expanded wide modes, special peripheral mode, and visible internal
accesses (with IVIS = 1) in emulation expanded narrow mode. Direction
of data transfer is generally indicated by R/W.

PE7/NOACC

PE7 General-purpose I/O pin, see PORTE and DDRE registers.

NOACC
CPU No Access output. Indicates whether the current cycle is a free

cycle. Only available in expanded modes.
9

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
PE6/IPIPE1/
MODB/CLKTO

MODB
At the rising edge of RESET, the state of this pin is registered into the

MODB bit to set the mode.

PE6 General-purpose I/O pin, see PORTE and DDRE registers.

IPIPE1 Instruction pipe status bit 1, enabled by PIPOE bit in PEAR.

CLKTO
System Clock Test Output. Only available in special modes. PIPOE = 1

overrides this function. The enable for this function is in the clock
module.

PE5/IPIPE0/MO
DA

MODA
At the rising edge on RESET, the state of this pin is registered into the

MODA bit to set the mode.

PE5 General-purpose I/O pin, see PORTE and DDRE registers.

IPIPE0 Instruction pipe status bit 0, enabled by PIPOE bit in PEAR.

PE4/ECLK

PE4 General-purpose I/O pin, see PORTE and DDRE registers.

ECLK

Bus timing reference clock, can operate as a free-running clock at the
system clock rate or to produce one low-high clock per visible access,
with the high period stretched for slow accesses. ECLK is controlled by
the NECLK bit in PEAR, the IVIS bit in MODE, and the ESTR bit in
EBICTL.

PE3/LSTRB/
TAGLO

PE3 General-purpose I/O pin, see PORTE and DDRE registers.

LSTRB Low strobe bar, zero indicates valid data on D7–D0.

SZ8
In special peripheral mode, this pin is an input indicating the size of the

data transfer (0 = 16-bit; 1 = 8-bit).

TAGLO

In expanded wide mode or emulation narrow modes, when instruction
tagging is on and low strobe is enabled, a zero at the falling edge of E
tags the low half of the instruction word being read into the instruction
queue.

PE2/R/W

PE2 General-purpose I/O pin, see PORTE and DDRE registers.

R/W
Read/write, indicates the direction of internal data transfers. This is an

output except in special peripheral mode where it is an input.

PE1/IRQ
PE1 General-purpose input-only pin, can be read even if IRQ enabled.

IRQ Maskable interrupt request, can be level sensitive or edge sensitive.

PE0/XIRQ
PE0 General-purpose input-only pin.

XIRQ Non-maskable interrupt input.

PK7/ECS
PK7 General-purpose I/O pin, see PORTK and DDRK registers.

ECS Emulation chip select

PK6/XCS
PK6 General-purpose I/O pin, see PORTK and DDRK registers.

XCS External data chip select

Table 2-1 External System Pins Associated With MEBI (Sheet 2 of 3)

Pin Name Pin Functions Description
10

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

2.2 Detailed Signal Descriptions

Detailed descriptions of these pins can be found in the device specification for the particular chip being

used.

PK5/X19
thru

PK0/X14

PK5–PK0 General-purpose I/O pins, see PORTK and DDRK registers.

X19–X14 Memory expansion addresses

Table 2-1 External System Pins Associated With MEBI (Sheet 3 of 3)

Pin Name Pin Functions Description
11

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lo
ck G

u
id

e —
 S

12M
E

B
I V

3

12

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Section 3 Memory Map/Register Definition

A summary of the registers associated with the MEBI sub-block is shown in Figure 3-1. Detailed

descriptions of the registers and bits are given in the subsections that follow.On most chips the registers

are mappable. Therefore, the upper bits may not be all zeros as shown in the table and descriptions.

Figure 3-1 MEBI Register Map Summary

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0000 PORTA
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

$0001 PORTB
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

$0002 DDRA
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

$0003 DDRB
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

$0004 Reserved
Read 0 0 0 0 0 0 0 0
Write

$0005 Reserved
Read 0 0 0 0 0 0 0 0
Write

$0006 Reserved
Read 0 0 0 0 0 0 0 0
Write

$0007 Reserved
Read 0 0 0 0 0 0 0 0
Write

$0008 PORTE
Read

Bit 7 6 5 4 3 2
1 Bit 0

Write

$0009 DDRE
Read

Bit 7 6 5 4 3 2
0 0

Write

$000A PEAR
Read

NOACCE
0

PIPOE NECLK LSTRE RDWE
0 0

Write

$000B MODE
Read

MODC MODB MODA
0

IVIS
0

EMK EME
Write

$000C PUCR
Read

PUPKE
0 0

PUPEE
0 0

PUPBE PUPAE
Write

$000D RDRIV
Read

RDPK
0 0

RDPE
0 0

RDPB RDPA
Write

$000E EBICTL
Read 0 0 0 0 0 0 0

ESTR
Write

$000F Reserved
Read 0 0 0 0 0 0 0 0
Write

$001E IRQCR
Read

IRQE IRQEN
0 0 0 0 0 0

Write

$0032 PORTK
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

$0033 DDRK
Read

Bit 7 6 5 4 3 2 1 Bit 0
Write

 = Unimplemented
13

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
3.1 Register Descriptions

3.1.1 Port A Data Register (PORTA)

Read: anytime when register is in the map

Write: anytime when register is in the map

Port A bits 7 through 0 are associated with address lines A15 through A8 respectively and data lines

D15/D7 through D8/D0 respectively. When this port is not used for external addresses such as in

single-chip mode, these pins can be used as general-purpose I/O. Data Direction Register A (DDRA)

determines the primary direction of each pin. DDRA also determines the source of data for a read of

PORTA.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

NOTE: To ensure that you read the value present on the PORTA pins, always wait at least
one cycle after writing to the DDRA register before reading from the PORTA
register.

Address: Base + $__00

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: — — — — — — — —

Single Chip: PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Expanded Wide,
Emulation Narrow with
IVIS, and Peripheral:

AB/DB15 AB/DB14 AB/DB13 AB/DB12 AB/DB11 AB/DB10 AB/DB9 AB/DB8

Expanded Narrow:
AB15 and
DB15/DB7

AB14 and
DB14/DB6

AB13 and
DB13/DB5

AB12 and
DB12/DB4

AB11 and
DB11/DB3

AB10 and
DB10/DB2

AB9 and
DB9/DB1

AB8 and
DB8/DB0

Figure 3-2 Port A Data Register (PORTA)
14

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

3.1.2 Port B Data Register (PORTB)

Read: anytime when register is in the map

Write: anytime when register is in the map

Port B bits 7 through 0 are associated with address lines A7 through A0 respectively and data lines D7

through D0 respectively. When this port is not used for external addresses, such as in single-chip mode,

these pins can be used as general-purpose I/O. Data Direction Register B (DDRB) determines the primary

direction of each pin. DDRB also determines the source of data for a read of PORTB.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

NOTE: To ensure that you read the value present on the PORTB pins, always wait at least
one cycle after writing to the DDRB register before reading from the PORTB
register.

3.1.3 Data Direction Register A (DDRA)

Read: anytime when register is in the map

Write: anytime when register is in the map

Address: Base + $__01

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: — — — — — — — —

Single Chip: PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

Expanded Wide,
Emulation Narrow with
IVIS, and Peripheral:

AB/DB7 AB/DB6 AB/DB5 AB/DB4 AB/DB3 AB/DB2 AB/DB1 AB/DB0

Expanded Narrow: AB7 AB6 AB5 AB4 AB3 AB2 AB1 AB0

Figure 3-3 Port B Data Register (PORTB)

Address: Base + $__02

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-4 Data Direction Register A (DDRA)
15

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
This register controls the data direction for Port A. When Port A is operating as a general-purpose I/O port,

DDRA determines the primary direction for each Port A pin. A “1” causes the associated port pin to be an

output and a “0” causes the associated pin to be a high-impedance input. The value in a DDR bit also

affects the source of data for reads of the corresponding PORTA register. If the DDR bit is zero (input) the

buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit state is

read.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally. It is reset to $00 so the DDR does not override the three-state control

signals.

DDRA7–DDRA0 — Data Direction Port A

1 = Configure the corresponding I/O pin as an output

0 = Configure the corresponding I/O pin as an input

3.1.4 Data Direction Register B (DDRB)

Read: anytime when register is in the map

Write: anytime when register is in the map

This register controls the data direction for Port B. When Port B is operating as a general-purpose I/O port,

DDRB determines the primary direction for each Port B pin. A “1” causes the associated port pin to be an

output and a “0” causes the associated pin to be a high-impedance input. The value in a DDR bit also

affects the source of data for reads of the corresponding PORTB register. If the DDR bit is zero (input) the

buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit state is

read.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally. It is reset to $00 so the DDR does not override the three-state control

signals.

DDRB7–DDRB0 — Data Direction Port B

1 = Configure the corresponding I/O pin as an output

0 = Configure the corresponding I/O pin as an input

Address: Base + $__03

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-5 Data Direction Register B (DDRB)
16

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

3.1.5 Reserved Registers

These register locations are not used (reserved). All unused registers and bits in this block return logic

zeros when read. Writes to these registers have no effect.

These registers are not in the on-chip map in special peripheral mode.

3.1.6 Port E Data Register (PORTE)

Read: anytime when register is in the map

Write: anytime when register is in the map

Port E is associated with external bus control signals and interrupt inputs. These include mode select

(MODB/IPIPE1, MODA/IPIPE0), E clock, size (LSTRB/TAGLO), read/write (R/W), IRQ, and XIRQ.

When not used for one of these specific functions, Port E pins 7–2 can be used as general-purpose I/O and

pins 1–0 can be used as general-purpose input. The Port E Assignment Register (PEAR) selects the

function of each pin and DDRE determines whether each pin is an input or output when it is configured to

be general-purpose I/O. DDRE also determines the source of data for a read of PORTE.

Some of these pins have software selectable pull-ups (PE7, ECLK, LSTRB, R/W, IRQ, and XIRQ).

A single control bit enables the pull-ups for all of these pins when they are configured as inputs

Address: Base + $__04 through $__07

BIT 7 6 5 4 3 2 1 BIT 0

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-6 Reserved Registers

Address: Base + $__08

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 2

Bit 1 Bit 0

Write:

Reset: — — — — — — — —

Alternate
Pin Function:

NOACC
MODB

or IPIPE1
or CLKTO

MODA
or IPIPE0

ECLK
LSTRB

or TAGLO
R/W IRQ XIRQ

= Unimplemented

Figure 3-7 Port E Data Register (PORTE)
17

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
This register is not in the on-chip map in special peripheral mode or in expanded modes when the EME

bit is set. Therefore, these accesses will be echoed externally.

NOTE: It is unwise to write PORTE and DDRE as a word access. If you are changing
Port E pins from being inputs to outputs, the data may have extra transitions during
the write. It is best to initialize PORTE before enabling as outputs.

NOTE: To ensure that you read the value present on the PORTE pins, always wait at least
one cycle after writing to the DDRE register before reading from the PORTE
register.

3.1.7 Data Direction Register E (DDRE)

Read: anytime when register is in the map

Write: anytime when register is in the map

Data Direction Register E is associated with Port E. For bits in Port E that are configured as

general-purpose I/O lines, DDRE determines the primary direction of each of these pins. A “1” causes the

associated bit to be an output and a “0” causes the associated bit to be an input. Port E bit 1 (associated

with IRQ) and bit 0 (associated with XIRQ) cannot be configured as outputs. Port E, bits 1 and 0, can be

read regardless of whether the alternate interrupt function is enabled. The value in a DDR bit also affects

the source of data for reads of the corresponding PORTE register. If the DDR bit is zero (input) the

buffered pin input state is read. If the DDR bit is one (output) the associated port data register bit state is

read.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally. Also, it is not in the map in expanded modes while the EME control

bit is set.

DDRE7–DDRE2 — Data Direction Port E

1 = Configure the corresponding I/O pin as an output

0 = Configure the corresponding I/O pin as an input

NOTE: It is unwise to write PORTE and DDRE as a word access. If you are changing
Port E pins from inputs to outputs, the data may have extra transitions during the
write. It is best to initialize PORTE before enabling as outputs.

Address: Base + $__09

BIT 7 6 5 4 3 2 1 BIT 0

Read:
Bit 7 6 5 4 3 Bit 2

0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-8 Data Direction Register E (DDRE)
18

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

3.1.8 Port E Assignment Register (PEAR)

Read: anytime (provided this register is in the map).

Write: each bit has specific write conditions. Please refer to the descriptions of each bit on the following

pages.

Port E serves as general-purpose I/O or as system and bus control signals. The PEAR register is used to

choose between the general-purpose I/O function and the alternate control functions. When an alternate

control function is selected, the associated DDRE bits are overridden.

The reset condition of this register depends on the mode of operation because bus control signals are

needed immediately after reset in some modes. In normal single-chip mode, no external bus control signals

are needed so all of Port E is configured for general-purpose I/O. In normal expanded modes, only the E

clock is configured for its alternate bus control function and the other bits of Port E are configured for

general-purpose I/O. As the reset vector is located in external memory, the E clock is required for this

access. R/W is only needed by the system when there are external writable resources. If the normal

expanded system needs any other bus control signals, PEAR would need to be written before any access

that needed the additional signals. In special test and emulation modes, IPIPE1, IPIPE0, E, LSTRB, and

R/W are configured out of reset as bus control signals.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

Address: Base + $__0A

BIT 7 6 5 4 3 2 1 BIT 0

Read:
NOACCE

0
PIPOE NECLK LSTRE RDWE

0 0

Write:

Reset: 0 0 0 0 0 0 0 0
Special

Single Chip

Reset: 0 0 1 0 1 1 0 0 Special Test

Reset: 0 0 0 0 0 0 0 0 Peripheral

Reset: 1 0 1 0 1 1 0 0
Emulation

Expanded Narrow

Reset: 1 0 1 0 1 1 0 0
Emulation

Expanded Wide

Reset: 0 0 0 1 0 0 0 0
Normal

Single Chip

Reset: 0 0 0 0 0 0 0 0
Normal

Expanded Narrow

Reset: 0 0 0 0 0 0 0 0
Normal

Expanded Wide

= Unimplemented

Figure 3-9 Port E Assignment Register (PEAR)
19

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
NOACCE — CPU No Access Output Enable

Normal: write once

Emulation: write never

Special: write anytime

1 = The associated pin (Port E, bit 7) is output and indicates whether the cycle is a CPU free cycle.

0 = The associated pin (Port E, bit 7) is general-purpose I/O.

This bit has no effect in single-chip or special peripheral modes.

PIPOE — Pipe Status Signal Output Enable

Normal: write once

Emulation: write never

Special: write anytime.

1 = The associated pins (Port E, bits 6:5) are outputs and indicate the state of the instruction queue

0 = The associated pins (Port E, bits 6:5) are general-purpose I/O.

This bit has no effect in single-chip or special peripheral modes.

NECLK — No External E Clock

Normal and Special: write anytime

Emulation: write never

1 = The associated pin (Port E, bit 4) is a general-purpose I/O pin.

0 = The associated pin (Port E, bit 4) is the external E clock pin. External E clock is free-running if

ESTR = 0

External E clock is available as an output in all modes.

LSTRE — Low Strobe (LSTRB) Enable

Normal: write once

Emulation: write never

Special: write anytime.

1 = The associated pin (Port E, bit 3) is configured as the LSTRB bus control output. If BDM

tagging is enabled, TAGLO is multiplexed in on the rising edge of ECLK and LSTRB is driven

out on the falling edge of ECLK.

0 = The associated pin (Port E, bit 3) is a general-purpose I/O pin.

This bit has no effect in single-chip, peripheral, or normal expanded narrow modes.

NOTE: LSTRB is used during external writes. After reset in normal expanded mode, LSTRB
is disabled to provide an extra I/O pin. If LSTRB is needed, it should be enabled
before any external writes. External reads do not normally need LSTRB because all
16 data bits can be driven even if the system only needs 8 bits of data.
20

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

RDWE — Read/Write Enable

Normal: write once

Emulation: write never

Special: write anytime

1 = The associated pin (Port E, bit 2) is configured as the R/W pin

0 = The associated pin (Port E, bit 2) is a general-purpose I/O pin.

This bit has no effect in single-chip or special peripheral modes.

NOTE: R/W is used for external writes. After reset in normal expanded mode, R/W is
disabled to provide an extra I/O pin. If R/W is needed it should be enabled before
any external writes.

3.1.9 MODE Register (MODE)

Read: anytime (provided this register is in the map).

Write: each bit has specific write conditions. Please refer to the descriptions of each bit on the following

pages.

The MODE register is used to establish the operating mode and other miscellaneous functions (i.e.,

internal visibility and emulation of Port E and K).

Address: Base + $__0B

BIT 7 6 5 4 3 2 1 BIT 0

Read:
MODC MODB MODA

0
IVIS

0
EMK EME

Write:

Reset: 0 0 0 0 0 0 0 0 Special Single Chip

Reset: 0 0 1 0 1 0 1 1
Emulation

Expanded Narrow

Reset: 0 1 0 0 1 0 0 0 Special Test

Reset: 0 1 1 0 1 0 1 1
Emulation

Expanded Wide

Reset: 1 0 0 0 0 0 0 0 Normal Single Chip

Reset: 1 0 1 0 0 0 0 0
Normal

Expanded Narrow

Reset: 1 1 0 0 0 0 0 0 Peripheral

Reset: 1 1 1 0 0 0 0 0
Normal

Expanded Wide

= Unimplemented

Figure 3-10 MODE Register (MODE)
21

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
In special peripheral mode, this register is not accessible but it is reset as shown to system configuration

features. Changes to bits in the MODE register are delayed one cycle after the write.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

MODC, MODB, and MODA — Mode Select Bits

These bits indicate the current operating mode.

If MODA = 1, then MODC, MODB, and MODA are write never.

If MODC = MODA = 0, then MODC, MODB, and MODA are writable with the exception that you

cannot change to or from special peripheral mode

If MODC = 1, MODB = 0, and MODA = 0, then MODC is write never. MODB and MODA are

write once, except that you cannot change to special peripheral mode. From normal single-chip,

only normal expanded narrow and normal expanded wide modes are available.

Table 3-1 MODC, MODB, and MODA Write Capability(1)

NOTES:

1. No writes to the MOD bits are allowed while operating in a SECURE mode. For more details, refer to the device user guide.

MODC MODB MODA Mode MODx Write Capability

0 0 0 Special Single Chip
MODC, MODB, and MODA

write anytime but not to 110(2)

2. If you are in a special single-chip or special test mode and you write to this register, changing to normal single-chip mode,
then one allowed write to this register remains. If you write to normal expanded or emulation mode, then no writes remain.

0 0 1 Emulation Narrow No write

0 1 0 Special Test
MODC, MODB, and MODA

write anytime but not to 110(2)

0 1 1 Emulation Wide No write

1 0 0 Normal Single Chip
MODC write never,

MODB and MODA write once
but not to 110

1 0 1 Normal Expanded Narrow No write

1 1 0 Special Peripheral No write

1 1 1 Normal Expanded Wide No write
22

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

IVIS — Internal Visibility (for both read and write accesses)

This bit determines whether internal accesses generate a bus cycle that is visible on the external bus.

Normal: write once

Emulation: write never

Special: write anytime

1 = Internal bus operations are visible on external bus.

0 = No visibility of internal bus operations on external bus.

EMK — Emulate Port K

Normal: write once

Emulation: write never

Special: write anytime

1 = If in any expanded mode, PORTK and DDRK are removed from the memory map.

0 = PORTK and DDRK are in the memory map so Port K can be used for general-purpose I/O.

In single-chip modes, PORTK and DDRK are always in the map regardless of the state of this bit.

In special peripheral mode, PORTK and DDRK are never in the map regardless of the state of this bit.

EME — Emulate Port E

Normal and Emulation: write never

Special: write anytime

1 = If in any expanded mode or special peripheral mode, PORTE and DDRE are removed from the

memory map. Removing the registers from the map allows the user to emulate the function of

these registers externally.

0 = PORTE and DDRE are in the memory map so Port E can be used for general-purpose I/O.

In single-chip modes, PORTE and DDRE are always in the map regardless of the state of this bit.

Table 3-2 Mode Select and State of Mode Bits

Input BKGD
and

Bit MODC

Input
and

Bit MODB

Input
and

Bit MODA
Mode Description

0 0 0
Special Single Chip, BDM allowed and ACTIVE. BDM is “allowed” in

all other modes but a serial command is required to make BDM
“active”.

0 0 1 Emulation Expanded Narrow, BDM allowed

0 1 0 Special Test (Expanded Wide), BDM allowed

0 1 1 Emulation Expanded Wide, BDM allowed

1 0 0 Normal Single Chip, BDM allowed

1 0 1 Normal Expanded Narrow, BDM allowed

1 1 0
Peripheral, BDM allowed but bus operations would cause bus

conflicts
(must not be used)

1 1 1 Normal Expanded Wide, BDM allowed
23

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
3.1.10 Pull-Up Control Register (PUCR)

Read: anytime (provided this register is in the map).

Write: anytime (provided this register is in the map).

This register is used to select pull resistors for the pins associated with the core ports. Pull resistors are

assigned on a per-port basis and apply to any pin in the corresponding port that is currently configured as

an input. The polarity of these pull resistors is determined by chip integration. Please refer to the specific

device User’s Guide to determine the polarity of these resistors.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

NOTE: These bits have no effect when the associated pin(s) are outputs. (The pull resistors
are inactive.)

PUPKE — Pull-Up Port K Enable

1 = Enable pull resistors for Port K input pins.

0 = Port K pull resistors are disabled.

PUPEE — Pull-Up Port E Enable

1 = Enable pull resistors for Port E input pins bits 7, 4–0.

0 = Port E pull resistors on bits 7, 4–0 are disabled.

NOTE: Bits 5 and 6 of Port E have pull resistors which are only enabled during reset.
This bit has no effect on these pins.

PUPBE — Pull-Up Port B Enable

1 = Enable pull resistors for all Port B input pins.

0 = Port B pull resistors are disabled.

PUPAE — Pull-Up Port A Enable

1 = Enable pull resistors for all Port A input pins.

Address: Base + $__0C

BIT 7 6 5 4 3 2 1 BIT 0

Read:
PUPKE

0 0
PUPEE

0 0
PUPBE PUPAE

Write:

Reset:(1) 1 0 0 1 0 0 0 0

= Unimplemented

NOTES:
1. The default value of this parameter is shown. Please refer to the specific device User’s

Guide to determine the actual reset state of this register.

Figure 3-11 Pullup Control Register (PUCR)
24

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

0 = Port A pull resistors are disabled.

3.1.11 Reduced Drive Register (RDRIV)

Read: anytime (provided this register is in the map)

Write: anytime (provided this register is in the map)

This register is used to select reduced drive for the pins associated with the core ports. This gives reduced

power consumption and reduced RFI with a slight increase in transition time (depending on loading). This

feature would be used on ports which have a light loading. The reduced drive function is independent of

which function is being used on a particular port.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

RDPK — Reduced Drive of Port K

1 = All Port K output pins have reduced drive enabled.

0 = All Port K output pins have full drive enabled.

RDPE — Reduced Drive of Port E

1 = All Port E output pins have reduced drive enabled.

0 = All Port E output pins have full drive enabled.

RDPB — Reduced Drive of Port B

1 = All Port B output pins have reduced drive enabled.

0 = All Port B output pins have full drive enabled.

RDPA — Reduced Drive of Ports A

1 = All Port A output pins have reduced drive enabled.

0 = All Port A output pins have full drive enabled.

Address: Base + $__0D

BIT 7 6 5 4 3 2 1 BIT 0

Read:
RDPK

0 0
RDPE

0 0
RDPB RDPA

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-12 Reduced Drive Register (RDRIV)
25

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
3.1.12 External Bus Interface Control Register (EBICTL)

Read: anytime (provided this register is in the map)

Write: refer to individual bit descriptions below

The EBICTL register is used to control miscellaneous functions (i.e., stretching of external E clock).

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

ESTR — E Clock Stretches

This control bit determines whether the E clock behaves as a simple free-running clock or as a bus

control signal that is active only for external bus cycles.

Normal and Emulation: write once

Special: write anytime

1 = E stretches high during stretched external accesses and remains low during non-visible internal

accesses.

0 = E never stretches (always free running).

This bit has no effect in single-chip modes.

Address: Base + $__0E

BIT 7 6 5 4 3 2 1 BIT 0

Read: 0 0 0 0 0 0 0
ESTR

Write:

Reset: 0 0 0 0 0 0 0 0 Peripheral

Reset: 0 0 0 0 0 0 0 1 All other modes

= Unimplemented

Figure 3-13 External Bus Interface Control Register (EBICTL)
26

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

3.1.13 Reserved Register

This register location is not used (reserved). All bits in this register return logic zeros when read. Writes

to this register have no effect.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these

accesses will be echoed externally.

3.1.14 IRQ Control Register (IRQCR)

Read: see individual bit descriptions below

Write: see individual bit descriptions below

IRQE — IRQ Select Edge Sensitive Only

Special modes: read or write anytime

Normal and Emulation modes: read anytime, write once

1 = IRQ configured to respond only to falling edges. Falling edges on the IRQ pin will be detected

anytime IRQE = 1 and will be cleared only upon a reset or the servicing of the IRQ interrupt.

0 = IRQ configured for low level recognition.

IRQEN — External IRQ Enable

Normal, Emulation, and Special modes: read or write anytime

1 = External IRQ pin is connected to interrupt logic.

0 = External IRQ pin is disconnected from interrupt logic.

NOTE: When IRQEN = 0, the edge detect latch is disabled.

Address: Base + $__0F

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-14 Reserved Register

Address Base + $__1E

Bit 7 6 5 4 3 2 1 Bit 0

Read:
IRQE IRQEN

0 0 0 0 0 0

Write:

Reset: 0 1 0 0 0 0 0 0

= Unimplemented

Figure 3-15 IRQ Control Register (IRQCR)
27

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
3.1.15 Port K Data Register (PORTK).

Read: anytime

Write: anytime

This port is associated with the internal memory expansion emulation pins. When the port is not enabled

to emulate the internal memory expansion, the port pins are used as general-purpose I/O. When Port K is

operating as a general-purpose I/O port, DDRK determines the primary direction for each Port K pin.

A “1” causes the associated port pin to be an output and a “0” causes the associated pin to be a

high-impedance input. The value in a DDR bit also affects the source of data for reads of the corresponding

PORTK register. If the DDR bit is zero (input) the buffered pin input is read. If the DDR bit is one (output)

the output of the port data register is read.

This register is not in the map in peripheral or expanded modes while the EMK control bit in MODE

register is set. Therefore, these accesses will be echoed externally.

When inputs, these pins can be selected to be high impedance or pulled up, based upon the state of the

PUPKE bit in the PUCR register.

Bit 7 — Port K, Bit 7

This bit is used as an emulation chip select signal for the emulation of the internal memory expansion,

or as general-purpose I/O, depending upon the state of the EMK bit in the MODE register. While this

bit is used as a chip select, the external bit will return to its de-asserted state (VDD) for approximately

1/4 cycle just after the negative edge of ECLK, unless the external access is stretched and ECLK is

free-running (ESTR bit in EBICTL = 0). See the HCS12V1.5 MMC specification for additional details

on when this signal will be active.

Bit 6 — Port K, Bit 6

This bit is used as an external chip select signal for most external accesses that are not selected by ECS

(see the MMC specification for more details), depending upon the state the of the EMK bit in the

MODE register. While this bit is used as a chip select, the external pin will return to its de-asserted

state (VDD) for approximately 1/4 cycle just after the negative edge of ECLK, unless the external

access is stretched and ECLK is free-running (ESTR bit in EBICTL = 0).

Address: Base + $32

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 6 5 4 3 2 1 Bit 0

Write:

Alternate
Pin Function

ECS XCS XAB19 XAB18 XAB17 XAB16 XAB15 XAB14

Reset: — — — — — — — —

Figure 3-16 Port K Data Register (PORTK)
28

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

Bits 5–0 — Port K, Bits 5–0

These six bits are used to determine which FLASH/ROM or external memory array page is being

accessed. They can be viewed as expanded addresses XAB19–XAB14 of the 20-bit address used to

access up to1M byte internal FLASH/ROM or external memory array. Alternatively, these bits can be

used for general-purpose I/O depending upon the state of the EMK bit in the MODE register.

3.1.16 Port K Data Direction Register (DDRK)

Read: anytime.

Write: anytime.

This register determines the primary direction for each Port K pin configured as general-purpose I/O. This

register is not in the map in peripheral or expanded modes while the EMK control bit in MODE register

is set. Therefore, these accesses will be echoed externally.

DDRK7–DDRK0 — Data Direction Port K Bits

1 = Associated pin is an output

0 = Associated pin is a high-impedance input

NOTE: It is unwise to write PORTK and DDRK as a word access. If you are changing
Port K pins from inputs to outputs, the data may have extra transitions during the
write. It is best to initialize PORTK before enabling as outputs.

NOTE: To ensure that you read the correct value from the PORTK pins, always wait at
least one cycle after writing to the DDRK register before reading from the PORTK
register.

Address: Base + $33

Bit 7 6 5 4 3 2 1 Bit 0

Read:
Bit 7 Bit 6 5 4 3 2 1 Bit 0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-17 Port K Data Direction Register (DDRK)
29

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lo
ck G

u
id

e —
 S

12M
E

B
I V

3

30

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Section 4 Functional Description

There are four main sub-blocks within the MEBI:

• External bus control

• External data bus interface

• Control

• Registers

4.1 External Bus Control

The external bus control generates the miscellaneous control functions (pipe signals, ECLK, LSTRB, and

R/W) that will be sent external on Port E, bits 6–2. It also generates the external addresses.

4.1.1 Detecting Access Type from External Signals

The external signals LSTRB, R/W, and AB0 indicate the type of bus access that is taking place. Accesses

to the internal RAM module are the only type of access that would produce LSTRB = AB0 = 1, because

the internal RAM is specifically designed to allow misaligned 16-bit accesses in a single cycle. In these

cases the data for the address that was accessed is on the low half of the data bus and the data for

address + 1 is on the high half of the data bus. This is summarized in Table 4-1.

Table 4-1 Access Type vs. Bus Control Pins

LSTRB AB0 R/W Type of Access

1 0 1 8-bit read of an even address

0 1 1 8-bit read of an odd address

1 0 0 8-bit write of an even address

0 1 0 8-bit write of an odd address

0 0 1 16-bit read of an even address

1 1 1
16-bit read of an odd address

(low/high data swapped)

0 0 0 16-bit write to an even address

1 1 0
16-bit write to an odd address

(low/high data swapped)
31

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
Block Guide — S12MEBI V3
4.1.2 Stretched Bus Cycles

In order to allow fast internal bus cycles to coexist in a system with slower external memory resources, the

HCS12 supports the concept of stretched bus cycles (module timing reference clocks for timers and baud

rate generators are not affected by this stretching). Control bits in the MISC register in the MMC sub-block

of the Core specify the amount of stretch (0, 1, 2, or 3 periods of the internal bus-rate clock). While

stretching, the CPU state machines are all held in their current state. At this point in the CPU bus cycle,

write data would already be driven onto the data bus so the length of time write data is valid is extended

in the case of a stretched bus cycle Read data would not be captured by the system until the E clock falling

edge. In the case of a stretched bus cycle, read data is not required until the specified setup time before the

falling edge of the stretched E clock. The chip selects, and R/W signals remain valid during the period of

stretching (throughout the stretched E high time).

NOTE: The address portion of the bus cycle is not stretched!

4.2 External Data Bus Interface

The external data bus interface block manages data transfers from/to the external pins to/from the internal

read and write data buses. This block selectively couples 8-bit or 16-bit data to the internal data bus to

implement a variety of data transfers including 8-bit, 16-bit, 16-bit swapped, and 8-bit external to 16-bit

internal accesses. Modes, addresses, chip selects, etc. affect the type of accesses performed during each

bus cycle.

4.2.1 Internal Visibility

Internal visibility is available when the system is operating in expanded wide modes, special test mode, or

emulation narrow mode. It is not available in single-chip, peripheral, or normal expanded narrow modes.

Internal visibility is enabled by setting the IVIS bit in the MODE register.

If an internal access is made while E, R/W, and LSTRB are configured as bus control outputs and internal

visibility is off (IVIS = 0), E will remain low for the cycle, R/W will remain high, and the LSTRB pins

will remain at their previous state. The address bus is not affected by the IVIS function, as address

information is always driven.

When internal visibility is enabled (IVIS = 1), certain internal cycles will be blocked from going external

to prevent possible corruption of external devices. Specifically, during cycles when the BDM is selected,

R/W will remain high, data will maintain its previous state, and address and LSTRB pins will be updated

with the internal value. During CPU no access cycles when the BDM is not driving, R/W will remain high,

and address, data, and the LSTRB pins will remain at their previous state.

4.2.2 Secure Mode

When the system is operating in a secure mode, internal visibility is not available (i.e., IVIS = 1 has no

effect). Also, the IPIPE signals will not be visible, regardless of operating mode. IPIPE1–IPIPE0 will

display zeroes if they are enabled. In addition, the MOD bits in the MODE control register cannot be

written.
32

Block Guide — S12MEBI V3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D

4.3 Control

The control block generates the register read/write control signals and miscellaneous port control signals.

4.3.1 Low-Power Options

The MEBI does not contain any user-controlled options for reducing power consumption. The operation

of the MEBI in low-power modes is discussed in the following subsections.

4.3.1.1 Run Mode

The MEBI does not contain any options for reducing power in run mode; however, the external addresses

are conditioned to reduce power in single-chip modes. Expanded bus modes will increase power

consumption.

4.3.1.2 Wait Mode

The MEBI does not contain any options for reducing power in wait mode.

4.3.1.3 Stop Mode

The MEBI will cease to function after execution of a CPU STOP instruction.

4.4 Registers

The register block includes the fourteen 8-bit registers and five reserved register locations associated with

the MEBI sub-block.
33

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

L
L

E
D

 C
O

P
Y

"
IN

 R
E

D
 HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447

JAPAN:

Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334

TECHNICAL INFORMATION CENTER:

1-800-521-6274

HOME PAGE:

http://motorola.com/semiconductors

Information in this document is provided solely to enable system and software

implementers to use Motorola products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits or

integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products

herein. Motorola makes no warranty, representation or guarantee regarding the

suitability of its products for any particular purpose, nor does Motorola assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters which may be provided in Motorola data sheets

and/or specifications can and do vary in different applications and actual

performance may vary over time. All operating parameters, including “Typicals”

must be validated for each customer application by customer’s technical experts.

Motorola does not convey any license under its patent rights nor the rights of

others. Motorola products are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other

applications intended to support or sustain life, or for any other application in which

the failure of the Motorola product could create a situation where personal injury or

death may occur. Should Buyer purchase or use Motorola products for any such

unintended or unauthorized application, Buyer shall indemnify and hold Motorola

and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the design or manufacture of the part.

Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

© Motorola, Inc. 2003

S12MEBIV3/D
Rev. 3.00
2/2003

MOTOROLA.COM/SEMICONDUCTORS

HCS12
Microcontrollers

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

S12MMCV4/D
Rev. 4.00

Module Mapping
Control (MMC) V4

2/2003

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

2

Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
This product incorporates SuperFlash® technology licensed from SST. © Motorola, Inc., 2003

Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

4.00 2/4/2003 2/4/2003 John Langan

Creation of block user guide from core user guide version 1.5
(July 2, 2002). Changes include: updating format and making
end customer friendly.
Original release.

B
lock G

uide —
 S

12M
M

C
 V

4

TROLLED COPY" IN RED

T
able of C

ontents
PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CON

3

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4
List of Figures

Figure 1-1 Module Mapping Control Block Diagram . 5

Figure 3-1 Module Mapping Control Register Summary. 9

Figure 3-2 Initialization of Internal RAM Position Register (INITRM) 10

Figure 3-3 Initialization of Internal Registers Position Register (INITRG) 10

Figure 3-4 Initialization of Internal EEPROM Position Register (INITEE) 11

Figure 3-5 Miscellaneous System Control Register (MISC) . 12

Figure 3-6 Reserved Test Register Zero (MTST0) . 13

Figure 3-7 Reserved Test Register One (MTST1) . 13

Figure 3-8 Memory Size Register Zero . 14

Figure 3-9 Memory Size Register One . 15

Figure 3-10 Program Page Index Register (PPAGE) . 16

Figure 4-1 Memory Paging Example: 1M Byte On-Chip FLASH/ROM,
64K Allocation . 25

List of Tables

Table 3-1 External Stretch Bit Definition . 12

Table 3-2 Allocated EEPROM Memory Space . 14

Table 3-3 Allocated RAM Memory Space . 15

Table 3-4 Allocated FLASH/ROM Physical Memory Space . 16

Table 3-5 Allocated Off-Chip Memory Options . 16

Table 3-6 Program Page Index Register Bits . 17

Table 4-1 Select Signal Priority . 19

Table 4-2 Allocated Off-Chip Memory Options . 21

Table 4-3 External/Internal Page Window Access. 21

Table 4-4 0K Byte Physical FLASH/ROM Allocated . 23

Table 4-5 16K Byte Physical FLASH/ROM Allocated . 23

Table 4-6 48K Byte Physical FLASH/ROM Allocated . 23

Table 4-7 64K Byte Physical FLASH/ROM Allocated . 24

Section 1 Introduction to Module Mapping Control (MMC)
4

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

1.1 Overview. 2

1.2 Features . 2

1.3 Modes of Operation . 2

Section 2 External Signal Description

Section 3 Memory Map/Register Definition

3.1 Register Descriptions . 6

3.1.1 Initialization of Internal RAM Position Register (INITRM) 6

3.1.2 Initialization of Internal Registers Position Register (INITRG) 6

3.1.3 Initialization of Internal EEPROM Position Register (INITEE) 7

3.1.4 Miscellaneous System Control Register (MISC) . 8

3.1.5 Reserved Test Register Zero (MTST0) . 9

3.1.6 Reserved Test Register One (MTST1) . 9

3.1.7 Memory Size Register Zero (MEMSIZ0) . 10

3.1.8 Memory Size Register One (MEMSIZ1). 11

3.1.9 Program Page Index Register (PPAGE) . 12

Section 4 Functional Description

4.1 Bus Control. 15

4.2 Address Decoding . 15

4.2.1 Select Priority and Mode Considerations . 15

4.2.2 Emulation Chip Select Signal. 16

4.2.3 External Chip Select Signal . 16

4.3 Memory Expansion. 16

4.3.1 CALL and Return from Call Instructions. 18

4.3.2 Extended Address (XAB19:14) and ECS Signal Functionality. 19
5

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12M

M
C

 V
4

6

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

ore
Section 1 Introduction to Module Mapping Control (MMC)

This section describes the functionality of the Module Mapping Control (MMC) sub-block of the S12 C
Platform.

The block diagram of the MMC is shown inFigure 1-1 .

Figure 1-1 Module Mapping Control Block Diagram

MMC

MODE INFORMATION

REGISTERS

CPU WRITE DATA BUS

CPU ADDRESS BUS

CPU CONTROL

STOP, WAIT

ADDRESS DECODE

CPU READ DATA BUS

EBI ALTERNATE ADDRESS BUS

EBI ALTERNATE WRITE DATA BUS

EBI ALTERNATE READ DATA BUS

SECURITY

CLOCKS, RESET

READ & WRITE ENABLES

 ALTERNATE ADDRESS BUS (BDM)

ALTERNATE WRITE DATA BUS (BDM)

 ALTERNATE READ DATA BUS (BDM)

 CORE SELECT (S)

 PORT K INTERFACE

 MEMORY SPACE SELECT(S)

 PERIPHERAL SELECT

BUS CONTROL

SECURE

BDM_UNSECURE

MMC_SECURE

INTERNAL MEMORY
EXPANSION
1

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

ources
herals is

mode

hip

wide,
1.1 Overview

The MMC is the submodule which controls memory map assignment and selection of internal res
and external space. Internal buses between the core and memories and between the core and perip
controlled in this module. The memory expansion is generated in this module.

1.2 Features

• Registers for mapping of address space for on-chip RAM, EEPROM, and FLASH (or ROM)
memory blocks and associated registers

• Memory mapping control and selection based upon address decode and system operating

• Core address bus control

• Core data bus control and multiplexing

• Core security state decoding

• Emulation chip select signal generation (ECS)

• External chip select signal generation (XCS)

• Internal memory expansion

• External stretch and ROM mapping control functions via the MISC register

• Reserved registers for test purposes

• Configurable system memory options defined at integration of Core into the System-on-a-C
(SOC).

1.3 Modes of Operation

Some of the registers operate differently depending on the mode of operation (i.e., normal expanded
special single chip, etc.). This is best understood from the register descriptions.
2

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
Section 2 External Signal Description

All interfacing with the MMC sub-block is done within the Core, it has no external signals.
3

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12M

M
C

 V
4

4

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
Section 3 Memory Map/Register Definition

A summary of the registers associated with the MMC sub-block is shown inFigure 3-1 . Detailed
descriptions of the registers and bits are given in the subsections that follow.

Figure 3-1 Module Mapping Control Register Summary

Address Name Bit 7 6 5 4 3 2 1 Bit 0

$0010 INITRM
Read

RAM15 RAM14 RAM13 RAM12 RAM11
0 0

RAMHAL
Write

$0011 INITRG
Read 0

REG14 REG13 REG12 REG11
0 0 0

Write

$0012 INITEE
Read

EE15 EE14 EE13 EE12 EE11
0 0

EEON
Write

$0013 MISC
Read 0 0 0 0

EXSTR1 EXSTR0 ROMHM ROMON
Write

$0014 MTSTO
Read BIT 7 6 5 4 3 2 1 BIT 0

Write

$0017 MTST1
Read BIT 7 6 5 4 3 2 1 BIT 0

Write

$001C MEMSIZ0
Read REG_SW0 0 EEP_SW1 EEP_SW0 0 RAM_SW2 RAM_SW1 RAM_SW0

Write

$001D MEMSIZ1
Read ROM_SW1 ROM_SW0 0 0 0 0 PAG_SW1 PAG_SW0

Write

$0030 PPAGE
Read 0 0

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0
Write

$0031 Reserved
Read 0 0 0 0 0 0 0 0

Write

= Unimplemented
5

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

ay.
3.1 Register Descriptions

3.1.1 Initialization of Internal RAM Position Register (INITRM)

Figure 3-2 Initialization of Internal RAM Position Register (INITRM)

Read: Anytime

Write: Once in Normal and Emulation Modes, anytime in Special Modes

NOTE: Writes to this register take one cycle to go into effect.

This register initializes the position of the internal RAM within the on-chip system memory map.

RAM15–RAM11 — Internal RAM Map Position

These bits determine the upper five bits of the base address for the system’s internal RAM arr

RAMHAL — RAM High-Align

RAMHAL specifies the alignment of the internal RAM array.
0 = Aligns the RAM to the lowest address ($0000) of the mappable space
1 = Aligns the RAM to the higher address ($FFFF) of the mappable space

3.1.2 Initialization of Internal Registers Position Register (INITRG)

Figure 3-3 Initialization of Internal Registers Position Register (INITRG)

Read: Anytime

Write: Once in Normal and Emulation modes and anytime in Special modes

Register address Base + $10

7 6 5 4 3 2 1 0

R
RAM15 RAM14 RAM13 RAM12 RAM11

0 0
RAMHAL

W

Reset 0 0 0 0 1 0 0 1

= Unimplemented or Reserved

Register address Base + $11

7 6 5 4 3 2 1 0

R 0
REG14 REG13 REG12 REG11

0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
6

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

. The
he first

pper
$0000

e in
lation
 write

p.

 array.
This register initializes the position of the internal registers within the on-chip system memory map
registers occupy either a 1K byte or 2K byte space and can be mapped to any 2K byte space within t
32K bytes of the system’s address space.

REG14–REG11 — Internal Register Map Position

These four bits in combination with the leading zero supplied by bit 7 of INITRG determine the u
five bits of the base address for the system’s internal registers (i.e., the minimum base address is
and the maximum is $7FFF).

3.1.3 Initialization of Internal EEPROM Position Register (INITEE)

Figure 3-4 Initialization of Internal EEPROM Position Register (INITEE)

Read: Anytime

Write: The EEON bit can be written to any time on all devices. Bits E11–E15 are "Write anytim
all modes" on most devices. On some devices, bits E11–E15 are "Write once in Normal and Emu
modes and write anytime in Special modes". See device User’s Guide to determine the actual
access rights.

NOTE: Writes to this register take one cycle to go into effect.

This register initializes the position of the internal EEPROM within the on-chip system memory ma

EE15–EE11 — Internal EEPROM Map Position

These bits determine the upper five bits of the base address for the system’s internal EEPROM

EEON — Enable EEPROM

This bit is used to enable the EEPROM memory in the memory map.
1 = Enables the EEPROM in the memory map at the address selected by EE15–EE11.
0 = Disables the EEPROM from the memory map.

Register address Base + $12

7 6 5 4 3 2 1 0
R

EE15 EE14 EE13 EE12 EE11
0 0

EEON
W

Reset(1)

NOTES:
1. The reset state of this register is controlled at chip integration. Please refer to the specific device User’s

Guide to determine the actual reset state of this register.

— — — — — — — —
= Unimplemented or Reserved
7

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

ace as

ap.
 the

 be
3.1.4 Miscellaneous System Control Register (MISC)

Figure 3-5 Miscellaneous System Control Register (MISC)

Read: Anytime

Write: As stated in each bit description

NOTE: Writes to this register take one cycle to go into effect

This register initializes miscellaneous control functions.

EXSTR1 and EXSTR0 — External Access Stretch Bits 1 and 0

Write: Once in Normal and Emulation modes and anytime in Special modes

This two bit field determines the amount of clock stretch on accesses to the external address sp
shown inTable 3-1 . In single chip and peripheral modes these bits have no meaning or effect.

ROMHM — FLASH EEPROM or ROM Only in Second Half of Memory Map

Write: Once in Normal and Emulation modes and anytime in Special modes
1 = Disables direct access to the FLASH EEPROM or ROM in the lower half of the memory m

These physical locations of the FLASH EEPROM or ROM can still be accessed through
Program Page window.

0 = The fixed page(s) of FLASH EEPROM or ROM in the lower half of the memory map can
accessed.

Register address Base + $13

7 6 5 4 3 2 1 0

R 0 0 0 0
EXSTR1 EXSTR0 ROMHM ROMON

W

Reset: Expanded or
Emulation

0 0 0 0 1 1 0 —(1)

NOTES:
1. The reset state of this bit is determined at the chip integration level.

Reset: Peripheral or
Single Chip

0 0 0 0 1 1 0 1

Reset: Special Test 0 0 0 0 1 1 0 0

= Unimplemented or Reserved

Table 3-1 External Stretch Bit Definition

Stretch Bit
EXSTR1

Stretch Bit
EXSTR0

Number of E Clocks
Stretched

0 0 0

0 1 1

1 0 2

1 1 3
8

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

ROMON — Enable FLASH EEPROM or ROM

Write: Once in Normal and Emulation modes and anytime in Special modes

This bit is used to enable the FLASH EEPROM or ROM memory in the memory map.
1 = Enables the FLASH EEPROM or ROM in the memory map.
0 = Disables the FLASH EEPROM or ROM from the memory map.

3.1.5 Reserved Test Register Zero (MTST0)

Figure 3-6 Reserved Test Register Zero (MTST0)

Read: Anytime

Write: No effect — this register location is used for internal test purposes.

3.1.6 Reserved Test Register One (MTST1)

Figure 3-7 Reserved Test Register One (MTST1)

Read: Anytime

Write: No effect — this register location is used for internal test purposes.

Register address Base + $14

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Register address Base + $17

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0

W

Reset 0 0 0 1 0 0 0 0

= Unimplemented or Reserved
9

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

ation
ad
3.1.7 Memory Size Register Zero (MEMSIZ0)

Figure 3-8 Memory Size Register Zero

Read: Anytime

Write: Writes have no effect

Reset: Defined at chip integration, see chip level documentation.

The MEMSIZ0 register reflects the state of the register, EEPROM and RAM memory space configur
switches at the Core boundary which are configured at system integration. This register allows re
visibility to the state of these switches.

REG_SW0 — Allocated System Register Space
1 = Allocated system register space size is 2K byte
0 = Allocated system register space size is 1K byte

EEP_SW1:EEP_SW0 — Allocated System EEPROM Memory Space

The allocated system EEPROM memory space size is as given inTable 3-2 .

Register address Base + $1C

7 6 5 4 3 2 1 0

R REG_SW0 0 EEP_SW1 EEP_SW0 0 RAM_SW2 RAM_SW1 RAM_SW0

W

Reset — — — — — — — —

= Unimplemented or Reserved

Table 3-2 Allocated EEPROM Memory Space

EEP_SW1:EEP_SW0 Allocated EEPROM Space

00 0K byte

01 2K bytes

10 4K bytes

11 8K bytes
10

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

g
ad
RAM_SW2:RAM_SW0 — Allocated System RAM Memory Space

The allocated system RAM memory space size is as given inTable 3-3 .

NOTE: As stated, the bits in this register provide read visibility to the system physical
memory space allocations defined at system integration. The actual array size for
any given type of memory block may differ from the allocated size. Please refer to
the chip-level documentation for actual sizes.

3.1.8 Memory Size Register One (MEMSIZ1)

Figure 3-9 Memory Size Register One

Read: Anytime

Write: Writes have no effect

Reset: Defined at chip integration, see chip level documentation.

The MEMSIZ1 register reflects the state of the FLASH or ROM physical memory space and pagin
switches at the Core boundary which are configured at system integration. This register allows re
visibility to the state of these switches.

Table 3-3 Allocated RAM Memory Space

RAM_SW2:RAM_SW0 Allocated
RAM Space

RAM
Mappable Region

INITRM
Bits Used

RAM Reset
Base Address (1)

NOTES:
1. The RAM Reset BASE Address is based on the reset value of the INITRM register, $09.

000 2K bytes 2K bytes RAM15–RAM11 $0800

001 4K bytes 4K bytes RAM15–RAM12 $0000

010 6K bytes 8K bytes(2)

2. Alignment of the Allocated RAM space within the RAM mappable region is dependent on the value of RAMHAL.

RAM15–RAM13 $0800

011 8K bytes 8K bytes RAM15–RAM13 $0000

100 10K bytes 16K bytes2 RAM15–RAM14 $1800

101 12K bytes 16K bytes2 RAM15–RAM14 $1000

110 14K bytes 16K bytes2 RAM15–RAM14 $0800

111 16K bytes 16K bytes RAM15–RAM14 $0000

Register address Base + $1D

7 6 5 4 3 2 1 0

R
ROM_SW

1
ROM_SW

0
0 0 0 0 PAG_SW1 PAG_SW0

W

Reset — — — — — — — —

= Unimplemented or Reserved
11

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4
ROM_SW1:ROM_SW0 — Allocated System FLASH or ROM Physical Memory Space

The allocated system FLASH or ROM physical memory space is as given inTable 3-4 .

PAG_SW1:PAG_SW0 — Allocated Off-Chip FLASH or ROM Memory Space

The allocated off-chip FLASH or ROM memory space size is as given inTable 3-5 .

NOTE: As stated, the bits in this register provide read visibility to the system memory space
and on-chip/off-chip partitioning allocations defined at system integration. The
actual array size for any given type of memory block may differ from the allocated
size. Please refer to the chip-level documentation for actual sizes.

3.1.9 Program Page Index Register (PPAGE)

Figure 3-10 Program Page Index Register (PPAGE)

Table 3-4 Allocated FLASH/ROM Physical Memory Space

ROM_SW1:ROM_SW0 Allocated FLASH
or ROM Space

00 0K byte

01 16K bytes

10 48K bytes(1)

11 64K bytes(1)

NOTES:
1. The ROMHM software bit in the MISC register determines the accessibility of the

FLASH/ROM memory space. Please refer to 3.1.8 Memory Size Register One
(MEMSIZ1) for a detailed functional description of the ROMHM bit.

Table 3-5 Allocated Off-Chip Memory Options

PAG_SW1:PAG_SW0 Off-Chip Space On-Chip Space

00 876K bytes 128K bytes

01 768K bytes 256K bytes

10 512K bytes 512K bytes

11 0K byte 1M byte

Register address Base + $30

7 6 5 4 3 2 1 0

R 0 0
PIX5 PIX4 PIX3 PIX2 PIX1 PIX0

W

Reset(1)

NOTES:
1. The reset state of this register is controlled at chip integration. Please refer to the specific device User’s

Guide to determine the actual reset state of this register.

— — — — — — — —

= Unimplemented or Reserved
12

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
Ds it

lies.
write

Page
 six

FF as
er

cessed
Read: Anytime
Write: Determined at chip integration. Generally it’s: “Write anytime in all modes”; on some device
will be: “Write only in Special modes”. Check specific device documentation to determine which app
Reset: Defined at chip integration as either $00 (paired with write in any mode) or $3C (paired with
only in special modes), see chip level documentation.

The HCS12 Core architecture limits the physical address space available to 64K bytes. The Program
Index Register allows for integrating up to 1M byte of FLASH or ROM into the system by using the
page index bits to page 16K byte blocks into the Program Page Window located from $8000 to $BF
defined inTable 3-6 . CALL and RTC instructions have special access to read and write this regist
without using the address bus.

NOTE: Normal writes to this register take one cycle to go into effect. Writes to this register
using the special access of the CALL and RTC instructions will be complete before
the end of the associated instruction.

PIX5–PIX0 — Program Page Index Bits 5–0

These page index bits are used to select which of the 64 FLASH or ROM array pages is to be ac
in the Program Page Window as shown inTable 3-6 .

Table 3-6 Program Page Index Register Bits

PIX5 PIX4 PIX3 PIX2 PIX1 PIX0 Program Space
Selected

0 0 0 0 0 0 16K page 0

0 0 0 0 0 1 16K page 1

0 0 0 0 1 0 16K page 2

0 0 0 0 1 1 16K page 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 1 1 1 0 0 16K page 60

1 1 1 1 0 1 16K page 61

1 1 1 1 1 0 16K page 62

1 1 1 1 1 1 16K page 63
13

PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED
B

lock G
uide —

 S
12M

M
C

 V
4

14

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

oding
ect is

m. This
control
ndles

ther the
s being
de of

r select.

ach can
isters,

s do not
upon
ect
and
ion of
riority.

of the
Section 4 Functional Description

The MMC sub-block performs four basic functions of the Core operation: bus control, address dec
and select signal generation, memory expansion, and security decoding for the system. Each asp
described in the following subsections.

4.1 Bus Control

The MMC controls the address bus and data buses that interface the Core with the rest of the syste
includes the multiplexing of the input data buses to the Core onto the main CPU read data bus and
of data flow from the CPU to the output address and data buses of the Core. In addition, the MMC ha
all CPU read data bus swapping operations.

4.2 Address Decoding

As data flows on the Core address bus, the MMC decodes the address information, determines whe
internal Core register or firmware space, the peripheral space or a memory register or array space i
addressed and generates the correct select signal. This decoding operation also interprets the mo
operation of the system and the state of the mapping control registers in order to generate the prope
The MMC also generates two external chip select signals, Emulation Chip Select (ECS) and External Chip
Select (XCS).

4.2.1 Select Priority and Mode Considerations

Although internal resources such as control registers and on-chip memory have default addresses, e
be relocated by changing the default values in control registers. Normally, I/O addresses, control reg
vector spaces, expansion windows, and on-chip memory are mapped so that their address range
overlap. The MMC will make only one select signal active at any given time. This activation is based
the priority outlined inTable 4-1 . If two or more blocks share the same address space, only the sel
signal for the block with the highest priority will become active. An example of this is if the registers
the RAM are mapped to the same space, the registers will have priority over the RAM and the port
RAM mapped in this shared space will not be accessible. The expansion windows have the lowest p
This means that registers, vectors, and on-chip memory are always visible to a program regardless
values in the page select registers.

Table 4-1 Select Signal Priority

Priority Address Space

Highest BDM (internal to Core) firmware or register space

... Internal register space

... RAM memory block

... EEPROM memory block

... On-chip FLASH or ROM

Lowest Remaining external space
15

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

y space.
emory
is set,
ecome

 the

and
al

e,
ed in

(i.e.,
clear,

Page
 six
FF in

ugh
In expanded modes, all address space not used by internal resources is by default external memor
The data registers and data direction registers for Ports A and B are removed from the on-chip m
map and become external accesses. If the EME bit in the MODE register (see MEBI Block Guide)
the data and data direction registers for Port E are also removed from the on-chip memory map and b
external accesses.

In Special Peripheral mode, the first 16 registers associated with bus expansion are removed from
on-chip memory map (PORTA, PORTB, DDRA, DDRB, PORTE, DDRE, PEAR, MODE, PUCR,
RDRIV, and the EBI reserved registers).

In emulation modes, if the EMK bit in the MODE register (see MEBI Block Guide) is set, the data
data direction registers for Port K are removed from the on-chip memory map and become extern
accesses.

4.2.2 Emulation Chip Select Signal

When the EMK bit in the MODE register (see MEBI Block Guide) is set, Port K bit 7 is used as an
active-low emulation chip select signal,ECS. This signal is active when the system is in Emulation mod
the EMK bit is set and the FLASH or ROM space is being addressed subject to the conditions outlin
4.3.2 Extended Address (XAB19:14) and ECS Signal Functionality. When the EMK bit is clear, this
pin is used for general purpose I/O.

4.2.3 External Chip Select Signal

When the EMK bit in the MODE register (see MEBI Block Guide) is set, Port K bit 6 is used as an
active-low external chip select signal,XCS. This signal is active only when theECS signal described
above is not active and when the system is addressing the external address space. Accesses to
unimplemented locations within the register space or to locations that are removed from the map
Ports A and B in Expanded modes) will not cause this signal to become active. When the EMK bit is
this pin is used for general purpose I/O.

4.3 Memory Expansion

The HCS12 Core architecture limits the physical address space available to 64K bytes. The Program
Index Register allows for integrating up to 1M byte of FLASH or ROM into the system by using the
page index bits to page 16K byte blocks into the Program Page Window located from $8000 to $BF
the physical memory space. The paged memory space can consist of solely on-chip memory or a
combination of on-chip and off-chip memory. This partitioning is configured at system integration thro
the use of the paging configuration switches (pag_sw1:pag_sw0) at the Core boundary. The options
available to the integrator are as given inTable 4-2 (this table matchesTable 3-5 but is repeated here for
easy reference).
16

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

ther

PAGE
odes)

s of the
to make

ception
es that

t is
Based upon the system configuration, the Program Page Window will consider its access to be ei
internal or external as defined inTable 4-3 .

NOTE: The partitioning as defined inTable 4-3 applies only to the allocated memory
space and the actual on-chip memory sizes implemented in the system may differ.
Please refer to the chip-level documentation for actual sizes.

The PPAGE register holds the page select value for the Program Page Window. The value of the P
register can be manipulated by normal read and write (some devices don’t allow writes in some m
instructions as well as the CALL and RTC instructions.

Control registers, vector spaces, and a portion of on-chip memory are located in unpaged portion
64K byte physical address space. The stack and I/O addresses should also be in unpaged memory
them accessible from any page.

The starting address of a service routine must be located in unpaged memory because the 16-bit ex
vectors cannot point to addresses in paged memory. However, a service routine can call other routin
are in paged memory. The upper 16K byte block of memory space ($C000–$FFFF) is unpaged. I
recommended that all reset and interrupt vectors point to locations in this area.

Table 4-2 Allocated Off-Chip Memory Options

pag_sw1:pag_sw0 Off-Chip Space On-Chip Space

00 876K byte2 128K byte2

01 768K byte2 256K byte2

10 512K byte2 512K byte2

11 0K byte 1M byte

Table 4-3 External/Internal Page Window Access

pag_sw1:pag_sw0 Partitioning PIX5:0 Value Page Window Access

00
876K off-Chip,
128K on-Chip

$00–$37 External

$38–$3F Internal

01
768K off-chip,
256K on-chip

$00–$2F External

$30–$3F Internal

10
512K off-chip,
512K on-chip

$00–$1F External

$20–$3F Internal

11
0K off-chip,
1M on-chip

N/A External

$00–$3F Internal
17

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

nsion
here

es and
alue to
e
ed

), and

e new

ALL

ode
in the

new
he new
diate

AGE
ter the

 a

s.
used

xpanded
cks a
4.3.1 CALL and Return from Call Instructions

CALL and RTC are uninterruptable instructions that automate page switching in the program expa
window. CALL is similar to a JSR instruction, but the subroutine that is called can be located anyw
in the normal 64K byte address space or on any page of program expansion memory. CALL calculat
stacks a return address, stacks the current PPAGE value, and writes a new instruction-supplied v
PPAGE. The PPAGE value controls which of the 64 possible pages is visible through the 16K byt
expansion window in the 64K byte memory map. Execution then begins at the address of the call
subroutine.

During the execution of a CALL instruction, the CPU:

• Writes the old PPAGE value into an internal temporary register and writes the new
instruction-supplied PPAGE value into the PPAGE register.

• Calculates the address of the next instruction after the CALL instruction (the return address
pushes this 16-bit value onto the stack.

• Pushes the old PPAGE value onto the stack.

• Calculates the effective address of the subroutine, refills the queue, and begins execution at th
address on the selected page of the expansion window.

This sequence is uninterruptable; there is no need to inhibit interrupts during CALL execution. A C
can be performed from any address in memory to any other address.

The PPAGE value supplied by the instruction is part of the effective address. For all addressing m
variations except indexed-indirect modes, the new page value is provided by an immediate operand
instruction. In indexed-indirect variations of CALL, a pointer specifies memory locations where the
page value and the address of the called subroutine are stored. Using indirect addressing for both t
page value and the address within the page allows values calculated at run time rather than imme
values that must be known at the time of assembly.

The RTC instruction terminates subroutines invoked by a CALL instruction. RTC unstacks the PP
value and the return address and refills the queue. Execution resumes with the next instruction af
CALL.

During the execution of an RTC instruction, the CPU:

• Pulls the old PPAGE value from the stack

• Pulls the 16-bit return address from the stack and loads it into the PC

• Writes the old PPAGE value into the PPAGE register

• Refills the queue and resumes execution at the return address

This sequence is uninterruptable; an RTC can be executed from anywhere in memory, even from
different page of extended memory in the expansion window.

The CALL and RTC instructions behave like JSR and RTS, except they use more execution cycle
Therefore, routinely substituting CALL/RTC for JSR/RTS is not recommended. JSR and RTS can be
to access subroutines that are on the same page in expanded memory. However, a subroutine in e
memory that can be called from other pages must be terminated with an RTC. And the RTC unsta
18

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

tion so

on
Page
e else
ned a

ion chip
 of

mode.
PPAGE value. So any access to the subroutine, even from the same page, must use a CALL instruc
that the correct PPAGE value is in the stack.

4.3.2 Extended Address (XAB19:14) and ECS Signal Functionality

If the EMK bit in the MODE register is set (see MEBI Block Guide) the PIX5:0 values will be output
XAB19:14 respectively (Port K bits 5:0) when the system is addressing within the physical Program
Window address space ($8000–$BFFF) and is in an expanded mode. When addressing anywher
within the physical address space (outside of the paging space), the XAB19:14 signals will be assig
constant value based upon the physical address space selected. In addition, the active-low emulat
select signal,ECS, will likewise function based upon the assigned memory allocation. In the cases
48K byte and 64K byte allocated physical FLASH/ROM space, the operation of theECS signal will
additionally depend upon the state of the ROMHM bit (see3.1.4 Miscellaneous System Control Register
(MISC)) in the MISC register.Table 4-4 , Table 4-5 , Table 4-6 , andTable 4-7 summarize the
functionality of these signals based upon the allocated memory configuration. Again, this signal
information is only available externally when the EMK bit is set and the system is in an expanded

Table 4-4 0K Byte Physical FLASH/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14

$0000–$3FFF N/A N/A 1 $3D

$4000–$7FFF N/A N/A 1 $3E

$8000–$BFFF N/A N/A 0 PIX5:0

$C000–$FFFF N/A N/A 0 $3F

Table 4-5 16K Byte Physical FLASH/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14

$0000–$3FFF N/A N/A 1 $3D

$4000–$7FFF N/A N/A 1 $3E

$8000–$BFFF N/A N/A 1 PIX5:0

$C000–$FFFF N/A N/A 0 $3F

Table 4-6 48K Byte Physical FLASH/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14

$0000–$3FFF N/A N/A 1 $3D

$4000–$7FFF
N/A 0 0

$3E
N/A 1 1

$8000–$BFFF
External N/A 1

PIX5:0
Internal N/A 0

$C000–$FFFF N/A N/A 0 $3F
19

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Block Guide — S12MMC V4

with
A graphical example of a memory paging for a system configured as 1M byte on-chip FLASH/ROM
64K allocated physical space is given inFigure 4-1 .

Table 4-7 64K Byte Physical FLASH/ROM Allocated

Address Space Page Window Access ROMHM ECS XAB19:14

$0000–$3FFF
N/A 0 0

$3D
N/A 1 1

$4000–$7FFF
N/A 0 0

$3E
N/A 1 1

$8000–$BFFF
External N/A 1

PIX5:0
Internal N/A 0

$C000–$FFFF N/A N/A 0 $3F
20

Block Guide — S12MMC V4

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D

Figure 4-1 Memory Paging Example: 1M Byte On-Chip FLASH/ROM, 64K Allocation

These 16K FLASH/ROM pages accessible from $0000 to $7FFF if selected by
the ROMHM bit in the MISC register.

NORMAL
SINGLE CHIP

ONE 16K FLASH/ROM PAGE ACCESSIBLE AT A TIME
(SELECTED BY PPAGE = 0 TO 63)

$0000

$8000

$FF00

$FFFF

$4000

$C000

59

62

63

60 61 62 630 1 2 3

61

16K FLASH
(UNPAGED)

16K FLASH
(UNPAGED)

16K FLASH
(PAGED)

16K FLASH
(UNPAGED)

VECTORS
21

P
R

IN
T

E
D

 V
E

R
S

IO
N

S
 A

R
E

 U
N

C
O

N
T

R
O

LL
E

D
 E

X
C

E
P

T
 W

H
E

N
 S

T
A

M
P

E
D

"C
O

N
T

R
O

LL
E

D
 C

O
P

Y
"

 IN
 R

E
D
 HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://motorola.com/semiconductors

S12MMCV4/D
Rev. 4.00
5/2003

Information in this document is provided solely to enable system and software implementers to use Motorola products.
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty,
representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical
experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising
out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even
if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

© Motorola Inc. 2003

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc.is an Equal
Opportunity/Affirmative Action Employer.

DOCUMENT NUMBER
S12MSCANV2/D

1

©Motorola, Inc., 2001

MSCAN

Block Guide

V02.15

Original Release Date: 19 MAY 1998
Revised: 15 JUL 2004

Motorola, Inc.

MSCAN Block Guide V02.15

2

Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

V02.08
17 JUL
2001

17 JUL
2001

- 1st offical version by Technical Publishing

V02.09
10 JUL
2001

10 JUL
2001

- Updated according to requirements of SRSv3
- Corrected footnote 1 in INITRQ description.

V02.10
10 OCT

2001
10 OCT

2001
- Replaced all references w.r.t. new family name HCS12.

V02.11
22 OCT

2001
22 OCT

2001

- Corrected figure title and note of CANTIER.
- Corrected local enable register names in table 4-4 ’CRG Interrupt
Vectors’.
- Updated block diagram.
- Corrected section ’Description of Interrupt Operation’.

V02.12
04 MAR

2002
04 MAR

2002
- Document format updates.

V02.13
22 JUL
2002

22 JUL
2002

- Corrected TBPR register offset.
- Corrected Table ’Message Buffer Organization’.
- Corrected SLPRQ bit description.
- Corrected MSCAN Sleep Mode description.
- Updated WUPE bit description.
- Updated Simplified State Transitions figure.
- Updated Recovery from STOP or WAIT description and CPU vs.
MSCAN Modes table.

V02.14
18 SEP

2002
18 SEP

2002

- Added Initialization/Application information.
- Replaced ’MCU’ with ’CPU’ in several places.
- Cleaned up Mode descriptions.
- General cleanup.

V02.15
15 JUL
2004

15 JUL
2004

- Corrected buffer read/write access definitions.
- Corrected bit time equation.

MSCAN Block Guide V02.15

3

Table of Contents

Section 1 Introduction

1.1 Overview. 11

1.2 Features . 12

Section 2 External Signal Description

2.1 Overview. 13

2.2 Detailed Signal Description . 13

2.2.1 RXCAN — CAN Receiver Input Pin . 13

2.2.2 TXCAN — CAN Transmitter Output Pin. 13

2.3 CAN System. 13

Section 3 Memory Map/Register Definition

3.1 Overview. 15

3.2 Module Memory Map . 15

3.3 Register Descriptions . 16

3.3.1 Programmer’s Model of Control Registers . 17

3.3.2 Programmer’s Model of Message Storage. 38

Section 4 Functional Description

4.1 General. 45

4.2 Message Storage . 45

4.2.1 Message Transmit Background . 46

4.2.2 Transmit Structures . 46

4.2.3 Receive Structures. 47

4.3 Identifier Acceptance Filter . 48

4.3.1 Protocol Violation Protection . 52

4.3.2 Clock System . 52

4.4 Timer Link. 55

4.5 Modes of Operation . 55

4.5.1 Normal Modes . 55

4.5.2 Special Modes . 55

4.5.3 Emulation Modes . 55

4.5.4 Listen-Only Mode . 55

MSCAN Block Guide V02.15

4

4.5.5 Security Modes . 56

4.6 Low Power Options . 56

4.6.1 CPU Run Mode . 56

4.6.2 CPU Wait Mode . 57

4.6.3 CPU Stop Mode . 57

4.6.4 MSCAN Sleep Mode . 57

4.6.5 MSCAN Initialization Mode . 59

4.6.6 MSCAN Power Down Mode. 60

4.6.7 Programmable Wake-Up Function. 61

4.7 Reset Initialization . 61

4.8 General. 61

4.9 Description of Interrupt Operation . 62

4.9.1 Transmit Interrupt. 62

4.9.2 Receive Interrupt . 62

4.9.3 Wake-Up Interrupt . 62

4.9.4 Error Interrupt. 62

4.10 Interrupt Acknowledge . 62

4.11 Recovery from STOP or WAIT . 63

Section 5 Initialization/Application Information

5.1 MSCAN initialization . 63

MSCAN Block Guide V02.15

5

List of Figures

Figure 1-1 MSCAN Block Diagram . 11

Figure 2-1 The CAN System. 14

Figure 3-1 MSCAN Control 0 Register (CANCTL0) . 17

Figure 3-2 MSCAN Control 1 Register (CANCTL1) . 20

Figure 3-3 MSCAN Bus Timing Register 0 (CANBTR0) . 21

Figure 3-4 MSCAN Bus Timing Register 1 (CANBTR1) . 22

Figure 3-5 MSCAN Receiver Flag Register (CANRFLG) . 24

Figure 3-6 MSCAN Receiver Interrupt Enable Register (CANRIER) 26

Figure 3-7 MSCAN Transmitter Flag Register (CANTFLG) . 28

Figure 3-8 MSCAN Transmitter Interrupt Enable Register (CANTIER) 29

Figure 3-9 MSCAN Transmitter Message Abort Request (CANTARQ) 29

Figure 3-10 MSCAN Transmitter Message Abort Control (CANTAAK) 30

Figure 3-11 MSCAN Transmitter Flag Register (CANTBSEL) . 31

Figure 3-12 MSCAN Identifier Acceptance Control Register (CANIDAC). 32

Figure 3-13 Reserved Registers . 33

Figure 3-14 MSCAN Receive Error Counter Register (CANRXERR) 34

Figure 3-15 MSCAN Transmit Error Counter Register (CANTXERR) 34

Figure 3-16 MSCAN Identifier Acceptance Registers (1st Bank) 35

Figure 3-17 MSCAN Identifier Acceptance Registers (2nd Bank) 36

Figure 3-18 MSCAN Identifier Mask Registers (1st Bank) . 37

Figure 3-19 MSCAN Identifier Mask Registers (2nd Bank). 37

Figure 3-20 Receive / Transmit Message Buffer Extended Identifier 39

Figure 3-21 Standard Identifier Mapping. 40

Figure 3-22 Transmit Buffer Priority Register (TBPR). 43

Figure 3-23 Time Stamp Register (TSRH - High Byte) . 43

Figure 3-24 Time Stamp Register (TSRL - Low Byte) . 44

Figure 4-1 User Model for Message Buffer Organization . 45

Figure 4-2 32-bit Maskable Identifier Acceptance Filter . 50

Figure 4-3 16-bit Maskable Identifier Acceptance Filters . 50

Figure 4-4 8-bit Maskable Identifier Acceptance Filters . 51

Figure 4-5 MSCAN Clocking Scheme. 52

Figure 4-6 Segments within the Bit Time . 54

Figure 4-7 Sleep Request / Acknowledge Cycle. 57

MSCAN Block Guide V02.15

6

Figure 4-8 Simplified State Transitions for Entering/Leaving Sleep Mode 59

Figure 4-9 Initialization Request/Acknowledge Cycle . 60

MSCAN Block Guide V02.15

7

List of Tables

Table 3-1 MSCAN Register Organization . 15

Table 3-2 Module Memory Map . 15

Table 3-3 Synchronization Jump Width . 22

Table 3-4 Baud Rate Prescaler . 22

Table 3-5 Time Segment 2 Values. 23

Table 3-6 Time Segment 1 Values. 24

Table 3-7 Identifier Acceptance Mode Settings . 32

Table 3-8 Identifier Acceptance Hit Indication . 33

Table 3-9 Message Buffer Organization . 39

Table 3-10 Data length codes . 42

Table 4-1 Time Segment Syntax . 54

Table 4-2 CAN Standard Compliant Bit Time Segment Settings 55

Table 4-3 CPU vs. MSCAN Operating Modes . 56

Table 4-4 CRG Interrupt Vectors . 61

MSCAN Block Guide V02.15

8

MSCAN Block Guide V02.15

9

Preface

Terminology

Acronyms and Abbreviations
ACK Acknowledge

CAN Controller Area Network

CRC Cyclic Redundancy Code

EOF End of Frame

FIFO First-In-First-Out Memory

IFS Inter-Frame Sequence

MSCAN Motorola Scalable CAN Module

SOF Start of Frame

MSCAN Block Guide V02.15

10

MSCAN Block Guide V02.15

11

Section 1 Introduction

1.1 Overview

The Motorola Scalable Controller Area Network (MSCAN) definition is based on the MSCAN12
definition which is the specific implementation of the Motorola Scalable CAN concept targeted for the
Motorola MC68HC12 Microcontroller Family.

The module is a communication controller implementing the CAN 2.0 A/B protocol as defined in the
BOSCH specification dated September 1991. For users to fully understand the MSCAN specification, it
is recommended that the Bosch specification be read first to familiarize the reader with the terms and
concepts contained within this document.

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data bus, meeting
the specific requirements of this field: real-time processing, reliable operation in the EMI environment of
a vehicle, cost-effectiveness and required bandwidth.

MSCAN utilizes an advanced buffer arrangement resulting in a predictable real-time behavior and
simplifies the application software.

Figure 1-1 MSCAN Block Diagram

RXCAN

TXCAN

Receive/
Transmit
Engine

Message
Filtering

and
Buffering

Control
and

Status
Wake-Up Interrupt Req.

Errors Interrupt Req.

Receive Interrupt Req.

Transmit Interrupt Req.

CANCLK

Bus Clock

Configuration

Oscillator Clock
MUX Presc.

Tq Clk

MSCAN

Low Pass Filter
Wake-UpRegisters

MSCAN Block Guide V02.15

12

1.2 Features

The basic features of the MSCAN are as follows:

• Implementation of the CAN protocol - Version 2.0A/B

– Standard and extended data frames

– 0 - 8 bytes data length

– Programmable bit rate up to 1 Mbps1

– Support for remote frames

– 5 receive buffers with FIFO storage scheme

• 3 transmit buffers with internal prioritization using a “local priority” concept

• Flexible maskable identifier filter supports two full size extended identifier filters (two 32-bit) or
four 16-bit filters or eight 8-bit filters

• Programmable wake-up functionality with integrated low-pass filter

• Programmable loop back mode supports self-test operation

• Programmable listen-only mode for monitoring of CAN bus

• Separate signalling and interrupt capabilities for all CAN receiver and transmitter error states
(Warning, Error Passive, Bus-Off)

• Programmable MSCAN clock source either Bus Clock or Oscillator Clock

• Internal timer for time-stamping of received and transmitted messages

• Three low power modes: Sleep, Power Down and MSCAN Enable

• Global initialization of configuration registers

NOTES:
1. Depending on the actual bit timing and the clock jitter of the PLL.

MSCAN Block Guide V02.15

13

Section 2 External Signal Description

2.1 Overview

This section lists and describes the signals that connect off chip.

2.2 Detailed Signal Description

The MSCAN uses two external pins.

2.2.1 RXCAN — CAN Receiver Input Pin

RXCAN is the MSCAN receiver input pin.

2.2.2 TXCAN — CAN Transmitter Output Pin

TXCAN is the MSCAN transmitter output pin. The TXCAN output pin represents the logic level on the
CAN bus:

0 = Dominant state
1 = Recessive state

2.3 CAN System

A typical CAN system with MSCAN is shown inFigure 2-1 . Each CAN station is connected physically
to the CAN bus lines through a transceiver chip. The transceiver is capable of driving the large current
needed for the CAN bus and has current protection against defected CAN or defected stations.

MSCAN Block Guide V02.15

14

Figure 2-1 The CAN System

CAN Bus

CAN Controller

(MSCAN)

Transceiver

CAN node 1 CAN node 2 CAN node n

CAN_LCAN_H

MCU

TXCAN RXCAN

MSCAN Block Guide V02.15

15

Section 3 Memory Map/Register Definition

3.1 Overview

This section provides a detailed description of all registers accessible in the MSCAN.

3.2 Module Memory Map

Table 3-1 andTable 3-2 give an overview on all registers and their individual bits in the MSCAN
memory map. Theregister addressresults from the addition ofbase addressandaddress offset. Thebase
address is determined at the MCU level. Theaddress offset is defined at the module level.

The MSCAN occupies 64 bytes in the memory space. The base address of the MSCAN module is
determined at the MCU level when the MCU is defined. The register decode map is fixed and begins at
the first address of the module address offset.

Table 3-1 MSCAN Register Organization

Table 3-1 shows the individual registers associated with the MSCAN and their relative offset from the
base address. The detailed register descriptions follow in the order they appear in the register map (see
Table 3-2).

Table 3-2 Module Memory Map

Address
Offset

$__00 CONTROL REGISTERS
12 BYTES$__0B

$__0C RESERVED
2 BYTES$__0D

$__0E ERROR COUNTERS
2 BYTES$__0F

$__10 IDENTIFIER FILTER
16 BYTES$__1F

$__20 RECEIVE BUFFER
16 BYTES (Window)$__2F

$__30 TRANSMIT BUFFER
16 BYTES (Window)$__3F

Address Use Access

$__00 MSCAN Control Register 0 (CANCTL0) R/W1

$__01 MSCAN Control Register 1 (CANCTL1) R/W1

$__02 MSCAN Bus Timing Register 0 (CANBTR0) R/W

$__03 MSCAN Bus Timing Register 1 (CANBTR1) R/W

MSCAN Block Guide V02.15

16

3.3 Register Descriptions

This section describes in detail all the registers and register bits in the MSCAN module. Each description
includes a standard register diagram with an associated figure number. Details of register bit and field
function follow the register diagrams, in bit order. All bits of all registers in this module are completely
synchronous to internal clocks during a register read.

$__04 MSCAN Receiver Flag Register (CANRFLG) R/W1

$__05 MSCAN Receiver Interrupt Enable Register (CANRIER) R/W

$__06 MSCAN Transmitter Flag Register (CANTFLG) R/W1

$__07 MSCAN Transmitter Interrupt Enable Register (CANTIER) R/W1

$__08 MSCAN Transmitter Message Abort Control (CANTARQ) R/W1

$__09 MSCAN Transmitter Message Abort Control (CANTAAK) R

$__0A MSCAN Transmit Buffer Selection (CANTBSEL) R/W1

$__0B MSCAN Identifier Acceptance Control Register (CANIDAC) R/W1

$__0C
-$__0D

RESERVED

$__0E MSCAN Receive Error Counter Register (CANRXERR) R

$__0F MSCAN Transmit Error Counter Register (CANTXERR) R

$__10 MSCAN Identifier Acceptance Register 0 (CANIDAR0) R/W

$__11 MSCAN Identifier Acceptance Register 1 (CANIDAR1) R/W

$__12 MSCAN Identifier Acceptance Register 2 (CANIDAR2) R/W

$__13 MSCAN Identifier Acceptance Register 3 (CANIDAR3) R/W

$__14 MSCAN Identifier Mask Register 0 (CANIDMR0) R/W

$__15 MSCAN Identifier Mask Register 1 (CANIDMR1) R/W

$__16 MSCAN Identifier Mask Register 2 (CANIDMR2) R/W

$__17 MSCAN Identifier Mask Register 3 (CANIDMR3) R/W

$__18 MSCAN Identifier Acceptance Register 4 (CANIDAR4) R/W

$__19 MSCAN Identifier Acceptance Register 5 (CANIDAR5) R/W

$__1A MSCAN Identifier Acceptance Register 6 (CANIDAR6) R/W

$__1B MSCAN Identifier Acceptance Register 7 (CANIDAR7) R/W

$__1C MSCAN Identifier Mask Register 4 (CANIDMR4) R/W

$__1D MSCAN Identifier Mask Register 5 (CANIDMR5) R/W

$__1E MSCAN Identifier 6 Mask Register 6 (CANIDMR6) R/W

$__1F MSCAN Identifier Mask Register 7 (CANIDMR7) R/W

$__20
-$__2F

Foreground Receive Buffer (CANRXFG) R2

$__30
-$__3F

Foreground Transmit Buffer (CANTXFG) R2/W

NOTES:
1. Refer to detailed register description for write access restrictions on per bit basis.
2. Reserved bits and unused bits within the TX- and RX-Buffers (CANTXFG, CAN-

RXFG) will be read as “X”, because of RAM based implementation.

MSCAN Block Guide V02.15

17

3.3.1 Programmer’s Model of Control Registers

The programmer’s model is laid out for maximum simplicity and efficiency.Table 3-2 provides an
overview of the control registers for the MSCAN.

3.3.1.1 MSCAN Control 0 Register (CANCTL0)

The CANCTL0 register provides for various control of the MSCAN module as described below.

NOTE: The CANCTL0 register, except the WUPE, INITRQ and SLPRQ bits, is held in the
reset state when the Initialization Mode is active (INITRQ=1 and INITAK=1). This
register is writable again as soon as the Initialization Mode is left (INITRQ=0 and
INITAK=0).

Read: Anytime

Write: Anytime when out of Initialization Mode; exceptions are read-only bits RXACT and SYNCH, bit
RXFRM which is set by the module only and bit INITRQ which is also writable in Initialization Mode.

RXFRM — Received Frame Flag

This bit is read and clear only. It is set when a receiver has received a valid message correctly,
independently of the filter configuration. Once set, it remains set until cleared by software or reset.
Clearing is done by writing a ‘1’ to the bit. A write ‘0’ is ignored. This bit is not valid in loop back
mode.

1 = A valid message was received since last clearing of this flag
0 = No valid message was received since last clearing this flag.

NOTE: The MSCAN must be in Normal Mode for this bit to become set.

RXACT — Receiver Active Status

This read-only flag indicates the MSCAN is receiving a message. The flag is controlled by the receiver
front end. This bit is not valid in loop back mode.

1 = MSCAN is receiving a message (including when arbitration is lost)1

0 = MSCAN is transmitting or idle1.

Address Offset: $__00

Bit 7 6 5 4 3 2 1 Bit 0

Read:
RXFRM

RXACT
CSWAI

SYNCH
TIME WUPE SLPRQ INITRQ

Write:

Reset: 0 0 0 0 0 0 0 1

= Unimplemented

Figure 3-1 MSCAN Control 0 Register (CANCTL0)

MSCAN Block Guide V02.15

18

CSWAI — CAN Stops in Wait Mode

Enabling this bit allows for lower power consumption in Wait Mode by disabling all the clocks at the
bus interface to the MSCAN module.

1 = The module ceases to be clocked during Wait Mode.
0 = The module is not affected during Wait Mode.

NOTE: In order to protect from accidentally violating the CAN protocol the TXCAN pin is
immediately forced to a recessive state when the CPU enters Wait (CSWAI=1) or
Stop Mode (see4.6.2 CPU Wait Mode and4.6.3 CPU Stop Mode)

SYNCH — Synchronized Status

This read-only flag indicates whether the MSCAN is synchronized to the CAN bus and, as such, can
participate in the communication process. It is set and cleared by the MSCAN.

1 = MSCAN is synchronized to the CAN bus.
0 = MSCAN is not synchronized to the CAN bus.

TIME - Timer Enable

This bit activates an internal 16-bit wide free running timer which is clocked by the bit clock. If the
timer is enabled, a 16-bit time stamp will be assigned to each transmitted/received message within the
active TX/RX buffer. As soon as a message is acknowledged on the CAN bus, the time stamp will be
written to the highest bytes ($_E, $_F) in the appropriate buffer3.3.2 Programmer’s Model of
Message Storage . The internal timer is reset (all bits set to “0”) when Initialization Mode is active.

1 = Enable internal MSCAN timer.
0 = Disable internal MSCAN timer.

WUPE — Wake-Up Enable

This configuration bit allows the MSCAN to restart from Sleep Mode when traffic on CAN is detected
(see4.6.4 MSCAN Sleep Mode).

1 = Wake-Up enabled– The MSCAN is able to restart.
0 = Wake-Up disabled– The MSCAN ignores traffic on CAN.

NOTE: The CPU has to make sure that the WUPE register and the WUPIE Wake-Up
interrupt enable register3.3.1.6 MSCAN Receiver Interrupt Enable Register
(CANRIER) is enabled, if the recovery mechanism from STOP or WAIT is
required.

SLPRQ — Sleep Mode Request

This bit requests the MSCAN to enter Sleep Mode, which is an internal power saving mode (see4.6.4
MSCAN Sleep Mode). The Sleep Mode request is serviced when the CAN bus is idle, i.e. the
module is not receiving a message and all transmit buffers are empty. The module indicates entry to
Sleep Mode by setting SLPAK=1 (3.3.1.2 MSCAN Control 1 Register (CANCTL1)). Sleep Mode
will be active until SLPRQ is cleared by the CPU or, depending on the setting of WUPE bit, the
MSCAN detects bus activity on CAN and clears the SLPRQ itself.

NOTES:
1. See the Bosch CAN 2.0A/B protocol specification dated September 1991 for a detailed definition of transmitter and receiver

states.

MSCAN Block Guide V02.15

19

1 = Sleep Mode Request – The MSCAN enters Sleep Mode when CAN bus idle.
0 = Running – The MSCAN functions normally.

NOTE: The CPU cannot clear the SLPRQ bit before the MSCAN has entered Sleep Mode
(SLPRQ=1 and SLPAK=1)

INITRQ — Initialization Mode Request

When this bit is set by the CPU, the MSCAN skips to Initialization Mode (see4.6.5 MSCAN
Initialization Mode). Any ongoing transmission or reception is aborted and synchronization to the bus
is lost. The module indicates entry to Initialization Mode by setting INITAK=1 (3.3.1.2 MSCAN
Control 1 Register (CANCTL1)).

The following registers enter their hard reset state and restore their default values: CANCTL01,

CANRFLG2, CANRIER3, CANTFLG, CANTIER, CANTARQ, CANTAAK, CANTBSEL.

The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, CANIDMR0-7 can
only be written by the CPU when the MSCAN is in Initialization Mode (INITRQ=1 and INITAK=1).
The values of the error counters are not affected by Initialization Mode.

When this bit is cleared by the CPU, the MSCAN restarts and then tries to synchronize to the CAN
bus. If the MSCAN is not in Bus-Off state, it synchronizes after 11 consecutive recessive bits on the
bus; if the MSCAN is in Bus-Off state it continues to wait for 128 occurrences of 11 consecutive
recessive bits.

Writing to otherbits in CANCTL0, CANRFLG, CANRIER, CANTFLG or CANTIER must only be
done after Initialization Mode is left, which is INITRQ=0 and INITAK=0.

1 = MSCAN in Initialization Mode.
0 = Normal operation.

NOTE: The CPU cannot clear the INITRQ bit before the MSCAN has entered Initialization
Mode (INITRQ=1 and INITAK=1)

NOTE: In order to protect from accidentally violating the CAN protocol the TXCAN pin is
immediately forced to a recessive state when the Initialization Mode is requested by
the CPU. Thus the recommended procedure is to bring the MSCAN into Sleep Mode
(SLPRQ=1 and SLPAK=1) before.

3.3.1.2 MSCAN Control 1 Register (CANCTL1)

The CANCTL1 register provides for various control and handshake status information of the MSCAN
module as described below.

NOTES:
1. Except the WUPE, INITRQ and SLPRQ bits
2. The TSTAT1, TSTAT0 bits are not affected by Initialization Mode
3. The RSTAT1, RSTAT0 bits are not affected by Initialization Mode

Address Offset: $__01

MSCAN Block Guide V02.15

20

Read: Anytime

Write: Anytime when INITRQ=1and INITAK=1, except CANE which is write once in normal and
anytime in special system operation modes when the MSCAN is in Initialization Mode (INITRQ=1 and
INITAK=1).

CANE — MSCAN Enable
1 = The MSCAN module is enabled.
0 = The MSCAN module is disabled.

CLKSRC — MSCAN Clock Source

This bit defines the clock source for the MSCAN module (only for systems with a clock generation
module;4.3.2 Clock System andFigure 4-5).

1 = The MSCAN clock source is the Bus Clock.
0 = The MSCAN clock source is the Oscillator Clock.

LOOPB — Loop Back Self Test Mode

When this bit is set, the MSCAN performs an internal loop back which can be used for self test operation.
The bit stream output of the transmitter is fed back to the receiver internally. The RXCAN input pin is
ignored and the TXCAN output goes to the recessive state (logic ‘1’). The MSCAN behaves as it does
normally when transmitting and treats its own transmitted message as a message received from a remote
node. In this state, the MSCAN ignores the bit sent during the ACK slot in the CAN frame Acknowledge
field to ensure proper reception of its own message. Both transmit and receive interrupts are generated.

1 = Loop Back Self Test enabled
0 = Loop Back Self Test disabled

LISTEN — Listen Only Mode

This bit configures the MSCAN as a bus monitor. When the bit is set, all valid CAN messages with
matching ID are received, but no acknowledgement or error frames are sent out4.5.4 Listen-Only
Mode . In addition the error counters are frozen.
Listen Only Mode supports applications which require “hot plugging” or throughput analysis. The
MSCAN is unable to transmit any messages, when Listen Only Mode is active.

1 = Listen Only Mode activated
0 = Normal operation

WUPM — Wake-Up Mode

Bit 7 6 5 4 3 2 1 Bit 0

Read:
CANE CLKSRC LOOPB LISTEN

0
WUPM

SLPAK INITAK

Write:

Reset: 0 0 0 1 0 0 0 1

= Unimplemented

Figure 3-2 MSCAN Control 1 Register (CANCTL1)

MSCAN Block Guide V02.15

21

This bit defines whether the integrated low-pass filter is applied to protect the MSCAN from spurious
wake-up4.6.4 MSCAN Sleep Mode .

1 = MSCAN wakes-up the CPU only in case of a dominant pulse on the bus which has a length of
Twup and WUPE=1 in CANCTL0 (see3.3.1.1 MSCAN Control 0 Register (CANCTL0)).

0 = MSCAN wakes-up the CPU after any recessive to dominant edge on the CAN bus and WUPE=1
in CANCTL0.

SLPAK — Sleep Mode Acknowledge

This flag indicates whether the MSCAN module has entered Sleep Mode4.6.4 MSCAN Sleep Mode.
It is used as a handshake flag for the SLPRQ Sleep Mode request. Sleep Mode is active when
SLPRQ=1 and SLPAK=1. Depending on the setting of the WUPE bit the MSCAN will clear the flag
if it detects bus activity on CAN while in Sleep Mode.

1 = Sleep Mode Active – The MSCAN has entered Sleep Mode.
0 = Running – The MSCAN operates normally.

INITAK — Initialization Mode Acknowledge

This flag indicates whether the MSCAN module is in Initialization Mode4.6.5 MSCAN Initialization
Mode. It is used as a handshake flag for the INITRQ Initialization Mode request. Initialization Mode
is active when INITRQ=1 and INITAK=1.

The registers CANCTL1, CANBTR0, CANBTR1, CANIDAC, CANIDAR0-7, CANIDMR0-7 can
only be written by the CPU when the MSCAN is in Initialization Mode.

1 = Initialization Mode Active – The MSCAN has entered Initialization Mode.
0 = Running – The MSCAN operates normally.

3.3.1.3 MSCAN Bus Timing Register 0 (CANBTR0)

The CANBTR0 register provides for various bus timing control of the MSCAN module as described
below.

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ=1 and INITAK=1)

SJW1, SJW0 — Synchronization Jump Width

Address Offset: $__02

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-3 MSCAN Bus Timing Register 0 (CANBTR0)

MSCAN Block Guide V02.15

22

The synchronization jump width defines the maximum number of time quanta (Tq) clock cycles a bit
can be shortened or lengthened to achieve resynchronization to data transitions on the bus (seeTable
3-3).

BRP[5-0] — Baud Rate Prescaler

These bits determine the time quanta (Tq) clock which is used to build up the individual bit timing, as
shown inTable 3-4 .

3.3.1.4 MSCAN Bus Timing Register 1 (CANBTR1)

The CANBTR1 register provides for various bus timing control of the MSCAN module as described
below.

Table 3-3 Synchronization Jump Width

SJW1 SJW0 Synchronization jump width

0 0 1 Tq clock cycle

0 1 2 Tq clock cycles

1 0 3 Tq clock cycles

1 1 4 Tq clock cycles

Table 3-4 Baud Rate Prescaler

BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 Prescaler
value (P)

0 0 0 0 0 0 1

0 0 0 0 0 1 2

0 0 0 0 1 0 3

0 0 0 0 1 1 4

: : : : : : :

1 1 1 1 1 0 63

1 1 1 1 1 1 64

Address Offset: $__03

Bit 7 6 5 4 3 2 1 Bit 0

Read:
SAMP TSEG22 TSEG21 TSEG20 TSEG13 TSEG12 TSEG11 TSEG10

Write:

Figure 3-4 MSCAN Bus Timing Register 1 (CANBTR1)

MSCAN Block Guide V02.15

23

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ=1 and INITAK=1)

SAMP — Sampling

This bit determines the number of samples of the serial bus to be taken per bit time. If set, three samples
per bit are taken; the regular one (sample point) and two preceding samples using a majority rule. For
higher bit rates, it is recommended that SAMP be cleared which means that only one sample is taken
per bit.

1 = Three samples per bit1.
0 = One sample per bit.

TSEG22 – TSEG20 — Time Segment 2

Time segments within the bit time fix the number of clock cycles per bit time and the location of the
sample point (seeFigure 4-6 Segments within the Bit Time).

Time segment 2 (TSEG2) values are programmable as shown inTable 3-5 .

TSEG13 – TSEG10 — Time Segment 1

Time segments within the bit time fix the number of clock cycles per bit time and the location of the
sample point (seeFigure 4-6 Segments within the Bit Time).

Time segment 1 (TSEG1) values are programmable as shown inTable 3-6 .

Reset: 0 0 0 0 0 0 0 0

NOTES:
1. In this case, PHASE_SEG1 must be at least 2 Time Quanta.

Table 3-5 Time Segment 2 Values

TSEG22 TSEG21 TSEG20 Time segment 2

0 0 0 1 Tq clock cycle1

NOTES:
1. This setting is not valid. Please refer to Table 4-2 CAN Standard Compliant Bit

Time Segment Settings for valid settings.

0 0 1 2 Tq clock cycles

. . . .

1 1 0 7 Tq clock cycles

1 1 1 8 Tq clock cycles

Figure 3-4 MSCAN Bus Timing Register 1 (CANBTR1)

MSCAN Block Guide V02.15

24

The bit time is determined by the oscillator frequency, the baud rate prescaler, and the number of time
quanta (Tq) clock cycles per bit (as shown inTable 3-5 andTable 3-6 above).

3.3.1.5 MSCAN Receiver Flag Register (CANRFLG)

A flag can only be cleared when the condition which caused the setting is no longer valid and can only be
cleared by software (writing a ‘1’ to the corresponding bit position). Every flag has an associated interrupt
enable bit in the CANRIER register.

Table 3-6 Time Segment 1 Values

TSEG13 TSEG12 TSEG11 TSEG10 Time segment 1

0 0 0 0 1 Tq clock cycle1

NOTES:
1. This setting is not valid. Please refer to Table 4-2 CAN Standard Compliant Bit Time

Segment Settings for valid settings.

0 0 0 1 2 Tq clock cycles1

0 0 1 0 3 Tq clock cycles1

0 0 1 1 4 Tq clock cycles

.

1 1 1 0 15 Tq clock cycles

1 1 1 1 16 Tq clock cycles

Address Offset: $__04

Bit 7 6 5 4 3 2 1 Bit 0

Read:
WUPIF CSCIF

RSTAT1 RSTAT0 TSTAT1 TSTAT0
OVRIF RXF

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-5 MSCAN Receiver Flag Register (CANRFLG)

Bit Time
Prescaler value()

fCANCLK
--- 1 TimeSegment1 TimeSegment2+ +()•=

MSCAN Block Guide V02.15

25

NOTE: The CANRFLG register is held in the reset state1 when the Initialization Mode is
active (INITRQ=1 and INITAK=1). This register is writable again as soon as the
Initialization Mode is left (INITRQ=0 and INITAK=0).

Read: Anytime

Write: Anytime when out of Initialization Mode, except RSTAT[1:0] and TSTAT[1:0] flags which are
read-only; write of ‘1’ clears flag; write of ‘0’ ignored

WUPIF — Wake-Up Interrupt Flag

If the MSCAN detects bus activity while in Sleep Mode4.6.4 MSCAN Sleep Modeand the WUPE=1
in CANTCTL0 (see3.3.1.1 MSCAN Control 0 Register (CANCTL0)), it will set the WUPIF flag.
If not masked, a Wake-Up interrupt is pending while this flag is set.

1 = MSCAN detected activity on the bus and requested wake-up.
0 = No wake-up activity observed while in Sleep Mode.

CSCIF — CAN Status Change Interrupt Flag

This flag is set when the MSCAN changes its current bus status due to the actual value of the Transmit
Error Counter (TEC) and the Receive Error Counter (REC). An additional 4-bit (RSTAT[1:0],
TSTAT[1:0]) status register, which is split into separate sections for TEC/REC, informs the system on
the actual bus status3.3.1.6 MSCAN Receiver Interrupt Enable Register (CANRIER). If not
masked, an Error interrupt is pending while this flag is set. CSCIF provides a blocking interrupt. That
guarantees that the Receiver / Transmitter status bits (RSTAT/TSTAT) are only updated when no
CAN Status Change interrupt is pending. If the TECs/RECs change their current value after the CSCIF
is asserted and therefore would cause an additional state change in the RSTAT/TSTAT bits, these bits
keep their old state bits until the current CSCIF interrupt is cleared again.

1 = MSCAN changed current bus status.
0 = No change in bus status occurred since last interrupt.

RSTAT1, RSTAT0 — Receiver Status Bits

The values of the error counters control the actual bus status of the MSCAN. As soon as the Status
Change Interrupt Flag (CSCIF) is set these bits indicate the appropriate receiver related bus status of
the MSCAN. The coding for the bits RSTAT1, RSTAT0 is:

00 = RxOK: 0≤ Receive Error Counter≤ 96
01 = RxWRN: 96 < Receive Error Counter≤ 127
10 = RxERR: 127 < Receive Error Counter
11 = Bus-Off2: Transmit Error Counter > 255

TSTAT1, TSTAT0 — Transmitter Status Bits

The values of the Error Counters control the actual bus status of the MSCAN. As soon as the Status
Change Interrupt Flag (CSCIF) is set these bits indicate the appropriate transmitter related bus status
of the MSCAN. The coding for the bits TSTAT1, TSTAT0 is:

NOTES:
1. The RSTAT[1:0], TSTAT[1:0] bits are not affected by Initialization Mode
2. Redundant Information for the most critical bus status which is “CAN Bus-Off”. This only occurs if the Tx Error Counter

exceeds a number of 255 errors. CAN Bus-Off affects the receiver state. As soon as the transmitter leaves its Bus-Off state
the receiver state skips to RxOK too. Refer also to TSTAT[1:0] coding.

MSCAN Block Guide V02.15

26

00 = TxOK: 0≤ Transmit Error Counter≤ 96
01 = TxWRN: 96 < Transmit Error Counter≤ 127
10 = TxERR: 127 < Transmit Error Counter≤ 255
11 = Bus-Off: Transmit Error Counter > 255

OVRIF — Overrun Interrupt Flag

This flag is set when a data overrun condition occurs. If not masked, an Error interrupt is pending while
this flag is set.

1 = A data overrun detected.
0 = No data overrun condition.

RXF — Receive Buffer Full Flag

The RXF flag is set by the MSCAN when a new message is shifted in the receiver FIFO. This flag
indicates whether the shifted buffer is loaded with a correctly received message (matching identifier,
matching Cyclic Redundancy Code (CRC) and no other errors detected). After the CPU has read that
message from the RxFG buffer in the receiver FIFO, the RXF flag must be cleared to release the buffer.
A set RXF flag prohibits the shifting of the next FIFO entry into the foreground buffer (RxFG). If not
masked, a Receive interrupt is pending while this flag is set.

1 = The receiver FIFO is not empty. A new message is available in the RxFG.
0 = No new message available within the RxFG.

NOTE: To ensure data integrity, do not read the receive buffer registers while the RXF flag
is cleared.

For MCUs with dual CPUs, reading the receive buffer registers while the RXF flag
is cleared may result in a CPU fault condition.

3.3.1.6 MSCAN Receiver Interrupt Enable Register (CANRIER)

This register contains the interrupt enable bits for the interrupt flags described above.

NOTE: The CANRIER register is held in the reset state1 when the Initialization Mode is
active (INITRQ=1 and INITAK=1). This register is writable again as soon as the
Initialization Mode is left (INITRQ=0 and INITAK=0).

Address Offset: $__05

Bit 7 6 5 4 3 2 1 Bit 0

Read:
WUPIE CSCIE RSTATE1 RSTATE0 TSTATE1 TSTATE0 OVRIE RXFIE

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-6 MSCAN Receiver Interrupt Enable Register (CANRIER)

NOTES:
1. The RSTATE[1:0], TSTATE[1:0] bits are not affected by Initialization Mode

MSCAN Block Guide V02.15

27

Read: Anytime

Write: Anytime when out of Initialization Mode

WUPIE — Wake-Up Interrupt Enable
1 = A wake-up event causes a Wake-Up interrupt request.
0 = No interrupt request is generated from this event.

NOTE: The CPU has to make sure that the Wake-Up interrupt register and the WUPE
register3.3.1.1 MSCAN Control 0 Register (CANCTL0)is enabled, if the recovery
mechanism from STOP or WAIT is required.

CSCIE — CAN Status Change Interrupt Enable
1 = A CAN Status Change event causes an error interrupt request.
0 = No interrupt request is generated from this event.

RSTATE1, RSTATE0— Receiver Status Change Enable

These RSTAT enable bits control the sensitivity level in which receiver state changes are causing
CSCIF interrupts. Independent of the chosen sensitivity level the RSTAT flags still indicate the actual
receiver state and are only updated if no CSCIF interrupt is pending.

11 = generate CSCIF interrupt on all state changes
10 = generate CSCIF interrupt only if the receiver enters or leaves “RxErr” or “Bus-Off”1 state.

Discard other receiver state changes for generating CSCIF interrupt.
01 = generate CSCIF interrupt only if the receiver enters or leaves “Bus-Off” state. Discard other

receiver state changes for generating CSCIF interrupt.
00 = do not generate any CSCIF interrupt caused by receiver state changes.

TSTATE1, TSTATE0— Transmitter Status Change Enable

These TSTAT enable bits control the sensitivity level in which transmitter state changes are causing
CSCIF interrupts. Independent of the chosen sensitivity level the TSTAT flags still indicate the actual
transmitter state and are only updated if no CSCIF interrupt is pending.

11 = generate CSCIF interrupt on all state changes
10 = generate CSCIF interrupt only if the transmitter enters or leaves “TxErr” or “Bus-Off” state.

Discard other transmitter state changes for generating CSCIF interrupt.
01 = generate CSCIF interrupt only if the transmitter enters or leaves “Bus-Off” state. Discard other

transmitter state changes for generating CSCIF interrupt.
00 = do not generate any CSCIF interrupt caused by transmitter state changes.

OVRIE — Overrun Interrupt Enable
1 = An overrun event causes an error interrupt request.
0 = No interrupt request is generated from this event.

RXFIE — Receiver Full Interrupt Enable
NOTES:
1. Bus-Off state is only defined by the CAN standard for transmitters. Because the only possible state change for the trans-

mitter from Bus-Off to TxOK also forces the receiver to skip its current state to RxOK, the coding of the RXSTAT[1:0] flags
define an additional Bus-Off state for the receiver 3.3.1.5 MSCAN Receiver Flag Register (CANRFLG)

MSCAN Block Guide V02.15

28

1 = A receive buffer full (successful message reception) event causes a receiver interrupt request.
0 = No interrupt request is generated from this event.

3.3.1.7 MSCAN Transmitter Flag Register (CANTFLG)

The Transmit Buffer Empty flags each have an associated interrupt enable bit in the CANTIER register.

NOTE: The CANTFLG register is held in the reset state when the Initialization Mode is
active (INITRQ=1 and INITAK=1). This register is writable again as soon as the
Initialization Mode is left (INITRQ=0 and INITAK=0).

Read: Anytime

Write: Anytime for TXEx flags when not in Initialization Mode; write of ‘1’ clears flag, write of ‘0’
ignored

TXE2 - TXE0 —Transmitter Buffer Empty

This flag indicates that the associated transmit message buffer is empty, and thus not scheduled for
transmission. The CPU must clear the flag after a message is set up in the transmit buffer and is due
for transmission. The MSCAN sets the flag after the message is sent successfully. The flag is also set
by the MSCAN when the transmission request is successfully aborted due to a pending abort request
(see3.3.1.9 MSCAN Transmitter Message Abort Control (CANTARQ)). If not masked, a
Transmit interrupt is pending while this flag is set.

Clearing a TXEx flag also clears the corresponding ABTAKx (see3.3.1.10 MSCAN Transmitter
Message Abort Control (CANTAAK)). When a TXEx flag is set, the corresponding ABTRQx bit is
cleared (see3.3.1.9 MSCAN Transmitter Message Abort Control (CANTARQ)).

When Listen-Mode is active (see3.3.1.2 MSCAN Control 1 Register (CANCTL1)) the TXEx flags
cannot be cleared and no transmission is started.

Read and write accesses to the transmit buffer will be blocked, if the corresponding TXEx bit is cleared
(TXEx=’0’) and the buffer is scheduled for transmission.

1 = The associated message buffer is empty (not scheduled).
0 = The associated message buffer is full (loaded with a message due for transmission).

Address Offset: $__06

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0
TXE2 TXE1 TXE0

Write:

Reset: 0 0 0 0 0 1 1 1

= Unimplemented

Figure 3-7 MSCAN Transmitter Flag Register (CANTFLG)

MSCAN Block Guide V02.15

29

3.3.1.8 MSCAN Transmitter Interrupt Enable Register (CANTIER)

This register contains the interrupt enable bits for the Transmit Buffer Empty interrupt flags.

NOTE: The CANTIER register is held in the reset state when the Initialization Mode is
active (INITRQ=1 and INITAK=1). This register is writable again as soon as the
Initialization Mode is left (INITRQ=0 and INITAK=0).

Read: Anytime

Write: Anytime when not in Initialization Mode

TXEIE2 - TXEIE0 — Transmitter Empty Interrupt Enable
1 = A transmitter empty (transmit buffer available for transmission) event causes a transmitter

empty interrupt request.
0 = No interrupt request is generated from this event.

3.3.1.9 MSCAN Transmitter Message Abort Control (CANTARQ)

The CANTARQ register provides for abort request of queued messages as described below.

NOTE: The CANTARQ register is held in the reset state when the Initialization Mode is
active (INITRQ=1 and INITAK=1). This register is writable again as soon as the
Initialization Mode is left (INITRQ=0 and INITAK=0).

Address Offset: $__07

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0
TXEIE2 TXEIE1 TXEIE0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-8 MSCAN Transmitter Interrupt Enable Register (CANTIER)

Address Offset: $__08

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0
ABTRQ2 ABTRQ1 ABTRQ0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-9 MSCAN Transmitter Message Abort Request (CANTARQ)

MSCAN Block Guide V02.15

30

Read: Anytime

Write: Anytime when not in Initialization Mode

ABTRQ2 - ABTRQ0 — Abort Request

The CPU sets the ABTRQx bit to request that a scheduled message buffer (TXEx=0) be aborted. The
MSCAN grants the request if the message has not already started transmission, or if the transmission
is not successful (lost arbitration or error). When a message is aborted, the associated TXE (see3.3.1.7
MSCAN Transmitter Flag Register (CANTFLG)) and Abort Acknowledge flags (ABTAK, see
3.3.1.10 MSCAN Transmitter Message Abort Control (CANTAAK)) are set and a transmit
interrupt occurs if enabled. The CPU cannot reset ABTRQx. ABTRQx is reset whenever the
associated TXE flag is set.

1 = Abort request pending.
0 = No abort request.

3.3.1.10 MSCAN Transmitter Message Abort Control (CANTAAK)

The CANTAAK register indicates the successful abort of a queued message, if requested by the
appropriate bits in the CANTARQ register

NOTE: The CANTAAK register is held in the reset state when the Initialization Mode is
active (INITRQ=1 and INITAK=1).

Read: Anytime

Write: Unimplemented for ABTAKx flags;

ABTAK2 - ABTAK0 — Abort Acknowledge

This flag acknowledges that a message was aborted due to a pending abort request from the CPU. After
a particular message buffer is flagged empty, this flag can be used by the application software to
identify whether the message was aborted successfully or was sent anyway. The ABTAKx flag is
cleared whenever the corresponding TXE flag is cleared.

1 = The message was aborted.
0 = The message was not aborted.

Address Offset: $__09

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0 ABTAK2 ABTAK1 ABTAK0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-10 MSCAN Transmitter Message Abort Control (CANTAAK)

MSCAN Block Guide V02.15

31

3.3.1.11 MSCAN Transmit Buffer Selection (CANTBSEL)

The CANTBSEL register allows the selection of the actual transmit message buffer, which will be then
accessible in the CANTXFG register space (3.3.1 Programmer’s Model of Control Registers).

NOTE: The CANTBSEL register is held in the reset state when the Initialization Mode is
active (INITRQ=1 and INITAK=1). This register is writable again as soon as the
Initialization Mode is left (INITRQ=0 and INITAK=0).

Read: find the lowest ordered bit set to “1”, all other bits will be read as “0”

Write: Anytime when not in Initialization Mode

TX2 - TX0 — Transmit Buffer Select

The lowest numbered bit places the respective transmit buffer in the CANTXFG register space (e.g.
TX1=1 and TX0=1 selects transmit buffer TX0, TX1=1 and TX0=0 selects transmit buffer TX1)

Read and write accesses to the selected transmit buffer will be blocked, if the corresponding TXEx bit
is cleared and the buffer is scheduled for transmission3.3.1.7 MSCAN Transmitter Flag Register
(CANTFLG) .

1 = The associated message Buffer is selected, if lowest numbered bit.
0 = The associated message buffer is deselected

NOTE: The following gives a short programming example of the usage of the CANTBSEL
register:

The application software wants to get the next available transmit buffer. It reads the
CANTFLG register and writes this value back into the CANTBSEL register. In this
example Tx buffers TX1 and TX2 are available. The value read from CANTFLG is
therefore 0b0000_0110. When writing this value back to CANTBSEL the Tx buffer
TX1 is selected in the CANTXFG because the lowest numbered bit set to “1” is at
bit position 1. Reading back this value out of CANTBSEL results in 0b0000_0010,
because only the lowest numbered bit position set to “1” is presented. This
mechanism eases the application software the selection of the next available Tx
buffer.

LDD CANTFLG; value read is 0b0000_0110

Address Offset: $__0A

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0
TX2 TX1 TX0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-11 MSCAN Transmitter Flag Register (CANTBSEL)

MSCAN Block Guide V02.15

32

STD CANTBSEL; value written is 0b0000_0110

LDD CANTBSEL; value read is 0b0000_0010

If all transmit message buffers are deselected no accesses are allowed to the
CANTXFG registers.

3.3.1.12 MSCAN Identifier Acceptance Control Register (CANIDAC)

The CANIDAC register provides for identifier acceptance control as described below.

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ=1 and INITAK=1), except bits IDHITx which are
read-only

IDAM1 - IDAM0 — Identifier Acceptance Mode

The CPU sets these flags to define the identifier acceptance filter organization4.3 Identifier
Acceptance Filter. Table 3-7 summarizes the different settings. In Filter Closed mode, no message
is accepted such that the foreground buffer is never reloaded.

IDHIT2 - IDHIT0 — Identifier Acceptance Hit Indicator

The MSCAN sets these flags to indicate an identifier acceptance hit4.3 Identifier Acceptance Filter.
Table 3-8 summarizes the different settings.

Address Offset: $__0B

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
IDAM1 IDAM0

0 IDHIT2 IDHIT1 IDHIT0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-12 MSCAN Identifier Acceptance Control Register (CANIDAC)

Table 3-7 Identifier Acceptance Mode Settings

IDAM1 IDAM0 Identifier Acceptance Mode

0 0 Two 32 bit Acceptance Filters

0 1 Four 16 bit Acceptance Filters

1 0 Eight 8 bit Acceptance Filters

1 1 Filter Closed

MSCAN Block Guide V02.15

33

The IDHITx indicators are always related to the message in the foreground buffer (RxFG). When a
message gets shifted into the foreground buffer of the receiver FIFO the indicators are updated as well.

3.3.1.13 Reserved Registers

These registers are reserved for factory testing of the MSCAN module and are not available in normal
system operation modes.

Read: always read $00 in normal system operation modes

Write: Unimplemented in normal system operation modes

NOTE: Writing to these registers when in special modes can alter the MSCAN
functionality.

Table 3-8 Identifier Acceptance Hit Indication

IDHIT2 IDHIT1 IDHIT0 Identifier Acceptance Hit

0 0 0 Filter 0 Hit

0 0 1 Filter 1 Hit

0 1 0 Filter 2 Hit

0 1 1 Filter 3 Hit

1 0 0 Filter 4 Hit

1 0 1 Filter 5 Hit

1 1 0 Filter 6 Hit

1 1 1 Filter 7 Hit

Address Offset: $__0C - $__0D

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-13 Reserved Registers

MSCAN Block Guide V02.15

34

3.3.1.14 MSCAN Receive Error Counter Register (CANRXERR)

This register reflects the status of the MSCAN receive error counter.

Read: only when in Sleep Mode (SLPRQ=1 and SLPAK=1) or Initialization Mode (INITRQ=1 and
INITAK=1)

Write: Unimplemented

NOTE: Reading this register when in any other mode other than Sleep or Initialization
Mode, may return an incorrect value. For MCUs with dual CPUs, this may result
in a CPU fault condition.

NOTE: Writing to this register when in special modes can alter the MSCAN functionality.

3.3.1.15 MSCAN Transmit Error Counter Register (CANTXERR)

This register reflects the status of the MSCAN transmit error counter.

Read: only when in Sleep Mode (SLPRQ=1 and SLPAK=1) or Initialization Mode (INITRQ=1 and
INITAK=1)

Write: Unimplemented

Address Offset: $__0E

Bit 7 6 5 4 3 2 1 Bit 0

Read: RXERR7 RXERR6 RXERR5 RXERR4 RXERR3 RXERR2 RXERR1 RXERR0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-14 MSCAN Receive Error Counter Register (CANRXERR)

Address Offset: $__0F

Bit 7 6 5 4 3 2 1 Bit 0

Read: TXERR7 TXERR6 TXERR5 TXERR4 TXERR3 TXERR2 TXERR1 TXERR0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure 3-15 MSCAN Transmit Error Counter Register (CANTXERR)

MSCAN Block Guide V02.15

35

NOTE: Reading this register when in any other mode other than Sleep or Initialization
Mode, may return an incorrect value. For MCUs with dual CPUs, this may result
in a CPU fault condition.

NOTE: Writing to this register when in special modes can alter the MSCAN functionality.

3.3.1.16 MSCAN Identifier Acceptance Registers (CANIDAR0-7)

On reception, each message is written into the background receive buffer. The CPU is only signalled to
read the message if it passes the criteria in the identifier acceptance and identifier mask registers
(accepted); otherwise, the message is overwritten by the next message (dropped).

The acceptance registers of the MSCAN are applied on the IDR0 to IDR3 registers3.3.2.1 Identifier
Registers (IDR0-3) of incoming messages in a bit by bit manner4.3 Identifier Acceptance Filter.

For extended identifiers, all four acceptance and mask registers are applied. For standard identifiers, only
the first two (CANIDAR0/1, CANIDMR0/1) are applied.

Bit 7 6 5 4 3 2 1 Bit 0

Address Offset: $__10 CANIDAR0

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__11 CANIDAR1

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__12 CANIDAR2

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__13 CANIDAR3

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-16 MSCAN Identifier Acceptance Registers (1st Bank)

Bit 7 6 5 4 3 2 1 Bit 0

Address Offset: $__18 CANIDAR4

MSCAN Block Guide V02.15

36

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ=1 and INITAK=1)

AC7 – AC0 — Acceptance Code Bits

AC7 – AC0 comprise a user defined sequence of bits with which the corresponding bits of the related
identifier register (IDRn) of the receive message buffer are compared. The result of this comparison is
then masked with the corresponding identifier mask register.

3.3.1.17 MSCAN Identifier Mask Registers (CANIDMR0-7)

The identifier mask register specifies which of the corresponding bits in the identifier acceptance register
are relevant for acceptance filtering. To receive standard identifiers in 32 bit filter mode, it is required to
program the last three bits (AM2 - AM0) in the mask registers CANIDMR1 and CANIDMR5 to “don’t
care”. To receive standard identifiers in 16 bit filter mode, it is required to program the last three bits (AM2
- AM0) in the mask registers CANIDMR1, CANIDMR3, CANIDMR5 and CANIDMR7 to “don’t care”.

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__19 CANIDAR5

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__1A CANIDAR6

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__1B CANIDAR7

Read:
AC7 AC6 AC5 AC4 AC3 AC2 AC1 AC0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-17 MSCAN Identifier Acceptance Registers (2nd Bank)

Bit 7 6 5 4 3 2 1 Bit 0

Address Offset: $__14 CANIDMR0

MSCAN Block Guide V02.15

37

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__15 CANIDMR1

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__16 CANIDMR2

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__17 CANIDMR3

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-18 MSCAN Identifier Mask Registers (1st Bank)

Bit 7 6 5 4 3 2 1 Bit 0

Address Offset: $__1C CANIDMR4

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__1D CANIDMR5

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__1E CANIDMR6

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Address Offset: $__1F CANIDMR7

Figure 3-19 MSCAN Identifier Mask Registers (2nd Bank)

MSCAN Block Guide V02.15

38

Read: Anytime

Write: Anytime in Initialization Mode (INITRQ=1 and INITAK=1)

AM7 – AM0 — Acceptance Mask Bits

If a particular bit in this register is cleared, this indicates that the corresponding bit in the identifier
acceptance register must be the same as its identifier bit before a match is detected. The message is
accepted if all such bits match. If a bit is set, it indicates that the state of the corresponding bit in the
identifier acceptance register does not affect whether or not the message is accepted.

1 = Ignore corresponding acceptance code register bit.
0 = Match corresponding acceptance code register and identifier bits.

3.3.2 Programmer’s Model of Message Storage

The following section details the organization of the receive and transmit message buffers and the
associated control registers.

For reasons of programmer interface simplification, the receive and transmit message buffers have the
same outline. Each message buffer allocates 16 bytes in the memory map containing a 13 byte data
structure.

An additional Transmit Buffer Priority Register (TBPR) is defined for the transmit buffers. Within the last
two bytes of this memory map the MSCAN stores a special 16-bit time stamp, which is sampled from an
internal timer after successful transmission or reception of a message. This feature is only available for
transmit and receiver buffers, if the TIME bit is set (3.3.1.1 MSCAN Control 0 Register (CANCTL0)).

The Time Stamp register is written by the MSCAN. The CPU can only read these registers.

Read:
AM7 AM6 AM5 AM4 AM3 AM2 AM1 AM0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-19 MSCAN Identifier Mask Registers (2nd Bank)

MSCAN Block Guide V02.15

39

Figure 3-20 shows the common 13 byte data structure of receive and transmit buffers for extended
identifiers. The mapping of standard identifiers into the IDR registers is shown inFigure 3-21 .

All bits of the receive and transmit buffers are ‘x’ out of reset because of RAM based implementation1.
All reserved or unused bits of the receive and transmit buffers are always read ‘x’.

Addr Register Name
$__x0 Identifier Register 0

$__x1 Identifier Register 1

$__x2 Identifier Register 2

$__x3 Identifier Register 3

$__x4 Data Segment Register 0

$__x5 Data Segment Register 1

$__x6 Data Segment Register 2

$__x7 Data Segment Register 3

$__x8 Data Segment Register 4

$__x9 Data Segment Register 5

$__xA Data Segment Register 6

$__xB Data Segment Register 7

$__xC Data Length Register

$__xD Transmit Buffer Priority Register1

NOTES:
1. Not Applicable for Receive Buffers

$__xE Time Stamp Register (High Byte)2

2. Read-Only for CPU

$__xF Time Stamp Register (Low Byte)3

3. Read-Only for CPU

Table 3-9 Message Buffer Organization

NOTES:
1. Exception: The Transmit Priority Registers are “0” out of reset

Register name Bit 7 6 5 4 3 2 1 Bit 0 ADDR

IDR0
Read:

ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21 $__x0
Write:

IDR1
Read:

ID20 ID19 ID18 SRR (=1) IDE (=1) ID17 ID16 ID15 $__x1
Write:

IDR2
Read:

ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7 $__x2
Write:

IDR3
Read:

ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR $__x3
Write:

= Unused1

Figure 3-20 Receive / Transmit Message Buffer Extended Identifier

MSCAN Block Guide V02.15

40

Read: Anytime for transmit buffers when TXEx flag is set (see3.3.1.7 MSCAN Transmitter Flag
Register (CANTFLG)) and the corresponding transmit buffer is selected in CANTBSEL (see3.3.1.11
MSCAN Transmit Buffer Selection (CANTBSEL)); only when RXF flag is set for receive buffers
(see3.3.1.5 MSCAN Receiver Flag Register (CANRFLG)).

Write: Anytime for transmit buffers when TXEx flag is set (see3.3.1.7 MSCAN Transmitter Flag
Register (CANTFLG)) and the corresponding transmit buffer is selected in CANTBSEL (see3.3.1.11
MSCAN Transmit Buffer Selection (CANTBSEL)); unimplemented for receive buffers

Reset: $xx because of RAM based implementation

DSR0
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__x4
Write:

DSR1
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__x5
Write:

DSR2
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__x6
Write:

DSR3
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__x7
Write:

DSR4
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__x8
Write:

DSR5
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__x9
Write:

DSR6
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__xA
Write:

DSR7
Read:

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $__xB
Write:

DLR
Read:

DLC3 DLC2 DLC1 DLC0 $__xC
Write:

NOTES:
1. Unused bits are always read ‘x’

Register name Bit 7 6 5 4 3 2 1 Bit 0 ADDR

IDR0
Read:

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 $__x0
Write:

IDR1
Read:

ID2 ID1 ID0 RTR IDE (=0) $__x1
Write:

IDR2
Read:

$__x2
Write:

IDR3
Read:

$__x3
Write:

= Unused1

Figure 3-21 Standard Identifier Mapping

Register name Bit 7 6 5 4 3 2 1 Bit 0 ADDR

= Unused1

Figure 3-20 Receive / Transmit Message Buffer Extended Identifier

MSCAN Block Guide V02.15

41

3.3.2.1 Identifier Registers (IDR0-3)

The identifier registers for an extended format identifier consist of a total of 32 bits; ID28 - ID0, SRR, IDE,
and RTR bits. The identifier registers for a standard format identifier consist of a total of 13 bits; ID10 -
ID0, RTR, and IDE bits.

ID28 - ID0 — Extended format identifier

The identifiers consist of 29 bits (ID28 - ID0) for the extended format. ID28 is the most significant bit
and is transmitted first on the bus during the arbitration procedure. The priority of an identifier is
defined to be highest for the smallest binary number.

ID10 - ID0 — Standard format identifier

The identifiers consist of 11 bits (ID10 – ID0) for the standard format. ID10 is the most significant bit
and is transmitted first on the bus during the arbitration procedure. The priority of an identifier is
defined to be highest for the smallest binary number.

SRR — Substitute Remote Request

This fixed recessive bit is used only in extended format. It must be set to 1 by the user for transmission
buffers and is stored as received on the CAN bus for receive buffers.

IDE — ID Extended

This flag indicates whether the extended or standard identifier format is applied in this buffer. In the
case of a receive buffer, the flag is set as received and indicates to the CPU how to process the buffer
identifier registers. In the case of a transmit buffer, the flag indicates to the MSCAN what type of
identifier to send.

1 = Extended format (29 bit)
0 = Standard format (11 bit)

RTR — Remote Transmission Request

This flag reflects the status of the Remote Transmission Request bit in the CAN frame. In the case of
a receive buffer, it indicates the status of the received frame and supports the transmission of an
answering frame in software. In the case of a transmit buffer, this flag defines the setting of the RTR
bit to be sent.

1 = Remote frame
0 = Data frame

NOTES:
1. Unused bits are always read ‘x’

MSCAN Block Guide V02.15

42

3.3.2.2 Data Segment Registers (DSR0-7)

The eight data segment registers, each with bits DB7-DB0, contain the data to be transmitted or received.
The number of bytes to be transmitted or received is determined by the data length code in the
corresponding DLR register.

DB7 - DB0 — Data Bits 7-0

3.3.2.3 Data Length Register (DLR)

This register keeps the data length field of the CAN frame.

DLC3 - DLC0 — Data Length Code bits

The data length code contains the number of bytes (data byte count) of the respective message. During
the transmission of a remote frame, the data length code is transmitted as programmed while the
number of transmitted data bytes is always 0. The data byte count ranges from 0 to 8 for a data frame.
Table 3-10 shows the effect of setting the DLC bits.

3.3.2.4 Transmit Buffer Priority Register (TBPR)

This register defines the local priority of the associated message buffer. The local priority is used for the
internal prioritization process of the MSCAN and is defined to be highest for the smallest binary number.
The MSCAN implements the following internal prioritization mechanisms:

• All transmission buffers with a cleared TXEx flag participate in the prioritization immediately
before the SOF (Start of Frame) is sent.

Table 3-10 Data length codes

Data length code Data
byte

countDLC3 DLC2 DLC1 DLC0

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

MSCAN Block Guide V02.15

43

• The transmission buffer with the lowest local priority field wins the prioritization.

In cases of more than one buffer having the same lowest priority, the message buffer with the lower index
number wins.

Read: Anytime when TXEx flag is set (see3.3.1.7 MSCAN Transmitter Flag Register (CANTFLG))
and the corresponding transmit buffer is selected in CANTBSEL (see3.3.1.11 MSCAN Transmit
Buffer Selection (CANTBSEL))

Write: Anytime when TXEx flag is set (see3.3.1.7 MSCAN Transmitter Flag Register
(CANTFLG)) and the corresponding transmit buffer is selected in CANTBSEL (see3.3.1.11 MSCAN
Transmit Buffer Selection (CANTBSEL))

3.3.2.5 Time Stamp Register (TSRH, TSRL)

If the TIME bit is enabled, the MSCAN will write a special time stamp to the respective registers in the
active transmit or receive buffer as soon as a message has been acknowledged on the CAN bus (3.3.1.1
MSCAN Control 0 Register (CANCTL0)). The time stamp is written on the bit sample point for the
recessive bit of the ACK delimiter in the CAN frame. In case of a transmission, the CPU can only read the
time stamp after the respective transmit buffer has been flagged empty.

The timer value, which is used for stamping, is taken from a free running internal CAN bit clock. A timer
overrun is not indicated by the MSCAN. The timer is reset (all bits set to “0”) during Initialization Mode.
The CPU can only read the Time Stamp registers.

Address Offset: $xxxD

Bit 7 6 5 4 3 2 1 Bit 0

Read:
PRIO7 PRIO6 PRIO5 PRIO4 PRIO3 PRIO2 PRIO1 PRIO0

Write:

Reset: 0 0 0 0 0 0 0 0

Figure 3-22 Transmit Buffer Priority Register (TBPR)

Address Offset: $xxxE

Bit 7 6 5 4 3 2 1 Bit 0

Read: TSR15 TSR14 TSR13 TSR12 TSR11 TSR10 TSR9 TSR8

Write:

Reset: X X X X X X X X

Figure 3-23 Time Stamp Register (TSRH - High Byte)

Address Offset: $xxxF

MSCAN Block Guide V02.15

44

Read: Anytime when TXEx flag is set (see3.3.1.7 MSCAN Transmitter Flag Register (CANTFLG))
and the corresponding transmit buffer is selected in CANTBSEL (see3.3.1.11 MSCAN Transmit
Buffer Selection (CANTBSEL))

Write: Unimplemented

Bit 7 6 5 4 3 2 1 Bit 0

Read: TSR7 TSR6 TSR5 TSR4 TSR3 TSR2 TSR1 TSR0

Write:

Reset: X X X X X X X X

Figure 3-24 Time Stamp Register (TSRL - Low Byte)

MSCAN Block Guide V02.15

45

Section 4 Functional Description

4.1 General

This section provides a complete functional description of the MSCAN. It describes each of the features
and modes listed in the introduction.

4.2 Message Storage

Figure 4-1 User Model for Message Buffer Organization

MSCAN

Rx0
Rx1

CPU bus

MSCAN

Tx2 TXE2

PRIO

Receiver

Transmitter

R
xB

G

T
xB

G

Tx0 TXE0

PRIOT
xB

G

Tx1

PRIO

TXE1

T
xF

G

CPU bus

Rx2
Rx3

Rx4
RXF

R
xF

G

MSCAN Block Guide V02.15

46

MSCAN facilitates a sophisticated message storage system which addresses the requirements of a broad
range of network applications.

4.2.1 Message Transmit Background

Modern application layer software is built upon two fundamental assumptions:

• Any CAN node is able to send out a stream of scheduled messages without releasing the bus
between the two messages. Such nodes arbitrate for the bus immediately after sending the previous
message and only release the bus in case of lost arbitration.

• The internal message queue within any CAN node is organized such that the highest priority
message is sent out first, if more than one message is ready to be sent.

The above behavior cannot be achieved with a single transmit buffer. That buffer must be reloaded right
after the previous message is sent. This loading process lasts a finite amount of time and has to be
completed within the Inter-Frame Sequence (IFS)1 to be able to send an uninterrupted stream of messages.
Even if this is feasible for limited CAN bus speeds, it requires that the CPU react with short latencies to
the transmit interrupt.

A double buffer scheme de-couples the reloading of the transmit buffer from the actual message sending
and, as such, reduces the reactiveness requirements on the CPU. Problems can arise if the sending of a
message is finished while the CPU re-loads the second buffer. No buffer would then be ready for
transmission and the bus would be released.

At least three transmit buffers are required to meet the first of the above requirements under all
circumstances. The MSCAN has three transmit buffers.

The second requirement calls for some sort of internal prioritization which the MSCAN implements with
the “local priority” concept described in4.2.2 Transmit Structures .

4.2.2 Transmit Structures

The MSCAN has a triple transmit buffer scheme which allows multiple messages to be set up in advance
and achieve an optimized real-time performance. The three buffers are arranged as shown inFigure 4-1
User Model for Message Buffer Organization .

All three buffers have a 13 byte data structure similar to the outline of the receive buffers3.3.2
Programmer’s Model of Message Storage . An additional3.3.2.4 Transmit Buffer Priority
Register (TBPR) contains an 8-bit “Local Priority” field (PRIO) (see3.3.2.4 Transmit Buffer Priority
Register (TBPR)). The remaining two bytes are used for time stamping of a message, if required (see
3.3.2.5 Time Stamp Register (TSRH, TSRL)).

To transmit a message, the CPU has to identify an available transmit buffer which is indicated by a set
Transmitter Buffer Empty (TXEx) flag3.3.1.7 MSCAN Transmitter Flag Register (CANTFLG). If a
transmit buffer is available, the CPU has to set a pointer to this buffer by writing to the CANTBSEL
register (3.3.1.11 MSCAN Transmit Buffer Selection (CANTBSEL)). This makes the respective buffer

NOTES:
1. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991.

MSCAN Block Guide V02.15

47

accessible within the CANTXFG address space3.3.2 Programmer’s Model of Message Storage. The
algorithmic feature associated with the CANTBSEL register simplifies the transmit buffer selection. In
addition this scheme makes the handler software simpler as only one address area is applicable for the
transmit process. In addition the required address space is minimized.

The CPU then stores the identifier, the control bits and the data content into one of the transmit buffers.
Finally, the buffer is flagged as ready for transmission by clearing the associated TXE flag.

The MSCAN then schedules the message for transmission and signals the successful transmission of the
buffer by setting the associated TXE flag. A transmit interrupt4.9.1 Transmit Interrupt is generated1

when TXEx is set and can be used to drive the application software to re-load the buffer.

In case more than one buffer is scheduled for transmission when the CAN bus becomes available for
arbitration, the MSCAN uses the “local priority” setting of the three buffers to determine the prioritization.
For this purpose, every transmit buffer has an 8-bit local priority field (PRIO). The application software
programs this field when the message is set up. The local priority reflects the priority of this particular
message relative to the set of messages being transmitted from this node. The lowest binary value of the
PRIO field is defined to be the highest priority. The internal scheduling process takes place whenever the
MSCAN arbitrates for the bus. This is also the case after the occurrence of a transmission error.

When a high priority message is scheduled by the application software, it may become necessary to abort
a lower priority message in one of the three transmit buffers. As messages that are already in transmission
cannot be aborted, the user has to request the abort by setting the corresponding Abort Request bit
(ABTRQ) 3.3.1.9 MSCAN Transmitter Message Abort Control (CANTARQ) . The MSCAN then
grants the request, if possible, by: 1) setting the corresponding Abort Acknowledge flag (ABTAK) in the
CANTAAK register, 2) setting the associated TXE flag to release the buffer, and 3) generating a transmit
interrupt. The transmit interrupt handler software can tell from the setting of the ABTAK flag whether the
message was aborted (ABTAK=1) or sent (ABTAK=0).

4.2.3 Receive Structures

The received messages are stored in a five stage input FIFO. The five message buffers are alternately
mapped into a single memory areaFigure 4-1 User Model for Message Buffer Organization. While the
background receive buffer (RxBG) is exclusively associated with the MSCAN, the foreground receive
buffer (RxFG) is addressable by the CPUFigure 4-1 User Model for Message Buffer Organization.
This scheme simplifies the handler software as only one address area is applicable for the receive process.

All receive buffers have a size of 15 bytes to store the CAN control bits, the identifier (standard or
extended), the data contents and a time stamp, if enabled (for details3.3.2 Programmer’s Model of
Message Storage)2.

The Receiver Full flag (RXF)3.3.1.5 MSCAN Receiver Flag Register (CANRFLG) signals the status
of the foreground receive buffer. When the buffer contains a correctly received message with a matching
identifier, this flag is set.

NOTES:
1. The transmit interrupt occurs only if not masked. A polling scheme can be applied on TXEx also.
2. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for details.

MSCAN Block Guide V02.15

48

On reception, each message is checked to see if it passes the filter (4.3 Identifier Acceptance Filter) and
in parallel, is written into the active RxBG. After successful reception of a valid message the MSCAN
shifts the content of RxBG into the receiver FIFO1, sets the RXF flag, and generates a receive interrupt
4.9.2 Receive Interrupt to the CPU2. The user’s receive handler has to read the received message from
the RxFG and then reset the RXF flag to acknowledge the interrupt and to release the foreground buffer.
A new message, which can follow immediately after the IFS field of the CAN frame, is received into the
next available RxBG. If the MSCAN receives an invalid message in its RxBG (wrong identifier,
transmission errors etc.) the actual contents of the buffer will be over-written by the next message. The
buffer will then not be shifted into the FIFO.

When the MSCAN module is transmitting, the MSCAN receives its own transmitted messages into the
background receive buffer, RxBG, but does not shift it into the receiver FIFO, generate a receive interrupt,
or acknowledge its own messages on the CAN bus. The exception to this rule is in loop back mode3.3.1.2
MSCAN Control 1 Register (CANCTL1) where the MSCAN treats its own messages exactly like all
other incoming messages. The MSCAN receives its own transmitted messages in the event that it loses
arbitration3. If arbitration is lost, the MSCAN must be prepared to become a receiver.

An overrun condition occurs when all receive message buffers in the FIFO are filled with correctly
received messages with accepted identifiers and another message is correctly received from the bus with
an accepted identifier. The latter message is discarded and an error interrupt with overrun indication is
generated if enabled4.9.4 Error Interrupt . The MSCAN is still able to transmit messages while the
receiver FIFO being filled, but all incoming messages are discarded. As soon as a receive buffer in the
FIFO is available again, new valid messages will be accepted.

4.3 Identifier Acceptance Filter

The MSCAN Identifier Acceptance Registers (3.3.1.12 MSCAN Identifier Acceptance Control
Register (CANIDAC)) define the acceptable patterns of the standard or extended identifier (ID10 - ID0
or ID28 - ID0). Any of these bits can be marked ‘don’t care’ in the MSCAN Identifier Mask Registers
3.3.1.17 MSCAN Identifier Mask Registers (CANIDMR0-7).

A filter hit is indicated to the application software by a set Receive Buffer Full flag (RXF=1) and three bits
in the CANIDAC register3.3.1.12 MSCAN Identifier Acceptance Control Register (CANIDAC).
These Identifier Hit flags (IDHIT2-0) clearly identify the filter section that caused the acceptance. They
simplify the application software’s task to identify the cause of the receiver interrupt. In case more than
one hit occurs (two or more filters match), the lower hit has priority.

A very flexible programmable generic identifier acceptance filter has been introduced to reduce the CPU
interrupt loading. The filter is programmable to operate in four different modes4:

• Two identifier acceptance filters, each to be applied to a) the full 29 bits of the extended identifier
and to the following bits of the CAN 2.0B frame: Remote Transmission Request (RTR), Identifier
Extension (IDE), and Substitute Remote Request (SRR) or b)5 the 11 bits of the standard identifier

NOTES:
1. Only if the RXF flag is not set.
2. The receive interrupt occurs only if not masked. A polling scheme can be applied on RXF also.
3. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for details.
4. For a better understanding of references made within the filter mode description, reference the Bosch specification dated

September 1991 which details the CAN 2.0A/B protocol.

MSCAN Block Guide V02.15

49

plus the RTR and IDE bits of the CAN 2.0A/B messages. This mode implements two filters for a
full length CAN 2.0B compliant extended identifier.Figure 4-2 shows how the first 32-bit filter
bank (CANIDAR0-3, CANIDMR0-3) produces a filter 0 hit. Similarly, the second filter bank
(CANIDAR4-7, CANIDMR4-7) produces a filter 1 hit.

• Four identifier acceptance filters, each to be applied to a) the 14 most significant bits of the extended
identifier plus the SRR and IDE bits of CAN 2.0B messages or b) the 11 bits of the standard
identifier, the RTR and IDE bits of CAN 2.0A/B messages.Figure 4-3 shows how the first 32-bit
filter bank (CANIDAR0-3, CANIDMR0-3) produces filter 0 and 1 hits. Similarly, the second filter
bank (CANIDAR4-7, CANIDMR4-7) produces filter 2 and 3 hits.

• Eight identifier acceptance filters, each to be applied to the first 8 bits of the identifier. This mode
implements eight independent filters for the first 8 bits of a CAN 2.0A/B compliant standard
identifier or a CAN 2.0B compliant extended identifier.Figure 4-4 shows how the first 32-bit filter
bank (CANIDAR0-3, CANIDMR0-3) produces filter 0 to 3 hits. Similarly, the second filter bank
(CANIDAR4-7, CANIDMR4-7) produces filter 4 to 7 hits.

• Closed filter. No CAN message is copied into the foreground buffer RxFG, and the RXF flag is
never set.

NOTES:
5. Although this mode can be used for standard identifiers, it is recommended to use the four or eight identifier acceptance

filters for standard identifiers

MSCAN Block Guide V02.15

50

Figure 4-2 32-bit Maskable Identifier Acceptance Filter

Figure 4-3 16-bit Maskable Identifier Acceptance Filters

ID28 ID21IDR0

ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1

ID14 ID7IDR2

ID10 ID3IDR2

ID6 RTRIDR3

ID10 ID3IDR3

AC7 AC0CANIDAR0

AM7 AM0CANIDMR0

AC7 AC0CANIDAR1

AM7 AM0CANIDMR1

AC7 AC0CANIDAR2

AM7 AM0CANIDMR2

AC7 AC0CANIDAR3

AM7 AM0CANIDMR3

ID Accepted (Filter 0 Hit)

CAN 2.0B
Extended Identifier

CAN 2.0A/B
Standard Identifier

ID28 ID21IDR0

ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1

ID14 ID7IDR2

ID10 ID3IDR2

ID6 RTRIDR3

ID10 ID3IDR3

AC7 AC0CANIDAR0

AM7 AM0CANIDMR0

AC7 AC0CANIDAR1

AM7 AM0CANIDMR1

ID Accepted (Filter 0 Hit)

AC7 AC0CANIDAR2

AM7 AM0CANIDMR2

AC7 AC0CANIDAR3

AM7 AM0CANIDMR3

ID Accepted (Filter 1 Hit)

CAN 2.0B
Extended Identifier

CAN 2.0A/B
Standard Identifier

MSCAN Block Guide V02.15

51

Figure 4-4 8-bit Maskable Identifier Acceptance Filters

CAN 2.0B
Extended Identifier

CAN 2.0A/B
Standard Identifier

AC7 AC0CIDAR3

AM7 AM0CIDMR3

ID Accepted (Filter 3 Hit)

AC7 AC0CIDAR2

AM7 AM0CIDMR2

ID Accepted (Filter 2 Hit)

AC7 AC0CIDAR1

AM7 AM0CIDMR1

ID Accepted (Filter 1 Hit)

ID28 ID21IDR0

ID10 ID3IDR0

ID20 ID15IDR1

ID2 IDEIDR1

ID14 ID7IDR2

ID10 ID3IDR2

ID6 RTRIDR3

ID10 ID3IDR3

AC7 AC0CIDAR0

AM7 AM0CIDMR0

ID Accepted (Filter 0 Hit)

MSCAN Block Guide V02.15

52

4.3.1 Protocol Violation Protection

The MSCAN protects the user from accidentally violating the CAN protocol through programming errors.
The protection logic implements the following features:

• The receive and transmit error counters cannot be written or otherwise manipulated.

• All registers which control the configuration of the MSCAN cannot be modified while the MSCAN
is on-line. The MSCAN has to be in Initialization Mode. The corresponding INITRQ/INITAK
handshake bits in the CANCTL0/CANCTL1 registers3.3.1.1 MSCAN Control 0 Register
(CANCTL0) serve as a lock to protect the following registers:

– MSCAN Control 1 Register (CANCTL1)

– MSCAN Bus Timing Registers 0 and 1 (CANBTR0, CANBTR1)

– MSCAN Identifier Acceptance Control Register (CANIDAC)

– MSCAN Identifier Acceptance Registers (CANIDAR0-7)

– MSCAN Identifier Mask Registers (CANIDMR0-7)

• The TXCAN pin is immediately forced to a recessive state when the MSCAN goes into the Power
Down Mode or Initialization Mode (see4.6.6 MSCAN Power Down Mode and4.6.5 MSCAN
Initialization Mode).

• The MSCAN enable bit (CANE) is only writable once in normal system operation modes as further
protection against inadvertently disabling the MSCAN.

4.3.2 Clock System

Figure 4-5 shows the structure of the MSCAN clock generation circuitry. With this flexible clocking
scheme, the MSCAN is able to handle CAN bus rates ranging from 10 Kbps up to 1 Mbps.

Figure 4-5 MSCAN Clocking Scheme

Bus Clock

Oscillator Clock

MSCAN

CANCLK

CLKSRC

CLKSRC

Prescaler
(1 .. 64)

Time quanta clock (Tq)

MSCAN Block Guide V02.15

53

The clock source bit (CLKSRC) in the CANCTL1 register3.3.1.2 MSCAN Control 1 Register
(CANCTL1) defines whether the internal CANCLK is connected to the output of a crystal oscillator
(Oscillator Clock) or to the Bus Clock.

The clock source has to be chosen such that the tight oscillator tolerance requirements (up to 0.4%) of the
CAN protocol are met. Additionally, for high CAN bus rates (1 Mbps), a 45%-55% duty cycle of the clock
is required.

If the Bus Clock is generated from a PLL, it is recommended to select the Oscillator Clock rather than the
Bus Clock due to jitter considerations, especially at the faster CAN bus rates.

For microcontrollers without a clock and reset generator (CRG), CANCLK is driven from the crystal
oscillator (Oscillator Clock).

A programmable prescaler generates the time quanta (Tq) clock from CANCLK. A time quantum is the
atomic unit of time handled by the MSCAN.

A bit time is subdivided into three segments1 2 (referenceFigure 4-6):

• SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to
happen within this section.

• Time Segment 1: This segment includes the PROP_SEG and the PHASE_SEG1 of the CAN
standard. It can be programmed by setting the parameter TSEG1 to consist of 4 to 16 time quanta.

• Time Segment 2: This segment represents the PHASE_SEG2 of the CAN standard. It can be
programmed by setting the TSEG2 parameter to be 2 to 8 time quanta long.

NOTES:
1. For further explanation of the under-lying concepts please refer to ISO/DIS 11519-1, Section 10.3.
2. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

fTq

fCANCLK
Prescaler value()---=

Bit Rate
fTq

number of Time Quanta()---=

MSCAN Block Guide V02.15

54

Figure 4-6 Segments within the Bit Time

The Synchronization Jump Width1 can be programmed in a range of 1 to 4 time quanta by setting the SJW
parameter.

The above parameters are set by programming the MSCAN Bus Timing Registers (CANBTR0,
CANBTR1) (see3.3.1.3 MSCAN Bus Timing Register 0 (CANBTR0) and3.3.1.4 MSCAN Bus
Timing Register 1 (CANBTR1)).

Table 4-2 gives an overview of the CAN compliant segment settings and the related parameter values.

NOTE: It is the user’s responsibility to ensure the bit time settings are in compliance with
the CAN standard.

Table 4-1 Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point
A node in transmit mode transfers a new value to the CAN bus at

this point.

Sample Point
A node in receive mode samples the bus at this point. If the three

samples per bit option is selected, then this point marks the position
of the third sample.

NOTES:
1. Reference the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta

= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROP_SEG + PHASE_SEG1) (PHASE_SEG2)

Transmit Point

MSCAN Block Guide V02.15

55

4.4 Timer Link

The MSCAN generates an internal time stamp whenever a valid frame is received or transmitted and the
TIME bit is enabled. Because the CAN specification defines a frame to be valid if no errors occur before
the End of Frame (EOF) field is transmitted successfully, the actual value of an internal timer is written at
EOF to the appropriate time stamp position within the transmit buffer. For receive frames the time stamp
is written to the receive buffer.

4.5 Modes of Operation

4.5.1 Normal Modes

The MSCAN module behaves as described within this specification in all normal system operation modes.

4.5.2 Special Modes

The MSCAN module behaves as described within this specification in all special system operation modes.

4.5.3 Emulation Modes

In all emulation modes, the MSCAN module behaves just like normal system operation modes as
described within this specification.

4.5.4 Listen-Only Mode

In an optional bus monitoring mode (Listen-Only), the CAN node is able to receive valid data frames and
valid remote frames, but it sends only “recessive” bits on the CAN bus. In addition it cannot start a
transmision. If the MAC sub-layer is required to send a “dominant” bit (ACK bit, overload flag, active

Time Segment 1 TSEG1 Time Segment 2 TSEG2 Synchronization
Jump Width

SJW

5 .. 10 4 .. 9 2 1 1 .. 2 0 .. 1

4 .. 11 3 .. 10 3 2 1 .. 3 0 .. 2

5 .. 12 4 .. 11 4 3 1 .. 4 0 .. 3

6 .. 13 5 .. 12 5 4 1 .. 4 0 .. 3

7 .. 14 6 .. 13 6 5 1 .. 4 0 .. 3

8 .. 15 7 .. 14 7 6 1 .. 4 0 .. 3

9 .. 16 8 .. 15 8 7 1 .. 4 0 .. 3

Table 4-2 CAN Standard Compliant Bit Time Segment Settings

MSCAN Block Guide V02.15

56

error flag), the bit is rerouted internally so that the MAC sub-layer monitors this “dominant” bit, although
the CAN bus may remain in recessive state externally.

4.5.5 Security Modes

The MSCAN module has no security features.

4.6 Low Power Options

If the MSCAN is disabled (CANE=0), the MSCAN clocks are stopped for power savings.

If the MSCAN is enabled (CANE=1), the MSCAN has two additional modes with reduced power
consumption, compared to Normal Mode: Sleep and Power Down Mode. In Sleep Mode power
consumption is reduced by stopping all clocks except those to access the registers from the CPU side. In
Power Down Mode, all clocks are stopped and no power is consumed.

Table 4-3 summarizes the combinations of MSCAN and CPU modes. A particular combination of modes
is entered by the given settings on the CSWAI and SLPRQ/SLPAK bits.

For all modes, an MSCAN Wake-Up interrupt can only occur if the MSCAN is in Sleep Mode (SLPRQ=1
and SLPAK=1), wake-up functionality is enabled (WUPE=1) and the Wake-Up interrupt is enabled
(WUPIE=1).

4.6.1 CPU Run Mode

As can be seen inTable 4-3 CPU vs. MSCAN Operating Modes, only MSCAN Sleep Mode is available
as low power option, when CPU is in Run Mode.

Table 4-3 CPU vs. MSCAN Operating Modes

CPU Mode

MSCAN Mode

Normal

Reduced Power Consumption

Sleep Power Down Disabled
(CANE=0)

RUN
CSWAI = X1

SLPRQ = 0
SLPAK = 0

NOTES:
1. ‘X’ means don’t care.

CSWAI = X
SLPRQ = 1
SLPAK = 1

CSWAI = X
SLPRQ = X
SLPAK = X

WAIT
CSWAI = 0
SLPRQ = 0
SLPAK = 0

CSWAI = 0
SLPRQ = 1
SLPAK = 1

CSWAI = 1
SLPRQ = X
SLPAK = X

CSWAI = X
SLPRQ = X
SLPAK = X

STOP
CSWAI = X
SLPRQ = X
SLPAK = X

CSWAI = X
SLPRQ = X
SLPAK = X

MSCAN Block Guide V02.15

57

4.6.2 CPU Wait Mode

The WAI instruction puts the MCU in a low power consumption stand-by mode. If the CSWAI bit is set,
then additional power can be saved in Power Down Mode since the CPU clocks are stopped. After leaving
this Power Down Mode the MSCAN restarts its internal controllers and enters Normal Mode again.

While the CPU is in Wait Mode, the MSCAN can be operated in Normal Mode and generate interrupts
(registers can be accessed via background debug mode). The MSCAN can also operate in any of the low
power modes depending on the values of the SLPRQ/SLPAK and CSWAI bits as seen inTable 4-3 CPU
vs. MSCAN Operating Modes .

4.6.3 CPU Stop Mode

The STOP instruction puts the MCU in a low power consumption stand-by mode. In Stop Mode, the
MSCAN set in Power Down mode regardless of the value of the SLPRQ/SLPAK and CSWAI bitsTable
4-3.

4.6.4 MSCAN Sleep Mode

The CPU can request the MSCAN to enter this low power mode by asserting the SLPRQ bit in the
CANCTL0 register. The time when the MSCAN enters Sleep Mode depends on a fixed synchronization
delay and its current activity:

• If there are one or more message buffers scheduled for transmission (TXEx = 0), the MSCAN will
continue to transmit until all transmit message buffers are empty (TXEx = 1, transmitted
successfully or aborted) and then goes into Sleep Mode.

• If it is receiving, it continues to receive and goes into Sleep Mode as soon as the CAN bus next
becomes idle.

• If it is neither transmitting nor receiving, it immediately goes into Sleep Mode.

Figure 4-7 Sleep Request / Acknowledge Cycle

SYNC

SYNC

CPU Cloc k Domain CAN Cloc k Domain

MSCAN
in Sleep Mode

CPU
Sleep Request

SLPRQ
Flag

SLPAK
Flag

SLPRQ

sync.
SLPAK

sync.
SLPRQ

SLPAK

MSCAN Block Guide V02.15

58

NOTE: The application software must avoid setting up a transmission (by clearing one or
more TXEx flag(s)) and immediately request Sleep Mode (by setting SLPRQ). It
depends on the exact sequence of operations whether the MSCAN starts
transmitting or goes into Sleep Mode directly.

If Sleep Mode is active, the SLPRQ and SLPAK bits are set (Figure 4-7). The application software must
use SLPAK as a handshake indication for the request (SLPRQ) to go into Sleep Mode.

When in Sleep Mode (SLPRQ=1 and SLPAK=1), the MSCAN stops its internal clocks. However, clocks
to allow register accesses from the CPU side still run.

If the MSCAN is in Bus-Off state, it stops counting the 128*11 consecutive recessive bits due to the
stopped clocks. The TXCAN pin remains in a recessive state. If RXF=1, the message can be read and RXF
can be cleared. Shifting a new message into the foreground buffer of the receiver FIFO (RxFG) does not
take place while in Sleep Mode.

It is possible to access the transmit buffers and to clear the associated TXE flags. No message abort takes
place while in Sleep Mode.

If the WUPE bit in CANCLT0 is not asserted, the MSCAN will mask any activity it detects on CAN. The
RXCAN pin is therefore held internally in a recessive state. This locks the MSCAN in Sleep Mode
(Figure 4-8 Simplified State Transitions for Entering/Leaving Sleep Mode).

The MSCAN is only able to leave Sleep Mode (wake up) when

• bus activity occurs and WUPE=1 or

• the CPU clears the SLPRQ bit

NOTE: The CPU cannot clear the SLPRQ bit before Sleep Mode (SLPRQ=1 and
SLPAK=1) is active.

After wake-up, the MSCAN waits for 11 consecutive recessive bits to synchronize to the bus. As a
consequence, if the MSCAN is woken-up by a CAN frame, this frame is not received.

The receive message buffers (RxFG and RxBG) contain messages if they were received before Sleep
Mode was entered. All pending actions will be executed upon wake-up; copying of RxBG into RxFG,
message aborts and message transmissions. If the MSCAN is still in Bus-Off state after Sleep Mode was
left, it continues counting the 128*11 consecutive recessive bits.

MSCAN Block Guide V02.15

59

Figure 4-8 Simplified State Transitions for Entering/Leaving Sleep Mode

4.6.5 MSCAN Initialization Mode

In Initialization Mode, any ongoing transmission or reception is immediately aborted and synchronization
to the bus is lost potentially causing CAN protocol violations. To protect the CAN bus system from fatal
consequences of violations, the MSCAN immediately drives the TXCAN pin into a recessive state.

NOTE: The user is responsible for ensuring that the MSCAN is not active when
Initialization Mode is entered. The recommended procedure is to bring the MSCAN
into Sleep Mode (SLPRQ=1 and SLPAK=1) before setting the INITRQ bit in the
CANCTL0 register. Otherwise the abort of an ongoing message can cause an error
condition and can have an impact on the other bus devices.

In Initialization Mode, the MSCAN is stopped. However, interface registers can still be accessed. This
mode is used to reset the CANCTL0, CANRFLG, CANRIER, CANTFLG, CANTIER, CANTARQ,
CANTAAK, CANTBSEL registers to their default values. In addition it enables the configuration of the
CANBTR0, CANBTR1 bit timing registers, CANIDAC and the CANIDAR, CANIDMR message filters.
3.3.1.1 MSCAN Control 0 Register (CANCTL0) for a detailed description of the Initialization Mode.

Wait

Idle

Tx/Rx
Message
Active

CAN Activity
CAN Activity &

Sleep

SLPRQ

StartUp for Idle

(CAN Activity & WUPE) |

(CAN Activity & WUPE) | SLPRQ

CAN Activity

CAN Activity

CAN Activity &

CAN Activity

SLPRQ

SLPRQ

CAN Activity

MSCAN Block Guide V02.15

60

Figure 4-9 Initialization Request/Acknowledge Cycle

Due to independent clock domains within the MSCAN the INITRQ has to be synchronized to all domains
by using a special handshake mechanism. This handshake causes additional synchronization delay
(Figure 4-9 Initialization Request/Acknowledge Cycle).

If there is no message transfer ongoing on the CAN bus, the minimum delay will be two additional bus
clocks and three additional CAN clocks. When all parts of the MSCAN are in Initialization Mode the
INITAK flag is set. The application software must use INITAK as a handshake indication for the request
(INITRQ) to go into Initialization Mode.

NOTE: The CPU cannot clear the INITRQ bit before Initialization Mode (INITRQ=1 and
INITAK=1) is active.

4.6.6 MSCAN Power Down Mode

The MSCAN is in Power Down Mode (Table 4-3) when

• the CPU is in Stop Mode or

• the CPU is in Wait Mode and the CSWAI bit is set.

When entering the Power Down Mode, the MSCAN immediately stops all ongoing transmissions and
receptions, potentially causing CAN protocol violations. To protect the CAN bus system from fatal
consequences of violations to the above rule, the MSCAN immediately drives the TXCAN pin into a
recessive state.

NOTE: The user is responsible for ensuring that the MSCAN is not active when Power
Down Mode is entered. The recommended procedure is to bring the MSCAN into
Sleep Mode before the STOP or WAI instruction (if CSWAI is set) is executed.
Otherwise the abort of an ongoing message can cause an error condition and can
have an impact on the other bus devices.

SYNC

SYNC

CPU Cloc k Domain CAN Cloc k Domain

CPU
Init Request

INIT
Flag

INITAK
Flag

INITRQ

sync.
INITAK

sync.
INITRQ

INITAK

MSCAN Block Guide V02.15

61

In Power Down Mode, all clocks are stopped and no registers can be accessed. If the MSCAN was not in
Sleep Mode before Power Down Mode became active, the module would perform an internal recovery
cycle after powering up. This causes some fixed delay before the module enters Normal Mode again.

4.6.7 Programmable Wake-Up Function

The MSCAN can be programmed to wake up the MSCAN as soon as bus activity is detected (see control
bit WUPE in3.3.1.1 MSCAN Control 0 Register (CANCTL0)). The sensitivity to existing bus action
can be modified by applying a low-pass filter function to the RXCAN input line while in Sleep Mode (see
control bit WUPM in3.3.1.2 MSCAN Control 1 Register (CANCTL1)).

This feature can be used to protect the MSCAN from wake-up due to short glitches on the CAN bus lines.
Such glitches can result e.g. from electromagnetic interference within noisy environments.

4.7 Reset Initialization

The reset state of each individual bit is listed within the Register Description section3.3 Register
Descriptions which details all the registers and their bit-fields.

4.8 General

This section describes all interrupts originated by the MSCAN. It documents the enable bits and generated
flags, if applicable. Each interrupt is listed and described separately. The description explains what causes
the interrupt, the registers affected, and how the interrupt request is provided to the core.

Table 4-4 CRG Interrupt Vectors

Vector
Address Interrupt Source CCR Mask Local Enable

HPRIO
Value to
Elevate

1

NOTES:
1. Wake-Up interrupt vector address is specific to MCU, refer to MCU specification.

Wake-Up Interrupt (WUPIF) I bit CANRIER (WUPIE) 2

2. Wake-Up interrupt HPRIO value is specific to MCU, refer to MCU specification.

3

3. Error interrupt vector address is specific to MCU, refer to MCU specification.

Error Interrupts Interrupt (CSCIF, OVRIF) I bit CANRIER (CSCIE, OVRIE) 4

4. Error interrupt HPRIO value is specific to MCU, refer to MCU specification.

5

5. Receive interrupt vector address is specific to MCU, refer to MCU specification.

Receive Interrupt (RXF) I bit CANRIER (RXFIE) 6

6. Receive interrupt HPRIO value is specific to MCU, refer to MCU specification.

7

7. Transmit interrupt vector address is specific to MCU, refer to MCU specification.

Transmit Interrupts (TXE2 - TXE0) I bit CANTIER (TXEIE2 - TXEIE0) 8

8. Transmit interrupt HPRIO value is specific to MCU, refer to MCU specification.

MSCAN Block Guide V02.15

62

4.9 Description of Interrupt Operation

The MSCAN supports four interrupt vectors, any of which can be individually masked (for details see
sections3.3.1.6 MSCAN Receiver Interrupt Enable Register (CANRIER) to 3.3.1.8 MSCAN
Transmitter Interrupt Enable Register (CANTIER)):

4.9.1 Transmit Interrupt

At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule a message
for transmission. The TXEx flag of the empty message buffer is set.

4.9.2 Receive Interrupt

A message is successfully received and shifted into the foreground buffer (RxFG) of the receiver FIFO.
This interrupt is generated immediately after receiving the EOF symbol. The RXF flag is set. If there are
multiple messages in the receiver FIFO, the RXF flag is set as soon as the next message is shifted to the
foreground buffer.

4.9.3 Wake-Up Interrupt

Activity on the CAN bus occurred during MSCAN internal Sleep Mode and WUPE3.3.1.1 MSCAN
Control 0 Register (CANCTL0) enabled.

4.9.4 Error Interrupt

An overrun of the receiver FIFO, error, warning or Bus-Off condition occurred. The3.3.1.5 MSCAN
Receiver Flag Register (CANRFLG) indicates one of the following conditions:

• Overrun

An overrun condition of the receiver FIFO as described in4.2.3 Receive Structures occurred.

• CAN Status Change

The actual value of the Transmit and Receive Error Counters control the bus state of the MSCAN.
As soon as the error counters skip into a critical range (Tx/Rx-Warning, Tx/Rx-Error, Bus-Off) the
MSCAN flags an error condition. The status change, which caused the error condition, is indicated
by the TSTAT and RSTAT flags (see section3.3.1.5 MSCAN Receiver Flag Register
(CANRFLG) and3.3.1.6 MSCAN Receiver Interrupt Enable Register (CANRIER)).

4.10 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in either the3.3.1.5 MSCAN Receiver Flag
Register (CANRFLG) or the3.3.1.7 MSCAN Transmitter Flag Register (CANTFLG). Interrupts are
pending as long as one of the corresponding flags is set. The flags in the above registers must be reset
within the interrupt handler to handshake the interrupt. The flags are reset by writing a “1” to the
corresponding bit position. A flag cannot be cleared if the respective condition still prevails.

MSCAN Block Guide V02.15

63

NOTE: It must be guaranteed that the CPU only clears the bit causing the current interrupt.
For this reason, bit manipulation instructions (BSET) must not be used to clear
interrupt flags. These instructions may cause accidental clearing of interrupt flags
which are set after entering the current interrupt service routine.

4.11 Recovery from STOP or WAIT

The MSCAN can recover from STOP or WAIT via the Wake-Up interrupt. This interrupt can only occur
if the MSCAN was in Sleep Mode (SLPRQ=1 and SLPAK=1) before entering Power Down Mode, the
wake-up option is enabled (WUPE=1) and the Wake-Up interrupt is enabled (WUPIE=1).

Section 5 Initialization/Application Information

5.1 MSCAN initialization

The procedure to initially start up the MSCAN module out of reset is as follows:

1. Assert CANE

2. Write to the configuration registers in Initialization Mode

3. Clear INITRQ to leave Initialization Mode and enter Normal Mode

If the configuration of registers which are writable in Initialization Mode only needs to be changed when
the MSCAN module is in Normal Mode:

1. Make sure that the MSCAN transmission queue gets empty and bring the module into Sleep Mode
by asserting SLPRQ and awaiting SLPAK

2. Enter Initialization Mode: Assert INITRQ and await INITAK

3. Write to the configuration registers in Initialization Mode

4. Clear INITRQ to leave Initialization Mode and continue in Normal Mode

MSCAN Block Guide V02.15

64

MSCAN Block Guide V02.15

65

Index

–A–

Abort Acknowledge 30
Abort Request 30
ABTAK2 - ABTAK0 30
ABTRQ2 - ABTRQ0 30
AC7 – AC0 36
Acceptance Code Bits 36
Acceptance Mask Bits 38
address offset 15
AM7 – AM0 38

–B–

base address 15
Baud Rate Prescaler 22
Block Diagram 11
BOSCH specification 11
BRP 22
bus monitoring mode 55
bus rates 52
Bus-Off 12, 19, 25, 26, 27, 58, 62

–C–

CAN protocol 11
CAN Status Change 62
CAN Status Change Interrupt Enable 27
CAN Status Change Interrupt Flag 25
CAN Stops in Wait Mode 18
CAN system 13
CANBTR0 19, 21
CANBTR1 21, 22
CANCTL0 17, 19
CANCTL1 19, 21
CANE 20
CANIDAC 21, 32
CANIDAR0-7 21, 35
CANIDMR0-7 21
CANRFLG 19, 24
CANRIER 19, 26
CANRXERR 34
CANTAAK 19, 30
CANTARQ 19, 29
CANTBSEL 19, 31
CANTFLG 19, 28
CANTIER 19, 29
CANTXERR 34
CLKSRC 20
clock 52

clock source 20
CRC 26
crystal 53
CSCIE 27
CSCIF 25
CSWAI 18

–D–

Data Length Code bits 42
data segment register 42
DB7 - DB0 42
DLC3 - DLC0 42
DLR 42

–E–

emulation modes 55
End of Frame 55
EOF 55
error counter 19, 20, 25, 52
Error Passive 12
Extended format identifier 41
extended identifiers 39

–F–

features 12
FIFO 12, 26, 33, 47, 48, 58, 62

–H–

handshake 19
hard reset 19

–I–

ID Extended 41
ID10 - ID0 41
ID28 - ID0 41
IDAM1 - IDAM0 32
IDE 41
Identifier Acceptance Mode 32
identifier register 41
IDHIT2 - IDHIT0 32
IDR0-3 41
IFS 46
INITAK 17, 19, 21
Initialization Mode 19, 21, 59
Initialization Mode Acknowledge 21
Initialization Mode Request 19
INITRQ 17, 19
interrupt enable 26
Interrupt Operation 62

MSCAN Block Guide V02.15

66

–L–

LISTEN 20
Listen Only Mode 20
Listen-Only 55
local priority 46
Loop Back Self Test Mode 20
LOOPB 20

–M–

Memory Map 15
Motorola Scalable Controller Area Network 11
MSCAN 11
MSCAN Clock Source 20
MSCAN Enable 20
MSCAN12 11

–N–

normal modes 55

–O–

Overrun 62
overrun 26
Overrun Interrupt Flag 26
OVRIF 26

–P–

PHASE_SEG1 53
PHASE_SEG2 53
PLL 53
Power Down Mode 60
power saving 18, 56
prescaler 53
PROP_SEG 53

–R–

REC 25
Receive Buffer Full Flag 26
Receive Error Counter 25, 34
Received Frame Flag 17
Receiver Active Status 17
Receiver Input Pin 13
Receiver Status Bits 25
register map 15
Remote Transmission Request 41
Reserved Registers 33
reset 61
RSTAT1, RSTAT0 25
RSTATE1, RSTATE0 27
RTR 41
run mode 17, 56

RXACT 17
RXCAN 13
RXFRM 17

–S–

SAMP 23
sample point 23
Sampling 23
security 56
SJW1, SJW0 21
Sleep Mode 18, 21, 57, 58, 59, 60, 61, 62, 63
Sleep Mode Acknowledge 21
Sleep Mode Request 18
SLPRQ 17, 18
SOF 42
special modes 55
SRR 41
Standard format identifie 41
standard identifiers 39
Start of Frame 42
STOP 18, 63
Stop Mode 57
Substitute Remote Request 41
SYNC_SEG 53
SYNCH 18
Synchronization Jump Width 21, 54
Synchronized Status 18

–T–

TBPR 38, 42
TEC 25
TIME 18, 43
Time Segment 1 23, 53
Time Segment 2 23, 53
time stamp 55
Time Stamp register 38
Timer Enable 18
transceiver 13
Transmit Buffer Priority Register 38
Transmit Buffer Select 31
Transmit Error Counter 25, 34
Transmitter Output Pin 13
TSEG1 53
TSEG13 – TSEG10 23
TSEG2 53
TSEG22 – TSEG20 23
TSRH, TSRL 43
TSTAT1, TSTAT0 25
TXCAN 13

–W–

WAIT 18, 63

MSCAN Block Guide V02.15

67

Wait Mode 57
wake-up 27
Wake-Up Enable 18
Wake-Up Function 61
Wake-up Interrupt Enable 27
Wake-up Interrupt Flag 25
Warning 12
warning condition 62
WUPE 17, 18
WUPIE 18
WUPIF 25
WUPM 20

MSCAN Block Guide V02.15

68

MSCAN Block Guide V02.15

69

Block Guide End Sheet

MSCAN Block Guide V02.15

70

FINAL PAGE OF
70

PAGES

DOCUMENT NUMBER
S12OSCV2/D
OSC

Block User Guide

V02.03

Original Release Date: 19 July 2002
Revised: 12 February 2003

Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

OSC Block User Guide — V02.03
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

02.00 19-Jul-02 19-Jul-02 Initial Release for low power Colpitts plus full swing Pierce

02.01 04-Oct-02 04-Oct-02 Correct document number was inserted.

02.02 04-Feb-03 04-Feb-03 ’user guide end sheet’ text added.

02.03 12-Feb-03 12-Feb-03
-Disclaimer for overtone resonators and crystals was added to
Figure 2-1 and Figure 2-2.
- Recommendation for evaluation was added.
2

OSC Block User Guide — V02.03
Table of Contents

Section 1 Introduction

1.1 Overview. .9

1.2 Features .9

1.3 Modes of Operation .9

Section 2 Signal Description

2.1 Overview. .11

2.2 Detailed Signal Descriptions. .11

2.2.1 VDDPLL, VSSPLL .11

2.2.2 EXTAL, XTAL. .11

2.2.3 XCLKS .12

Section 3 Memory Map and Registers

Section 4 Functional Description

4.1 General. .15

4.2 Amplitude Limitation Control (ALC) .15

4.3 Clock Monitor (CM). .15

Section 5 Interrupts
3

OSC Block User Guide — V02.03
4

OSC Block User Guide — V02.03
List of Figures

Figure 2-1 Colpitts Oscillator Connections (XCLKS=0) .11

Figure 2-2 Pierce Oscillator Connections (XCLKS=1) .12

Figure 2-3 External Clock Connections (XCLKS=1) .12
5

OSC Block User Guide — V02.03
6

OSC Block User Guide — V02.03
List of Tables

Table 2-1 Clock Selection Based on XCLKS .12
7

OSC Block User Guide — V02.03
8

OSC Block User Guide — V02.03

al

uare
Section 1 Introduction

1.1 Overview

The OSC module provides two alternative oscillator concepts:

1. a low noise and low power Colpitts oscillator with amplitude limitation control (ALC).

2. a robust full swing Pierce oscillator with the possibility to feed in an external square wave.

1.2 Features

The Colpitts OSC option provides the following features:

• Amplitude Limitation Control (ALC) Loop:

– low power consumption and low current induced RF emission.

– sinusoidal waveform with low RF emission.

– low crystal stress. An external damping resistor is not required.

– normal and low amplitude mode for further reduction of power and emission.

• an external biasing resistor is not required.

The Pierce OSC option provides the following features:

• wider high frequency operation range.

• no DC voltage applied across the crystal.

• full rail-to-rail (2.5V nominal) swing oscillation with low EM susceptibility.

• fast start up.

Common features:

• clock monitor (CM).

• operation from the VDDPLL 2.5 V (nominal) supply rail.

1.3 Modes of Operation

Two modes of operation exist:

• amplitude limitation controlled Colpitts oscillator mode suitable for power and emission critic
applications.

• full swing Pierce oscillator mode that can also be used to feed in an externally generated sq
wave suitable for high frequency operation and harsh environments.
9

OSC Block User Guide — V02.03
10

OSC Block User Guide — V02.03

This

ernal
ier.
om
al
Section 2 Signal Description

2.1 Overview

This section lists and describes the signals that connect off chip.

2.2 Detailed Signal Descriptions

2.2.1 VDDPLL, VSSPLL

These pins provide the operating voltage (VDDPLL) and ground (VSSPLL) for the OSC circuitry.
allows the supply voltage to the OSC to be independently bypassed.

2.2.2 EXTAL, XTAL

These pins provide the interface for either a crystal or a CMOS compatible clock to control the int
clock generator circuitry. EXTAL is the external clock input or the input to the crystal oscillator amplif
XTAL is the output of the crystal oscillator amplifier. All the MCU internal system clocks are derived fr
the EXTAL input frequency. In Full Stop Mode (PSTP=0) the EXTAL pin is pulled down by an intern
resistor of typical 200k Ohms.

NOTE: Motorola recommends an evaluation of the application board and chosen
resonator or crystal by the resonator or crystal supplier!

NOTE: Crystal circuit is changed from standard!

Colpitts circuit is not suited for overtone resonators and crystals!

Figure 2-1 Colpitts Oscillator Connections (XCLKS=0)

MCU

C2

EXTAL

XTAL

Crystal or

VSSPLL

ceramic resonator
C1

CDC *

* Due to the nature of a translated ground Colpitts oscillator a
DC voltage bias is applied to the crystal

bias conditions and recommended capacitor value CDC.
 Please contact the crystal manufacturer for crystal DC
11

OSC Block User Guide — V02.03

itts
KS
NOTE: Pierce circuit is not suited for overtone resonators and crystals without a careful
component selection!

Figure 2-2 Pierce Oscillator Connections (XCLKS=1)

Figure 2-3 External Clock Connections (XCLKS=1)

2.2.3 XCLKS

The XCLKS is an input signal which controls whether a crystal in combination with the internal Colp
(low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The XCL
signal is sampled during reset with the rising edge ofRESET.Table 2-1 lists the state coding of the
sampled XCLKS signal.Refer to device specification for polarity of the XCLKS pin.

Table 2-1 Clock Selection Based on XCLKS

XCLKS Description
0 Colpitts Oscillator selected

1 Pierce Oscillator/external clock selected

MCU

EXTAL

XTAL
RS

*

RB

VSSPLL

Crystal or
ceramic resonator

C4

C3

* Rs can be zero (shorted) when used with higher frequency crystals.
Refer to manufacturer’s data.

MCU

EXTAL

XTAL

CMOS-COMPATIBLE
EXTERNAL OSCILLATOR

not connected

(Vddpll-Level)
12

OSC Block User Guide — V02.03

le.
Section 3 Memory Map and Registers

The CRG contains the registers and associated bits for controlling and monitoring the OSC modu
13

OSC Block User Guide — V02.03
14

OSC Block User Guide — V02.03

ed
Pierce
in is

nity,

lator.

ating
d is
of the
p.

crease
tude
wer
plitude

erate
itor

ate of
.The
uide.
Section 4 Functional Description

4.1 General

The OSC block has two external pins, EXTAL and XTAL. The oscillator input pin, EXTAL, is intend
to be connected to either a crystal or an external clock source. The selection of Colpitts oscillator or
Oscillator/external clock depends on the XCLKS signal which is sampled during reset. The XTAL p
an output signal that provides crystal circuit feedback.

A buffered EXTAL signal, OSCCLK, becomes the internal reference clock. To improve noise immu
the oscillator is powered by the VDDPLL and VSSPLL power supply pins.

The Pierce oscillator can be used for higher frequencies compared to the low power Colpitts oscil

4.2 Amplitude Limitation Control (ALC)

The Colpitts oscillator is equipped with a feedback system which does not waste current by gener
harmonics. Its configuration is “Colpitts oscillator with translated ground”. The transconductor use
driven by a current source under the control of a peak detector which will measure the amplitude
AC signal appearing on EXTAL node in order to implement an Amplitude Limitation Control (ALC) loo
The ALC loop is in charge of reducing the quiescent current in the transconductor as a result of an in
in the oscillation amplitude. The oscillation amplitude can be limited to two values. The normal ampli
which is intended for non power saving modes and a small amplitude which is intended for low po
operation modes. Please refer to the CRG block user guide for the control and assignment of the am
value to operation modes.

4.3 Clock Monitor (CM)

The clock monitor circuit is based on an internal resistor-capacitor (RC) time delay so that it can op
without any MCU clocks. If no OSCCLK edges are detected within this RC time delay, the clock mon
indicates a failure which asserts self clock mode or generates a system reset depending on the st
SCME bit. If the clock monitor is disabled or the presence of clocks is detected no failure is indicated
clock monitor function is enabled/disabled by the CME control bit, described in the CRG block user g
15

OSC Block User Guide — V02.03
16

OSC Block User Guide — V02.03

its for
Section 5 Interrupts

OSC contains a clock monitor, which can trigger an interrupt or reset. The control bits and status b
the clock monitor are described in the CRG block user guide.
17

OSC Block User Guide — V02.03
18

OSC Block User Guide — V02.03
User Guide End Sheet
19

OSC Block User Guide — V02.03
FINAL PAGE OF
20

PAGES
20

DOCUMENT NUMBER
S12PWM8B8CV1/D
 PWM_8B8C

Block User Guide

V01.17

Original Release Date: 12 MAR 1998
Revised: 1 Aug 2004

Motorola Inc.
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

 PWM_8B8C Block User Guide V01.17
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

00.00 3-12-98 First pass release

00.01 3-15-98
- Updates of Section 1 based on Nancy Thomas peer review and
internal spec review.
- Added initial information into Section 2.

00.02 4-7-98
- Updates of Section 1 and Section 2 per MSIL review.
- Updated cover page per latest spec template review.

01.00 4-15-98

- Updated per Rev. 3.0 TSCS Module Spec Template.
- Changed the Port and DDR register names to match the latest
HCS12 naming convention.
- Added the reset state under each counter, period, and duty
register in the Register Description sections.
- Added Design for Testability sub-section in Section 2 to describe
scan implementation.
- Updated Module I/O signal names in Section 2 per the latest
HCS12 signal naming convention.
- Frozen PWM spec sent to Delco.

01.01 4-30-98

- Added Document Number (12MRE31052W) to cover page of
spec per QS9000 requirements.
- Changed PWMEN register to PWME and also changed the bit
names from PWENx to PWMEx to follow the enable naming
convention.
- Changed PWMCEN register to PWMCAE and also changed the
bit names from CENx to CAEx to avoid having the same register
name as the PWMC module.
- Section 2 Module I/O list changed to have only 1 input buffer
enable signal (pwm_ibe_t4) for the entire port. The reset signal
name was also changed to vsc_reset_t4 per the latest bus
definition document.
- Added further clarification on DISCRW test bit in Section 2. If set,
duty and period registers are not loaded with the buffer value.

01.02 5-14-98

- Updated per Rev. 3.1, 3.2 and 3.3 TSCS Module Spec Template.
- Removed Table 1-1 PWM Register Address Summary. Added the
Address Offset along side the registers in Figure 1-2 PWM Register
Map.
- Added WARNING regarding writing to the test registers in special
modes.
- Added footnote regarding the counter value in the Period=0
boundary case.
- Removed “weasel” words--may and should.
2

 PWM_8B8C Block User Guide V01.17
01.03 5-27-98

Summary of changes:
- Added clarification on how the counter counts in left and center
aligned output modes.
- Added further clarification on the Period=0 boundary case. Added
that the counter=$00.
- Added further clarification on what occurs on writes to the
counter--output is changed according to the polarity bit.
- Added Caution regarding the first PWM cycle after the channel is
enabled can be irregular.
- Replaced bit ‘RDP’ with ‘RDPPWM’ and bit ‘PUPP’ with
‘PUPPWME’ to match port control bit naming conventions.
- Added ‘iam8bit’ signal in Table 2-1.
- Added Table 2-2, Engineering Electrical Specs.
- Added statement in Section 2 regarding DISCRW bit in PWMTST
register. When bit is set, the output is not changed according to the
polarity bit.
- Added statement in Section 2 regarding DISCRM bit in PWMTST
register. When bit is set, the duty and period registers do not get
loaded with the buffer value.
- Corrected left and center aligned max PWM output frequencies in
Table A-2.
- Created Table A-3 for the PWM Period/Duty Resolution
Characteristics.
- Miscellaneous clean up.

01.04 7-1-98

* Changed reset state of PWMPERx and PWMDTYx registers to
FF.
* In section 2: changed some bus interface signal names:
 vsc_wait_t2 changed to vsc_wait_t3
 vsc_bdmact_t2 changed to vsc_bdmact_t4
 vsc_smod_t2 changed to vsc_smod_t4
* In section 2:
 Added a note that in concatenated, left aligned, DISCRW=1
writing 16 bit (high-byte-data, low-byte-data) to the counter causes
the high byte of the counter to start counting from (high-byte-data)
and the low byte of the counter to start counting from (low-byte-data
+ 1).

Version
Number

Revision
Date

Effective
Date Author Description of Changes
3

 PWM_8B8C Block User Guide V01.17
01.05 1-6-99

Includes spec tagging in conditional text. There are 3 conditional
text tags:
Tested- Functional Test (Blue), STATEMENT- Statement (Green),
Test Outside Submodule (red).
Summary of changes:
* Section 1:
- Added the following sentence in section 1.6.2.4: When the
channel is disabled, writing “0” to
the period register will cause the counter to reset on the next
selected clock.
- Added a caution in section 1.7.15.1 about reading from port
register after changing pin to input.
- In section 1.9 hanged “Reset state: The prescale free running
counter begins to increment”
 to: “All the channels are disabled and all the counters don’t count”.
* Section 2:
- Section 2.2.3 Design for Test:
 Scan is not implemented on the PWM module. During scan mode
(vsc_scanmod = 1) the
module is not selected (vsc_pwmsel_t3 = 0) and the module’s
internal clocks stop.
- Table 2-1 PWM Module I/O Signals:
Removed scane, changed pwm_purst_plug to pwm_puerst_plug,
changed vsc_wait_t3 to vsc_wait_t2, changed
pwm_outdata_t4[7:0] to pwm_do_t4[7:0], changed pad_indata[7:0]
to pwmp_ind[7:0], removed iam8bit, added vsc_en2drv, changed
vsc_bdmact_t4 to vsc_bdmact_t2, changed vsc_smod_t4 to
vsc_smod_t2.
- Added section 2.3.3 and table 2-2 Port Pin Connections.
- Section 2.4 table 2-3:
 Changed Vdd Value to 3 to 3.6v (it was 2.7 to 3.6).
 Changed System Clock Value to dc to 16MHz (it was 20).
- Section 2.4: added Figure 2-7: PWM Timing Diagram.
It’s like A.6 in the appendix, but includes more details.
* Appendix A:
Table A-1: System Clock dc to 16MHz (it was 20). Table A-2:
E-clock 16MHz (it was 20).
A.6 added PWM Timing Diagram.

01.06 09-02-99

* In section 1, Added section 1.7.15 shutdown register(PWMSDN),
changed the sec # for the subsequent sections for the registers.
* Added emergency shutdown feature in the feature list (sec 1.3)
* Added the PWMSDN in the register map (sec 1.5)
* Removed $_24 from resvd. reg list in sec 1.7.17
* Modified sec 1.12, Interrupt Op., to support the intr. for emergency
shutdown, to
The PWM module has only one interrupt which is generated at the
time of emergency shutdown, if the corresponding enable bit
(PWMSDN[6]) is set.
* Section 2.2.3: Design for Test:
The PWM module will be fully scannable as per the project DFT
guidelines
* removed GPIO note from section 1.2, 1.3, 1.6.2.1, 1.6.2.7, 1.7.1
* renamed PSBCK to PFRZ in PWMCTL, and removed RDPPWM
& PUPPWME bits
* changed the interface signals for IP bus.
* removed electrical spec details.

Version
Number

Revision
Date

Effective
Date Author Description of Changes
4

 PWM_8B8C Block User Guide V01.17
Table 0-1 Revision History

01.07 10-25-99
updated the specs after feedback from Munich (removed redundant
port signals: ibe, offval, obe[6:0])

01.08 11-25-99
added Global Clock signal to the I/O list. the same is used for reg.
writes wherever possible.

01.09 12-08-99 Restart(from shutdown) functionality clarified

01.10 01-17-2000 Tagging Done for Barracuda

01.11 01-25-2000 Tagging for wait mode and freeze mode.

01.12 10-09-2000 format converted for SRS 2.0 compliance.

01.13 19-01-2001 updated section 6.1 and 3.3.1.15 for the shutdown feature changes.

01.14 05-04-2001 Made SRS 2.0 Compliant

01.15 07-19-2001
Document names have been added, Names and Variable
definitions have been hidden

01.16 03-14-2002 Syntax corrections, document formal updates

01.17 08-01-2004
Added clarification of PWMIF operation in STOP and WAIT mode.
Added notes on minimum pulse width of emergency shutdown
signal.

Version
Number

Revision
Date

Effective
Date Author Description of Changes
5

 PWM_8B8C Block User Guide V01.17
6

 PWM_8B8C Block User Guide V01.17
Table of Contents

Section 1 Introduction

1.1 Overview. .13

1.2 Features .13

1.3 Modes of Operation .13

1.4 Block Diagram .13

Section 2 PWM8b8cSignal Description

2.1 Overview. .15

2.2 Detailed Signal Descriptions. .15

2.2.1 PWM7 — PWM8b8c Channel 7. .15

2.2.2 PWM6 — PWM8b8c Channel 6. .15

2.2.3 PWM5 — PWM8b8c Channel 5. .15

2.2.4 PWM4 — PWM8b8c Channel 4. .15

2.2.5 PWM3 — PWM8b8c Channel 3. .15

2.2.6 PWM2 — PWM8b8c Channel 2. .15

2.2.7 PWM1 — PWM8b8c Channel 1. .15

2.2.8 PWM0 — PWM8b8c Channel 0. .15

Section 3 Memory Map and Register Definition

3.1 Overview. .17

3.2 Module Memory Map .17

3.3 Register Descriptions .18

3.3.1 PWM Enable Register (PWME) .18

3.3.2 PWM Polarity Register (PWMPOL) .20

3.3.3 PWM Clock Select Register (PWMCLK) .21

3.3.4 PWM Prescale Clock Select Register (PWMPRCLK) .23

3.3.5 PWM Center Align Enable Register (PWMCAE) .24

3.3.6 PWM Control Register (PWMCTL) .25

3.3.7 Reserved Register (PWMTST) .27

3.3.8 Reserved Register (PWMPRSC) .27

3.3.9 PWM Scale A Register (PWMSCLA) .28

3.3.10 PWM Scale B Register (PWMSCLB) .28

3.3.11 Reserved Registers (PWMSCNTx) .29
7

 PWM_8B8C Block User Guide V01.17
3.3.12 PWM Channel Counter Registers (PWMCNTx). .29

3.3.13 PWM Channel Period Registers (PWMPERx) .30

3.3.14 PWM Channel Duty Registers (PWMDTYx) .31

3.3.15 PWM Shutdown Register (PWMSDN) .33

Section 4 Functional Description

4.1 PWM Clock Select .35

4.1.1 Prescale .37

4.1.2 Clock Scale .37

4.1.3 Clock Select .38

4.2 PWM Channel Timers .38

4.2.1 PWM Enable .39

4.2.2 PWM Polarity .39

4.2.3 PWM Period and Duty .40

4.2.4 PWM Timer Counters. .40

4.2.5 Left Aligned Outputs. .41

4.2.6 Center Aligned Outputs .43

4.2.7 PWM 16-Bit Functions .44

4.2.8 PWM Boundary Cases. .47

Section 5 Resets

5.1 General. .49

Section 6 Interrupts

6.1 Interrupt Operation .51
8

 PWM_8B8C Block User Guide V01.17
List of Figures

Figure 1-1 PWM_8B8C Block Diagram. .14

Figure 3-1 PWM Enable Register (PWME). .19

Figure 3-2 PWM Polarity Register (PWMPOL) .20

Figure 3-3 PWM Clock Select Register (PWMCLK) .22

Figure 3-4 PWM Prescale Clock Select Register (PWMPRCLK) .23

Figure 3-5 PWM Center Align Enable Register (PWMCAE) .24

Figure 3-6 PWM Control Register (PWMCTL) .25

Figure 3-7 Reserved Register (PWMTST) .27

Figure 3-8 Reserved Register (PWMPRSC). .27

Figure 3-9 PWM Scale A Register (PWMSCLA). .28

Figure 3-10 PWM Scale B Register (PWMSCLB). .29

Figure 3-11 Reserved Registers (PWMSCNTx) .29

Figure 3-12 PWM Channel Counter Registers (PWMCNTx) .30

Figure 3-13 PWM Channel Period Registers (PWMPERx). .31

Figure 3-14 PWM Channel Duty Registers (PWMDTYx) .32

Figure 3-15 PWM Shutdown Register (PWMSDN). .33

Figure 4-1 PWM Clock Select Block Diagram .36

Figure 4-2 PWM Timer Channel Block Diagram .39

Figure 4-3 PWM Left Aligned Output Waveform .42

Figure 4-4 PWM Left Aligned Output Example Waveform. .42

Figure 4-5 PWM Center Aligned Output Waveform. .43

Figure 4-6 PWM Center Aligned Output Example Waveform .44

Figure 4-7 PWM 16-Bit Mode. .45
9

 PWM_8B8C Block User Guide V01.17
10

 PWM_8B8C Block User Guide V01.17
List of Tables

Table 0-1 Revision History .5

Table 3-1 PWM_8B8C Memory Map .17

Table 3-2 Clock B Prescaler Selects .23

Table 3-3 Clock A Prescaler Selects .24

Table 4-1 PWM Timer Counter Conditions .41

Table 4-2 16-bit Concatenation Mode Summary .46

Table 4-3 PWM Boundary Cases. .47
11

 PWM_8B8C Block User Guide V01.17
12

 PWM_8B8C Block User Guide V01.17

asic
ligned

nter. A
ters.
ty rates
utputs.

period

input

This is
Section 1 Introduction

1.1 Overview

The PWM_8B8C definition is based on the HC12 PWM definitions. This PWM_8B8C contains the b
features from the HC11 with some of the enhancements incorporated on the HC12., that is center a
output mode and four available clock sources.The PWM_8B8C module has eight channels with
independent control of left and center aligned outputs on each channel.

 Each of the eight channels has a programmable period and duty cycle as well as a dedicated cou
flexible clock select scheme allows a total of four different clock sources to be used with the coun
Each of the modulators can create independent continuous waveforms with software-selectable du
from 0% to 100%. The PWM outputs can be programmed as left aligned outputs or center aligned o

1.2 Features

The block includes these distinctive features:

• Eight independent PWM channels with programmable period and duty cycle.

• Dedicated counter for each PWM channel.

• Programmable PWM enable/disable for each channel.

• Software selection of PWM duty pulse polarity for each channel.

• Period and duty cycle are double buffered. Change takes effect when the end of the effective
is reached (PWM counter reaches zero) or when the channel is disabled.

• Programmable center or left aligned outputs on individual channels.

• Eight 8-bit channel or four 16-bit channel PWM resolution.

• Four clock sources (A, B, SA and SB) provide for a wide range of frequencies.

• Programmable Clock Select Logic.

• Emergency shutdown.

1.3 Modes of Operation

There is a software programmable option for low power consumption in Wait mode that disables the
clock to the prescaler.

In freeze mode there is a software programmable option to disable the input clock to the prescaler.
useful for emulation.

1.4 Block Diagram

Figure 1-1 shows the block diagram for the 8-bit 8-channel PWM_8B8C block.
13

 PWM_8B8C Block User Guide V01.17
Figure 1-1 PWM_8B8C Block Diagram

Period and Duty Counter

Channel 6

Clock select PWM Clock

Period and Duty Counter

Channel 5

Period and Duty Counter

Channel 4

Period and Duty Counter

Channel 3

Period and Duty Counter

Channel 2

Period and Duty Counter

Channel 1
Alignment

Polarity

Control

PWM_8B8C

PWM6

PWM5

PWM4

PWM3

PWM2

PWM1

Enable

PWM Channels

Period and Duty Counter

Channel 7

Period and Duty Counter

Channel 0
PWM0

PWM7

Bus Clock
14

 PWM_8B8C Block User Guide V01.17

wn
Section 2 PWM8b8cSignal Description

2.1 Overview

The PWM_8B8C module has a total of 8 external pins.

2.2 Detailed Signal Descriptions

2.2.1 PWM7 — PWM8b8c Channel 7

This pin serves as waveform output of PWM channel 7 and as an input for the emergency shutdo
feature.

2.2.2 PWM6 — PWM8b8c Channel 6

This pin serves as waveform output of PWM channel 6.

2.2.3 PWM5 — PWM8b8c Channel 5

This pin serves as waveform output of PWM channel 5.

2.2.4 PWM4 — PWM8b8c Channel 4

This pin serves as waveform output of PWM channel 4.

2.2.5 PWM3 — PWM8b8c Channel 3

This pin serves as waveform output of PWM channel 3.

2.2.6 PWM2 — PWM8b8c Channel 2

This pin serves as waveform output of PWM channel 2.

2.2.7 PWM1 — PWM8b8c Channel 1

This pin serves as waveform output of PWM channel 1.

2.2.8 PWM0 — PWM8b8c Channel 0

This pin serves as waveform output of PWM channel 0.
15

 PWM_8B8C Block User Guide V01.17
16

 PWM_8B8C Block User Guide V01.17

evice
eans of
sons for
ptions.

of the
map

gisters
ription

nted
Section 3 Memory Map and Register Definition

3.1 Overview

This section describes in detail all the registers and register bits in the PWM_8B8C module.

The special-purpose registers and register bit functions that would not normally made available to d
end users, such as factory test control registers and reserved registers are clearly identified by m
shading the appropriate portions of address maps and register diagrams. Notes explaining the rea
restricting access to the registers and functions are also explained in the individual register descri

3.2 Module Memory Map

This section describes the content of the registers in the PWM_8B8C module. The base address
PWM_8B8C module is determined at the MCU level when the MCU is defined. The register decode
is fixed and begins at the first address of the module address offset. The figure below shows the re
associated with the PWM and their relative offset from the base address. The register detail desc
follows the order they appear in the register map.

Reserved bits within a register will always read as 0 and the write will be unimplemented. Unimpleme
functions are indicated by shading the bit.

Table 3-1 shows the memory map for the PWM_8B8C module

Table 3-1 PWM_8B8C Memory Map

Address Use Access
$_00 PWM Enable Register (PWME) R/W

$_01 PWM Polarity Register (PWMPOL) R/W

$_02 PWM Clock Select Register (PWMCLK) R/W

$_03 PWM Prescale Clock Select Register (PWMPRCLK) R/W

$_04 PWM Center Align Enable Register (PWMCAE) R/W

$_05 PWM Control Register (PWMCTL) R/W

$_06 PWM Test Register (PWMTST)1 R/W

$_07 PWM Prescale Counter Register (PWMPRSC)2 R/W

$_08 PWM Scale A Register (PWMSCLA) R/W

$_09 PWM Scale B Register (PWMSCLB) R/W

$_0A PWM Scale A Counter Register (PWMSCNTA)3 R/W

$_0B PWM Scale B Counter Register (PWMSCNTB)4 R/W

$_0C PWM Channel 0 Counter Register (PWMCNT0) R/W

$_0D PWM Channel 1 Counter Register (PWMCNT1) R/W

$_0E PWM Channel 2 Counter Register (PWMCNT2) R/W

$_0F PWM Channel 3 Counter Register (PWMCNT3) R/W

$_10 PWM Channel 4 Counter Register (PWMCNT4) R/W

$_11 PWM Channel 5 Counter Register (PWMCNT5) R/W

$_12 PWM Channel 6 Counter Register (PWMCNT6) R/W
17

 PWM_8B8C Block User Guide V01.17

MEx
PWM
le due

xx bits
d by
NOTE: Register Address = Base Address + Address Offset, where the Base Address is
defined at the MCU level and the Address Offset is defined at the module level.

3.3 Register Descriptions

This section describes in detail all the registers and register bits in the PWM_8B8C module.

3.3.1 PWM Enable Register (PWME)

Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PW
bits are set (PWMEx=1), the associated PWM output is enabled immediately. However, the actual
waveform is not available on the associated PWM output until its clock source begins its next cyc
to the synchronization of PWMEx and the clock source.

NOTE: The first PWM cycle after enabling the channel can be irregular.

An exception to this is when channels are concatenated. Once concatenated mode is enabled (CON
set in PWMCTL register) then enabling/disabling the corresponding 16-bit PWM channel is controlle

$_13 PWM Channel 7 Counter Register (PWMCNT7) R/W

$_14 PWM Channel 0 Period Register (PWMPER0) R/W

$_15 PWM Channel 1 Period Register (PWMPER1) R/W

$_16 PWM Channel 2 Period Register (PWMPER2) R/W

$_17 PWM Channel 3 Period Register (PWMPER3) R/W

$_18 PWM Channel 4 Period Register (PWMPER4) R/W

$_19 PWM Channel 5 Period Register (PWMPER5) R/W

$_1A PWM Channel 6 Period Register (PWMPER6) R/W

$_1B PWM Channel 7 Period Register (PWMPER7) R/W

$_1C PWM Channel 0 Duty Register (PWMDTY0) R/W

$_1D PWM Channel 1 Duty Register (PWMDTY1) R/W

$_1E PWM Channel 2 Duty Register (PWMDTY2) R/W

$_1F PWM Channel 3 Duty Register (PWMDTY3) R/W

$_20 PWM Channel 4 Duty Register (PWMDTY4) R/W

$_21 PWM Channel 5 Duty Register (PWMDTY5) R/W

$_22 PWM Channel 6 Duty Register (PWMDTY6) R/W

$_23 PWM Channel 7 Duty Register (PWMDTY7) R/W

$_24 PWM Shutdown Register (PWMSDN) R/W

$_25 Reserved R

$_26 Reserved R

$_27 Reserved R

NOTES:
1. PWMTST is intended for factory test purposes only.
2. PWMPRSC is intended for factory test purposes only.
3. PWMSCNTA is intended for factory test purposes only.
4. PWMSCNTB is intended for factory test purposes only.

Table 3-1 PWM_8B8C Memory Map
18

 PWM_8B8C Block User Guide V01.17

ts off

M

M
and

M

M,
and

M,
the low order PWMEx bit.In this case, the high order bytes PWMEx bits have no effect and their
corresponding PWM output lines are disabled.

While in run mode, if all eight PWM channels are disabled (PWME7-0=0), the prescaler counter shu
for power savings.

Figure 3-1 PWM Enable Register (PWME)

Read: anytime

Write: anytime

PWME7 — Pulse Width Channel 7 Enable
1 = Pulse Width channel 7 is enabled. The pulse modulated signal becomes available at PW

output bit7 when its clock source begins its next cycle.
0 = Pulse Width channel 7 is disabled.

PWME6 — Pulse Width Channel 6 Enable
1 = Pulse Width channel 6 is enabled. The pulse modulated signal becomes available at PW

output bit6 when its clock source begins its next cycle. If CON67=1, then bit has no effect
PWM output line6 is disabled.

0 = Pulse Width channel 6 is disabled.

PWME5 — Pulse Width Channel 5 Enable
1 = Pulse Width channel 5 is enabled. The pulse modulated signal becomes available at PW

output bit 5 when its clock source begins its next cycle.
0 = Pulse Width channel 5 is disabled.

PWME4 — Pulse Width Channel 4 Enable
1 = Pulse Width channel 4 is enabled. The pulse modulated signal becomes available at PW

output bit 4 when its clock source begins its next cycle. If CON45=1, then bit has no effect
PWM output bit4 is disabled.

0 = Pulse Width channel 4 is disabled.

PWME3 — Pulse Width Channel 3 Enable
1 = Pulse Width channel 3 is enabled. The pulse modulated signal becomes available at PW

output bit 3 when its clock source begins its next cycle.
0 = Pulse Width channel 3 is disabled.

PWME2 — Pulse Width Channel 2 Enable

$_00

7 6 5 4 3 2 1 0
R

PWME7 PWME6 PWME5 PWME4 PWME3 PWME2 PWME1 PWME0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
19

 PWM_8B8C Block User Guide V01.17

M,
and

M,

M,
and

in the
ycle
starts

ount

ount
1 = Pulse Width channel 2 is enabled. The pulse modulated signal becomes available at PW
output bit 2 when its clock source begins its next cycle. If CON23=1, then bit has no effect
PWM output bit2 is disabled.

0 = Pulse Width channel 2 is disabled.

PWME1 — Pulse Width Channel 1 Enable
1 = Pulse Width channel 1 is enabled. The pulse modulated signal becomes available at PW

output bit 1 when its clock source begins its next cycle.
0 = Pulse Width channel 1 is disabled.

PWME0 — Pulse Width Channel 0 Enable
1 = Pulse Width channel 0 is enabled. The pulse modulated signal becomes available at PW

output bit 0 when its clock source begins its next cycle. If CON01=1, then bit has no effect
PWM output line0 is disabled.

0 = Pulse Width channel 0 is disabled.

3.3.2 PWM Polarity Register (PWMPOL)

The starting polarity of each PWM channel waveform is determined by the associated PPOLx bit
PWMPOL register. If the polarity bit is one, the PWM channel output is high at the beginning of the c
and then goes low when the duty count is reached. Conversely, if the polarity bit is zero, the output
low and then goes high when the duty count is reached.

Figure 3-2 PWM Polarity Register (PWMPOL)

Read: anytime

Write: anytime

NOTE: PPOLx register bits can be written anytime. If the polarity is changed while a PWM
signal is being generated, a truncated or stretched pulse can occur during the
transition

PPOL7 — Pulse Width Channel 7 Polarity
1 = PWM channel 7 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 7 output is low at the beginning of the period, then goes high when the duty c

is reached.

$_01

7 6 5 4 3 2 1 0
R

PPOL7 PPOL6 PPOL5 PPOL4 PPOL3 PPOL2 PPOL1 PPOL0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
20

 PWM_8B8C Block User Guide V01.17

ount

ount

ount

ount

ount

ount

ount

ount

ount

ount

ount

ount

ount

ount

cribed
PPOL6 — Pulse Width Channel 6 Polarity
1 = PWM channel 6 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 6 output is low at the beginning of the period, then goes high when the duty c

is reached.

PPOL5 — Pulse Width Channel 5 Polarity
1 = PWM channel 5 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 5 output is low at the beginning of the period, then goes high when the duty c

is reached.

PPOL4 — Pulse Width Channel 4 Polarity
1 = PWM channel 4 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 4 output is low at the beginning of the period, then goes high when the duty c

is reached.

PPOL3 — Pulse Width Channel 3 Polarity
1 = PWM channel 3 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 3 output is low at the beginning of the period, then goes high when the duty c

is reached.

PPOL2 — Pulse Width Channel 2 Polarity
1 = PWM channel 2 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 2 output is low at the beginning of the period, then goes high when the duty c

is reached.

PPOL1 — Pulse Width Channel 1 Polarity
1 = PWM channel 1 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 1 output is low at the beginning of the period, then goes high when the duty c

is reached.

PPOL0 — Pulse Width Channel 0 Polarity
1 = PWM channel 0 output is high at the beginning of the period, then goes low when the duty c

is reached.
0 = PWM channel 0 output is low at the beginning of the period, then goes high when the duty c

is reached

3.3.3 PWM Clock Select Register (PWMCLK)

Each PWM channel has a choice of two clocks to use as the clock source for that channel as des
below.
21

 PWM_8B8C Block User Guide V01.17
Figure 3-3 PWM Clock Select Register (PWMCLK)

Read: anytime

Write: anytime

NOTE: Register bits PCLK0 to PCLK7 can be written anytime. If a clock select is changed
while a PWM signal is being generated, a truncated or stretched pulse can occur
during the transition.

PCLK7 — Pulse Width Channel 7 Clock Select
1 = Clock SB is the clock source for PWM channel 7.
0 = Clock B is the clock source for PWM channel 7.

PCLK6 — Pulse Width Channel 6 Clock Select
1 = Clock SB is the clock source for PWM channel 6.
0 = Clock B is the clock source for PWM channel 6.

PCLK5 — Pulse Width Channel 5 Clock Select
1 = Clock SA is the clock source for PWM channel 5.
0 = Clock A is the clock source for PWM channel 5.

PCLK4 — Pulse Width Channel 4 Clock Select
1 = Clock SA is the clock source for PWM channel 4.
0 = Clock A is the clock source for PWM channel 4.

PCLK3 — Pulse Width Channel 3 Clock Select
1 = Clock SB is the clock source for PWM channel 3.
0 = Clock B is the clock source for PWM channel 3.

PCLK2 — Pulse Width Channel 2 Clock Select
1 = Clock SB is the clock source for PWM channel 2.
0 = Clock B is the clock source for PWM channel 2.

PCLK1 — Pulse Width Channel 1 Clock Select
1 = Clock SA is the clock source for PWM channel 1.
0 = Clock A is the clock source for PWM channel 1.

PCLK0 — Pulse Width Channel 0 Clock Select
1 = Clock SA is the clock source for PWM channel 0.

$_02

7 6 5 4 3 2 1 0
R

PCLK7 PCLKL6 PCLK5 PCLK4 PCLK3 PCLK2 PCLK1 PCLK0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
22

 PWM_8B8C Block User Guide V01.17

rmine
0 = Clock A is the clock source for PWM channel 0.

3.3.4 PWM Prescale Clock Select Register (PWMPRCLK)

This register selects the prescale clock source for clocks A and B independently.

Figure 3-4 PWM Prescale Clock Select Register (PWMPRCLK)

Read: anytime

Write: anytime

NOTE: PCKB2-0 and PCKA2-0 register bits can be written anytime. If the clock pre-scale
is changed while a PWM signal is being generated, a truncated or stretched pulse
can occur during the transition.

PCKB2 - PCKB0 — Prescaler Select for Clock B

Clock B is one of two clock sources which can be used for channels 2, 3, 6 or 7. These three bits dete
the rate of clock B, as shown in the following table.

Table 3-2 Clock B Prescaler Selects

PCKA2 - PCKA0 — Prescaler Select for Clock A

$_03

7 6 5 4 3 2 1 0
R 0

PCKB2 PCKB1 PCKB0
0

PCKA2 PCKA1 PCKA0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

PCKB2 PCKB1 PCKB0 Value of
Clock B

0 0 0 bus clock

0 0 1 bus clock / 2

0 1 0 bus clock / 4

0 1 1 bus clock / 8

1 0 0 bus clock / 16

1 0 1 bus clock / 32

1 1 0 bus clock / 64

1 1 1 bus clock / 128
23

 PWM_8B8C Block User Guide V01.17

its

gned
l be
ence
Clock A is one of two clock sources which can be used for channels 0, 1, 4 or 5. These three b
determine the rate of clock A, as shown in the following table.

Table 3-3 Clock A Prescaler Selects

3.3.5 PWM Center Align Enable Register (PWMCAE)

The PWMCAE register contains eight control bits for the selection of center aligned outputs or left ali
outputs for each PWM channel. If the CAEx bit is set to a one, the corresponding PWM output wil
center aligned. If the CAEx bit is cleared, the corresponding PWM output will be left aligned. Refer
4.2.5 Left Aligned Outputs and4.2.6 Center Aligned Outputs for a more detailed description of the
PWM output modes.

Figure 3-5 PWM Center Align Enable Register (PWMCAE)

Read: anytime

Write: anytime

NOTE: Write these bits only when the corresponding channel is disabled.

CAE7 — Center Aligned Output Mode on channel 7
1 = Channel 7 operates in Center Aligned Output Mode.
0 = Channel 7 operates in Left Aligned Output Mode.

CAE6 — Center Aligned Output Mode on channel 6

PCKA2 PCKA1 PCKA0 Value of
Clock A

0 0 0 bus clock

0 0 1 bus clock / 2

0 1 0 bus clock / 4

0 1 1 bus clock / 8

1 0 0 bus clock / 16

1 0 1 bus clock / 32

1 1 0 bus clock / 64

1 1 1 bus clock / 128

$_04

7 6 5 4 3 2 1 0
R

CAE7 CAE6 CAE5 CAE4 CAE3 CAE2 CAE1 CAE0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
24

 PWM_8B8C Block User Guide V01.17

ome the
egisters
1 = Channel 6 operates in Center Aligned Output Mode.
0 = Channel 6 operates in Left Aligned Output Mode.

CAE5 — Center Aligned Output Mode on channel 5
1 = Channel 5 operates in Center Aligned Output Mode.
0 = Channel 5 operates in Left Aligned Output Mode.

CAE4 — Center Aligned Output Mode on channel 4
1 = Channel 4 operates in Center Aligned Output Mode.
0 = Channel 4 operates in Left Aligned Output Mode.

CAE3 — Center Aligned Output Mode on channel 3
1 = Channel 3 operates in Center Aligned Output Mode.
0 = Channel 3 operates in Left Aligned Output Mode.

CAE2 — Center Aligned Output Mode on channel 2
1 = Channel 2 operates in Center Aligned Output Mode.
0 = Channel 2 operates in Left Aligned Output Mode.

CAE1 — Center Aligned Output Mode on channel 1
1 = Channel 1 operates in Center Aligned Output Mode.
0 = Channel 1 operates in Left Aligned Output Mode.

CAE0 — Center Aligned Output Mode on channel 0
1 = Channel 0 operates in Center Aligned Output Mode.
0 = Channel 0 operates in Left Aligned Output Mode.

3.3.6 PWM Control Register (PWMCTL)

The PWMCTL register provides for various control of the PWM module.

Figure 3-6 PWM Control Register (PWMCTL)

Read: anytime

Write: anytime

There are three control bits for concatenation, each of which is used to concatenate a pair of PWM
channels into one 16-bit channel. When channels 6 and 7are concatenated, channel 6 registers bec
high order bytes of the double byte channel. When channels 4 and 5 are concatenated, channel 4 r

$_05

7 6 5 4 3 2 1 0
R

CON67 CON45 CON23 CON01 PSWAI PFRZ
0 0

W
RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
25

 PWM_8B8C Block User Guide V01.17

channel

es the
as the

nable
ode.

es the
as the

nable
ode.

es the
as the

nable
ode.

es the
as the

nable
ode.

 to
become the high order bytes of the double byte channel. When channels 2 and 3 are concatenated,
2 registers become the high order bytes of the double byte channel. When channels 0 and 1 are
concatenated, channel 0 registers become the high order bytes of the double byte channel.

Reference4.2.7 PWM 16-Bit Functions for a more detailed description of the concatenation PWM
Function.

NOTE: Change these bits only when both corresponding channels are disabled.

CON67 — Concatenate channels 6 and 7
1 = Channels 6 and 7 are concatenated to create one 16-bit PWM channel. Channel 6 becom

high order byte and channel 7 becomes the low order byte. Channel 7 output pin is used
output for this 16-bit PWM (bit 7 of port PWMP). Channel 7 clock select control-bit
determines the clock source, channel 7 polarity bit determines the polarity, channel 7 e
bit enables the output and channel 7 center aligned enable bit determines the output m

0 = Channels 6 and 7 are separate 8-bit PWMs.

CON45 — Concatenate channels 4 and 5
1 = Channels 4 and 5 are concatenated to create one 16-bit PWM channel. Channel 4 becom

high order byte and channel 5 becomes the low order byte. Channel 5 output pin is used
output for this 16-bit PWM (bit 5 of port PWMP). Channel 5 clock select control-bit
determines the clock source, channel 5 polarity bit determines the polarity, channel 5 e
bit enables the output and channel 5 center aligned enable bit determines the output m

0 = Channels 4 and 5 are separate 8-bit PWMs.

CON23 — Concatenate channels 2 and 3
1 = Channels 2 and 3 are concatenated to create one 16-bit PWM channel. Channel 2 becom

high order byte and channel 3 becomes the low order byte. Channel 3 output pin is used
output for this 16-bit PWM (bit 3 of port PWMP). Channel 3 clock select control-bit
determines the clock source, channel 3 polarity bit determines the polarity, channel 3 e
bit enables the output and channel 3 center aligned enable bit determines the output m

0 = Channels 2 and 3 are separate 8-bit PWMs.

CON01 — Concatenate channels 0 and 1
1 = Channels 0 and 1 are concatenated to create one 16-bit PWM channel. Channel 0 becom

high order byte and channel 1 becomes the low order byte. Channel 1 output pin is used
output for this 16-bit PWM (bit 1 of port PWMP). Channel 1 clock select control-bit
determines the clock source, channel 1 polarity bit determines the polarity, channel 1 e
bit enables the output and channel 1 center aligned enable bit determines the output m

0 = Channels 0 and 1 are separate 8-bit PWMs.

PSWAI — PWM Stops in Wait Mode

Enabling this bit allows for lower power consumption in Wait Mode by disabling the input clock
the prescaler.

1 = Stop the input clock to the prescaler whenever the MCU is in Wait Mode.
0 = Allow the clock to the prescaler to continue while in wait mode.

PFRZ — PWM Counters Stop in Freeze Mode
26

 PWM_8B8C Block User Guide V01.17

RZ bit
the

be
t once
Since
e PFRZ

seful

es.

es.
In Freeze Mode, there is an option to disable the input clock to the prescaler by setting the PF
in the PWMCTL register. If this bit is set, whenever the MCU is in freeze mode the input clock to
prescaler is disabled. This feature is useful during emulation as it allows the PWM function to
suspended. In this way, the counters of the PWM can be stopped while in freeze mode so tha
normal program flow is continued, the counters are re-enabled to simulate real-time operations.
the registers can still be accessed in this mode, to re-enable the prescaler clock, either disable th
bit or exit freeze mode.

1 = Disable PWM input clock to the prescaler whenever the part is in freeze mode. This is u
for emulation.

0 = Allow PWM to continue while in freeze mode.

3.3.7 Reserved Register (PWMTST)

This register is reserved for factory testing of the PWM module and is not available in normal mod

Figure 3-7 Reserved Register (PWMTST)

Read: always read $00 in normal modes

Write: unimplemented in normal modes

NOTE: Writing to this register when in special modes can alter the PWM functionality.

3.3.8 Reserved Register (PWMPRSC)

This register is reserved for factory testing of the PWM module and is not available in normal mod

Figure 3-8 Reserved Register (PWMPRSC)

Read: always read $00 in normal modes

$_06

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

$_07

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
27

 PWM_8B8C Block User Guide V01.17

SA is
wo.

LA).

SB is
two.

LB).
Write: unimplemented in normal modes

NOTE: Writing to this register when in special modes can alter the PWM functionality.

3.3.9 PWM Scale A Register (PWMSCLA)

PWMSCLA is the programmable scale value used in scaling clock A to generate clock SA. Clock
generated by taking clock A, dividing it by the value in the PWMSCLA register and dividing that by t

Clock SA = Clock A / (2 * PWMSCLA)

NOTE: When PWMSCLA = $00, PWMSCLA value is considered a full scale value of 256.
Clock A is thus divided by 512.

Any value written to this register will cause the scale counter to load the new scale value (PWMSC

Figure 3-9 PWM Scale A Register (PWMSCLA)

Read: anytime

Write: anytime (causes the scale counter to load the PWMSCLA value)

3.3.10 PWM Scale B Register (PWMSCLB)

PWMSCLB is the programmable scale value used in scaling clock B to generate clock SB. Clock
generated by taking clock B, dividing it by the value in the PWMSCLB register and dividing that by

Clock SB = Clock B / (2 * PWMSCLB)

NOTE: When PWMSCLB = $00, PWMSCLB value is considered a full scale value of 256.
Clock B is thus divided by 512.

Any value written to this register will cause the scale counter to load the new scale value (PWMSC

$_08

7 6 5 4 3 2 1 0
R

Bit 7 6 5 4 3 2 1 Bit 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
28

 PWM_8B8C Block User Guide V01.17

 and

ource.
el. In

ligned
 to 0.

t to up,
hange
ctions
Figure 3-10 PWM Scale B Register (PWMSCLB)

Read: anytime

Write: anytime (causes the scale counter to load the PWMSCLB value).

3.3.11 Reserved Registers (PWMSCNTx)

The registers PWMSCNTA and PWMSCNTB are reserved for factory testing of the PWM module
are not available in normal modes.

Figure 3-11 Reserved Registers (PWMSCNTx)

Read: always read $00 in normal modes

Write: unimplemented in normal modes

NOTE: Writing to these registers when in special modes can alter the PWM functionality.

3.3.12 PWM Channel Counter Registers (PWMCNTx)

Each channel has a dedicated 8-bit up/down counter which runs at the rate of the selected clock s
The counter can be read at any time without affecting the count or the operation of the PWM chann
left aligned output mode, the counter counts from 0 to the value in the period register - 1. In center a
output mode, the counter counts from 0 up to the value in the period register and then back down

Any value written to the counter causes the counter to reset to $00, the counter direction to be se
the immediate load of both duty and period registers with values from the buffers, and the output to c
according to the polarity bit. The counter is also cleared at the end of the effective period (see Se
4.2.5 Left Aligned Outputs and4.2.6 Center Aligned Outputs for more details). When the channel is
disabled (PWMEx=0), the PWMCNTx register does not count. When a channel becomes enabled

$_09

7 6 5 4 3 2 1 0
R

Bit 7 6 5 4 3 2 1 Bit 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

$_0A, $_0B

7 6 5 4 3 2 1 0
R 0 0 0 0 0 0 0 0
W

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
29

 PWM_8B8C Block User Guide V01.17

 low or
ade by

o

riod of

l is

ome
o the
(PWMEx=1), the associated PWM counter starts at the count in the PWMCNTx register. For more
detailed information on the operation of the counters, reference4.2.4 PWM Timer Counters.

In concatenated mode, writes to the 16-bit counter by using a 16-bit access or writes to either the
high order byte of the counter will reset the 16-bit counter. Reads of the 16-bit counter must be m
16-bit access to maintain data coherency.

NOTE:Writing to the counter while the channel is enabled can cause an irregular PWM cycle t
occur.

Figure 3-12 PWM Channel Counter Registers (PWMCNTx)

Read: anytime

Write: anytime (any value written causes PWM counter to be reset to $00).

3.3.13 PWM Channel Period Registers (PWMPERx)

There is a dedicated period register for each channel. The value in this register determines the pe
the associated PWM channel.

The period registers for each channel are double buffered so that if they change while the channe
enabled, the change will NOT take effect until one of the following occurs:

• The effective period ends

• The counter is written (counter resets to $00)

• The channel is disabled

In this way, the output of the PWM will always be either the old waveform or the new waveform, not s
variation in between. If the channel is not enabled, then writes to the period register will go directly t
latches as well as the buffer.

$_0C = PWMCNT0
$_0D = PWMCNT1
$_0E = PWMCNT2
$_0F = PWMCNT3
$_10 = PWMCNT4
$_11 = PWMCNT5
$_12 = PWMCNT6
$_13 = PWMCNT7

7 6 5 4 3 2 1 0
R Bit 7 6 5 4 3 2 1 Bit 0
W 0 0 0 0 0 0 0 0

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
30

 PWM_8B8C Block User Guide V01.17

, SA,

 of the
r value

nabled,
NOTE: Reads of this register return the most recent value written. Reads do not necessarily
return the value of the currently active period due to the double buffering scheme.

Reference4.2.3 PWM Period and Duty for more information.

To calculate the output period, take the selected clock source period for the channel of interest (A, B
or SB) and multiply it by the value in the period register for that channel:

• Left Aligned Output (CAEx=0)

• PWMxPeriod=ChannelClockPeriod*PWMPERxCenterAlignedOutput (CAEx=1)

PWMx Period = Channel Clock Period * (2 * PWMPERx)

For Boundary Case programming values, please refer to Section4.2.8 PWM Boundary Cases

Figure 3-13 PWM Channel Period Registers (PWMPERx)

Read: anytime

Write: anytime

3.3.14 PWM Channel Duty Registers (PWMDTYx)

There is a dedicated duty register for each channel. The value in this register determines the duty
associated PWM channel. The duty value is compared to the counter and if it is equal to the counte
a match occurs and the output changes state.

The duty registers for each channel are double buffered so that if they change while the channel is e
the change will NOT take effect until one of the following occurs:

• The effective period ends

• The counter is written (counter resets to $00)

• The channel is disabled

$_14 = PWMPER0
$_15 = PWMPER1
$_16 = PWMPER2
$_17 = PWMPER3
$_18 = PWMPER4
$_19 = PWMPER5
$_1A = PWMPER6
$_1B = PWMPER7

7 6 5 4 3 2 1 0
R

Bit 7 6 5 4 3 2 1 Bit 0
W

RESET: 1 1 1 1 1 1 1 1

= Unimplemented or Reserved
31

 PWM_8B8C Block User Guide V01.17

rm,
rectly
In this way, the output of the PWM will always be either the old duty waveform or the new duty wavefo
not some variation in between. If the channel is not enabled, then writes to the duty register will go di
to the latches as well as the buffer.

NOTE: Reads of this register return the most recent value written. Reads do not necessarily
return the value of the currently active duty due to the double buffering scheme.

Reference4.2.3 PWM Period and Duty for more information.

NOTE: Depending on the polarity bit, the duty registers will contain the count of either the
high time or the low time. If the polarity bit is one, the output starts high and then
goes low when the duty count is reached, so the duty registers contain a count of
the high time. If the polarity bit is zero, the output starts low and then goes high
when the duty count is reached, so the duty registers contain a count of the low time.

To calculate the output duty cycle (high time as a% of period) for a particular channel:

• Polarity = 0 (PPOLx=0)

Duty Cycle = [(PWMPERx-PWMDTYx)/PWMPERx] * 100%

• Polarity = 1 (PPOLx=1)

Duty Cycle = [PWMDTYx / PWMPERx] * 100%

• For Boundary Case programming values, please refer to Section4.2.8 PWM Boundary Cases.

Figure 3-14 PWM Channel Duty Registers (PWMDTYx)

Read: anytime

Write: anytime

$_1C = PWMDTY0
$_1D = PWMDTY1
$_1E = PWMDTY2
$_1F = PWMDTY3
$_20 = PWMDTY4
$_21 = PWMDTY5
$_22 = PWMDTY6
$_23 = PWMDTY7

7 6 5 4 3 2 1 0
R

Bit 7 6 5 4 3 2 1 Bit 0
W

RESET: 1 1 1 1 1 1 1 1

= Unimplemented or Reserved
32

 PWM_8B8C Block User Guide V01.17

ncy
locks.

down

el of

1 to
unter
3.3.15 PWM Shutdown Register (PWMSDN)

The PWMSDN register provides for the shutdown functionality of the PWM module in the emerge
cases. For proper operation channel 7 must be driven to the active level for a minimum of two bus c

Figure 3-15 PWM Shutdown Register (PWMSDN)

Read: anytime

Write: anytime

PWM7ENA — PWM emergency shutdown Enable

If this bit is logic 1 the pin associated with channel 7 is forced to input and the emergency shut
feature is enabled.All the other bits in this register are meaningful only if PWM7ENA = 1.

1 = PWM emergency feature is enabled.
0 = PWM emergency feature disabled.

PWM7INL — PWM shutdown active input level for channel 7.

If the emergency shutdown feature is enabled (PWM7ENA = 1), this bit determines the active lev
the PWM7channel.

1 = Active level is high
0 = Active level is low

PWM7IN — PWM channel 7 input status.

This reflects the current status of the PWM7 pin.

PWMLVL — PWM shutdown output Level.

If active level as defined by the PWM7IN input, gets asserted all enabled PWM channels are
immediately driven to the level defined by PWMLVL.

1 = PWM outputs are forced to 1.
0 = PWM outputs are forced to 0

PWMRSTRT — PWM Restart.

The PWM can only be restarted if the PWM channel input 7 is de-asserted. After writing a logic
the PWMRSTRT bit (trigger event) the PWM channels start running after the corresponding co
passes next “counter == 0” phase.

$_24

7 6 5 4 3 2 1 0
R

PWMIF PWMIE
0

PWMLVL
0 PWM7IN

PWM7INL
PWM7EN

AW
PWMR-
STRT

RESET: 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
33

 PWM_8B8C Block User Guide V01.17

ed by
ct.
Also if the PWM7ENA bit is reset to 0, the PWM do not start before the counter passes $00.
The bit is always read as “0”.

PWMIE — PWM Interrupt Enable

If interrupt is enabled an interrupt to the CPU is asserted.
1 = PWM interrupt is enabled.
0 = PWM interrupt is disabled.

PWMIF — PWM Interrupt Flag

Any change from passive to asserted (active) state or from active to passive state will be flagg
setting the PWMIF flag = 1. The flag is cleared by writing a logic 1 to it. Writing a 0 has no effe

1 = change on PWM7IN input
0 = No change on PWM7IN input.
34

 PWM_8B8C Block User Guide V01.17

 B).

ck SA
 clock
tware
re

r the

ted.
Section 4 Functional Description

4.1 PWM Clock Select

There are four available clocks called clock A, clock B, clock SA (Scaled A), and clock SB (Scaled
These four clocks are based on the bus clock.

Clock A and B can be software selected to be 1, 1/2, 1/4, 1/8,..., 1/64, 1/128 times the bus clock. Clo
uses clock A as an input and divides it further with a reloadable counter. Similarly, Clock SB uses
B as an input and divides it further with a reloadable counter. The rates available for clock SA are sof
selectable to be clock A divided by 2, 4, 6, 8,..., or 512 in increments of divide by 2. Similar rates a
available for clock SB. Each PWM channel has the capability of selecting one of two clocks, eithe
pre-scaled clock (clock A or B) or the scaled clock (clock SA or SB).

The block diagram inFigure 4-1 shows the four different clocks and how the scaled clocks are crea
35

 PWM_8B8C Block User Guide V01.17
Figure 4-1 PWM Clock Select Block Diagram

2
4

8
16

32
64

12
8

PC
KB

2
PC

KB
1

PC
KB

0

M

U

X

Clock A

Clock B

Clock SA

Clock A/2, A/4, A/6,....A/512

PRESCALE SCALE

Di
vid

e
by

 P
re

sc
al

er
 T

ap
s:

PF
RZ

Fr
ee

ze
 M

od
e

Si
gn

al

Bu
s

Cl
oc

k

CLOCK SELECT

M
U
X

PCLK0

Clock to
PWM Ch 0

M
U
X

PCLK2

Clock to
PWM Ch 2

M
U
X

PCLK1

Clock to
PWM Ch 1

M
U
X

PCLK4

Clock to
PWM Ch 4

M
U
X

PCLK5

Clock to
PWM Ch 5

M
U
X

PCLK6

Clock to
PWM Ch 6

M
U
X

PCLK7

Clock to
PWM Ch 7

M
U
X

PCLK3

Clock to
PWM Ch 3

Load

DIV 2PWMSCLB

8-bit Down Counter

Clock SB

Clock B/2, B/4, B/6,....B/512

M

U

X

PC
KA

2
PC

KA
1

PC
KA

0

PW
M

E7
-0

Count=1

Load

DIV 2PWMSCLA

8-bit Down Counter Count=1
36

 PWM_8B8C Block User Guide V01.17

reeze
eeze
lation
re

clock
value
The

LK

 and
er
ctable

le for

scale
en; a
d by

ing
r.

A for
 this
alue
by
4.1.1 Prescale

The input clock to the PWM prescaler is the bus clock. It can be disabled whenever the part is in f
mode by setting the PFRZ bit in the PWMCTL register. If this bit is set, whenever the MCU is in fr
mode (Freeze Mode Signal active) the input clock to the prescaler is disabled. This is useful for emu
in order to freeze the PWM. The input clock can also be disabled when all eight PWM channels a
disabled (PWME7-0=0). This is useful for reducing power by disabling the prescale counter.

Clock A and clock B are scaled values of the input clock. The value is software selectable for both
A and clock B and has options of 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, or 1/128 times the bus clock. The
selected for clock A is determined by the PCKA2, PCKA1, PCKA0 bits in the PWMPRCLK register.
value selected for clock B is determined by the PCKB2, PCKB1, PCKB0 bits also in the PWMPRC
register.

4.1.2 Clock Scale

The scaled A clock uses clock A as an input and divides it further with a user programmable value
then divides this by 2. The scaled B clock uses clock B as an input and divides it further with a us
programmable value and then divides this by 2. The rates available for clock SA are software sele
to be clock A divided by 2, 4, 6, 8,..., or 512 in increments of divide by 2. Similar rates are availab
clock SB.

Clock A is used as an input to an 8-bit down counter. This down counter loads a user programmable
value from the scale register (PWMSCLA). When the down counter reaches one, two things happ
pulse is output and the 8-bit counter is re-loaded. The output signal from this circuit is further divide
two. This gives a greater range with only a slight reduction in granularity. Clock SA equals Clock A
divided by two times the value in the PWMSCLA register.

NOTE: Clock SA = Clock A / (2 * PWMSCLA)

When PWMSCLA = $00, PWMSCLA value is considered a full scale value of 256.
Clock A is thus divided by 512.

Similarly, Clock B is used as an input to an 8-bit down counter followed by a divide by two produc
clock SB. Thus, clock SB equals Clock B divided by two times the value in the PWMSCLB registe

NOTE: Clock SB = Clock B / (2 * PWMSCLB)

When PWMSCLB = $00, PWMSCLB value is considered a full scale value of 256.
Clock B is thus divided by 512.

As an example, consider the case in which the user writes $FF into the PWMSCLA register. Clock
this case will be E divided by 4. A pulse will occur at a rate of once every 255x4 E cycles. Passing
through the divide by two circuit produces a clock signal at an E divided by 2040 rate. Similarly, a v
of $01 in the PWMSCLA register when clock A is E divided by 4 will produce a clock at an E divided
8 rate.
37

 PWM_8B8C Block User Guide V01.17

proper

clock
clock

period
tween
egister
polarity
 Writing to PWMSCLA or PWMSCLB causes the associated 8-bit down counter to be re-loaded.
Otherwise, when changing rates the counter would have to count down to $01 before counting at the
rate. Forcing the associated counter to re-load the scale register value every time PWMSCLA or
PWMSCLB is written prevents this.

NOTE: Writing to the scale registers while channels are operating can cause irregularities
in the PWM outputs.

4.1.3 Clock Select

Each PWM channel has the capability of selecting one of two clocks. For channels 0, 1, 4, and 5 the
choices are clock A or clock SA. For channels 2, 3, 6, and 7 the choices are clock B or clock SB. The
selection is done with the PCLKx control bits in the PWMCLK register.

NOTE: Changing clock control bits while channels are operating can cause irregularities
in the PWM outputs.

4.2 PWM Channel Timers

The main part of the PWM module are the actual timers. Each of the timer channels has a counter, a
register and a duty register (each are 8-bit). The waveform output period is controlled by a match be
the period register and the value in the counter. The duty is controlled by a match between the duty r
and the counter value and causes the state of the output to change during the period. The starting
of the output is also selectable on a per channel basis. Shown below inFigure 4-2 is the block diagram for
the PWM timer.
38

 PWM_8B8C Block User Guide V01.17

MEx
actual
cycle
s are

igh.
 at an

own
Figure 4-2 PWM Timer Channel Block Diagram

4.2.1 PWM Enable

Each PWM channel has an enable bit (PWMEx) to start its waveform output. When any of the PW
bits are set (PWMEx=1), the associated PWM output signal is enabled immediately. However, the
PWM waveform is not available on the associated PWM output until its clock source begins its next
due to the synchronization of PWMEx and the clock source. An exception to this is when channel
concatenated. Refer toSection 4.2.7 PWM 16-Bit Functions for more detail.

NOTE: The first PWM cycle after enabling the channel can be irregular.

On the front end of the PWM timer, the clock is enabled to the PWM circuit by the PWMEx bit being h
There is an edge-synchronizing circuit to guarantee that the clock will only be enabled or disabled
edge. When the channel is disabled (PWMEx=0), the counter for the channel does not count.

4.2.2 PWM Polarity

Each channel has a polarity bit to allow starting a waveform cycle with a high or low signal. This is sh
on the block diagram as a Mux select of either the Q output or theQ output of the PWM output flip flop.

Clock Source

T

R

Q

Q

M
U
X

PPOLx

From Port PWMP

Data Register

PWMEx

(clock edge sync)

To Pin
Driver

GATE

8-bit Compare =

PWMDTYx

8-bit Compare =

PWMPERx

M
U
X

CAEx

up/down

T

R

Q

Q

reset

8-bit Counter

PWMCNTx
39

 PWM_8B8C Block User Guide V01.17

at the
ity bit

hange

ome
l go

duty
w duty
 where

ource

ges
period

WM

t to up,
hange
a
 the
When one of the bits in the PWMPOL register is set, the associated PWM channel output is high
beginning of the waveform, then goes low when the duty count is reached. Conversely, if the polar
is zero, the output starts low and then goes high when the duty count is reached.

4.2.3 PWM Period and Duty

Dedicated period and duty registers exist for each channel and are double buffered so that if they c
while the channel is enabled, the change will NOT take effect until one of the following occurs:

• The effective period ends

• The counter is written (counter resets to $00)

• The channel is disabled

In this way, the output of the PWM will always be either the old waveform or the new waveform, not s
variation in between. If the channel is not enabled, then writes to the period and duty registers wil
directly to the latches as well as the buffer.

A change in duty or period can be forced into effect “immediately” by writing the new value to the
and/or period registers and then writing to the counter. This forces the counter to reset and the ne
and/or period values to be latched. In addition, since the counter is readable it is possible to know
the count is with respect to the duty value and software can be used to make adjustments

NOTE: When forcing a new period or duty into effect immediately, an irregular PWM cycle
can occur.

NOTE: Depending on the polarity bit, the duty registers will contain the count of either the
high time or the low time.

4.2.4 PWM Timer Counters

Each channel has a dedicated 8-bit up/down counter which runs at the rate of the selected clock s
(referenceSection 4.1 PWM Clock Select for the available clock sources and rates). The counter
compares to two registers, a duty register and a period register as shown inFigure 4-2 PWM Timer
Channel Block Diagram. When the PWM counter matches the duty register the output flip-flop chan
state causing the PWM waveform to also change state. A match between the PWM counter and the
register behaves differently depending on what output mode is selected as shown inFigure 4-2 PWM
Timer Channel Block Diagram and described inSection 4.2.5 Left Aligned OutputsandSection 4.2.6
Center Aligned Outputs.

Each channel counter can be read at anytime without affecting the count or the operation of the P
channel.

Any value written to the counter causes the counter to reset to $00, the counter direction to be se
the immediate load of both duty and period registers with values from the buffers, and the output to c
according to the polarity bit. When the channel is disabled (PWMEx=0), the counter stops. When
channel becomes enabled (PWMEx=1), the associated PWM counter continues from the count in
PWMCNTx register. This allows the waveform to continue where it left off when the channel is
40

 PWM_8B8C Block User Guide V01.17

reset

state.
ect is

hey

wo

ges
period

iated
re-enabled. When the channel is disabled, writing “0” to the period register will cause the counter to
on the next selected clock.

NOTE: If the user wants to start a new “clean” PWM waveform without any “history” from
the old waveform, the user must write to channel counter (PWMCNTx) prior to
enabling the PWM channel (PWMEx=1).

Generally, writes to the counter are done prior to enabling a channel in order to start from a known
However, writing a counter can also be done while the PWM channel is enabled (counting). The eff
similar to writing the counter when the channel is disabled except that the new period is started
immediately with the output set according to the polarity bit.

NOTE: Writing to the counter while the channel is enabled can cause an irregular PWM
cycle to occur.

The counter is cleared at the end of the effective period (seeSection 4.2.5 Left Aligned Outputs and
Section 4.2.6 Center Aligned Outputs for more details).

4.2.5 Left Aligned Outputs

The PWM timer provides the choice of two types of outputs, Left Aligned or Center Aligned outputs. T
are selected with the CAEx bits in the PWMCAE register. If the CAEx bit is cleared (CAEx=0), the
corresponding PWM output will be left aligned.

In left aligned output mode, the 8-bit counter is configured as an up counter only. It compares to t
registers, a duty register and a period register as shown in the block diagram inFigure 4-2 PWM Timer
Channel Block Diagram. When the PWM counter matches the duty register the output flip-flop chan
state causing the PWM waveform to also change state. A match between the PWM counter and the
register resets the counter and the output flip-flop as shown inFigure 4-2 PWM Timer Channel Block
Diagram as well as performing a load from the double buffer period and duty register to the assoc
registers as described inSection 4.2.3 PWM Period and Duty. The counter counts from 0 to the value in
the period register - 1.

NOTE: Changing the PWM output mode from Left Aligned Output to Center Aligned
Output (or vice versa) while channels are operating can cause irregularities in the
PWM output. It is recommended to program the output mode before enabling the
PWM channel.

Table 4-1 PWM Timer Counter Conditions

Counter Clears ($00) Counter Counts Counter Stops

When PWMCNTx register written to
any value

When PWM channel is enabled
(PWMEx=1). Counts from last value in
PWMCNTx.

When PWM channel is disabled
(PWMEx=0)

Effective period ends
41

 PWM_8B8C Block User Guide V01.17

ected
ister
Figure 4-3 PWM Left Aligned Output Waveform

To calculate the output frequency in left aligned output mode for a particular channel, take the sel
clock source frequency for the channel (A, B, SA, or SB) and divide it by the value in the period reg
for that channel.

• PWMx Frequency = Clock(A, B, SA, or SB) / PWMPERx

• PWMx Duty Cycle (high time as a% of period):

– Polarity = 0 (PPOLx=0)

Duty Cycle = [(PWMPERx-PWMDTYx)/PWMPERx] * 100%

– Polarity = 1 (PPOLx=1)

Duty Cycle = [PWMDTYx / PWMPERx] * 100%

As an example of a left aligned output, consider the following case:

Clock Source = E, where E=10MHz (100ns period)

PPOLx = 0

PWMPERx = 4

PWMDTYx = 1

PWMx Frequency = 10MHz/4 = 2.5MHz

PWMx Period = 400ns

PWMx Duty Cycle = 3/4 *100% = 75%

Shown below is the output waveform generated.

Figure 4-4 PWM Left Aligned Output Example Waveform

PWMDTYx

Period = PWMPERx

PPOLx=0

PPOLx=1

PERIOD = 400ns

E=100ns

DUTY CYCLE = 75%
42

 PWM_8B8C Block User Guide V01.17

the

nter is
n in the

te. A
-count
tput
ments

ad from

then

lected
riod
4.2.6 Center Aligned Outputs

For Center Aligned Output Mode selection, set the CAEx bit (CAEx=1) in the PWMCAE register and
corresponding PWM output will be center aligned.

The 8-bit counter operates as an up/down counter in this mode and is set to up whenever the cou
equal to $00. The counter compares to two registers, a duty register and a period register as show
block diagram inFigure 4-2 PWM Timer Channel Block Diagram. When the PWM counter matches
the duty register the output flip-flop changes state causing the PWM waveform to also change sta
match between the PWM counter and the period register changes the counter direction from an up
to a down-count. When the PWM counter decrements and matches the duty register again, the ou
flip-flop changes state causing the PWM output to also change state. When the PWM counter decre
and reaches zero, the counter direction changes from a down-count back to an up-count and a lo
the double buffer period and duty registers to the associated registers is performed as described inSection
4.2.3 PWM Period and Duty. The counter counts from 0 up to the value in the period register and
back down to 0. Thus the effective period is PWMPERx*2.

NOTE: Changing the PWM output mode from Left Aligned Output to Center Aligned
Output (or vice versa) while channels are operating can cause irregularities in the
PWM output. It is recommended to program the output mode before enabling the
PWM channel.

Figure 4-5 PWM Center Aligned Output Waveform

To calculate the output frequency in center aligned output mode for a particular channel, take the se
clock source frequency for the channel (A, B, SA, or SB) and divide it by twice the value in the pe
register for that channel.

• PWMx Frequency = Clock(A, B, SA, or SB) / (2*PWMPERx)

• PWMx Duty Cycle (high time as a% of period):

– Polarity = 0 (PPOLx=0)

Duty Cycle = [(PWMPERx-PWMDTYx)/PWMPERx] * 100%

– Polarity = 1 (PPOLx=1)

PPOLx=0

PPOLx=1

Period = PWMPERx*2

PWMDTYx PWMDTYx

PWMPERx PWMPERx
43

 PWM_8B8C Block User Guide V01.17

reater
nnels.

WM
s 4 and
nd

 double

hannels
annel.
 double
Duty Cycle = [PWMDTYx / PWMPERx] * 100%

As an example of a center aligned output, consider the following case:

Clock Source = E, where E=10MHz (100ns period)

PPOLx = 0

PWMPERx = 4

PWMDTYx = 1

PWMx Frequency = 10MHz/8 = 1.25MHz

PWMx Period = 800ns

PWMx Duty Cycle = 3/4 *100% = 75%

Shown below is the output waveform generated.

Figure 4-6 PWM Center Aligned Output Example Waveform

4.2.7 PWM 16-Bit Functions

The PWM timer also has the option of generating 8-channels of 8-bits or 4-channels of 16-bits for g
PWM resolution. This 16-bit channel option is achieved through the concatenation of two 8-bit cha

The PWMCTL register contains four control bits, each of which is used to concatenate a pair of P
channels into one 16-bit channel. Channels 6 and 7 are concatenated with the CON67 bit, channel
5 are concatenated with the CON45 bit, channels 2 and 3 are concatenated with the CON23 bit, a
channels 0 and 1 are concatenated with the CON01 bit.

NOTE: Change these bits only when both corresponding channels are disabled.

When channels 6 and 7 are concatenated, channel 6 registers become the high order bytes of the
byte channel as shown inFigure 4-7 PWM 16-Bit Mode. Similarly, when channels 4 and 5 are
concatenated, channel 4 registers become the high order bytes of the double byte channel. When c
2 and 3 are concatenated, channel 2 registers become the high order bytes of the double byte ch
When channels 0 and 1 are concatenated, channel 0 registers become the high order bytes of the

PERIOD = 800ns

E=100ns

DUTY CYCLE = 75%

E=100ns
44

 PWM_8B8C Block User Guide V01.17

annel
hen
el 1 when
order
byte channel.

Figure 4-7 PWM 16-Bit Mode

When using the 16-bit concatenated mode, the clock source is determined by the low order 8-bit ch
clock select control bits. That is channel 7 when channels 6 and 7 are concatenated, channel 5 w
channels 4 and 5 are concatenated, channel 3 when channels 2 and 3 are concatenated, and chann
channels 0 and 1 are concatenated. The resulting PWM is output to the pins of the corresponding low

PWMCNT6 PWCNT7

PWM7

Clock Source 7
High Low

Period/Duty Compare

PWMCNT4 PWCNT5

PWM5

Clock Source 5

High Low

Period/Duty Compare

PWMCNT2 PWCNT3

PWM3

Clock Source 3

High Low

Period/Duty Compare

PWMCNT0 PWCNT1

PWM1

Clock Source 1

High Low

Period/Duty Compare
45

 PWM_8B8C Block User Guide V01.17

g the
rder

 low or
ade by

lled by

s when
8-bit channel as also shown inFigure 4-7 PWM 16-Bit Mode. The polarity of the resulting PWM output
is controlled by the PPOLx bit of the corresponding low order 8-bit channel as well.

Once concatenated mode is enabled (CONxx bits set in PWMCTL register) then enabling/disablin
corresponding 16-bit PWM channel is controlled by the low order PWMEx bit. In this case, the high o
bytes PWMEx bits have no effect and their corresponding PWM output is disabled.

In concatenated mode, writes to the 16-bit counter by using a 16-bit access or writes to either the
high order byte of the counter will reset the 16-bit counter. Reads of the 16-bit counter must be m
16-bit access to maintain data coherency.

Either left aligned or center aligned output mode can be used in concatenated mode and is contro
the low order CAEx bit. The high order CAEx bit has no effect.

The table shown below is used to summarize which channels are used to set the various control bit
in 16-bit mode.

Table 4-2 16-bit Concatenation Mode Summary

CONxx PWMEx PPOLx PCLKx CAEx PWMx
OUTPUT

CON67 PWME7 PPOL7 PCLK7 CAE7 PWM7

CON45 PWME5 PPOL5 PCLK5 CAE5 PWM5

CON23 PWME3 PPOL3 PCLK3 CAE3 PWM3

CON01 PWME1 PPOL1 PCLK1 CAE1 PWM1
46

 PWM_8B8C Block User Guide V01.17

(Left
4.2.8 PWM Boundary Cases

The following table summarizes the boundary conditions for the PWM regardless of the output mode
Aligned or Center Aligned) and 8-bit (normal) or 16-bit (concatenation).

Table 4-3 PWM Boundary Cases

PWMDTYx PWMPERx PPOLx PWMx Output

$00
(indicates no duty)

>$00 1 Always Low

$00
(indicates no duty)

>$00 0 Always High

XX $001

(indicates no period)

NOTES:
1. Counter=$00 and does not count.

1 Always High

XX $001

(indicates no period)
0 Always Low

>= PWMPERx XX 1 Always High

>= PWMPERx XX 0 Always Low
47

 PWM_8B8C Block User Guide V01.17
48

 PWM_8B8C Block User Guide V01.17

e

Section 5 Resets

5.1 General

The reset state of each individual bit is listed within the Register Description sectionSection 3.3 Register
Descriptions which details the registers and their bit-fields. All special functions or modes which ar
initialized during or just following reset are described within this section.

• The 8-bit up/down counter is configured as an up counter out of reset.

• All the channels are disabled and all the counters don’t count.
49

 PWM_8B8C Block User Guide V01.17
50

 PWM_8B8C Block User Guide V01.17

if the
MIF
ENA

 the

PWM
Section 6 Interrupts

6.1 Interrupt Operation

The PWM module has only one interrupt which is generated at the time of emergency shutdown,
corresponding enable bit (PWMIE) is set. This bit is the enable for the interrupt. The interrupt flag PW
is set whenever the input level of the PWM7 channel changes while PWM7ENA=1 or when PWM
is being asserted while the level at PWM7 is active.

In STOP mode or WAIT mode(with the PSWAI bit set) the emergency shutdown feature will drive
PWM outputs to their shutdown output levels but the PWMIF flag will not be set.

 A description of the registers involved and affected due to this interrupt is explained inSection 3.3.15
PWM Shutdown Register (PWMSDN).

The PWM block only generates the interrupt and does not service it. The interrupt signal name is
Interrupt Signal.
51

 PWM_8B8C Block User Guide V01.17
52

 PWM_8B8C Block User Guide V01.17
User Guide End Sheet
53

 PWM_8B8C Block User Guide V01.17
FINAL PAGE OF
54

PAGES
54

BookTitle, Rev. 2

Freescale Semiconductor 1

Chapter 1
Serial Communications Interface (S12SCIV2)
Block Description

1.1 Introduction
 This block guide provide an overview of serial communication interface (SCI) module. The SCI allows
asynchronous serial communications with peripheral devices and other CPUs.

1.1.1 Glossary

IRQ — Interrupt Request

LSB — Least Significant Bit

MSB — Most Significant Bit

NRZ — Non-Return-to-Zero

RZI — Return-to-Zero-Inverted

RXD — Receive Pin

SCI — Serial Communication Interface

TXD — Transmit Pin

1.1.2 Features

The SCI includes these distinctive features:

• Full-duplex operation

• Standard mark/space non-return-to-zero (NRZ) format

• 13-bit baud rate selection

• Programmable 8-bit or 9-bit data format

• Separately enabled transmitter and receiver

• Programmable transmitter output parity

• Two receiver wake up methods:

— Idle line wake-up

— Address mark wake-up

• Interrupt-driven operation with eight flags:

— Transmitter empty

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

2 Freescale Semiconductor

— Transmission complete

— Receiver full

— Idle receiver input

— Receiver overrun

— Noise error

— Framing error

— Parity error

• Receiver framing error detection

• Hardware parity checking

• 1/16 bit-time noise detection

1.1.3 Modes of Operation

The SCI operation is the same independent of device resource mapping and bus interface mode. Different
power modes are available to facilitate power saving.

1.1.3.1 Run Mode

Normal mode of operation.

1.1.3.2 Wait Mode

SCI operation in wait mode depends on the state of the SCISWAI bit in the SCI control register 1
(SCICR1).

• If SCISWAI is clear, the SCI operates normally when the CPU is in wait mode.

• If SCISWAI is set, SCI clock generation ceases and the SCI module enters a power-conservation
state when the CPU is in wait mode. Setting SCISWAI does not affect the state of the receiver
enable bit, RE, or the transmitter enable bit, TE.

• If SCISWAI is set, any transmission or reception in progress stops at wait mode entry. The
transmission or reception resumes when either an internal or external interrupt brings the CPU out
of wait mode. Exiting wait mode by reset aborts any transmission or reception in progress and
resets the SCI.

1.1.3.3 Stop Mode

The SCI is inactive during stop mode for reduced power consumption. The STOP instruction does not
affect the SCI register states, but the SCI module clock will be disabled. The SCI operation resumes from
where it left off after an external interrupt brings the CPU out of stop mode. Exiting stop mode by reset
aborts any transmission or reception in progress and resets the SCI.

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 3

1.1.4 Block Diagram

Figure 1-1 is a high level block diagram of the SCI module, showing the interaction of various functional
blocks.

Figure 1-1. SCI Block Diagram

1.2 External Signal Description
The SCI module has a total of two external pins:

1.2.1 TXD-SCI Transmit Pin

This pin serves as transmit data output of SCI.

1.2.2 RXD-SCI Receive Pin

This pin serves as receive data input of the SCI.

1.3 Memory Map and Registers
This section provides a detailed description of all memory and registers.

SCI DATA REGISTER

RECEIVE SHIFT REGISTER

RECEIVE & WAKE UP CONTROL

DATA FORMAT CONTROL

TRANSMIT CONTROL

TRANSMIT SHIFT REGISTER

SCI DATA REGISTER

BAUD
GENERATOR

RX DATA IN

÷16

BUS CLOCK

TXDATA OUT

IDLE IRQ

RDR/OR IRQ

TDRE IRQ

TC IRQ

O
R

IN
G

IR
Q

 G
EN

ER
AT

IO
N

IR
Q

 G
EN

ER
AT

IO
N

IRQ
TO CPU

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

4 Freescale Semiconductor

1.3.1 Module Memory Map

The memory map for the SCI module is given below in Figure 1-2. The Address listed for each register is
the address offset. The total address for each register is the sum of the base address for the SCI module and
the address offset for each register.

1.3.2 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard register
diagram with an associated figure number. Writes to a reserved register location do not have any effect and
reads of these locations return a zero. Details of register bit and field function follow the register diagrams,
in bit order.

Address Name Bit 7 6 5 4 3 2 1 Bit 0

0x0000 SCIBDH
R 0 0 0

SBR12 SBR11 SBR10 SBR9 SBR8
W

0x0001 SCIBDL
R

SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
W

0x0002 SCICR1
R

LOOPS SCISWAI RSRC M WAKE ILT PE PT
W

0x0003 SCICR2
R

TIE TCIE RIE ILIE TE RE RWU SBK
W

0x0004 SCISR1
R TDRE TC RDRF IDLE OR NF FE PF
W

0x0005 SCISR2
R 0 0 0 0 0

BRK13 TXDIR
RAF

W

0x0006 SCIDRH
R R8

T8
0 0 0 0 0 0

W

0x0007 SCIDRL
R R7 R6 R5 R4 R3 R2 R1 R0
W T7 T6 T5 T4 T3 T2 T1 T0

= Unimplemented or Reserved

Figure 1-2. SCI Register Summary

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 5

1.3.2.1 SCI Baud Rate Registers (SCIBDH and SCHBDL)

The SCI Baud Rate Register is used by the counter to determine the baud rate of the SCI. The formula for
calculating the baud rate is:

SCI baud rate = SCI module clock / (16 x BR)

where:

BR is the content of the SCI baud rate registers, bits SBR12 through SBR0. The baud rate registers
can contain a value from 1 to 8191.

Read: Anytime. If only SCIBDH is written to, a read will not return the correct data until SCIBDL is
written to as well, following a write to SCIBDH.

Write: Anytime

 Module Base + 0x_0000

7 6 5 4 3 2 1 0

R 0 0 0
SBR12 SBR11 SBR10 SBR9 SBR8

W

Reset 0 0 0 0 0 0 0 0

Module Base + 0x_0001

7 6 5 4 3 2 1 0

R
SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0

W

Reset 0 0 0 0 0 1 0 0

= Unimplemented or Reserved

Figure 1-3. SCI Baud Rate Registers (SCIBDH and SCIBDL)

Table 1-1. SCIBDH AND SCIBDL Field Descriptions

Field Description

4–0
7–0

SBR[12:0]

SCI Baud Rate Bits — The baud rate for the SCI is determined by these 13 bits.
Note: The baud rate generator is disabled until the TE bit or the RE bit is set for the first time after reset. The

baud rate generator is disabled when BR = 0.
Writing to SCIBDH has no effect without writing to SCIBDL, since writing to SCIBDH puts the data in a
temporary location until SCIBDL is written to.

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

6 Freescale Semiconductor

1.3.2.2 SCI Control Register 1 (SCICR1)

Read: Anytime

Write: Anytime

 Module Base + 0x_0002

7 6 5 4 3 2 1 0

R
LOOPS SCISWAI RSRC M WAKE ILT PE PT

W

Reset 0 0 0 0 0 0 0 0

Figure 1-4. SCI Control Register 1 (SCICR1)

Table 1-2. SCICR1 Field Descriptions

Field Description

7
LOOPS

Loop Select Bit — LOOPS enables loop operation. In loop operation, the RXD pin is disconnected from the SCI
and the transmitter output is internally connected to the receiver input. Both the transmitter and the receiver must
be enabled to use the loop function.See Table 1-3.
0 Normal operation enabled
1 Loop operation enabled
Note: The receiver input is determined by the RSRC bit.

6
SCISWAI

SCI Stop in Wait Mode Bit — SCISWAI disables the SCI in wait mode.
0 SCI enabled in wait mode
1 SCI disabled in wait mode

5
RSRC

Receiver Source Bit — When LOOPS = 1, the RSRC bit determines the source for the receiver shift register
input.
0 Receiver input internally connected to transmitter output
1 Receiver input connected externally to transmitter

4
M

Data Format Mode Bit — MODE determines whether data characters are eight or nine bits long.
0 One start bit, eight data bits, one stop bit
1 One start bit, nine data bits, one stop bit

3
WAKE

Wakeup Condition Bit — WAKE determines which condition wakes up the SCI: a logic 1 (address mark) in the
most significant bit position of a received data character or an idle condition on the RXD.
0 Idle line wakeup
1 Address mark wakeup

2
ILT

Idle Line Type Bit — ILT determines when the receiver starts counting logic 1s as idle character bits. The
counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of
logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the
stop bit avoids false idle character recognition, but requires properly synchronized transmissions.
0 Idle character bit count begins after start bit
1 Idle character bit count begins after stop bit

1
PE

Parity Enable Bit — PE enables the parity function. When enabled, the parity function inserts a parity bit in the
most significant bit position.
0 Parity function disabled
1 Parity function enabled

0
PT

Parity Type Bit — PT determines whether the SCI generates and checks for even parity or odd parity. With even
parity, an even number of 1s clears the parity bit and an odd number of 1s sets the parity bit. With odd parity, an
odd number of 1s clears the parity bit and an even number of 1s sets the parity bit.
0 Even parity
1 Odd parity

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 7

1.3.2.3 SCI Control Register 2 (SCICR2)

Read: Anytime

Write: Anytime

Table 1-3. Loop Functions

LOOPS RSRC Function

0 x Normal operation

1 0 Loop mode with Rx input internally connected to Tx output

1 1 Single-wire mode with Rx input connected to TXD

 Module Base + 0x_0003

7 6 5 4 3 2 1 0

R
TIE TCIE RIE ILIE TE RE RWU SBK

W

Reset 0 0 0 0 0 0 0 0

Figure 1-5. SCI Control Register 2 (SCICR2)

Table 1-4. SCICR2 Field Descriptions

Field Description

7
TIE

Transmitter Interrupt Enable Bit — TIE enables the transmit data register empty flag, TDRE, to generate
interrupt requests.
0 TDRE interrupt requests disabled
1 TDRE interrupt requests enabled

6
TCIE

Transmission Complete Interrupt Enable Bit — TCIE enables the transmission complete flag, TC, to generate
interrupt requests.
0 TC interrupt requests disabled
1 TC interrupt requests enabled

5
RIE

Receiver Full Interrupt Enable Bit — RIE enables the receive data register full flag, RDRF, or the overrun flag,
OR, to generate interrupt requests.
0 RDRF and OR interrupt requests disabled
1 RDRF and OR interrupt requests enabled

4
ILIE

Idle Line Interrupt Enable Bit — ILIE enables the idle line flag, IDLE, to generate interrupt requests.
0 IDLE interrupt requests disabled
1 IDLE interrupt requests enabled

3
TE

Transmitter Enable Bit — TE enables the SCI transmitter and configures the TXD pin as being controlled by
the SCI. The TE bit can be used to queue an idle preamble.
0 Transmitter disabled
1 Transmitter enabled

2
RE

Receiver Enable Bit — RE enables the SCI receiver.
0 Receiver disabled
1 Receiver enabled

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

8 Freescale Semiconductor

1.3.2.4 SCI Status Register 1 (SCISR1)

The SCISR1 and SCISR2 registers provides inputs to the MCU for generation of SCI interrupts. Also,
these registers can be polled by the MCU to check the status of these bits. The flag-clearing procedures
require that the status register be read followed by a read or write to the SCI Data Register.It is permissible
to execute other instructions between the two steps as long as it does not compromise the handling of I/O,
but the order of operations is important for flag clearing.

Read: Anytime

Write: Has no meaning or effect

1
RWU

Receiver Wakeup Bit — Standby state
0 Normal operation.
1 RWU enables the wakeup function and inhibits further receiver interrupt requests. Normally, hardware wakes

the receiver by automatically clearing RWU.

0
SBK

Send Break Bit — Toggling SBK sends one break character (10 or 11 logic 0s, respectively 13 or 14 logics 0s
if BRK13 is set). Toggling implies clearing the SBK bit before the break character has finished transmitting. As
long as SBK is set, the transmitter continues to send complete break characters (10 or 11 bits, respectively 13
or 14 bits).
0 No break characters
1 Transmit break characters

 Module Base + 0x_0004

7 6 5 4 3 2 1 0

R TDRE TC RDRF IDLE OR NF FE PF

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 1-6. SCI Status Register 1 (SCISR1)

Table 1-5. SCISR1 Field Descriptions

Field Description

7
TDRE

Transmit Data Register Empty Flag — TDRE is set when the transmit shift register receives a byte from the
SCI data register. When TDRE is 1, the transmit data register (SCIDRH/L) is empty and can receive a new value
to transmit.Clear TDRE by reading SCI status register 1 (SCISR1), with TDRE set and then writing to SCI data
register low (SCIDRL).
0 No byte transferred to transmit shift register
1 Byte transferred to transmit shift register; transmit data register empty

6
TC

Transmit Complete Flag — TC is set low when there is a transmission in progress or when a preamble or break
character is loaded. TC is set high when the TDRE flag is set and no data, preamble, or break character is being
transmitted.When TC is set, the TXD out signal becomes idle (logic 1). Clear TC by reading SCI status register
1 (SCISR1) with TC set and then writing to SCI data register low (SCIDRL). TC is cleared automatically when
data, preamble, or break is queued and ready to be sent. TC is cleared in the event of a simultaneous set and
clear of the TC flag (transmission not complete).
0 Transmission in progress
1 No transmission in progress

Table 1-4. SCICR2 Field Descriptions (continued)

Field Description

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 9

5
RDRF

Receive Data Register Full Flag — RDRF is set when the data in the receive shift register transfers to the SCI
data register. Clear RDRF by reading SCI status register 1 (SCISR1) with RDRF set and then reading SCI data
register low (SCIDRL).
0 Data not available in SCI data register
1 Received data available in SCI data register

4
IDLE

Idle Line Flag — IDLE is set when 10 consecutive logic 1s (if M=0) or 11 consecutive logic 1s (if M=1) appear
on the receiver input. Once the IDLE flag is cleared, a valid frame must again set the RDRF flag before an idle
condition can set the IDLE flag.Clear IDLE by reading SCI status register 1 (SCISR1) with IDLE set and then
reading SCI data register low (SCIDRL).
0 Receiver input is either active now or has never become active since the IDLE flag was last cleared
1 Receiver input has become idle
Note: When the receiver wakeup bit (RWU) is set, an idle line condition does not set the IDLE flag.

3
OR

Overrun Flag — OR is set when software fails to read the SCI data register before the receive shift register
receives the next frame. The OR bit is set immediately after the stop bit has been completely received for the
second frame. The data in the shift register is lost, but the data already in the SCI data registers is not affected.
Clear OR by reading SCI status register 1 (SCISR1) with OR set and then reading SCI data register low
(SCIDRL).
0 No overrun
1 Overrun
Note: OR flag may read back as set when RDRF flag is clear. This may happen if the following sequence of

events occurs:
1. After the first frame is received, read status register SCISR1 (returns RDRF set and OR flag clear);
2. Receive second frame without reading the first frame in the data register (the second frame is not

received and OR flag is set);
3. Read data register SCIDRL (returns first frame and clears RDRF flag in the status register);
4. Read status register SCISR1 (returns RDRF clear and OR set).
Event 3 may be at exactly the same time as event 2 or any time after. When this happens, a dummy
SCIDRL read following event 4 will be required to clear the OR flag if further frames are to be received.

2
NF

Noise Flag — NF is set when the SCI detects noise on the receiver input. NF bit is set during the same cycle as
the RDRF flag but does not get set in the case of an overrun. Clear NF by reading SCI status register 1(SCISR1),
and then reading SCI data register low (SCIDRL).
0 No noise
1 Noise

1
FE

Framing Error Flag — FE is set when a logic 0 is accepted as the stop bit. FE bit is set during the same cycle
as the RDRF flag but does not get set in the case of an overrun. FE inhibits further data reception until it is
cleared. Clear FE by reading SCI status register 1 (SCISR1) with FE set and then reading the SCI data register
low (SCIDRL).
0 No framing error
1 Framing error

0
PF

Parity Error Flag — PF is set when the parity enable bit (PE) is set and the parity of the received data does not
match the parity type bit (PT). PF bit is set during the same cycle as the RDRF flag but does not get set in the
case of an overrun. Clear PF by reading SCI status register 1 (SCISR1), and then reading SCI data register low
(SCIDRL).
0 No parity error
1 Parity error

Table 1-5. SCISR1 Field Descriptions (continued)

Field Description

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

10 Freescale Semiconductor

1.3.2.5 SCI Status Register 2 (SCISR2)

Read: Anytime

Write: Anytime; writing accesses SCI status register 2; writing to any bits except TXDIR and BRK13
(SCISR2[1] & [2]) has no effect

 Module Base + 0x_0005

7 6 5 4 3 2 1 0

R 0 0 0 0 0
BK13 TXDIR

RAF

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 1-7. SCI Status Register 2 (SCISR2)

Table 1-6. SCISR2 Field Descriptions

Field Description

2
BK13

Break Transmit Character Length — This bit determines whether the transmit break character is 10 or 11 bit
respectively 13 or 14 bits long. The detection of a framing error is not affected by this bit.
0 Break Character is 10 or 11 bit long
1 Break character is 13 or 14 bit long

1
TXDIR

Transmitter Pin Data Direction in Single-Wire Mode. — This bit determines whether the TXD pin is going to
be used as an input or output, in the Single-Wire mode of operation. This bit is only relevant in the Single-Wire
mode of operation.
0 TXD pin to be used as an input in Single-Wire mode
1 TXD pin to be used as an output in Single-Wire mode

0
RAF

Receiver Active Flag — RAF is set when the receiver detects a logic 0 during the RT1 time period of the start
bit search. RAF is cleared when the receiver detects an idle character.
0 No reception in progress
1 Reception in progress

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 11

1.3.2.6 SCI Data Registers (SCIDRH and SCIDRL)

Read: Anytime; reading accesses SCI receive data register

Write: Anytime; writing accesses SCI transmit data register; writing to R8 has no effect

NOTE
 If the value of T8 is the same as in the previous transmission, T8 does not
have to be rewritten.The same value is transmitted until T8 is rewritten

In 8-bit data format, only SCI data register low (SCIDRL) needs to be
accessed.

When transmitting in 9-bit data format and using 8-bit write instructions,
write first to SCI data register high (SCIDRH), then SCIDRL.

1.4 Functional Description
This section provides a complete functional description of the SCI block, detailing the operation of the
design from the end user perspective in a number of subsections.

 Module Base + 0x_0006

7 6 5 4 3 2 1 0

R R8
T8

0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0

Module Base + 0x_0007

7 6 5 4 3 2 1 0

R R7 R6 R5 R4 R3 R2 R1 R0

W T7 T6 T5 T4 T3 T2 T1 T0

Reset 0 0 0 0 0 1 0 0

= Unimplemented or Reserved

Figure 1-8. SCI Data Registers (SCIDRH and SCIDRL)

Table 1-7. SCIDRH AND SCIDRL Field Descriptions

Field Description

7
R8

Received Bit 8 — R8 is the ninth data bit received when the SCI is configured for 9-bit data format (M = 1).

6
T8

Transmit Bit 8 — T8 is the ninth data bit transmitted when the SCI is configured for 9-bit data format (M = 1).

7–0
R[7:0]
T[7:0]

Received Bits — Received bits seven through zero for 9-bit or 8-bit data formats

Transmit Bits — Transmit bits seven through zero for 9-bit or 8-bit formats

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

12 Freescale Semiconductor

Figure 1-9 shows the structure of the SCI module. The SCI allows full duplex, asynchronous, NRZ serial
communication between the CPU and remote devices, including other CPUs. The SCI transmitter and
receiver operate independently, although they use the same baud rate generator. The CPU monitors the
status of the SCI, writes the data to be transmitted, and processes received data.

Figure 1-9. SCI Block Diagram

1.4.1 Data Format

The SCI uses the standard NRZ mark/space data format illustrated in Figure 1-10 below.

Figure 1-10. SCI Data Formats

Each data character is contained in a frame that includes a start bit, eight or nine data bits, and a stop bit.
Clearing the M bit in SCI control register 1 configures the SCI for 8-bit data characters.A frame with eight

SCI DATA

RECEIVE
SHIFT REGISTER

SCI DATA
REGISTER

TRANSMIT
SHIFT REGISTER

REGISTER

BAUD RATE
GENERATOR

SBR12–SBR0

BUS

TRANSMIT
CONTROL÷16

RECEIVE
AND WAKEUP

DATA FORMAT
CONTROL

CONTROL

T8

PF

FE

NF

RDRF

IDLE

TIE

OR

TCIE

TDRE

TC

R8

RAFLOOPS

RWU

RE

PE

ILT

PT

WAKE

M

CLOCK

ILIE

RIE

RXD

RSRC

SBK

LOOPS

TE

RSRC

TXD

R
D

R
F/

O
R

 IR
Q

TD
R

E
IR

Q

ID
LE

 IR
Q

TC
 IR

Q

IRQ

TO CPU

BIT 5
START

BIT BIT 0 BIT 1

NEXT

STOP
BIT

START
BIT

9-BIT DATA FORMAT

BIT 2 BIT 3 BIT 4 BIT 6 BIT 7

PARITY
OR DATA

BIT

PARITY
OR DATA

BIT

BIT M IN SCICR1 SET

8-BIT DATA FORMAT
BIT M IN SCICR1 CLEAR

BIT 5BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 6 BIT 7 BIT 8 STOP
BIT

NEXT
START

BIT
START

BIT

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 13

data bits has a total of 10 bits. Setting the M bit configures the SCI for nine-bit data characters. A frame
with nine data bits has a total of 11 bits

When the SCI is configured for 9-bit data characters, the ninth data bit is the T8 bit in SCI data register
high (SCIDRH). It remains unchanged after transmission and can be used repeatedly without rewriting it.
A frame with nine data bits has a total of 11 bits.

Table 1-9. Example of 9-Bit Data Formats

1.4.2 Baud Rate Generation

A 13-bit modulus counter in the baud rate generator derives the baud rate for both the receiver and the
transmitter. The value from 0 to 8191 written to the SBR12–SBR0 bits determines the module clock
divisor. The SBR bits are in the SCI baud rate registers (SCIBDH and SCIBDL). The baud rate clock is
synchronized with the bus clock and drives the receiver. The baud rate clock divided by 16 drives the
transmitter. The receiver has an acquisition rate of 16 samples per bit time.

Baud rate generation is subject to one source of error:

Integer division of the module clock may not give the exact target frequency.

Table 1-10 lists some examples of achieving target baud rates with a module clock frequency of 25 MHz

SCI baud rate = SCI module clock / (16 * SCIBR[12:0])

Table 1-8. Example of 8-Bit Data Formats

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 8 0 0 1

1 7 0 1 1

1 7 11

1 The address bit identifies the frame as an address character. See
Section 1.4.4.6, “Receiver Wakeup”.

0 1

Start
Bit

Data
Bits

Address
Bits

Parity
Bits

Stop
Bit

1 9 0 0 1

1 8 0 1 1

1 8 11

1 The address bit identifies the frame as an address character. See
Section 1.4.4.6, “Receiver Wakeup”.

0 1

Table 1-10. Baud Rates (Example: Module Clock = 25 MHz)

Bits
SBR[12-0]

Receiver
Clock (Hz)

Transmitter
Clock (Hz)

Target Baud
Rate

Error
(%)

41 609,756.1 38,109.8 38,400 .76

81 308,642.0 19,290.1 19,200 .47

163 153,374.2 9585.9 9600 .16

326 76,687.1 4792.9 4800 .15

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

14 Freescale Semiconductor

1.4.3 Transmitter

Figure 1-11. Transmitter Block Diagram

651 38,402.5 2400.2 2400 .01

1302 19,201.2 1200.1 1200 .01

2604 9600.6 600.0 600 .00

5208 4800.0 300.0 300 .00

10417 2400.0 150.0 150 .00

14204 1760.1 110.0 110 .00

Table 1-10. Baud Rates (Example: Module Clock = 25 MHz)

Bits
SBR[12-0]

Receiver
Clock (Hz)

Transmitter
Clock (Hz)

Target Baud
Rate

Error
(%)

PE

PT

H 8 7 6 5 4 3 2 1 0 L

11-BIT TRANSMIT SHIFT REGISTERST
O

P

ST
AR

T

T8

TDRE

TIE

TCIE

SBK

TC

PARITY
GENERATION

M
SB

SCI DATA REGISTERS
LO

AD
 F

R
O

M
 S

C
ID

R

SH
IF

T
EN

AB
LE

PR
EA

M
BL

E
(A

LL
 O

N
ES

)

BR
EA

K
(A

LL
 0

s)

TRANSMITTER CONTROL

M

INTERNAL BUS

SBR12–SBR0

BAUD DIVIDER ÷ 16

TDRE INTERRUPT REQUEST

TC INTERRUPT REQUEST

BUS

LOOP

RSRC

CLOCK

TE

TO
CONTROL RXD

LOOPS

TXD

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 15

1.4.3.1 Transmitter Character Length

The SCI transmitter can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI
control register 1 (SCICR1) determines the length of data characters. When transmitting 9-bit data, bit T8
in SCI data register high (SCIDRH) is the ninth bit (bit 8).

1.4.3.2 Character Transmission

To transmit data, the MCU writes the data bits to the SCI data registers (SCIDRH/SCIDRL), which in turn
are transferred to the transmitter shift register. The transmit shift register then shifts a frame out through
the Tx output signal, after it has prefaced them with a start bit and appended them with a stop bit. The SCI
data registers (SCIDRH and SCIDRL) are the write-only buffers between the internal data bus and the
transmit shift register.

The SCI also sets a flag, the transmit data register empty flag (TDRE), every time it transfers data from the
buffer (SCIDRH/L) to the transmitter shift register.The transmit driver routine may respond to this flag by
writing another byte to the Transmitter buffer (SCIDRH/SCIDRL), while the shift register is still shifting
out the first byte.

To initiate an SCI transmission:

1. Configure the SCI:

a) Select a baud rate. Write this value to the SCI baud registers (SCIBDH/L) to begin the baud
rate generator. Remember that the baud rate generator is disabled when the baud rate is zero.
Writing to the SCIBDH has no effect without also writing to SCIBDL.

b) Write to SCICR1 to configure word length, parity, and other configuration bits
(LOOPS,RSRC,M,WAKE,ILT,PE,PT).

c) Enable the transmitter, interrupts, receive, and wake up as required, by writing to the SCICR2
register bits (TIE,TCIE,RIE,ILIE,TE,RE,RWU,SBK). A preamble or idle character will now
be shifted out of the transmitter shift register.

2. Transmit Procedure for Each Byte:

a. Poll the TDRE flag by reading the SCISR1 or responding to the TDRE interrupt. Keep in mind
that the TDRE bit resets to one.

d) If the TDRE flag is set, write the data to be transmitted to SCIDRH/L, where the ninth bit is
written to the T8 bit in SCIDRH if the SCI is in 9-bit data format. A new transmission will not
result until the TDRE flag has been cleared.

3. Repeat step 2 for each subsequent transmission.

NOTE
The TDRE flag is set when the shift register is loaded with the next data to
be transmitted from SCIDRH/L, which happens, generally speaking, a little
over half-way through the stop bit of the previous frame. Specifically, this
transfer occurs 9/16ths of a bit time AFTER the start of the stop bit of the
previous frame.

Writing the TE bit from 0 to a 1 automatically loads the transmit shift register with a preamble of 10 logic
1s (if M = 0) or 11 logic 1s (if M = 1). After the preamble shifts out, control logic transfers the data from

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

16 Freescale Semiconductor

the SCI data register into the transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit
position.

Hardware supports odd or even parity. When parity is enabled, the most significant bit (msb) of the data
character is the parity bit.

The transmit data register empty flag, TDRE, in SCI status register 1 (SCISR1) becomes set when the SCI
data register transfers a byte to the transmit shift register. The TDRE flag indicates that the SCI data
register can accept new data from the internal data bus. If the transmit interrupt enable bit, TIE, in SCI
control register 2 (SCICR2) is also set, the TDRE flag generates a transmitter interrupt request.

When the transmit shift register is not transmitting a frame, the Tx output signal goes to the idle condition,
logic 1. If at any time software clears the TE bit in SCI control register 2 (SCICR2), the transmitter enable
signal goes low and the transmit signal goes idle.

If software clears TE while a transmission is in progress (TC = 0), the frame in the transmit shift register
continues to shift out. To avoid accidentally cutting off the last frame in a message, always wait for TDRE
to go high after the last frame before clearing TE.

To separate messages with preambles with minimum idle line time, use this sequence between messages:

1. Write the last byte of the first message to SCIDRH/L.

2. Wait for the TDRE flag to go high, indicating the transfer of the last frame to the transmit shift
register.

3. Queue a preamble by clearing and then setting the TE bit.

4. Write the first byte of the second message to SCIDRH/L.

1.4.3.3 Break Characters

Writing a logic 1 to the send break bit, SBK, in SCI control register 2 (SCICR2) loads the transmit shift
register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit.
Break character length depends on the M bit in SCI control register 1 (SCICR1). As long as SBK is at
logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software
clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least
one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit
of the next frame.

The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a
logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers:

• Sets the framing error flag, FE

• Sets the receive data register full flag, RDRF

• Clears the SCI data registers (SCIDRH/L)

• May set the overrun flag, OR, noise flag, NF, parity error flag, PE, or the receiver active flag, RAF
(see Section 1.3.2.4, “SCI Status Register 1 (SCISR1)” and Section 1.3.2.5, “SCI Status Register
2 (SCISR2)”

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 17

1.4.3.4 Idle Characters

An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on
the M bit in SCI control register 1 (SCICR1). The preamble is a synchronizing idle character that begins
the first transmission initiated after writing the TE bit from 0 to 1.

If the TE bit is cleared during a transmission, the Tx output signal becomes idle after completion of the
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle
character to be sent after the frame currently being transmitted.

NOTE
When queueing an idle character, return the TE bit to logic 1 before the stop
bit of the current frame shifts out through the Tx output signal. Setting TE
after the stop bit appears on Tx output signal causes data previously written
to the SCI data register to be lost. Toggle the TE bit for a queued idle
character while the TDRE flag is set and immediately before writing the
next byte to the SCI data register.

NOTE
If the TE bit is clear and the transmission is complete, the SCI is not the
master of the TXD pin

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

18 Freescale Semiconductor

1.4.4 Receiver

Figure 1-12. SCI Receiver Block Diagram

1.4.4.1 Receiver Character Length

The SCI receiver can accommodate either 8-bit or 9-bit data characters. The state of the M bit in SCI
control register 1 (SCICR1) determines the length of data characters. When receiving 9-bit data, bit R8 in
SCI data register high (SCIDRH) is the ninth bit (bit 8).

1.4.4.2 Character Reception

During an SCI reception, the receive shift register shifts a frame in from the Rx input signal. The SCI data
register is the read-only buffer between the internal data bus and the receive shift register.

After a complete frame shifts into the receive shift register, the data portion of the frame transfers to the
SCI data register. The receive data register full flag, RDRF, in SCI status register 1 (SCISR1) becomes set,
indicating that the received byte can be read. If the receive interrupt enable bit, RIE, in SCI control
register 2 (SCICR2) is also set, the RDRF flag generates an RDRF interrupt request.

AL
L

O
N

ES

M

WAKE

ILT

PE

PT

RE

H 8 7 6 5 4 3 2 1 0 L

11-BIT RECEIVE SHIFT REGISTERST
O

P

ST
AR

T

DATA

WAKEUP

PARITY
CHECKING

M
SB

SCI DATA REGISTER

R8

RIE

ILIE

RWU

RDRF

OR

NF

FE

PE

INTERNAL BUS

BUS

IDLE INTERRUPT REQUEST

RDRF/OR INTERRUPT REQUEST

SBR12–SBR0

BAUD DIVIDER

LOOP

RSRC

FROM TXD

CLOCK

IDLE

RAF

RECOVERY

CONTROL

LOGIC

LOOPS

RXD

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 19

1.4.4.3 Data Sampling

The receiver samples the Rx input signal at the RT clock rate. The RT clock is an internal signal with a
frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock (see Figure 1-13) is
re-synchronized:

• After every start bit

• After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit
samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and
RT10 samples returns a valid logic 0)

To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three
logic 1s.When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.

Figure 1-13. Receiver Data Sampling

To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.
Table 1-11 summarizes the results of the start bit verification samples.

If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.

To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and
RT10. Table 1-12 summarizes the results of the data bit samples.

Table 1-11. Start Bit Verification

RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag

000 Yes 0

001 Yes 1

010 Yes 1

011 No 0

100 Yes 1

101 No 0

110 No 0

111 No 0

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T8

R
T7

R
T6

R
T1

1

R
T1

0

R
T9

R
T1

5

R
T1

4

R
T1

3

R
T1

2

R
T1

6

R
T1

R
T2

R
T3

R
T4

SAMPLES

RT CLOCK

RT CLOCK COUNT

START BIT

Rx Input Signal

START BIT
QUALIFICATION

START BIT DATA
SAMPLING

1 111111 1 0 0 0 000 0

LSB

VERIFICATION

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

20 Freescale Semiconductor

NOTE
The RT8, RT9, and RT10 samples do not affect start bit verification. If any
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a
successful start bit verification, the noise flag (NF) is set and the receiver
assumes that the bit is a start bit (logic 0).

To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 1-13
summarizes the results of the stop bit samples.

Table 1-13. Stop Bit Recovery

In Figure 1-14 the verification samples RT3 and RT5 determine that the first low detected was noise and
not the beginning of a start bit. The RT clock is reset and the start bit search begins again. The noise flag
is not set because the noise occurred before the start bit was found.

Table 1-12. Data Bit Recovery

RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag

000 0 0

001 0 1

010 0 1

011 1 1

100 0 1

101 1 1

110 1 1

111 1 0

RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag

000 1 0

001 1 1

010 1 1

011 0 1

100 1 1

101 0 1

110 0 1

111 0 0

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 21

Figure 1-14. Start Bit Search Example 1

In Figure 1-15, verification sample at RT3 is high. The RT3 sample sets the noise flag. Although the
perceived bit time is misaligned, the data samples RT8, RT9, and RT10 are within the bit time and data
recovery is successful.

Figure 1-15. Start Bit Search Example 2

In Figure 1-16, a large burst of noise is perceived as the beginning of a start bit, although the test sample
at RT5 is high. The RT5 sample sets the noise flag. Although this is a worst-case misalignment of perceived
bit time, the data samples RT8, RT9, and RT10 are within the bit time and data recovery is successful.

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T1

R
T1

R
T2

R
T3

R
T4

R
T7

R
T6

R
T5

R
T1

0

R
T9

R
T8

R
T1

4

R
T1

3

R
T1

2

R
T1

1

R
T1

5

R
T1

6

R
T1

R
T2

R
T3

SAMPLES

RT CLOCK

RT CLOCK COUNT

START BIT

Rx Input Signal

1 1011 1 1 0 0 00 0

LSB

0 0

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T6

R
T7

R
T8

R
T1

1

R
T1

0

R
T9

R
T1

4

R
T1

3

R
T1

2

R
T2

R
T1

R
T1

6

R
T1

5

R
T3

R
T4

R
T5

R
T6

R
T7

SAMPLES

RT CLOCK

RT CLOCK COUNT

ACTUAL START BIT

Rx Input Signal

1 1111 1 0 0 00

LSB

00

PERCEIVED START BIT

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

22 Freescale Semiconductor

Figure 1-16. Start Bit Search Example 3

Figure 1-17 shows the effect of noise early in the start bit time. Although this noise does not affect proper
synchronization with the start bit time, it does set the noise flag.

Figure 1-17. Start Bit Search Example 4

Figure 1-18 shows a burst of noise near the beginning of the start bit that resets the RT clock. The sample
after the reset is low but is not preceded by three high samples that would qualify as a falling edge.
Depending on the timing of the start bit search and on the data, the frame may be missed entirely or it may
set the framing error flag.

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T5

R
T6

R
T7

R
T8

R
T9

R
T1

0

R
T1

3

R
T1

2

R
T1

1

R
T1

6

R
T1

5

R
T1

4

R
T4

R
T3

R
T2

R
T1

R
T5

R
T6

R
T7

R
T8

R
T9

SAMPLES

RT CLOCK

RT CLOCK COUNT

ACTUAL START BIT

Rx input Signal

1 011 1 0 0 00

LSB

0

PERCEIVED START BIT

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T7

R
T6

R
T5

R
T1

0

R
T9

R
T8

R
T1

4

R
T1

3

R
T1

2

R
T1

1

R
T1

5

R
T1

6

R
T1

R
T2

R
T3

SAMPLES

RT CLOCK

RT CLOCK COUNT

PERCEIVED AND ACTUAL START BIT

Rx Input Signal

1 111 1 0 01

LSB

11 1 1

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 23

Figure 1-18. Start Bit Search Example 5

In Figure 1-19, a noise burst makes the majority of data samples RT8, RT9, and RT10 high. This sets the
noise flag but does not reset the RT clock. In start bits only, the RT8, RT9, and RT10 data samples are
ignored.

Figure 1-19. Start Bit Search Example 6

1.4.4.4 Framing Errors

If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming frame, it
sets the framing error flag, FE, in SCI status register 1 (SCISR1). A break character also sets the FE flag
because a break character has no stop bit. The FE flag is set at the same time that the RDRF flag is set.

1.4.4.5 Baud Rate Tolerance

A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated
bit time misalignment can cause one of the three stop bit data samples (RT8, RT9, and RT10) to fall outside
the actual stop bit.A noise error will occur if the RT8, RT9, and RT10 samples are not all the same logical
values. A framing error will occur if the receiver clock is misaligned in such a way that the majority of the
RT8, RT9, and RT10 stop bit samples are a logic zero.

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T7

R
T6

R
T5

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

SAMPLES

RT CLOCK

RT CLOCK COUNT

START BIT

Rx Input Signal

1 111 1 0 10

LSB

11 1 1 1 0 000 000 0

NO START BIT FOUND

RESET RT CLOCK

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T1

R
T2

R
T3

R
T4

R
T7

R
T6

R
T5

R
T1

0

R
T9

R
T8

R
T1

4

R
T1

3

R
T1

2

R
T1

1

R
T1

5

R
T1

6

R
T1

R
T2

R
T3

SAMPLES

RT CLOCK

RT CLOCK COUNT

START BIT

Rx Input Signal

1 111 1 0 00

LSB

11 1 1 0 1 10

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

24 Freescale Semiconductor

As the receiver samples an incoming frame, it re-synchronizes the RT clock on any valid falling edge
within the frame. Re synchronization within frames will correct a misalignment between transmitter bit
times and receiver bit times.

1.4.4.5.1 Slow Data Tolerance

Figure 1-20 shows how much a slow received frame can be misaligned without causing a noise error or a
framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data
samples at RT8, RT9, and RT10.

Figure 1-20. Slow Data

Let’s take RTr as receiver RT clock and RTt as transmitter RT clock.

For an 8-bit data character, it takes the receiver 9 bit times x 16 RTr cycles +7 RTr cycles =151 RTr cycles
to start data sampling of the stop bit.

With the misaligned character shown in Figure 1-20, the receiver counts 151 RTr cycles at the point when
the count of the transmitting device is 9 bit times x 16 RTt cycles = 144 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit data
character with no errors is:

((151 – 144) / 151) x 100 = 4.63%

For a 9-bit data character, it takes the receiver 10 bit times x 16 RTr cycles + 7 RTr cycles = 167 RTr cycles
to start data sampling of the stop bit.

With the misaligned character shown in Figure 1-20, the receiver counts 167 RTr cycles at the point when
the count of the transmitting device is 10 bit times x 16 RTt cycles = 160 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit
character with no errors is:

((167 – 160) / 167) X 100 = 4.19%

1.4.4.5.2 Fast Data Tolerance

Figure 1-21 shows how much a fast received frame can be misaligned. The fast stop bit ends at RT10
instead of RT16 but is still sampled at RT8, RT9, and RT10.

MSB STOP

R
T1

R
T2

R
T3

R
T4

R
T5

R
T6

R
T7

R
T8

R
T9

R
T1

0

R
T1

1

R
T1

2

R
T1

3

R
T1

4

R
T1

5

R
T1

6

DATA
SAMPLES

RECEIVER
RT CLOCK

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 25

Figure 1-21. Fast Data

For an 8-bit data character, it takes the receiver 9 bit times x 16 RTr cycles + 10 RTr cycles = 154 RTr cycles
to finish data sampling of the stop bit.

With the misaligned character shown in Figure 1-21, the receiver counts 154 RTr cycles at the point when
the count of the transmitting device is 10 bit times x 16 RTt cycles = 160 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit
character with no errors is:

((160 – 154) / 160) x 100 = 3.75%

For a 9-bit data character, it takes the receiver 10 bit times x 16 RTr cycles + 10 RTr cycles = 170 RTr cycles
to finish data sampling of the stop bit.

With the misaligned character shown in Figure 1-21, the receiver counts 170 RTr cycles at the point when
the count of the transmitting device is 11 bit times x 16 RTt cycles = 176 RTt cycles.

The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit
character with no errors is:

((176 – 170) / 176) x 100 = 3.40%

1.4.4.6 Receiver Wakeup

To enable the SCI to ignore transmissions intended only for other receivers in multiple-receiver systems,
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCI control register
2 (SCICR2) puts the receiver into standby state during which receiver interrupts are disabled.The SCI will
still load the receive data into the SCIDRH/L registers, but it will not set the RDRF flag.

The transmitting device can address messages to selected receivers by including addressing information in
the initial frame or frames of each message.

The WAKE bit in SCI control register 1 (SCICR1) determines how the SCI is brought out of the standby
state to process an incoming message. The WAKE bit enables either idle line wakeup or address mark
wakeup.

1.4.4.6.1 Idle Input Line Wakeup (WAKE = 0)

In this wakeup method, an idle condition on the Rx Input signal clears the RWU bit and wakes up the SCI.
The initial frame or frames of every message contain addressing information. All receivers evaluate the
addressing information, and receivers for which the message is addressed process the frames that follow.

IDLE OR NEXT FRAMESTOP

R
T1

R
T2

R
T3

R
T4

R
T5

R
T6

R
T7

R
T8

R
T9

R
T1

0

R
T1

1

R
T1

2

R
T1

3

R
T1

4

R
T1

5

R
T1

6

DATA
SAMPLES

RECEIVER
RT CLOCK

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

26 Freescale Semiconductor

Any receiver for which a message is not addressed can set its RWU bit and return to the standby state. The
RWU bit remains set and the receiver remains on standby until another idle character appears on the Rx
Input signal.

Idle line wakeup requires that messages be separated by at least one idle character and that no message
contains idle characters.

The idle character that wakes a receiver does not set the receiver idle bit, IDLE, or the receive data register
full flag, RDRF.

The idle line type bit, ILT, determines whether the receiver begins counting logic 1s as idle character bits
after the start bit or after the stop bit. ILT is in SCI control register 1 (SCICR1).

1.4.4.6.2 Address Mark Wakeup (WAKE = 1)

In this wakeup method, a logic 1 in the most significant bit (msb) position of a frame clears the RWU bit
and wakes up the SCI. The logic 1 in the msb position marks a frame as an address frame that contains
addressing information. All receivers evaluate the addressing information, and the receivers for which the
message is addressed process the frames that follow.Any receiver for which a message is not addressed can
set its RWU bit and return to the standby state. The RWU bit remains set and the receiver remains on
standby until another address frame appears on the Rx Input signal.

The logic 1 msb of an address frame clears the receiver’s RWU bit before the stop bit is received and sets
the RDRF flag.

Address mark wakeup allows messages to contain idle characters but requires that the msb be reserved for
use in address frames.{sci_wake}

NOTE
With the WAKE bit clear, setting the RWU bit after the Rx Input signal has
been idle can cause the receiver to wake up immediately.

1.4.5 Single-Wire Operation

Normally, the SCI uses two pins for transmitting and receiving. In single-wire operation, the RXD pin is
disconnected from the SCI. The SCI uses the TXD pin for both receiving and transmitting.

Figure 1-22. Single-Wire Operation (LOOPS = 1, RSRC = 1)

Enable single-wire operation by setting the LOOPS bit and the receiver source bit, RSRC, in SCI control
register 1 (SCICR1). Setting the LOOPS bit disables the path from the Rx Input signal to the receiver.
Setting the RSRC bit connects the receiver input to the output of the TXD pin driver. Both the transmitter
and receiver must be enabled (TE = 1 and RE = 1).The TXDIR bit (SCISR2[1]) determines whether the
TXD pin is going to be used as an input (TXDIR = 0) or an output (TXDIR = 1) in this mode of operation.

RXD

TRANSMITTER

RECEIVER

Tx OUTPUT SIGNAL

Tx INPUT SIGNAL

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

Freescale Semiconductor 27

1.4.6 Loop Operation

In loop operation the transmitter output goes to the receiver input. The Rx Input signal is disconnected
from the SCI

.

Figure 1-23. Loop Operation (LOOPS = 1, RSRC = 0)

Enable loop operation by setting the LOOPS bit and clearing the RSRC bit in SCI control register 1
(SCICR1). Setting the LOOPS bit disables the path from the Rx Input signal to the receiver. Clearing the
RSRC bit connects the transmitter output to the receiver input. Both the transmitter and receiver must be
enabled (TE = 1 and RE = 1).

1.5 Initialization Information

1.5.1 Reset Initialization

The reset state of each individual bit is listed in Section 1.3, “Memory Map and Registers” which details
the registers and their bit fields. All special functions or modes which are initialized during or just
following reset are described within this section.

1.5.2 Interrupt Operation

1.5.2.1 System Level Interrupt Sources

There are five interrupt sources that can generate an SCI interrupt in to the CPU. They are listed in
Table 1-14.

1.5.2.2 Interrupt Descriptions

The SCI only originates interrupt requests. The following is a description of how the SCI makes a request
and how the MCU should acknowledge that request. The interrupt vector offset and interrupt number are

Table 1-14. SCI Interrupt Source

Interrupt Source Flag Local Enable

Transmitter TDRE TIE

Transmitter TC TCIE

Receiver RDRF RIE

OR

Receiver IDLE ILIE

RXD

TRANSMITTER

RECEIVER

Tx OUTPUT SIGNAL

Serial Communications Interface (S12SCIV2) Block Description

BookTitle, Rev. 2

28 Freescale Semiconductor

chip dependent. The SCI only has a single interrupt line (SCI Interrupt Signal, active high operation) and
all the following interrupts, when generated, are ORed together and issued through that port.

1.5.2.2.1 TDRE Description

The TDRE interrupt is set high by the SCI when the transmit shift register receives a byte from the SCI
data register. A TDRE interrupt indicates that the transmit data register (SCIDRH/L) is empty and that a
new byte can be written to the SCIDRH/L for transmission.Clear TDRE by reading SCI status register 1
with TDRE set and then writing to SCI data register low (SCIDRL).

1.5.2.2.2 TC Description

The TC interrupt is set by the SCI when a transmission has been completed.A TC interrupt indicates that
there is no transmission in progress. TC is set high when the TDRE flag is set and no data, preamble, or
break character is being transmitted. When TC is set, the TXD pin becomes idle (logic 1). Clear TC by
reading SCI status register 1 (SCISR1) with TC set and then writing to SCI data register low (SCIDRL).TC
is cleared automatically when data, preamble, or break is queued and ready to be sent.

1.5.2.2.3 RDRF Description

The RDRF interrupt is set when the data in the receive shift register transfers to the SCI data register. A
RDRF interrupt indicates that the received data has been transferred to the SCI data register and that the
byte can now be read by the MCU. The RDRF interrupt is cleared by reading the SCI status register one
(SCISR1) and then reading SCI data register low (SCIDRL).

1.5.2.2.4 OR Description

The OR interrupt is set when software fails to read the SCI data register before the receive shift register
receives the next frame. The newly acquired data in the shift register will be lost in this case, but the data
already in the SCI data registers is not affected. The OR interrupt is cleared by reading the SCI status
register one (SCISR1) and then reading SCI data register low (SCIDRL).

1.5.2.3 IDLE Description

The IDLE interrupt is set when 10 consecutive logic 1s (if M = 0) or 11 consecutive logic 1s (if M = 1)
appear on the receiver input. Once the IDLE is cleared, a valid frame must again set the RDRF flag before
an idle condition can set the IDLE flag. Clear IDLE by reading SCI status register 1 (SCISR1) with IDLE
set and then reading SCI data register low (SCIDRL).

1.5.3 Recovery from Wait Mode

The SCI interrupt request can be used to bring the CPU out of wait mode.

DOCUMENT NUMBER
S12SPIV3/D
SPI

Block Guide

V03.06

Original Release Date: 21 JAN 2000
Revised: 04 FEB 2003

Motorola, Inc.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in
different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges
that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc.is an Equal
Opportunity/Affirmative Action Employer.

1

©Motorola, Inc., 2001

SPI Block Guide V03.06
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

0.1
21 Jan
2000

This spec is based on the Barracuda, with modifications to change
the module from 16 bit to 8 bit.

0.2
1 Mar
2000

Template of this document changed as per Version 2.0 SRS.

0.3
14 Jun
2000

- Signal names are changed as per the SRS2.0
- SPE bit remains set in the Mode Fault error case
- Slave SPI does not support div2 and div4 cases

0.4
31 Aug
2000

- Electrical spec added
- SPIF flag is cleared by a read access to the status register
followed by read access to the data register.

0.5
13 Mar
2001

13 Mar
2001

- Incorporated feedback regarding format of the document.

0.6
13 Mar
2001

19 Mar
2001

- Incorporated changes as a result of internal discussions and
clarification of SRS2

0.7
6 July
2001

6 July
2001

- Line is added with respect to SPTEF bit to make spec more clear.
- Landscape pages have been removed from pdf.
- Extra blank pages have been removed.

0.8
19 July
2001

19 July
2001

- Line is added with respect to SPE bit to make spec more clear.

V02.02
26 July
2001

-Added Document Names
-variable definitions and Names have been hidden
-Changed chapter 3.9 Errata to Note

V03.00
27 Sep
2001

27 Sep
2001

Based on the BUG version V02.02 an improved version was
created. The specification counter has to be increased, because
there is a difference in the behavior in SPI master mode from this
specification to its predecessor. In SPI Master Mode, the change of
a config bit during a transmission in progress, will abort the
transmission and force the SPI into idle state.

V03.01
14 Dec
2001

14 Dec
2001

Section 4.4.2
- Changed description of transfer format CPHA=0 in slave mode
Section 4.4.3
- Changed description of transfer format CPHA=1 in master mode
- Changed Figure 4-3
Section 4.6.2
- Added note for mode fault in bidirectional master mode
Section 4.7.1
- Changed description of bidirectional mode with mode fault
Section 4.8.3
- Changed last sentence in stop mode description

V03.02
07 Jan
2002

07 Jan
2002

Section 3.3.4
- Changed description of SPTEF flag
Section 4.1
- Changed description of SPTEF flag and SPIDR behaviour
2

SPI Block Guide V03.06
V03.03
09 Jan
2002

09 JAN
2002

Transferred document to SRS3.0 format

V03.04
18 Mar
2002

18 Mar
2002

Updated Document Format.

V03.05
03 Apr
2002

03 Apr
2002

Minor Document cleanup.

V03.06
04 Feb
2003

04 Feb
2003

Minor Document cleanup.

Version
Number

Revision
Date

Effective
Date Author Description of Changes
3

SPI Block Guide V03.06
4

SPI Block Guide V03.06
Table of Contents

Section 1 Introduction

1.1 Overview. 13

1.2 Features . 14

1.3 Modes of Operation . 14

Section 2 External Signal Description

2.1 Overview. 15

2.2 Detailed Signal Description . 15

2.2.1 MOSI . 15

2.2.2 MISO . 15

2.2.3 SS . 15

2.2.4 SCK . 15

Section 3 Memory Map/Register Definition

3.1 Register Descriptions . 16

3.1.1 SPI Control Register 1 . 16

3.1.2 SPI Control Register 2 . 18

3.1.3 SPI Baud Rate Register . 19

3.1.4 SPI Status Register . 21

3.1.5 SPI Data Register . 22

Section 4 Functional Description

4.1 General. 23

4.2 Master Mode. 23

4.3 Slave Mode. 24

4.4 Transmission Formats . 25

4.4.1 Clock Phase and Polarity Controls. 26

4.4.2 CPHA = 0 Transfer Format . 26

4.4.3 CPHA = 1 Transfer Format . 28

4.5 SPI Baud Rate Generation . 29

4.6 Special Features. 30

4.6.1 SS Output. 30

4.6.2 Bidirectional Mode (MOMI or SISO). 30
5

SPI Block Guide V03.06
4.7 Error Conditions . 31

4.7.1 Mode Fault Error . 31

4.8 Low Power Mode Options . 32

4.8.1 SPI in Run Mode . 32

4.8.2 SPI in Wait Mode . 32

4.8.3 SPI in Stop Mode . 33

4.8.4 Reset . 33

4.8.5 Interrupts . 33

Section 5 Initialization/Application Information
6

SPI Block Guide V03.06
List of Figures

Figure 1-1 SPI Block Diagram. 13

Figure 3-1 SPI Control Register 1 (SPICR1). 16

Figure 3-2 SPI Control Register 2 (SPICR2). 18

Figure 3-3 SPI Baud Rate Register (SPIBR) . 19

Figure 3-4 SPI Status Register (SPISR) . 21

Figure 3-5 SPI Data Register (SPIDR) . 22

Figure 4-1 Master/Slave Transfer Block Diagram. 26

Figure 4-2 SPI Clock Format 0 (CPHA = 0) . 27

Figure 4-3 SPI Clock Format 1 (CPHA = 1) . 29

Figure 4-4 Baud Rate Divisor Equation. 30
7

SPI Block Guide V03.06
8

SPI Block Guide V03.06
List of Tables

Table 3-1 Module Memory Map . 15

Table 3-2 SS Input / Output Selection . 17

Table 3-3 Bidirectional Pin Configurations. 18

Table 3-4 Example SPI Baud Rate Selection (25 MHz Bus Clock) 19

Table 4-1 Normal Mode and Bidirectional Mode . 31
9

SPI Block Guide V03.06
10

SPI Block Guide V03.06
Preface

Terminology

Acronyms and Abbreviations

SPI Serial Parallel Interface

SS Slave Select

SCK Serial Clock

MOSI Master Output, Slave Input

MISO Master Input, Slave Output

MOMI Master Output, Master Input

SISO Slave Input, Slave Output
11

SPI Block Guide V03.06
12

SPI Block Guide V03.06

l and

heral
Section 1 Introduction

Figure 1-1 gives an overview on the SPI architecture. The main parts of the SPI are status,contro
data registers, shifter logic, baud rate generator, master/slave control logic and port control logic.

Figure 1-1 SPI Block Diagram

1.1 Overview

The SPI module allows a duplex, synchronous, serial communication between the MCU and perip
devices. Software can poll the SPI status flags or the SPI operation can be interrupt driven.

SPI Control Register 1

SPI Control Register 2

SPI Baud Rate Register

SPI Status Register

SPI Data Register

Shifter

Port
Control
Logic

MOSI

SCK

Interrupt Control

SPI

MSB LSB

LSBFE=1 LSBFE=0

LSBFE=0 LSBFE=1

data in

LSBFE=1

LSBFE=0

data out

8
8

Baud Rate Generator

PrescalerBus Clock

Counter

Clock Select

SPPR 3 3SPR

Baud Rate

Phase +
Polarity
Control

Master

Slave

SCK in

SCK outMaster Baud Rate

Slave Baud Rate

Phase +
Polarity
Control

Control

Control CPOL CPHA

2

BIDIROE

SPC0

2

Shift Sample
ClockClock

MODFSPIF SPTEF

SPI

Request
Interrupt

SS

SPI Control Register 1

SPI Control Register 2

SPI Baud Rate Register

SPI Status Register

SPI Data Register

Shifter

Port
Control
Logic

MOSI

SCK

Interrupt Control

SPI

MSB LSB

LSBFE=1 LSBFE=0

LSBFE=0 LSBFE=1

data in

LSBFE=1

LSBFE=0

data out

8
8

Baud Rate Generator

PrescalerBus Clock

Counter

Clock Select

SPPR 3 3SPR

Baud Rate

Phase +
Polarity
Control

Master

Slave

SCK in

SCK outMaster Baud Rate

Slave Baud Rate

Phase +
Polarity
Control

Control

Control CPOL CPHA

2

BIDIROE

SPC0

2

Shift Sample
ClockClock

MODFSPIF SPTEF

SPI

Request
Interrupt

SS

MISO
13

SPI Block Guide V03.06

it
ike in
 SPI
stops,
 and

 a
 If the
e stays

n

1.2 Features

The SPI includes these distinctive features:

• Master mode and slave mode

• Bi-directional mode

• Slave select output

• Mode fault error flag with CPU interrupt capability

• Double-buffered data register

• Serial clock with programmable polarity and phase

• Control of SPI operation during wait mode

1.3 Modes of Operation

The SPI functions in three modes, run, wait, and stop.

• Run Mode

This is the basic mode of operation.

• Wait Mode

SPI operation in wait mode is a configurable low power mode, controlled by the SPISWAI b
located in the SPICR2 register. In wait mode, if the SPISWAI bit is clear, the SPI operates l
Run Mode. If the SPISWAI bit is set, the SPI goes into a power conservative state, with the
clock generation turned off. If the SPI is configured as a master, any transmission in progress
but is resumed after CPU goes into Run Mode. If the SPI is configured as a slave, reception
transmission of a byte continues, so that the slave stays synchronized to the master.

• Stop Mode

The SPI is inactive in stop mode for reduced power consumption. If the SPI is configured as
master, any transmission in progress stops, but is resumed after CPU goes into Run Mode.
SPI is configured as a slave, reception and transmission of a byte continues, so that the slav
synchronized to the master.

This is a high level description only, detailed descriptions of operating modes are contained in sectio4.8
Low Power Mode Options .

Section 2 External Signal Description
14

SPI Block Guide V03.06

nnect

e data

e data

 data
e select

ase of

m
ess offset
d bits
2.1 Overview

This section lists the name and description of all ports including inputs and outputs that do, or may, co
off chip. The SPI module has a total of 4 external pins.

2.2 Detailed Signal Description

2.2.1 MOSI

This pin is used to transmit data out of the SPI module when it is configured as a Master and receiv
when it is configured as Slave.

2.2.2 MISO

This pin is used to transmit data out of the SPI module when it is configured as a Slave and receiv
when it is configured as Master.

2.2.3 SS

This pin is used to output the select signal from the SPI module to another peripheral with which a
transfer is to take place when its configured as a Masterand its used as an input to receive the slav
signal when the SPI is configured as Slave.

2.2.4 SCK

This pin is used to output the clock with respect to which the SPI transfers data or receive clock in c
Slave.

Section 3 Memory Map/Register Definition

This section provides a detailed description of address space and registers used by the SPI.

The memory map for the SPI is given below inTable 3-1 . The address listed for each register is the su
of a base address and an address offset. The base address is defined at the SoC level and the addr
is defined at the module level. Reads from the reserved bits return zeros and writes to the reserve
have no effect.

Table 3-1 Module Memory Map

Address Use Access
$___0 SPI Control Register 1 (SPICR1) Read / Write

$___1 SPI Control Register 2 (SPICR2) Read / Write 1

$___2 SPI Baud Rate Register (SPIBR) Read / Write 1
15

SPI Block Guide V03.06

register
ter

E is
3.1 Register Descriptions

This section consists of register descriptions in address order. Each description includes a standard
diagram with an associated figure number. Details of register bit and field function follow the regis
diagrams, in bit order.

3.1.1 SPI Control Register 1

Figure 3-1 SPI Control Register 1 (SPICR1)

Read: anytime
Write: anytime

SPIE — SPI Interrupt Enable Bit

This bit enables SPI interrupt requests, if SPIF or MODF status flag is set.
1 = SPI interrupts enabled.
0 = SPI interrupts disabled.

SPE — SPI System Enable Bit

This bit enables the SPI system and dedicates the SPI port pins to SPI system functions. If SP
cleared, SPI is disabled and forced into idle state, status bits in SPISR register are reseted

1 = SPI enabled, port pins are dedicated to SPI functions.
0 = SPI disabled (lower power consumption).

SPTIE — SPI Transmit Interrupt Enable

This bit enables SPI interrupt requests, if SPTEF flag is set.
1 = SPTEF interrupt enabled.

$___3 SPI Status Register (SPISR) Read 2

$___4 Reserved — 2 3

$___5 SPI Data Register (SPIDR) Read / Write

$___6 Reserved — 2 3

$___7 Reserved — 2 3

NOTES:
1. Certain bits are non-writable.
2. Writes to this register are ignored.
3. Reading from this register returns all zeros.

Register Address: $___0

Bit 7 6 5 4 3 2 1 Bit 0
R

SPIE SPE SPTIE MSTR CPOL CPHA SSOE LSBFE
W

Reset: 0 0 0 0 0 1 0 0

Table 3-1 Module Memory Map
16

SPI Block Guide V03.06

ave or

e SPI

E as
nd

f the
0 = SPTEF interrupt disabled.

MSTR — SPI Master/Slave Mode Select Bit

This bit selects, if the SPI operates in master or slave mode. Switching the SPI from master to sl
vice versa forces the SPI system into idle state.

1 = SPI is in Master mode
0 = SPI is in Slave mode

CPOL — SPI Clock Polarity Bit

This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, th
modules must have identical CPOL values. In master mode, a change of this bit will abort a
transmission in progress and force the SPI system into idle state.

1 = Active-low clocks selected. In idle state SCK is high.
0 = Active-high clocks selected. In idle state SCK is low.

CPHA — SPI Clock Phase Bit

This bit is used to select the SPI clock format. In master mode, a change of this bit will abort a
transmission in progress and force the SPI system into idle state.

1 = Sampling of data occurs at even edges (2,4,6,...,16) of the SCK clock
0 = Sampling of data occurs at odd edges (1,3,5,...,15) of the SCK clock

SSOE — Slave Select Output Enable

TheSS output feature is enabled only in master mode, if MODFEN is set, by asserting the SSO
shown inTable 3-2 . In master mode, a change of this bit will abort a transmission in progress a
force the SPI system into idle state.

LSBFE — LSB-First Enable

This bit does not affect the position of the MSB and LSB in the data register. Reads and writes o
data register always have the MSB in bit 7. In master mode, a change of this bit will abort a
transmission in progress and force the SPI system into idle state.

1 = Data is transferred least significant bit first.
0 = Data is transferred most significant bit first.

Table 3-2 SS Input / Output Selection

MOD
FEN SSOE Master Mode Slave Mode

0 0 SS not used by SPI SS input

0 1 SS not used by SPI SS input

1 0 SS input with MODF feature SS input

1 1 SS is slave select output SS input
17

SPI Block Guide V03.06

on

tion
e it
it will

f

3.1.2 SPI Control Register 2

Figure 3-2 SPI Control Register 2 (SPICR2)

Read: anytime
Write: anytime; writes to the reserved bits have no effect

MODFEN — Mode Fault Enable Bit

This bit allows the MODF failure being detected. If the SPI is in Master mode and MODFEN is
cleared, then theSS port pin is not used by the SPI. In Slave mode, theSS is available only as an input
regardless of the value of MODFEN. For an overview on the impact of the MODFEN bit on theSS
port pin configuration refer toTable 3-2 . In master mode, a change of this bit will abort a transmissi
in progress and force the SPI system into idle state.

1 = SS port pin with MODF feature
0 = SS port pin is not used by the SPI

BIDIROE — Output enable in the Bidirectional mode of operation

This bit controls the MOSI and MISO output buffer of the SPI, when in bidirectional mode of opera
(SPC0 is set). In master mode this bit controls the output buffer of the MOSI port, in slave mod
controls the output buffer of the MISO port. In master mode, with SPC0 set, a change of this b
abort a transmission in progress and force the SPI into idle state.

1 = Output buffer enabled
0 = Output buffer disabled

SPISWAI — SPI Stop in Wait Mode Bit

This bit is used for power conservation while in wait mode.
1 = Stop SPI clock generation when in wait mode
0 = SPI clock operates normally in wait mode

SPC0 — Serial Pin Control Bit 0

This bit enables bidirectional pin configurations as shown inTable 3-3 . In master mode, a change o
this bit will abort a transmission in progress and force the SPI system into idle state

Register Address: $___1

Bit 7 6 5 4 3 2 1 Bit 0
R 0 0 0

MODFEN BIDIROE
0

SPISWAI SPC0
W

Reset: 0 0 0 0 0 0 0 0

= Reserved

Table 3-3 Bidirectional Pin Configurations

Pin Mode SPC0 BIDIROE MISO MOSI

Master Mode of Operation
18

SPI Block Guide V03.06

ese bits
3.1.3 SPI Baud Rate Register

Figure 3-3 SPI Baud Rate Register (SPIBR)

Read: anytime
Write: anytime; writes to the reserved bits have no effect

SPPR2–SPPR0 — SPI Baud Rate Preselection Bits

SPR2–SPR0 — SPI Baud Rate Selection Bits

These bits specify the SPI baud rates as shown in the table below. In master mode, a change of th
will abort a transmission in progress and force the SPI system into idle state.

The baud rate divisor equation is as follows:

The baud rate can be calculated with the following equation:

Normal 0 X Master In Master Out

Bidirectional 1
0

MISO not used by SPI
Master In

1 Master I/O

Slave Mode of Operation

Normal 0 X Slave Out SlaveIn

Bidirectional 1
0 Slave In

MOSI not used by SPI
1 Slave I/O

Register Address: $___2

Bit 7 6 5 4 3 2 1 Bit 0
R 0

SPPR2 SPPR1 SPPR0
0

SPR2 SPR1 SPR0
W

Reset: 0 0 0 0 0 0 0 0

= Reserved

Table 3-4 Example SPI Baud Rate Selection (25 MHz Bus Clock)

SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 BaudRate
Divisor Baud Rate

0 0 0 0 0 0 2 12.5 MHz

Table 3-3 Bidirectional Pin Configurations

Pin Mode SPC0 BIDIROE MISO MOSI

BaudRateDivisor SPPR 1+() 2• SPR 1+()=

Baud Rate BusClock BaudRateDivisor⁄=
19

SPI Block Guide V03.06
0 0 0 0 0 1 4 6.25 MHz

0 0 0 0 1 0 8 3.125 MHz

0 0 0 0 1 1 16 1.5625 MHz

0 0 0 1 0 0 32 781.25 kHz

0 0 0 1 0 1 64 390.63 kHz

0 0 0 1 1 0 128 195.31 kHz

0 0 0 1 1 1 256 97.66 kHz

0 0 1 0 0 0 4 6.25 MHz

0 0 1 0 0 1 8 3.125 MHz

0 0 1 0 1 0 16 1.5625 MHz

0 0 1 0 1 1 32 781.25 kHz

0 0 1 1 0 0 64 390.63 kHz

0 0 1 1 0 1 128 195.31 kHz

0 0 1 1 1 0 256 97.66 kHz

0 0 1 1 1 1 512 48.83 kHz

0 1 0 0 0 0 6 4.16667 MHz

0 1 0 0 0 1 12 2.08333 MHz

0 1 0 0 1 0 24 1.04167 MHz

0 1 0 0 1 1 48 520.83 kHz

0 1 0 1 0 0 96 260.42 kHz

0 1 0 1 0 1 192 130.21 kHz

0 1 0 1 1 0 384 65.10 kHz

0 1 0 1 1 1 768 32.55 kHz

0 1 1 0 0 0 8 3.125 MHz

0 1 1 0 0 1 16 1.5625 MHz

0 1 1 0 1 0 32 781.25 kHz

0 1 1 0 1 1 64 390.63 kHz

0 1 1 1 0 0 128 195.31 kHz

0 1 1 1 0 1 256 97.66 kHz

0 1 1 1 1 0 512 48.83 kHz

0 1 1 1 1 1 1024 24.41 kHz

1 0 0 0 0 0 10 2.5 MHz

1 0 0 0 0 1 20 1.25 MHz

1 0 0 0 1 0 40 625 kHz

1 0 0 0 1 1 80 312.5 kHz

1 0 0 1 0 0 160 156.25 kHz

1 0 0 1 0 1 320 78.13 kHz

1 0 0 1 1 0 640 39.06 kHz

1 0 0 1 1 1 1280 19.53 kHz

1 0 1 0 0 0 12 2.08333 MHz

1 0 1 0 0 1 24 1.04167 MHz

1 0 1 0 1 0 48 520.83 kHz

1 0 1 0 1 1 96 260.42 kHz

Table 3-4 Example SPI Baud Rate Selection (25 MHz Bus Clock)

SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 BaudRate
Divisor Baud Rate
20

SPI Block Guide V03.06
NOTE: In slave mode of SPI S-clock speed DIV2 is not supported.

3.1.4 SPI Status Register

Figure 3-4 SPI Status Register (SPISR)

Read: anytime
Write: has no effect

SPIF — SPIF Interrupt Flag

1 0 1 1 0 0 192 130.21 kHz

1 0 1 1 0 1 384 65.10 kHz

1 0 1 1 1 0 768 32.55 kHz

1 0 1 1 1 1 1536 16.28 kHz

1 1 0 0 0 0 14 1.78571 MHz

1 1 0 0 0 1 28 892.86 kHz

1 1 0 0 1 0 56 446.43 kHz

1 1 0 0 1 1 112 223.21 kHz

1 1 0 1 0 0 224 111.61 kHz

1 1 0 1 0 1 448 55.80 kHz

1 1 0 1 1 0 896 27.90 kHz

1 1 0 1 1 1 1792 13.95 kHz

1 1 1 0 0 0 16 1.5625 MHz

1 1 1 0 0 1 32 781.25 kHz

1 1 1 0 1 0 64 390.63 kHz

1 1 1 0 1 1 128 195.31 kHz

1 1 1 1 0 0 256 97.66 kHz

1 1 1 1 0 1 512 48.83 kHz

1 1 1 1 1 0 1024 24.41 kHz

1 1 1 1 1 1 2048 12.21 kHz

Register Address: $___3

Bit 7 6 5 4 3 2 1 Bit 0
R SPIF 0 SPTEF MODF 0 0 0 0
W

Reset: 0 0 1 0 0 0 0 0

= Reserved

Table 3-4 Example SPI Baud Rate Selection (25 MHz Bus Clock)

SPPR2 SPPR1 SPPR0 SPR2 SPR1 SPR0 BaudRate
Divisor Baud Rate
21

SPI Block Guide V03.06

bit is
ta

to the
write

lt
 in
ster

llows
te is
mpty
w data.

sfer. If
the data
This bit is set after a received data byte has been transferred into the SPI Data Register. This
cleared by reading the SPISR register (with SPIF set) followed by a read access to the SPI Da
Register.

1 = New data copied to SPIDR
0 = Transfer not yet complete

SPTEF — SPI Transmit Empty Interrupt Flag

If set, this bit indicates that the transmit data register is empty. To clear this bit and place data in
transmit data register, SPISR has to be read with SPTEF=1, followed by a write to SPIDR. Any
to the SPI Data Register without reading SPTEF=1, is effectively ignored.

1 = SPI Data register empty
0 = SPI Data register not empty

MODF — Mode Fault Flag

This bit is set if theSS input becomes low while the SPI is configured as a master and mode fau
detection is enabled, MODFEN bit of SPICR2 register is set. Refer to MODFEN bit description
3.1.2 SPI Control Register 2. The flag is cleared automatically by a read of the SPI Status Regi
(with MODF set) followed by a write to the SPI Control Register 1.

1 = Mode fault has occurred.
0 = Mode fault has not occurred.

3.1.5 SPI Data Register

Figure 3-5 SPI Data Register (SPIDR)

Read: anytime; normally read only after SPIF is set
Write: anytime

The SPI Data Register is both the input and output register for SPI data. A write to this register a
a data byte to be queued and transmitted. For a SPI configured as a master, a queued data by
transmitted immediately after the previous transmission has completed. The SPI Transmitter E
Flag SPTEF in the SPISR register indicates when the SPI Data Register is ready to accept ne

Reading the data can occur anytime from after the SPIF is set to before the end of the next tran
the SPIF is not serviced by the end of the successive transfers, those data bytes are lost and
within the SPIDR retains the first byte until SPIF is serviced.

Register Address: $___5

Bit 7 6 5 4 3 2 1 Bit 0
R

Bit 7 6 5 4 3 2 2 Bit 0
W

Reset: 0 0 0 0 0 0 0 0
22

SPI Block Guide V03.06

heral

bit is

and the
ister.
y the
master
egister

ster.
d from

er acts
 SPI
it data

er 1
imply
y
es (see

ol

te
er is
SI pin
Section 4 Functional Description

4.1 General

The SPI module allows a duplex, synchronous, serial communication between the MCU and perip
devices. Software can poll the SPI status flags or SPI operation can be interrupt driven.

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI Control Register 1. While SPE
set, the four associated SPI port pins are dedicated to the SPI function as:

• Slave select (SS)

• Serial clock (SCK)

• Master out/slave in (MOSI)

• Master in/slave out (MISO)

The main element of the SPI system is the SPI Data Register. The 8-bit data register in the master
8-bit data register in the slave are linked by the MOSI and MISO pins to form a distributed 16-bit reg
When a data transfer operation is performed, this 16-bit register is serially shifted eight bit positions b
S-clock from the master, so data is exchanged between the master and the slave. Data written to the
SPI Data Register becomes the output data for the slave, and data read from the master SPI Data R
after a transfer operation is the input data from the slave.

A read of SPISR with SPTEF=1 followed by a write to SPIDR puts data into the transmit data regi
When a transfer is complete, received data is moved into the receive data register. Data may be rea
this double-buffered system any time before the next transfer has completed. This 8-bit data regist
as the SPI receive data register for reads and as the SPI transmit data register for writes. A single
register address is used for reading data from the read data buffer and for writing data to the transm
register.

The clock phase control bit (CPHA) and a clock polarity control bit (CPOL) in the SPI Control Regist
(SPICR1) select one of four possible clock formats to be used by the SPI system. The CPOL bit s
selects a non-inverted or inverted clock. The CPHA bit is used to accommodate two fundamentall
different protocols by sampling data on odd numbered SCK edges or on even numbered SCK edg
4.4 Transmission Formats).

The SPI can be configured to operate as a master or as a slave. When the MSTR bit in SPI Contr
Register1 is set, master mode is selected, when the MSTR bit is clear, slave mode is selected.

4.2 Master Mode

The SPI operates in master mode when the MSTR bit is set. Only a master SPI module can initia
transmissions. A transmission begins by writing to the master SPI Data Register. If the shift regist
empty, the byte immediately transfers to the shift register. The byte begins shifting out on the MO
under the control of the serial clock.

• S-clock
23

SPI Block Guide V03.06

 SPPR0
ine the
te

O) is

r.
MOSI
it and
tputs
e fault

e SPI
also

 the
g on
The SPR2, SPR1, and SPR0 baud rate selection bits in conjunction with the SPPR2, SPPR1, and
baud rate preselection bits in the SPI Baud Rate register control the baud rate generator and determ
speed of the transmission. The SCK pin is the SPI clock output. Through the SCK pin, the baud ra
generator of the master controls the shift register of the slave peripheral.

• MOSI, MISO pin

In master mode, the function of the serial data output pin (MOSI) and the serial data input pin (MIS
determined by the SPC0 and BIDIROE control bits.

• SS pin

If MODFEN and SSOE bit are set, theSS pin is configured as slave select output. TheSS output becomes
low during each transmission and is high when the SPI is in idle state.

If MODFEN is set and SSOE is cleared, theSS pin is configured as input for detecting mode fault erro
If the SS input becomes low this indicates a mode fault error where another master tries to drive the
and SCK lines. In this case, the SPI immediately switches to slave mode, by clearing the MSTR b
also disables the slave output buffer MISO (or SISO in bidirectional mode). So the result is that all ou
are disabled and SCK, MOSI and MISO are inputs. If a transmission is in progress when the mod
occurs, the transmission is aborted and the SPI is forced into idle state.

This mode fault error also sets the mode fault (MODF) flag in the SPI Status Register (SPISR). If th
interrupt enable bit (SPIE) is set when the MODF flag gets set, then an SPI interrupt sequence is
requested.

When a write to the SPI Data Register in the master occurs, there is a half SCK-cycle delay. After
delay, SCK is started within the master. The rest of the transfer operation differs slightly, dependin
the clock format specified by the SPI clock phase bit, CPHA, in SPI Control Register 1 (see4.4
Transmission Formats).

NOTE: A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0, BIDIROE
with SPC0 set, SPPR2-SPPR0 and SPR2-SPR0 in master mode will abort a
transmission in progress and force the SPI into idle state. The remote slave cannot
detect this, therefore the master has to ensure that the remote slave is set back to
idle state.

4.3 Slave Mode

The SPI operates in slave mode when the MSTR bit in SPI Control Register1 is clear.

• SCK clock

In slave mode, SCK is the SPI clock input from the master.

• MISO, MOSI pin

In slave mode, the function of the serial data output pin (MISO) and serial data input pin (MOSI) is
determined by the SPC0 bit and BIDIROE bit in SPI Control Register 2.

• SS pin
24

SPI Block Guide V03.06

in
ta
l

g SPI

ible for
ceive

e data
rom the
 bit.

put pin
to shift

PHA
data
sferred
r is set.

lly)
two

es that
select
 TheSS pin is the slave select input. Before a data transmission occurs, theSS pin of the slave SPI must
be low.SS must remain low until the transmission is complete. IfSS goes high, the SPI is forced into idle
state.

TheSS input also controls the serial data output pin, ifSS is high (not selected), the serial data output p
is high impedance, and, ifSS is low the first bit in the SPI Data Register is driven out of the serial da
output pin. Also, if the slave is not selected (SS is high), then the SCK input is ignored and no interna
shifting of the SPI shift register takes place.

Although the SPI is capable of duplex operation, some SPI peripherals are capable of only receivin
data in a slave mode. For these simpler devices, there is no serial data out pin.

NOTE: When peripherals with duplex capability are used, take care not to simultaneously
enable two receivers whose serial outputs drive the same system slave’s serial data
output line.

As long as no more than one slave device drives the system slave’s serial data output line, it is poss
several slaves to receive the same transmission from a master, although the master would not re
return information from all of the receiving slaves.

If the CPHA bit in SPI Control Register 1 is clear, odd numbered edges on the SCK input cause th
at the serial data input pin to be latched. Even numbered edges cause the value previously latched f
serial data input pin to shift into the LSB or MSB of the SPI shift register, depending on the LSBFE

If the CPHA bit is set, even numbered edges on the SCK input cause the data at the serial data in
to be latched. Odd numbered edges cause the value previously latched from the serial data input pin
into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.

When CPHA is set, the first edge is used to get the first data bit onto the serial data output pin. When C
is clear and theSS input is low (slave selected), the first bit of the SPI data is driven out of the serial
output pin. After the eighth shift, the transfer is considered complete and the received data is tran
into the SPI Data Register. To indicate transfer is complete, the SPIF flag in the SPI Status Registe

NOTE: A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0 and BIDIROE
with SPC0 set in slave mode will corrupt a transmission in progress and has to be
avoided.

4.4 Transmission Formats

During an SPI transmission, data is transmitted (shifted out serially) and received (shifted in seria
simultaneously. The serial clock (SCK) synchronizes shifting and sampling of the information on the
serial data lines. A slave select line allows selection of an individual slave SPI device, slave devic
are not selected do not interfere with SPI bus activities. Optionally, on a master SPI device, the slave
line can be used to indicate multiple-master bus contention.
25

SPI Block Guide V03.06

phase

t on

.

ve
r device

e first
at the
lf cycle

e value
,

put pin
e SCK

r and
Figure 4-1 Master/Slave Transfer Block Diagram

4.4.1 Clock Phase and Polarity Controls

Using two bits in the SPI Control Register1, software selects one of four combinations of serial clock
and polarity.

The CPOL clock polarity control bit specifies an active high or low clock and has no significant effec
the transmission format.

The CPHA clock phase control bit selects one of two fundamentally different transmission formats

Clock phase and polarity should be identical for the master SPI device and the communicating sla
device. In some cases, the phase and polarity are changed between transmissions to allow a maste
to communicate with peripheral slaves having different requirements.

4.4.2 CPHA = 0 Transfer Format

The first edge on the SCK line is used to clock the first data bit of the slave into the master and th
data bit of the master into the slave. In some peripherals, the first bit of the slave’s data is available
slave’s data out pin as soon as the slave is selected. In this format, the first SCK edge is issued a ha
afterSS has become low.

A half SCK cycle later, the second edge appears on the SCK line. When this second edge occurs, th
previously latched from the serial data input pin is shifted into the LSB or MSB of the shift register
depending on LSBFE bit.

After this second edge, the next bit of the SPI master data is transmitted out of the serial data out
of the master to the serial input pin on the slave. This process continues for a total of 16 edges on th
line, with data being latched on odd numbered edges and shifted on even numbered edges.

Data reception is double buffered. Data is shifted serially into the SPI shift register during the transfe
is transferred to the parallel SPI Data Register after the last bit is shifted in.

After the 16th (last) SCK edge:

 SHIFT REGISTER

 SHIFT REGISTER

BAUD RATE
GENERATOR

MASTER SPI SLAVE SPI

MOSI MOSI

MISO MISO

SCK SCK

SS SS
VDD
26

SPI Block Guide V03.06

egister

OL
 SCK,

l is the

t of the

en the

een
• Data that was previously in the master SPI Data Register should now be in the slave data r
and the data that was in the slave data register should be in the master.

• The SPIF flag in the SPI Status Register is set indicating that the transfer is complete.

Figure 4-2 is a timing diagram of an SPI transfer where CPHA = 0. SCK waveforms are shown for CP
= 0 and CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the
MISO, and MOSI pins are connected directly between the master and the slave. The MISO signa
output from the slave and the MOSI signal is the output from the master. TheSS pin of the master must
be either high or reconfigured as a general-purpose output not affecting the SPI.

Figure 4-2 SPI Clock Format 0 (CPHA = 0)

In slave mode, if theSS line is not deasserted between the successive transmissions then the conten
SPI Data Register is not transmitted, instead the last received byte is transmitted. If theSS line is
deasserted for at least minimum idle time (half SCK cycle) between successive transmissions th
content of the SPI Data Register is transmitted.

In master mode, with slave select output enabled theSS line is always deasserted and reasserted betw
successive transfers for at least minimum idle time.

tL

Begin End

SCK (CPOL = 0)

SAMPLE I

CHANGE O

SEL SS (O)

Transfer

SCK (CPOL = 1)

MSB first (LSBFE = 0):
 LSB first (LSBFE = 1):

MSB
LSB

LSB
MSB

Bit 5
Bit 2

Bit 6
Bit 1

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

CHANGE O

SEL SS (I)

MOSI pin

MISO pin

Master only

MOSI/MISO

tT

If
ne

xt
 tr

an
sf

er
 b

eg
in

s
he

re

for tT, tl, tL
Minimum 1/2 SCK

tI tL

tL = Minimum leading time before the first SCK edge
tT = Minimum trailing time after the last SCK edge
tI = Minimum idling time between transfers (minimum SS high time)
tL, tT, and tI are guaranteed for the master mode and required for the slave mode.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16SCK Edge Nr.

End of Idle State Begin of Idle State
27

SPI Block Guide V03.06

ut pin,
g the

first

h the

to the
ster

bered

r and

f the

er or
er and
aster.
4.4.3 CPHA = 1 Transfer Format

Some peripherals require the first SCK edge before the first data bit becomes available at the data o
the second edge clocks data into the system. In this format, the first SCK edge is issued by settin
CPHA bit at the beginning of the 8-cycle transfer operation.

The first edge of SCK occurs immediately after the half SCK clock cycle synchronization delay. This
edge commands the slave to transfer its first data bit to the serial data input pin of the master.

A half SCK cycle later, the second edge appears on the SCK pin. This is the latching edge for bot
master and slave.

When the third edge occurs, the value previously latched from the serial data input pin is shifted in
LSB or MSB of the SPI shift register, depending on LSBFE bit. After this edge, the next bit of the ma
data is coupled out of the serial data output pin of the master to the serial input pin on the slave.

This process continues for a total of 16 edges on the SCK line with data being latched on even num
edges and shifting taking place on odd numbered edges.

Data reception is double buffered, data is serially shifted into the SPI shift register during the transfe
is transferred to the parallel SPI Data Register after the last bit is shifted in.

After the 16th SCK edge:

• Data that was previously in the SPI Data Register of the master is now in the data register o
slave, and data that was in the data register of the slave is in the master.

• The SPIF flag bit in SPISR is set indicating that the transfer is complete.

Figure 4-3 shows two clocking variations for CPHA = 1. The diagram may be interpreted as a mast
slave timing diagram since the SCK, MISO, and MOSI pins are connected directly between the mast
the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the m
TheSS line is the slave select input to the slave. TheSS pin of the master must be either high or
reconfigured as a general-purpose output not affecting the SPI.
28

SPI Block Guide V03.06

ormat
O data

egister,

et one

PPR2,
sults in
Figure 4-3 SPI Clock Format 1 (CPHA = 1)

TheSS line can remain active low between successive transfers (can be tied low at all times). This f
is sometimes preferred in systems having a single fixed master and a single slave that drive the MIS
line.

• Back to Back transfers in master mode

In master mode, if a transmission has completed and a new data byte is available in the SPI Data R
this byte is send out immediately without a trailing and minimum idle time.

The SPI interrupt request flag (SPIF) is common to both the master and slave modes. SPIF gets s
half SCK cycle after the last SCK edge.

4.5 SPI Baud Rate Generation

Baud rate generation consists of a series of divider stages. Six bits in the SPI Baud Rate register (S
SPPR1, SPPR0, SPR2, SPR1, and SPR0) determine the divisor to the SPI module clock which re
the SPI baud rate.

tL tT

for tT, tl, tL
Minimum 1/2 SCK

tI tL

If
ne

xt
 tr

an
sf

er
 b

eg
in

s
he

re

Begin End

SCK (CPOL = 0)

SAMPLE I

CHANGE O

SEL SS (O)

Transfer

SCK (CPOL = 1)

MSB first (LSBFE = 0):
 LSB first (LSBFE = 1):

MSB
LSB

LSB
MSB

Bit 5
Bit 2

Bit 6
Bit 1

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

CHANGE O

SEL SS (I)

MOSI pin

MISO pin

Master only

MOSI/MISO

tL = Minimum leading time before the first SCK edge, not required for back to back transfers
tT = Minimum trailing time after the last SCK edge
tI = Minimum idling time between transfers (minimum SS high time), not required for back to back transfers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16SCK Edge Nr.

End of Idle State Begin of Idle State
29

SPI Block Guide V03.06

ivisor

ction
 divisor

 When

ided

taking

es

nd

 the
in for
PI.
The SPI clock rate is determined by the product of the value in the baud rate preselection bits
(SPPR2–SPPR0) and the value in the baud rate selection bits (SPR2–SPR0). The module clock d
equation is shown inFigure 4-4 .

When all bits are clear (the default condition), the SPI module clock is divided by 2. When the sele
bits (SPR2–SPR0) are 001 and the preselection bits (SPPR2–SPPR0) are 000, the module clock
becomes 4. When the selection bits are 010, the module clock divisor becomes 8 etc.

When the preselection bits are 001, the divisor determined by the selection bits is multiplied by 2.
the preselection bits are 010, the divisor is multiplied by 3, etc. SeeTable 3-4 for baud rate calculations
for all bit conditions, based on a 25 MHz Bus Clock. The two sets of selects allows the clock to be div
by a non-power of two to achieve other baud rates such as divide by 6, divide by 10, etc.

The baud rate generator is activated only when the SPI is in the master mode and a serial transfer is
place. In the other cases, the divider is disabled to decrease IDD current.

Figure 4-4 Baud Rate Divisor Equation

4.6 Special Features

4.6.1 SS Output

TheSS output feature automatically drives theSS pin low during transmission to select external devic
and drives it high during idle to deselect external devices. WhenSS output is selected, theSS output pin
is connected to theSS input pin of the external device.

TheSS output is available only in master mode during normal SPI operation by asserting SSOE a
MODFEN bit as shown inTable 3-2 .

The mode fault feature is disabled whileSS output is enabled.

NOTE: Care must be taken when using theSS output feature in a multimaster system since
the mode fault feature is not available for detecting system errors between masters.

4.6.2 Bidirectional Mode (MOMI or SISO)

The bidirectional mode is selected when the SPC0 bit is set in SPI Control Register 2 (seeTable 4-1
Normal Mode and Bidirectional Mode). In this mode, the SPI uses only one serial data pin for the
interface with external device(s). The MSTR bit decides which pin to use. The MOSI pin becomes
serial data I/O (MOMI) pin for the master mode, and the MISO pin becomes serial data I/O (SISO) p
the slave mode. The MISO pin in master mode and MOSI pin in slave mode are not used by the S

BaudRateDivisor SPPR 1+() 2• SPR 1+()=
30

SPI Block Guide V03.06

put,
shift

more
 not
The direction of each serial I/O pin depends on the BIDIROE bit. If the pin is configured as an out
serial data from the shift register is driven out on the pin. The same pin is also the serial input to the
register.

The SCK is output for the master mode and input for the slave mode.

TheSS is the input or output for the master mode, and it is always the input for the slave mode.

The bidirectional mode does not affect SCK andSS functions.

NOTE: In bidirectional master mode, with mode fault enabled, both data pins MISO and
MOSI can be occupied by the SPI, though MOSI is normally used for transmissions
in bidirectional mode and MISO is not used by the SPI. If a mode fault occurs, the
SPI is automatically switched to slave mode, in this case MISO becomes occupied
by the SPI and MOSI is not used. This has to be considered, if the MISO pin is used
for other purpose.

4.7 Error Conditions

The SPI has one error condition:

• Mode fault error

4.7.1 Mode Fault Error

If theSS input becomes low while the SPI is configured as a master, it indicates a system error where
than one master may be trying to drive the MOSI and SCK lines simultaneously. This condition is

Table 4-1 Normal Mode and Bidirectional Mode

When SPE = 1 Master Mode MSTR = 1 Slave Mode MSTR = 0

Normal Mode
SPC0 = 0

Bidirectional Mode
SPC0 = 1

SPI

MOSI

MISO

Serial Out

Serial In

SPI

MOSI

MISO

Serial In

Serial Out

SPI

MOMISerial Out

Serial In

BIDIROE SPI

SISO

Serial In

Serial Out

.

BIDIROE
31

SPI Block Guide V03.06

d the

case
ur

utput
 any
 is

utput
rs in

owed
ter or

 is in a
le are

ation

in
I exits

in
ave
permitted in normal operation, the MODF bit in the SPI Status Register is set automatically provide
MODFEN bit is set.

In the special case where the SPI is in master mode and MODFEN bit is cleared, theSS pin is not used by
the SPI. In this special case, the mode fault error function is inhibited and MODF remains cleared. In
the SPI system is configured as a slave, theSS pin is a dedicated input pin. Mode fault error doesn’t occ
in slave mode.

If a mode fault error occurs the SPI is switched to slave mode, with the exception that the slave o
buffer is disabled. So SCK, MISO and MOSI pins are forced to be high impedance inputs to avoid
possibility of conflict with another output driver. A transmission in progress is aborted and the SPI
forced into idle state.

If the mode fault error occurs in the bidirectional mode for a SPI system configured in master mode, o
enable of the MOMI (MOSI in bidirectional mode) is cleared if it was set. No mode fault error occu
the bidirectional mode for SPI system configured in slave mode.

The mode fault flag is cleared automatically by a read of the SPI Status Register (with MODF set) foll
by a write to SPI Control Register 1. If the mode fault flag is cleared, the SPI becomes a normal mas
slave again.

4.8 Low Power Mode Options

4.8.1 SPI in Run Mode

In run mode with the SPI system enable (SPE) bit in the SPI control register clear, the SPI system
low-power, disabled state. SPI registers can still be accessed, but clocks to the core of this modu
disabled.

4.8.2 SPI in Wait Mode

SPI operation in wait mode depends upon the state of the SPISWAI bit in SPI Control Register 2.

• If SPISWAI is clear, the SPI operates normally when the CPU is in wait mode

• If SPISWAI is set, SPI clock generation ceases and the SPI module enters a power conserv
state when the CPU is in wait mode.

– If SPISWAI is set and the SPI is configured for master, any transmission and reception
progress stops at wait mode entry. The transmission and reception resumes when the SP
wait mode.

– If SPISWAI is set and the SPI is configured as a slave, any transmission and reception
progress continues if the SCK continues to be driven from the master. This keeps the sl
synchronized to the master and the SCK.
32

SPI Block Guide V03.06

e to
ave is
the
 each

d (held
the
I is

 (see

mit

ing is
t. The

e

If the master transmits several bytes while the slave is in wait mode, the slave will continu
send out bytes consistent with the operation mode at the start of wait mode (i.e. If the sl
currently sending its SPIDR to the master, it will continue to send the same byte. Else if
slave is currently sending the last received byte from the master, it will continue to send
previous master byte).

NOTE: Care must be taken when expecting data from a master while the slave is in wait or
stop mode. Even though the shift register will continue to operate, the rest of the
SPI is shut down (i.e. a SPIF interrupt willnot be generated until exiting stop or
wait mode). Also, the byte from the shift register will not be copied into the SPIDR
register until after the slave SPI has exited wait or stop mode. A SPIF flag and
SPIDR copy is only generated if wait mode is entered or exited during a
tranmission. If the slave enters wait mode in idle mode and exits wait mode in idle
mode, neither a SPIF nor a SPIDR copy will occur.

4.8.3 SPI in Stop Mode

Stop mode is dependent on the system. The SPI enters stop mode when the module clock is disable
high or low). If the SPI is in master mode and exchanging data when the CPU enters stop mode,
transmission is frozen until the CPU exits stop mode. After stop, data to and from the external SP
exchanged correctly. In slave mode, the SPI will stay synchronized with the master.

The stop mode is not dependent on the SPISWAI bit.

4.8.4 Reset

The reset values of registers and signals are described in the Memory Map and Registers section
Section 3 Memory Map/Register Definition) which details the registers and their bit-fields.

• If a data transmission occurs in slave mode after reset without a write to SPIDR, it will trans
garbage, or the byte last received from the master before the reset.

• Reading from the SPIDR after reset will always read a byte of zeros.

4.8.5 Interrupts

The SPI only originates interrupt requests when SPI is enabled (SPE bit in SPICR1 set). The follow
a description of how the SPI makes a request and how the MCU should acknowledge that reques
interrupt vector offset and interrupt priority are chip dependent.

The interrupt flags MODF, SPIF and SPTEF are logically ORed to generate an interrupt request.

4.8.5.1 MODF

MODF occurs when the master detects an error on theSS pin. The master SPI must be configured for th
MODF feature (seeTable 3-2 SS Input / Output Selection). Once MODF is set, the current transfer is
aborted and the following bit is changed:
33

SPI Block Guide V03.06

he
g

is set, it

SPIF
ill be

ot clear
• MSTR=0, The master bit in SPICR1 resets.

The MODF interrupt is reflected in the status register MODF flag. Clearing the flag will also clear t
interrupt. This interrupt will stay active while the MODF flag is set. MODF has an automatic clearin
process which is described in3.1.4 SPI Status Register .

4.8.5.2 SPIF

SPIF occurs when new data has been received and copied to the SPI Data Register. Once SPIF
does not clear until it is serviced. SPIF has an automatic clearing process which is described in3.1.4 SPI
Status Register . In the event that the SPIF is not serviced before the end of the next transfer (i.e.
remains active throughout another transfer), the latter transfers will be ignored and no new data w
copied into the SPIDR.

4.8.5.3 SPTEF

SPTEF occurs when the SPI Data Register is ready to accept new dataOnce SPTEF is set, it does n
until it is serviced. SPTEF has an automatic clearing process which is described in3.1.4 SPI Status
Register .

Section 5 Initialization/Application Information
34

SPI Block Guide V03.06
Index

–B–

Block diagram 13

–C–

Cross reference 13

–D–

Diagram
block 13

–F–

Figure
cross-reference style 13

–I–

Initialization/application information 34

–S–

SPI clock 17
35

SPI Block Guide V03.06
36

SPI Block Guide V03.06
Block Guide End Sheet
37

SPI Block Guide V03.06
FINAL PAGE OF
38

PAGES
38

DOCUMENT NUMBER
S12VREGV1/D
VREG

Block User Guide

V01.01

Original Release Date: 21 FEB 2001
Revised: 4 MAR 2002

Motorola, Inc
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or
design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein;
neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was
negligent regarding the design or manufacture of the part.

1

VREG Block User Guide V01.01
Revision History

Version
Number

Revision
Date

Effective
Date Author Description of Changes

0.1 2/21/01 2/21/01 VREG spec moved to SRS2.0 compliant format

1.0 4/05/01 4/05/01 Minor update, spec version number reflects clearcase label

V01.00 7/27/01 7/27/01
Document names have been added
Names and Variable definitions have been hidden

V01.01 3/4/02 3/4/02 Changed Document Number
2

VREG Block User Guide V01.01
Table of Contents

Section 1 Introduction

1.1 Overview. .9

1.2 Features .9

1.3 Modes of Operation .9

1.4 Block Diagram .10

Section 2 Signal Description

2.1 Overview. .11

2.2 Detailed Signal Descriptions. .11

2.2.1 VDDA, VSSA .11

2.2.2 VDDR .11

2.2.3 VDD1,[2], VSS1,[2] .11

2.2.4 VDDPLL, VSSPLL .11

2.2.5 VREGEN .12

Section 3 Memory Map and Registers

3.1 Overview. .13

Section 4 Functional Description

4.1 General. .15

4.1.1 Reference Generation .15

4.1.2 Operational Amplifier .15

4.1.3 Power Output Stage. .15

4.1.4 Power On Reset Pulse Generation .15
3

VREG Block User Guide V01.01
4

VREG Block User Guide V01.01
List of Figures

Figure 1-1 VREG Block Diagram .10
5

VREG Block User Guide V01.01
6

VREG Block User Guide V01.01
List of Tables

Table 2-1 Signal Properties .11
7

VREG Block User Guide V01.01
8

VREG Block User Guide V01.01

locks

ulled
ence
the
f the

wn
 from
tion
Section 1 Introduction

1.1 Overview

The VREG block is used to generate the supply voltage (2.5V typ.) of the core logic and memory b
out of the chip supply voltage (5V typ.).

1.2 Features

The block name includes these distinctive features:

• linear voltage regulator with two independent outputs

• power on reset signal generation

1.3 Modes of Operation

VREG can operate in three different modes

• RUN

In run mode both regulating loops of the voltage regulator are active. This mode is selected
whenever the CPU is neither in stop nor in pseudo stop mode and VREGEN is pulled high.

• STANDBY

Standby mode is selected when the CPU is in stop or pseudo stop mode and VREGEN is p
high. In standby mode the gates of the power transistors are directly connected to the refer
voltage. In this case the voltage regulator acts as a voltage clamp. While in standby mode,
effective inner resistance of the regulator is increased, the quiescent current consumption o
regulator itself is heavily decreased.

• SHUTDOWN

Shutdown mode is only available, when the device is equipped with a VREGEN bit. Shutdo
mode is selected by tieing VREGEN to ground. In this case, the core logic must be supplied
external by applying 2.5V(+/-10%) on VDD and VDDPLL. The power on reset pulse genera
circuit is not affected by selecting shutdown mode.
9

VREG Block User Guide V01.01
1.4 Block Diagram

Figure 1-1 is a block diagram of the VREG.

Figure 1-1 VREG Block Diagram

+

-

+

-

VDD1,[2]

VSS1,2

VDDPLL

VDDA

VSSA

VDDR

=

RTMF
por

+

-

power on pulse generator
10

VREG Block User Guide V01.01

ence

rawn

cted
upled
first

ly
utput
Section 2 Signal Description

2.1 Overview

Table 2-1 lists all pins associated with the VREG block.

2.2 Detailed Signal Descriptions

2.2.1 VDDA, VSSA

VREG uses the VDDA/VSSA supply pin pair to supply the voltage regulator and to derive the refer
voltage. The reference voltage VREG is regulating to is (VDDA - VSSA)/2.

2.2.2 VDDR

VDDR is the power input to the voltage regulator. The output current of the two regulating loops is d
out of this pin.

2.2.3 VDD1,[2], VSS1,[2]

VDD1, VSS1 and optional VDD2, VSS2 are the core logic supply pins. VDD1 and VDD2 are conne
internally by metal as well as VSS1 and VSS2. Each power supply pin pair must be externally deco
with a ceramic capacitor (100nF .. 220nF, X7R ceramic). VDD1,[2] is connected to the output of the
regulating loop of the voltage regulator.

2.2.4 VDDPLL, VSSPLL

VDDPLL and VSSPLL are the oscillator and pll supply pins. This supply pin pair must be external
decoupled with a ceramic capacitor (100nF .. 220nF, X7R ceramic). VDDPLL is connected to the o
of the second regulating loop of the voltage regulator.

Table 2-1 Signal Properties

Name Function
VDDA VREG positive reference and supply input

VSSA VREG negative reference and supply input

VDDR VREG power input

VDD1,[2] VREG output 1st regulation loop

VSS1,[2] VREG 1st regulation loop ground pin

VDDPLL VREG output 2nd regulation loop

VSSPLL VREG 2nd regulation loop ground pin

VREGEN Selects Shutdown or Run/Standby mode
11

VREG Block User Guide V01.01

are
2.2.5 VREGEN

This optional pin is used to disable the voltage regulator if the core logic as well as the oscillators
supplied from external.
12

VREG Block User Guide V01.01
Section 3 Memory Map and Registers

3.1 Overview

The VREG block has no CPU accessible registers.
13

VREG Block User Guide V01.01
14

VREG Block User Guide V01.01

power

he
n

e

rce on
Section 4 Functional Description

4.1 General

The VREG block consists of a reference voltage generator, two operational amplifiers, two nmos
output stages and a power on reset pulse generation circuit.

4.1.1 Reference Generation

The reference generation is comprised of a resistor reference ladder between VDDA and VSSA. T
output voltage of the reference ladder (VDDA - VSSA)/2 is fed into both operational amplifiers as regulatio
reference.

4.1.2 Operational Amplifier

The operational amplifier compare the reference voltage ((VDDA - VSSA)/2) with the actual output voltage
(vdd or vddpll) to generate the gate voltage of the power output transistors.

In standby mode, the operational amplifiers are disabled and the gates of the power transistors ar
connected directly to the reference voltage in order to decrease the quiescent current.

4.1.3 Power Output Stage

Each power output stage consists of an nmos power transistor with its drain on VDDR and its sou
VDD or VDDPLL.

4.1.4 Power On Reset Pulse Generation

A comparator monitors the actual value of VDD. If VDD is below VPOR, the power on reset signal is
asserted forcing the CPU in the power on reset state.
15

VREG Block User Guide V01.01
16

VREG Block User Guide V01.01
User Guide End Sheet
17

VREG Block User Guide V01.01
FINAL PAGE OF
18

PAGES
18

	Device Guide
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Derivative Differences and Document References
	Derivative Differences
	Document References
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram
	1.5 Device Memory Map
	1.5.1 Detailed Register Map
	$0000 - $000F MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)
	$0010 - $0014 MMC map 1 of 4 (HCS12 Module Mapping Control)
	$0015 - $0016 INT map 1 of 2 (HCS12 Interrupt)
	$0017 - $0019 Reserved
	$001A - $001B Device ID Register (Table 1-3)
	$001C - $001D MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-4)
	$001E - $001E MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)
	$001F - $001F INT map 2 of 2 (HCS12 Interrupt)
	$0020 - $0027 Reserved
	$0028 - $002F BKP (HCS12 Breakpoint)
	$0030 - $0031 MMC map 4 of 4 (HCS12 Module Mapping Control)
	$0032 - $0033 MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)
	$0034 - $003F CRG (Clock and Reset Generator)
	$0040 - $007F ECT (Enhanced Capture Timer 16 Bit 8 Channels)
	$0080 - $009F ATD0 (Analog to Digital Converter 10 Bit 8 Channel)
	$00A0 - $00C7 PWM (Pulse Width Modulator 8 Bit 8 Channel)
	$00C8 - $00CF SCI0 (Asynchronous Serial Interface)
	$00D0 - $00D7 SCI1 (Asynchronous Serial Interface)
	$00D8 - $00DF SPI0 (Serial Peripheral Interface)
	$00E0 - $00E7 IIC (Inter IC Bus)
	$00E8 - $00EF BDLC (Bytelevel Data Link Controller J1850)
	$00F0 - $00F7 SPI1 (Serial Peripheral Interface)
	$00F8 - $00FF SPI2 (Serial Peripheral Interface)
	$0100 - $010F Flash Control Register (fts512k4)
	$0110 - $011B EEPROM Control Register (eets4k)
	$011C - $011F Reserved for RAM Control Register
	$0120 - $013F ATD1 (Analog to Digital Converter 10 Bit 8 Channel)
	$0140 - $017F CAN0 (Motorola Scalable CAN - MSCAN)
	$0180 - $01BF CAN1 (Motorola Scalable CAN - MSCAN)
	$01C0 - $01FF CAN2 (Motorola Scalable CAN - MSCAN)
	$0200 - $023F CAN3 (Motorola Scalable CAN - MSCAN)
	$0240 - $027F PIM (Port Integration Module PIM_9DP256)
	$0280 - $02BF CAN4 (Motorola Scalable CAN - MSCAN)
	$02C0 - $03FF Reserved

	1.6 Part ID Assignments
	1.7 Memory Size Assignments

	Section 2 Signal Description
	2.1 Device Pinout
	2.2 Signal Properties Summary
	2.3 Detailed Signal Descriptions
	2.3.1 EXTAL, XTAL - Oscillator Pins
	2.3.2 RESET - External Reset Pin
	2.3.3 TEST - Test Pin
	2.3.4 VREGEN - Voltage Regulator Enable Pin
	2.3.5 XFC - PLL Loop Filter Pin
	2.3.6 BKGD / TAGHI / MODC - Background Debug, Tag High, and Mode Pin
	2.3.7 PAD15 / AN15 / ETRIG1 - Port AD Input Pin of ATD1
	2.3.8 PAD[14:08] / AN[14:08] - Port AD Input Pins of ATD1
	2.3.9 PAD7 / AN07 / ETRIG0 - Port AD Input Pin of ATD0
	2.3.10 PAD[06:00] / AN[06:00] - Port AD Input Pins of ATD0
	2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] - Port A I/O Pins
	2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] - Port B I/O Pins
	2.3.13 PE7 / NOACC / XCLKS - Port E I/O Pin 7
	2.3.14 PE6 / MODB / IPIPE1 - Port E I/O Pin 6
	2.3.15 PE5 / MODA / IPIPE0 - Port E I/O Pin 5
	2.3.16 PE4 / ECLK - Port E I/O Pin 4
	2.3.17 PE3 / LSTRB / TAGLO - Port E I/O Pin 3
	2.3.18 PE2 / R/W - Port E I/O Pin 2
	2.3.19 PE1 / IRQ - Port E Input Pin 1
	2.3.20 PE0 / XIRQ - Port E Input Pin 0
	2.3.21 PH7 / KWH7 / SS2 - Port H I/O Pin 7
	2.3.22 PH6 / KWH6 / SCK2 - Port H I/O Pin 6
	2.3.23 PH5 / KWH5 / MOSI2 - Port H I/O Pin 5
	2.3.24 PH4 / KWH4 / MISO2 - Port H I/O Pin 2
	2.3.25 PH3 / KWH3 / SS1 - Port H I/O Pin 3
	2.3.26 PH2 / KWH2 / SCK1 - Port H I/O Pin 2
	2.3.27 PH1 / KWH1 / MOSI1 - Port H I/O Pin 1
	2.3.28 PH0 / KWH0 / MISO1 - Port H I/O Pin 0
	2.3.29 PJ7 / KWJ7 / TXCAN4 / SCL / TXCAN0 - PORT J I/O Pin 7
	2.3.30 PJ6 / KWJ6 / RXCAN4 / SDA / RXCAN0 - PORT J I/O Pin 6
	2.3.31 PJ[1:0] / KWJ[1:0] - Port J I/O Pins [1:0]
	2.3.32 PK7 / ECS / ROMCTL - Port K I/O Pin 7
	2.3.33 PK[5:0] / XADDR[19:14] - Port K I/O Pins [5:0]
	2.3.34 PM7 / TXCAN3 / TXCAN4 - Port M I/O Pin 7
	2.3.35 PM6 / RXCAN3 / RXCAN4 - Port M I/O Pin 6
	2.3.36 PM5 / TXCAN2 / TXCAN0 / TXCAN4 / SCK0 - Port M I/O Pin 5
	2.3.37 PM4 / RXCAN2 / RXCAN0 / RXCAN4/ MOSI0 - Port M I/O Pin 4
	2.3.38 PM3 / TXCAN1 / TXCAN0 / SS0 - Port M I/O Pin 3
	2.3.39 PM2 / RXCAN1 / RXCAN0 / MISO0 - Port M I/O Pin 2
	2.3.40 PM1 / TXCAN0 / TXB - Port M I/O Pin 1
	2.3.41 PM0 / RXCAN0 / RXB - Port M I/O Pin 0
	2.3.42 PP7 / KWP7 / PWM7 / SCK2 - Port P I/O Pin 7
	2.3.43 PP6 / KWP6 / PWM6 / SS2 - Port P I/O Pin 6
	2.3.44 PP5 / KWP5 / PWM5 / MOSI2 - Port P I/O Pin 5
	2.3.45 PP4 / KWP4 / PWM4 / MISO2 - Port P I/O Pin 4
	2.3.46 PP3 / KWP3 / PWM3 / SS1 - Port P I/O Pin 3
	2.3.47 PP2 / KWP2 / PWM2 / SCK1 - Port P I/O Pin 2
	2.3.48 PP1 / KWP1 / PWM1 / MOSI1 - Port P I/O Pin 1
	2.3.49 PP0 / KWP0 / PWM0 / MISO1 - Port P I/O Pin 0
	2.3.50 PS7 / SS0 - Port S I/O Pin 7
	2.3.51 PS6 / SCK0 - Port S I/O Pin 6
	2.3.52 PS5 / MOSI0 - Port S I/O Pin 5
	2.3.53 PS4 / MISO0 - Port S I/O Pin 4
	2.3.54 PS3 / TXD1 - Port S I/O Pin 3
	2.3.55 PS2 / RXD1 - Port S I/O Pin 2
	2.3.56 PS1 / TXD0 - Port S I/O Pin 1
	2.3.57 PS0 / RXD0 - Port S I/O Pin 0
	2.3.58 PT[7:0] / IOC[7:0] - Port T I/O Pins [7:0]

	2.4 Power Supply Pins
	2.4.1 VDDX,VSSX - Power & Ground Pins for I/O Drivers
	2.4.2 VDDR, VSSR - Power & Ground Pins for I/O Drivers & Internal Voltage Regulator
	2.4.3 VDD1, VDD2, VSS1, VSS2 - Internal Logic Power Supply Pins
	2.4.4 VDDA, VSSA - Power Supply Pins for ATD and VREG
	2.4.5 VRH, VRL - ATD Reference Voltage Input Pins
	2.4.6 VDDPLL, VSSPLL - Power Supply Pins for PLL
	2.4.7 VREGEN - On Chip Voltage Regulator Enable

	Section 3 System Clock Description
	3.1 Overview

	Section 4 Modes of Operation
	4.1 Overview
	4.2 Chip Configuration Summary
	4.3 Security
	4.3.1 Securing the Microcontroller
	4.3.2 Operation of the Secured Microcontroller
	4.3.2.1 Normal Single Chip Mode
	4.3.2.2 Executing from External Memory

	4.3.3 Unsecuring the Microcontroller

	4.4 Low Power Modes
	4.4.1 Stop
	4.4.2 Pseudo Stop
	4.4.3 Wait
	4.4.4 Run

	Section 5 Resets and Interrupts
	5.1 Overview
	5.2 Vectors
	5.2.1 Vector Table

	5.3 Effects of Reset
	5.3.1 I/O pins
	5.3.2 Memory

	Section 6 HCS12 Core Block Description
	6.1 CPU12 Block Description
	6.1.1 Device-specific information

	6.2 HCS12 Module Mapping Control (MMC) Block Description
	6.2.1 Device-specific information

	6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block Description
	6.3.1 Device-specific information

	6.4 HCS12 Interrupt (INT) Block Description
	6.5 HCS12 Background Debug (BDM) Block Description
	6.5.1 Device-specific information

	6.6 HCS12 Breakpoint (BKP) Block Description

	Section 7 Clock and Reset Generator (CRG) Block Description
	7.1 Device-specific information

	Section 8 Oscillator (OSC) Block Description
	8.1 Device-specific information

	Section 9 Enhanced Capture Timer (ECT) Block Description
	Section 10 Analog to Digital Converter (ATD) Block Description
	Section 11 Inter-IC Bus (IIC) Block Description
	Section 12 Serial Communications Interface (SCI) Block Description
	Section 13 Serial Peripheral Interface (SPI) Block Description
	Section 14 J1850 (BDLC) Block Description
	Section 15 Pulse Width Modulator (PWM) Block Description
	Section 16 Flash EEPROM 512K Block Description
	Section 17 EEPROM 4K Block Description
	Section 18 RAM Block Description
	Section 19 MSCAN Block Description
	Section 20 Port Integration Module (PIM) Block Description
	Section 21 Voltage Regulator (VREG) Block Description
	Section 22 Printed Circuit Board Layout Proposal
	Appendix A Electrical Characteristics
	A.1 General
	A.1.1 Parameter Classification
	A.1.2 Power Supply
	A.1.3 Pins
	A.1.3.1 5V I/O pins
	A.1.3.2 Analog Reference
	A.1.3.3 Oscillator
	A.1.3.4 TEST
	A.1.3.5 VREGEN

	A.1.4 Current Injection
	A.1.5 Absolute Maximum Ratings
	A.1.6 ESD Protection and Latch-up Immunity
	A.1.7 Operating Conditions
	A.1.8 Power Dissipation and Thermal Characteristics
	A.1.9 I/O Characteristics
	A.1.10 Supply Currents
	A.1.10.1 Measurement Conditions
	A.1.10.2 Additional Remarks

	A.2 ATD Characteristics
	A.2.1 ATD Operating Characteristics
	A.2.2 Factors influencing accuracy
	A.2.2.1 Source Resistance
	A.2.2.2 Source Capacitance
	A.2.2.3 Current Injection

	A.2.3 ATD accuracy

	A.3 NVM, Flash and EEPROM
	A.3.1 NVM timing
	A.3.1.1 Single Word Programming
	A.3.1.2 Row Programming
	A.3.1.3 Sector Erase
	A.3.1.4 Mass Erase
	A.3.1.5 Blank Check

	A.3.2 NVM Reliability

	A.4 Voltage Regulator
	A.5 Reset, Oscillator and PLL
	A.5.1 Startup
	A.5.1.1 POR
	A.5.1.2 SRAM Data Retention
	A.5.1.3 External Reset
	A.5.1.4 Stop Recovery
	A.5.1.5 Pseudo Stop and Wait Recovery

	A.5.2 Oscillator
	A.5.3 Phase Locked Loop
	A.5.3.1 XFC Component Selection
	A.5.3.2 Jitter Information

	A.6 MSCAN
	A.7 SPI
	A.7.1 Master Mode
	A.7.2 Slave Mode

	A.8 External Bus Timing
	A.8.1 General Muxed Bus Timing

	Appendix B Package Information
	B.1 General
	B.2 112-pin LQFP package

	User Guide End Sheet

	ADC
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.3.1 Conversion modes
	1.3.2 MCU Operating Modes

	1.4 Block Diagram

	Section 2 Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 AN7 / ETRIG / PAD7
	2.2.2 AN6 / PAD6
	2.2.3 AN5 / PAD5
	2.2.4 AN4 / PAD4
	2.2.5 AN3 / PAD3
	2.2.6 AN2 / PAD2
	2.2.7 AN1 / PAD1
	2.2.8 AN0 / PAD0
	2.2.9 VRH, VRL
	2.2.10 VDDA, VSSA

	Section 3 Memory Map and Register Definition
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 Reserved Register (ATDCTL0)
	3.3.2 Reserved Register (ATDCTL1)
	3.3.3 ATD Control Register 2 (ATDCTL2)
	3.3.4 ATD Control Register 3 (ATDCTL3)
	3.3.5 ATD Control Register 4 (ATDCTL4)
	3.3.6 ATD Control Register 5 (ATDCTL5)
	3.3.7 ATD Status Register 0 (ATDSTAT0)
	3.3.8 Reserved Register (ATDTEST0)
	3.3.9 ATD Test Register 1 (ATDTEST1)
	3.3.10 ATD Status Register 1 (ATDSTAT1)
	3.3.11 ATD Input Enable Register (ATDDIEN)
	3.3.12 Port Data Register (PORTAD)
	3.3.13 ATD Conversion Result Registers (ATDDRHx/ATDDRLx)

	Section 4 Functional Description
	4.1 General
	4.2 Analog Sub-block
	4.2.1 Sample and Hold Machine
	4.2.2 Analog Input Multiplexer
	4.2.3 Sample Buffer Amplifier
	4.2.4 Analog-to-Digital (A/D) Machine

	4.3 Digital Sub-block
	4.3.1 External Trigger Input (ETRIG)
	4.3.2 General Purpose Digital Input Port Operation
	4.3.3 Low Power Modes

	Section 5 Resets
	5.1 General

	Section 6 Interrupts
	6.1 General

	User Guide End Sheet

	BDLC
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 TXB - BDLC Transmit Pin
	2.2.2 RXB �- BDLC Receive Pin

	Section 3 Memory Map and Registers
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 BDLC Control Register 1 (DLCBCR1)
	3.3.2 BDLC State Vector Register (DLCBSVR)
	3.3.3 BDLC Control Register 2 (DLCBCR2)
	3.3.4 BDLC Data Register (DLCBDR)
	3.3.5 BDLC Analog Round Trip Delay Register (DLCBARD)
	3.3.6 BDLC Rate Select Register (DLCBRSR)
	3.3.7 BDLC Control Register (DLCSCR)
	3.3.8 BDLC Status Register (DLCBSTAT)

	Section 4 Functional Description
	4.1 General
	4.1.1 J1850 Frame Format
	4.1.2 J1850 VPW Symbols
	4.1.3 J1850 VPW Valid/Invalid Bits & Symbols
	4.1.4 J1850 Bus Errors

	4.2 Mux Interface
	4.2.1 Mux Interface - Rx Digital Filter

	4.3 Protocol Handler
	4.3.1 Protocol Architecture

	4.4 Transmitting A Message
	4.4.1 BDLC Transmission Control Bits
	4.4.2 Transmitting Exceptions
	4.4.3 Aborting a Transmission

	4.5 Receiving A Message
	4.5.1 BDLC Reception Control Bits
	4.5.2 Receiving a Message with the BDLC module
	4.5.3 Filtering Received Messages
	4.5.4 Receiving Exceptions

	4.6 Transmitting An In-Frame Response (IFR)
	4.6.1 IFR Types Supported by the BDLC module
	4.6.2 BDLC IFR Transmit Control Bits
	4.6.3 Transmit Single Byte IFR
	4.6.4 Transmit Multi-Byte IFR 1
	4.6.5 Transmit Multi-Byte IFR 0
	4.6.6 Transmitting An IFR with the BDLC module
	4.6.7 Transmitting IFR Exceptions

	4.7 Receiving An In-Frame Response (IFR)
	4.7.1 Receiving an IFR with the BDLC module
	4.7.2 Receiving IFR Exceptions

	4.8 Special BDLC Module Operations
	4.8.1 Transmitting Or Receiving A Block Mode Message
	4.8.2 Receiving A Message In 4X Mode

	4.9 BDLC Module Initialization
	4.9.1 Initialization Sequence
	4.9.2 Initializing the Configuration Bits
	4.9.3 Exiting Loopback Mode and Enabling the BDLC module
	4.9.4 Enabling BDLC Interrupts

	Section 5 Resets
	5.1 General

	Section 6 Interrupts
	6.1 General

	Appendix A Electrical Specifications

	BDM
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction to Background Debug Module V4 (BDMV4)
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.3.1 Regular Run Modes
	1.3.2 Secure Mode Operation
	1.3.3 Low-Power Modes

	Section 2 External Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 Background Interface Pin (BKGD)
	2.2.2 High Byte Instruction Tagging Pin (TAGHI)
	2.2.3 Low Byte Instruction Tagging Pin (TAGLO)

	Section 3 Memory Map/Register Definition
	3.1 BDM Status Register
	3.2 BDM CCR Holding Register
	3.3 BDM Internal Register Position Register

	Section 4 Functional Description
	4.1 Security
	4.2 Enabling and Activating BDM
	4.3 BDM Hardware Commands
	4.4 Standard BDM Firmware Commands
	4.5 BDM Command Structure
	4.6 BDM Serial Interface
	4.7 Serial Interface Hardware Handshake Protocol
	4.8 Hardware Handshake Abort Procedure
	4.9 SYNC — Request Timed Reference Pulse
	4.10 Instruction Tracing
	4.11 Instruction Tagging
	4.12 Serial Communication Time-out

	Breakpoint Module
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction: Breakpoint (BKP) Module
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation

	Section 2 External Signal Description
	Section 3 Memory Map/Register Definition
	3.1 Breakpoint Control Register 0 (BKPCT0)
	3.2 Breakpoint Control Register 1 (BKPCT1)
	3.3 Breakpoint First Address Expansion Register (BKP0X)
	3.4 Breakpoint First Address High Byte Register (BKP0H)
	3.5 Breakpoint First Address Low Byte Register (BKP0L)
	3.6 Breakpoint Second Address Expansion Register (BKP1X)
	3.7 Breakpoint Data (Second Address) High Byte Register (BKP1H)
	3.8 Breakpoint Data (Second Address) Low Byte Register (BKP1L)

	Section 4 Functional Description
	4.1 Modes of Operation
	4.1.1 Dual Address Mode
	4.1.2 Full Breakpoint Mode

	4.2 Breakpoint Priority

	CPU
	Revision History
	List of Sections
	Table of Contents
	List of Figures
	List of Tables
	Section 1. Introduction
	1.1 Introduction
	1.2 Features
	1.3 Symbols and Notation
	1.3.1 Abbreviations for System Resources
	1.3.2 Memory and Addressing
	1.3.3 Operators
	1.3.4 Definitions

	Section 2. Overview
	2.1 Introduction
	2.2 Programming Model
	2.2.1 Accumulators
	2.2.2 Index Registers
	2.2.3 Stack Pointer
	2.2.4 Program Counter
	2.2.5 Condition Code Register
	2.2.5.1 S Control Bit
	2.2.5.2 X Mask Bit
	2.2.5.3 H Status Bit
	2.2.5.4 I Mask Bit
	2.2.5.5 N Status Bit
	2.2.5.6 Z Status Bit
	2.2.5.7 V Status Bit
	2.2.5.8 C Status Bit

	2.3 Data Types
	2.4 Memory Organization
	2.5 Instruction Queue

	Section 3. Addressing Modes
	3.1� Introduction
	3.2� Mode Summary
	3.3� Effective Address
	3.4� Inherent Addressing Mode
	3.5� Immediate Addressing Mode
	3.6� Direct Addressing Mode
	3.7� Extended Addressing Mode
	3.8� Relative Addressing Mode
	3.9� Indexed Addressing Modes
	3.9.1 5-Bit Constant Offset Indexed Addressing
	3.9.2 9-Bit Constant Offset Indexed Addressing
	3.9.3 16-Bit Constant Offset Indexed Addressing
	3.9.4 16-Bit Constant Indirect Indexed Addressing
	3.9.5 Auto Pre/Post Decrement/Increment Indexed Addressing
	3.9.6 Accumulator Offset Indexed Addressing
	3.9.7 Accumulator D Indirect Indexed Addressing

	3.10� Instructions Using Multiple Modes
	3.10.1 Move Instructions
	3.10.2 Bit Manipulation Instructions

	3.11� Addressing More than 64 Kbytes

	Section 4. Instruction Queue
	4.1 Introduction
	4.2 Queue Description
	4.2.1 Original M68HC12 Queue Implementation
	4.2.2 HCS12 Queue Implementation

	4.3 Data Movement in the Queue
	4.3.1 No Movement
	4.3.2 Latch Data from Bus (Applies Only to the M68HC12 Queue Implementation)
	4.3.3 Advance and Load from Data Bus
	4.3.4 Advance and Load from Buffer (Applies Only to M68HC12 Queue Implementation)

	4.4 Changes in Execution Flow
	4.4.1 Exceptions
	4.4.2 Subroutines
	4.4.3 Branches
	4.4.3.1 Short Branches
	4.4.3.2 Long Branches
	4.4.3.3 Bit Condition Branches
	4.4.3.4 Loop Primitives

	4.4.4 Jumps

	Section 5. Instruction Set Overview
	5.1 Introduction
	5.2 Instruction Set Description
	5.3 Load and Store Instructions
	5.4 Transfer and Exchange Instructions
	5.5 Move Instructions
	5.6 Addition and Subtraction Instructions
	5.7 Binary-Coded Decimal Instructions
	5.8 Decrement and Increment Instructions
	5.9 Compare and Test Instructions
	5.10 Boolean Logic Instructions
	5.11 Clear, Complement, and Negate Instructions
	5.12 Multiplication and Division Instructions
	5.13 Bit Test and Manipulation Instructions
	5.14 Shift and Rotate Instructions
	5.15 Fuzzy Logic Instructions
	5.15.1 Fuzzy Logic Membership Instruction
	5.15.2 Fuzzy Logic Rule Evaluation Instructions
	5.15.3 Fuzzy Logic Weighted Average Instruction

	5.16 Maximum and Minimum Instructions
	5.17 Multiply and Accumulate Instruction
	5.18 Table Interpolation Instructions
	5.19 Branch Instructions
	5.19.1 Short Branch Instructions
	5.19.2 Long Branch Instructions
	5.19.3 Bit Condition Branch Instructions

	5.20 Loop Primitive Instructions
	5.21 Jump and Subroutine Instructions
	5.22 Interrupt Instructions
	5.23 Index Manipulation Instructions
	5.24 Stacking Instructions
	5.25 Pointer and Index Calculation Instructions
	5.26 Condition Code Instructions
	5.27 Stop and Wait Instructions
	5.28 Background Mode and Null Operations

	Section 6. Instruction Glossary
	6.1 Introduction
	6.2 Glossary Information
	6.3 Condition Code Changes
	6.4 Object Code Notation
	6.5 Source Forms
	6.6 Cycle-by-Cycle Execution
	6.7 Glossary

	Section 7. Exception Processing
	7.1 Introduction
	7.2 Types of Exceptions
	7.3 Exception Priority
	7.4 Resets
	7.4.1 Power-On Reset
	7.4.2 External Reset
	7.4.3 COP Reset
	7.4.4 Clock Monitor Reset

	7.5 Interrupts
	7.5.1 Non-Maskable Interrupt Request (XIRQ)
	7.5.2 Maskable Interrupts
	7.5.3 Interrupt Recognition
	7.5.4 External Interrupts
	7.5.5 Return-from-Interrupt Instruction (RTI)

	7.6 Unimplemented Opcode Trap
	7.7 Software Interrupt Instruction (SWI)
	7.8 Exception Processing Flow
	7.8.1 Vector Fetch
	7.8.2 Reset Exception Processing
	7.8.3 Interrupt and Unimplemented Opcode Trap Exception Processing

	Section 8. Instruction Queue
	8.1� Introduction
	8.2� External Reconstruction of the Queue
	8.3� Instruction Queue Status Signals
	8.3.1� HCS12 Timing Detail
	8.3.2� M68HC12 Timing Detail
	8.3.3� Null (Code 0:0)
	8.3.4� LAT — Latch Data from Bus (Code 0:1)
	8.3.5� ALD — Advance and Load from Data Bus (Code 1:0)
	8.3.6� ALL — Advance and Load from Latch (Code 1:1)
	8.3.7� INT — Interrupt Sequence Start (Code 0:1)
	8.3.8� SEV — Start Instruction on Even Address (Code 1:0)
	8.3.9� SOD — Start Instruction on Odd Address (Code 1:1)

	8.4� Queue Reconstruction (for HCS12)
	8.4.1� Queue Reconstruction Registers (for HCS12)
	8.4.1.1 fetch_add Register
	8.4.1.2 st1_add, st1_dat Registers
	8.4.1.3 st2_add, st2_dat Registers
	8.4.1.4 st3_add, st3_dat Registers

	8.4.2� Reconstruction Algorithm (for HCS12)

	8.5� Queue Reconstruction (for M68HC12)
	8.5.1� Queue Reconstruction Registers (for M68HC12)
	8.5.1.1 in_add, in_dat Registers
	8.5.1.2 fetch_add, fetch_dat Registers
	8.5.1.3 st1_add, st1_dat Registers
	8.5.1.4 st2_add, st2_dat Registers

	8.5.2� Reconstruction Algorithm (for M68HC12)
	8.5.2.1 LAT Decoding
	8.5.2.2 ALD Decoding
	8.5.2.3 ALL Decoding

	8.6� Instruction Tagging

	Section 9. Fuzzy Logic Support
	9.1 Introduction
	9.2 Fuzzy Logic Basics
	9.2.1 Fuzzification (MEM)
	9.2.2 Rule Evaluation (REV and REVW)
	9.2.3 Defuzzification (WAV)

	9.3 Example Inference Kernel
	9.4 MEM Instruction Details
	9.4.1 Membership Function Definitions
	9.4.2 Abnormal Membership Function Definitions
	9.4.2.1 Abnormal Membership Function Case 1
	9.4.2.2 Abnormal Membership Function Case 2
	9.4.2.3 Abnormal Membership Function Case 3

	9.5 REV and REVW Instruction Details
	9.5.1 Unweighted Rule Evaluation (REV)
	9.5.1.1 Set Up Prior to Executing REV
	9.5.1.2 Interrupt Details
	9.5.1.3 Cycle-by-Cycle Details for REV

	9.5.2 Weighted Rule Evaluation (REVW)
	9.5.2.1 Set Up Prior to Executing REVW
	9.5.2.2 Interrupt Details
	9.5.2.3 Cycle-by-Cycle Details for REVW

	9.6 WAV Instruction Details
	9.6.1 Set Up Prior to Executing WAV
	9.6.2 WAV Interrupt Details
	9.6.3 Cycle-by-Cycle Details for WAV and wavr

	9.7 Custom Fuzzy Logic Programming
	9.7.1 Fuzzification Variations
	9.7.2 Rule Evaluation Variations
	9.7.3 Defuzzification Variations

	Appendix A. Instruction Reference
	A.1 Introduction
	A.2 Stack and Memory Layout
	A.3 Interrupt Vector Locations
	A.4 Notation Used in Instruction Set Summary
	A.5 Hexadecimal to Decimal Conversion
	A.6 Decimal to Hexadecimal Conversion

	Appendix B. M68HC11 to CPU12 Upgrade Path
	B.1 Introduction
	B.2 CPU12 Design Goals
	B.3 Source Code Compatibility
	B.4 Programmer’s Model and Stacking
	B.5 True 16-Bit Architecture
	B.5.1 Bus Structures
	B.5.2 Instruction Queue
	B.5.3 Stack Function

	B.6 Improved Indexing
	B.6.1 Constant Offset Indexing
	B.6.2 Auto-Increment Indexing
	B.6.3 Accumulator Offset Indexing
	B.6.4 Indirect Indexing

	B.7 Improved Performance
	B.7.1 Reduced Cycle Counts
	B.7.2 Fast Math
	B.7.3 Code Size Reduction

	B.8 Additional Functions
	B.8.1 Memory-to-Memory Moves
	B.8.2 Universal Transfer and Exchange
	B.8.3 Loop Construct
	B.8.4 Long Branches
	B.8.5 Minimum and Maximum Instructions
	B.8.6 Fuzzy Logic Support
	B.8.7 Table Lookup and Interpolation
	B.8.8 Extended Bit Manipulation
	B.8.9 Push and Pull D and CCR
	B.8.10 Compare SP
	B.8.11 Support for Memory Expansion

	Appendix C. High-Level Language Support
	C.1 Introduction
	C.2 Data Types
	C.3 Parameters and Variables
	C.3.1 Register Pushes and Pulls
	C.3.2 Allocating and Deallocating Stack Space
	C.3.3 Frame Pointer

	C.4 Increment and Decrement Operators
	C.5 Higher Math Functions
	C.6 Conditional If Constructs
	C.7 Case and Switch Statements
	C.8 Pointers
	C.9 Function Calls
	C.10 Instruction Set Orthogonality

	Index

	Clocks and Reset Generator
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 VDDPLL, VSSPLL
	2.2.2 XFC
	2.2.3 RESET

	Section 3 Memory Map and Registers
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 CRG Synthesizer Register (SYNR)
	3.3.2 CRG Reference Divider Register (REFDV)
	3.3.3 Reserved Register (CTFLG)
	3.3.4 CRG Flags Register (CRGFLG)
	3.3.5 CRG Interrupt Enable Register (CRGINT)
	3.3.6 CRG Clock Select Register (CLKSEL)
	3.3.7 CRG PLL Control Register (PLLCTL)
	3.3.8 CRG RTI Control Register (RTICTL)
	3.3.9 CRG COP Control Register (COPCTL)
	3.3.10 Reserved Register (FORBYP)
	3.3.11 Reserved Register (CTCTL)
	3.3.12 CRG COP Timer Arm/Reset Register (ARMCOP)

	Section 4 Functional Description
	4.1 Functional Blocks
	4.1.1 Phase Locked Loop (PLL)
	4.1.1.1 PLL Operation
	4.1.1.2 Acquisition and Tracking Modes

	4.1.2 System Clocks Generator
	4.1.3 Clock Monitor (CM)
	4.1.4 Clock Quality Checker
	4.1.5 Computer Operating Properly Watchdog (COP)
	4.1.6 Real Time Interrupt (RTI)

	4.2 Operation Modes
	4.2.1 Normal Mode
	4.2.2 Self Clock Mode

	4.3 Low Power Options
	4.3.1 Run Mode
	4.3.2 Wait Mode
	4.3.3 CPU Stop Mode
	4.3.3.1 Wake-up from Pseudo-Stop (PSTP=1)
	4.3.3.2 Wake-up from Full Stop (PSTP=0)

	Section 5 Resets
	5.1 General
	5.2 Description of Reset Operation
	5.2.1 Clock Monitor Reset
	5.2.2 Computer Operating Properly Watchdog (COP) Reset
	5.2.3 Power On Reset, Low Voltage Reset

	Section 6 Interrupts
	6.1 General
	6.2 Description of Interrupt Operation
	6.2.1 Real Time Interrupt
	6.2.2 PLL Lock Interrupt
	6.2.3 Self Clock Mode Interrupt

	Port Integration Module
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Block Diagram

	Section 2 External Signal Description
	2.1 Overview
	2.2 Signal properties

	Section 3 Memory Map/Register Definition
	3.1 Register Descriptions
	3.1.1 Port T Registers
	3.1.2 Port S Registers
	3.1.3 Port M Registers
	3.1.4 Port P Registers
	3.1.5 Port H Registers
	3.1.6 Port J Registers

	Section 4 Functional Description
	4.1 General
	4.1.1 I/O register
	4.1.2 Input register
	4.1.3 Data direction register
	4.1.4 Reduced drive register
	4.1.5 Pull device enable register
	4.1.6 Polarity select register

	4.2 Port T
	4.3 Port S
	4.4 Port M
	4.4.1 Module Routing Register

	4.5 Port P
	4.6 Port H
	4.7 Port J
	4.8 Port A, B, E, K, and BKGD pin
	4.9 External Pin Descriptions
	4.10 Low Power Options
	4.10.1 Run Mode
	4.10.2 Wait Mode
	4.10.3 Stop Mode

	Section 5 Initialization/Application Information
	Index
	Block Guide End Sheet

	Timer System
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions

	Section 3 Memory Map and Registers
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions

	Section 4 Functional Description
	4.1 General
	4.2 Enhanced Capture Timer Modes of Operation

	Section 5 Reset
	5.1 General

	Section 6 Interrupts
	6.1 General
	6.2 Description of Interrupt Operation

	EEPROM
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.1.1 Glossary

	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 External Signal Description
	2.1 Overview

	Section 3 Memory Map and Registers
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 ECLKDIV — EEPROM Clock Divider Register
	3.3.2 RESERVED1
	3.3.3 RESERVED2
	3.3.4 ECNFG — EEPROM Configuration Register
	3.3.5 EPROT — EEPROM Protection Register
	3.3.6 ESTAT — EEPROM Status Register
	3.3.7 ECMD — EEPROM Command Register
	3.3.8 RESERVED3
	3.3.9 EADDR — EEPROM Address Register
	3.3.10 EDATA — EEPROM Data Register

	Section 4 Functional Description
	4.1 Program and Erase Operation
	4.1.1 Writing the ECLKDIV Register
	4.1.2 Program and Erase
	4.1.3 Valid EEPROM Commands
	4.1.4 Illegal EEPROM Operations

	4.2 Wait Mode
	4.3 Stop Mode
	4.4 Background Debug Mode

	Section 5 Resets
	5.1 General

	Section 6 Interrupts
	6.1 General
	6.2 Description of Interrupt Operation

	Flash Memory
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.1.1 Glossary

	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 External Signal Description
	2.1 Overview

	Section 3 Memory Map and Registers
	3.1 Overview
	3.2 Modules Memory Map
	3.3 Register Descriptions
	3.3.1 FCLKDIV — Flash Clock Divider Register
	3.3.2 FSEC — Flash Security Register
	3.3.3 FTSTMOD — Flash Test Mode Register
	3.3.4 FCNFG — Flash Configuration Register
	3.3.5 FPROT — Flash Protection Register
	3.3.6 FSTAT — Flash Status Register
	3.3.7 FCMD — Flash Command Register
	3.3.8 RESERVED1
	3.3.9 FADDR — Flash Address Register
	3.3.10 FDATA — Flash Data Register
	3.3.11 RESERVED2
	3.3.12 RESERVED3
	3.3.13 RESERVED4
	3.3.14 RESERVED5

	Section 4 Functional Description
	4.1 Program and Erase Operation
	4.1.1 Writing the FCLKDIV Register
	4.1.2 Program and Erase Sequences in Normal Mode
	4.1.3 Valid Flash Commands
	4.1.4 Illegal Flash Operations

	4.2 Wait Mode
	4.3 Stop Mode
	4.4 Background Debug Mode
	4.5 Flash Security
	4.5.1 Unsecuring via the Backdoor Key Access

	Section 5 Resets
	5.1 General

	Section 6 Interrupts
	6.1 General
	6.2 Description of Interrupt Operation

	I2C
	Revision History
	Table of Contents
	Section 1 Introduction
	Section 2 External Signal Description
	Section 3 Memory Map/Register Definition
	Section 4 Functional Description
	Section 5 Initialization/Application Information
	Section 6 Resets
	Section 7 Interrupts

	List of Figures
	List of Tables
	Preface
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 External Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 SCL
	2.2.2 SDA

	Section 3 Memory Map/Register Definition
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 IIC Address Register
	3.3.2 IIC Frequency Divider Register
	3.3.3 IIC Control Register
	3.3.4 IIC Status Register
	3.3.5 IIC Data I/O Register

	Section 4 Functional Description
	4.1 General
	4.2 I-Bus Protocol
	4.2.1 START Signal
	4.2.2 Slave Address Transmission
	4.2.3 Data Transfer
	4.2.4 STOP Signal
	4.2.5 Repeated START Signal
	4.2.6 Arbitration Procedure
	4.2.7 Clock Synchronization
	4.2.8 Handshaking
	4.2.9 Clock Stretching

	4.3 Modes of Operation
	4.3.1 Run Mode
	4.3.2 Wait Mode
	4.3.3 Stop Mode

	Section 5 Initialization/Application Information
	5.1 IIC Programming Examples
	5.1.1 Initialization Sequence
	5.1.2 Generation of START
	5.1.3 Post-Transfer Software Response
	5.1.4 Generation of STOP
	5.1.5 Generation of Repeated START
	5.1.6 Slave Mode
	5.1.7 Arbitration Lost

	Section 6 Resets
	6.1 General

	Section 7 Interrupts
	7.1 General
	7.2 Interrupt Description
	Block Guide End Sheet

	Interrupts
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction to Interrupt (INT)
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.3.1 Normal Operation
	1.3.2 Special Operation
	1.3.3 Emulation Modes

	1.4 Low-Power Options
	1.4.1 Run Mode
	1.4.2 Wait Mode
	1.4.3 Stop Mode

	Section 2 External Signal Description
	Section 3 Memory Map/Register Definition
	3.1 Interrupt Test Control Register
	3.2 Interrupt Test Registers
	3.3 Highest Priority I Interrupt (Optional)

	Section 4 Functional Description
	4.1 Interrupt Exception Requests
	4.1.1 Interrupt Registers
	4.1.2 Highest Priority I-Bit Maskable Interrupt
	4.1.3 Interrupt Priority Decoder

	4.2 Reset Exception Requests
	4.3 Exception Priority

	Multiplexed External Bus Interface
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation

	Section 2 External Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions

	Section 3 Memory Map/Register Definition
	3.1 Register Descriptions
	3.1.1 Port A Data Register (PORTA)
	3.1.2 Port B Data Register (PORTB)
	3.1.3 Data Direction Register A (DDRA)
	3.1.4 Data Direction Register B (DDRB)
	3.1.5 Reserved Registers
	3.1.6 Port E Data Register (PORTE)
	3.1.7 Data Direction Register E (DDRE)
	3.1.8 Port E Assignment Register (PEAR)
	3.1.9 MODE Register (MODE)
	3.1.10 Pull-Up Control Register (PUCR)
	3.1.11 Reduced Drive Register (RDRIV)
	3.1.12 External Bus Interface Control Register (EBICTL)
	3.1.13 Reserved Register
	3.1.14 IRQ Control Register (IRQCR)
	3.1.15 Port K Data Register (PORTK).
	3.1.16 Port K Data Direction Register (DDRK)

	Section 4 Functional Description
	4.1 External Bus Control
	4.1.1 Detecting Access Type from External Signals
	4.1.2 Stretched Bus Cycles

	4.2 External Data Bus Interface
	4.2.1 Internal Visibility
	4.2.2 Secure Mode

	4.3 Control
	4.3.1 Low-Power Options

	4.4 Registers

	Module Mapping Control
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction to Module Mapping Control (MMC)
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation

	Section 2 External Signal Description
	Section 3 Memory Map/Register Definition
	3.1 Register Descriptions
	3.1.1 Initialization of Internal RAM Position Register (INITRM)
	3.1.2 Initialization of Internal Registers Position Register (INITRG)
	3.1.3 Initialization of Internal EEPROM Position Register (INITEE)
	3.1.4 Miscellaneous System Control Register (MISC)
	3.1.5 Reserved Test Register Zero (MTST0)
	3.1.6 Reserved Test Register One (MTST1)
	3.1.7 Memory Size Register Zero (MEMSIZ0)
	3.1.8 Memory Size Register One (MEMSIZ1)
	3.1.9 Program Page Index Register (PPAGE)

	Section 4 Functional Description
	4.1 Bus Control
	4.2 Address Decoding
	4.2.1 Select Priority and Mode Considerations
	4.2.2 Emulation Chip Select Signal
	4.2.3 External Chip Select Signal

	4.3 Memory Expansion
	4.3.1 CALL and Return from Call Instructions
	4.3.2 Extended Address (XAB19:14) and ECS Signal Functionality

	MSCAN
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Section 1 Introduction
	1.1 Overview
	1.2 Features

	Section 2 External Signal Description
	2.1 Overview
	2.2 Detailed Signal Description
	2.2.1 RXCAN — CAN Receiver Input Pin
	2.2.2 TXCAN — CAN Transmitter Output Pin

	2.3 CAN System

	Section 3 Memory Map/Register Definition
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 Programmer’s Model of Control Registers
	3.3.1.1 MSCAN Control 0 Register (CANCTL0)
	3.3.1.2 MSCAN Control 1 Register (CANCTL1)
	3.3.1.3 MSCAN Bus Timing Register 0 (CANBTR0)
	3.3.1.4 MSCAN Bus Timing Register 1 (CANBTR1)
	3.3.1.5 MSCAN Receiver Flag Register (CANRFLG)
	3.3.1.6 MSCAN Receiver Interrupt Enable Register (CANRIER)
	3.3.1.7 MSCAN Transmitter Flag Register (CANTFLG)
	3.3.1.8 MSCAN Transmitter Interrupt Enable Register (CANTIER)
	3.3.1.9 MSCAN Transmitter Message Abort Control (CANTARQ)
	3.3.1.10 MSCAN Transmitter Message Abort Control (CANTAAK)
	3.3.1.11 MSCAN Transmit Buffer Selection (CANTBSEL)
	3.3.1.12 MSCAN Identifier Acceptance Control Register (CANIDAC)
	3.3.1.13 Reserved Registers
	3.3.1.14 MSCAN Receive Error Counter Register (CANRXERR)
	3.3.1.15 MSCAN Transmit Error Counter Register (CANTXERR)
	3.3.1.16 MSCAN Identifier Acceptance Registers (CANIDAR0-7)
	3.3.1.17 MSCAN Identifier Mask Registers (CANIDMR0-7)

	3.3.2 Programmer’s Model of Message Storage
	3.3.2.1 Identifier Registers (IDR0-3)
	3.3.2.2 Data Segment Registers (DSR0-7)
	3.3.2.3 Data Length Register (DLR)
	3.3.2.4 Transmit Buffer Priority Register (TBPR)
	3.3.2.5 Time Stamp Register (TSRH, TSRL)

	Section 4 Functional Description
	4.1 General
	4.2 Message Storage
	4.2.1 Message Transmit Background
	4.2.2 Transmit Structures
	4.2.3 Receive Structures

	4.3 Identifier Acceptance Filter
	4.3.1 Protocol Violation Protection
	4.3.2 Clock System

	4.4 Timer Link
	4.5 Modes of Operation
	4.5.1 Normal Modes
	4.5.2 Special Modes
	4.5.3 Emulation Modes
	4.5.4 Listen-Only Mode
	4.5.5 Security Modes

	4.6 Low Power Options
	4.6.1 CPU Run Mode
	4.6.2 CPU Wait Mode
	4.6.3 CPU Stop Mode
	4.6.4 MSCAN Sleep Mode
	4.6.5 MSCAN Initialization Mode
	4.6.6 MSCAN Power Down Mode
	4.6.7 Programmable Wake-Up Function

	4.7 Reset Initialization
	4.8 General
	4.9 Description of Interrupt Operation
	4.9.1 Transmit Interrupt
	4.9.2 Receive Interrupt
	4.9.3 Wake-Up Interrupt
	4.9.4 Error Interrupt

	4.10 Interrupt Acknowledge
	4.11 Recovery from STOP or WAIT

	Section 5 Initialization/Application Information
	5.1 MSCAN initialization

	Index
	Block Guide End Sheet

	Oscillator
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation

	Section 2 Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 VDDPLL, VSSPLL
	2.2.2 EXTAL, XTAL
	2.2.3 XCLKS

	Section 3 Memory Map and Registers
	Section 4 Functional Description
	4.1 General
	4.2 Amplitude Limitation Control (ALC)
	4.3 Clock Monitor (CM)

	Section 5 Interrupts
	User Guide End Sheet

	Pulse Width Modulation
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 PWM8b8cSignal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 PWM7 — PWM8b8c Channel 7
	2.2.2 PWM6 — PWM8b8c Channel 6
	2.2.3 PWM5 — PWM8b8c Channel 5
	2.2.4 PWM4 — PWM8b8c Channel 4
	2.2.5 PWM3 — PWM8b8c Channel 3
	2.2.6 PWM2 — PWM8b8c Channel 2
	2.2.7 PWM1 — PWM8b8c Channel 1
	2.2.8 PWM0 — PWM8b8c Channel 0

	Section 3 Memory Map and Register Definition
	3.1 Overview
	3.2 Module Memory Map
	3.3 Register Descriptions
	3.3.1 PWM Enable Register (PWME)
	3.3.2 PWM Polarity Register (PWMPOL)
	3.3.3 PWM Clock Select Register (PWMCLK)
	3.3.4 PWM Prescale Clock Select Register (PWMPRCLK)
	3.3.5 PWM Center Align Enable Register (PWMCAE)
	3.3.6 PWM Control Register (PWMCTL)
	3.3.7 Reserved Register (PWMTST)
	3.3.8 Reserved Register (PWMPRSC)
	3.3.9 PWM Scale A Register (PWMSCLA)
	3.3.10 PWM Scale B Register (PWMSCLB)
	3.3.11 Reserved Registers (PWMSCNTx)
	3.3.12 PWM Channel Counter Registers (PWMCNTx)
	3.3.13 PWM Channel Period Registers (PWMPERx)
	3.3.14 PWM Channel Duty Registers (PWMDTYx)
	3.3.15 PWM Shutdown Register (PWMSDN)

	Section 4 Functional Description
	4.1 PWM Clock Select
	4.1.1 Prescale
	4.1.2 Clock Scale
	4.1.3 Clock Select

	4.2 PWM Channel Timers
	4.2.1 PWM Enable
	4.2.2 PWM Polarity
	4.2.3 PWM Period and Duty
	4.2.4 PWM Timer Counters
	4.2.5 Left Aligned Outputs
	4.2.6 Center Aligned Outputs
	4.2.7 PWM 16-Bit Functions
	4.2.8 PWM Boundary Cases

	Section 5 Resets
	5.1 General

	Section 6 Interrupts
	6.1 Interrupt Operation

	User Guide End Sheet

	Serial Communications Interface
	Chapter 1 Serial Communications Interface (S12SCIV2) Block Description
	1.1 Introduction
	1.1.1 Glossary
	1.1.2 Features
	1.1.3 Modes of Operation
	1.1.3.1 Run Mode
	1.1.3.2 Wait Mode
	1.1.3.3 Stop Mode

	1.1.4 Block Diagram

	1.2 External Signal Description
	1.2.1 TXD-SCI Transmit Pin
	1.2.2 RXD-SCI Receive Pin

	1.3 Memory Map and Registers
	1.3.1 Module Memory Map
	1.3.2 Register Descriptions
	1.3.2.1 SCI Baud Rate Registers (SCIBDH and SCHBDL)
	1.3.2.2 SCI Control Register 1 (SCICR1)
	1.3.2.3 SCI Control Register 2 (SCICR2)
	1.3.2.4 SCI Status Register 1 (SCISR1)
	1.3.2.5 SCI Status Register 2 (SCISR2)
	1.3.2.6 SCI Data Registers (SCIDRH and SCIDRL)

	1.4 Functional Description
	1.4.1 Data Format
	1.4.2 Baud Rate Generation
	1.4.3 Transmitter
	1.4.3.1 Transmitter Character Length
	1.4.3.2 Character Transmission
	1.4.3.3 Break Characters
	1.4.3.4 Idle Characters

	1.4.4 Receiver
	1.4.4.1 Receiver Character Length
	1.4.4.2 Character Reception
	1.4.4.3 Data Sampling
	1.4.4.4 Framing Errors
	1.4.4.5 Baud Rate Tolerance
	1.4.4.5.1 Slow Data Tolerance
	1.4.4.5.2 Fast Data Tolerance

	1.4.4.6 Receiver Wakeup
	1.4.4.6.1 Idle Input Line Wakeup (WAKE = 0)
	1.4.4.6.2 Address Mark Wakeup (WAKE = 1)

	1.4.5 Single-Wire Operation
	1.4.6 Loop Operation

	1.5 Initialization Information
	1.5.1 Reset Initialization
	1.5.2 Interrupt Operation
	1.5.2.1 System Level Interrupt Sources
	1.5.2.2 Interrupt Descriptions
	1.5.2.2.1 TDRE Description
	1.5.2.2.2 TC Description
	1.5.2.2.3 RDRF Description
	1.5.2.2.4 OR Description

	1.5.2.3 IDLE Description

	1.5.3 Recovery from Wait Mode

	Serial Peripheral Interface
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation

	Section 2 External Signal Description
	2.1 Overview
	2.2 Detailed Signal Description
	2.2.1 MOSI
	2.2.2 MISO
	2.2.3 SS
	2.2.4 SCK

	Section 3 Memory Map/Register Definition
	3.1 Register Descriptions
	3.1.1 SPI Control Register 1
	3.1.2 SPI Control Register 2
	3.1.3 SPI Baud Rate Register
	3.1.4 SPI Status Register
	3.1.5 SPI Data Register

	Section 4 Functional Description
	4.1 General
	4.2 Master Mode
	4.3 Slave Mode
	4.4 Transmission Formats
	4.4.1 Clock Phase and Polarity Controls
	4.4.2 CPHA = 0 Transfer Format
	4.4.3 CPHA = 1 Transfer Format

	4.5 SPI Baud Rate Generation
	4.6 Special Features
	4.6.1 SS Output
	4.6.2 Bidirectional Mode (MOMI or SISO)

	4.7 Error Conditions
	4.7.1 Mode Fault Error

	4.8 Low Power Mode Options
	4.8.1 SPI in Run Mode
	4.8.2 SPI in Wait Mode
	4.8.3 SPI in Stop Mode
	4.8.4 Reset
	4.8.5 Interrupts

	Section 5 Initialization/Application Information
	Index
	Block Guide End Sheet

	VREG
	Revision History
	Table of Contents
	List of Figures
	List of Tables
	Section 1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Modes of Operation
	1.4 Block Diagram

	Section 2 Signal Description
	2.1 Overview
	2.2 Detailed Signal Descriptions
	2.2.1 VDDA, VSSA
	2.2.2 VDDR
	2.2.3 VDD1,[2], VSS1,[2]
	2.2.4 VDDPLL, VSSPLL
	2.2.5 VREGEN

	Section 3 Memory Map and Registers
	3.1 Overview

	Section 4 Functional Description
	4.1 General
	4.1.1 Reference Generation
	4.1.2 Operational Amplifier
	4.1.3 Power Output Stage
	4.1.4 Power On Reset Pulse Generation

	User Guide End Sheet

