
EE319K Spring 2011 Final Exam Version A Page 1 of 11 

Jonathan W. Valvano  May 13, 2011 

First:________________   Last:____________________ 
 This is a closed book exam. You must put your answers in the space provided. You have 3 
hours, so allocate your time accordingly. Please read the entire exam before starting. 
(1) Q1 a) 
 
(1) Q1 b) 
 

(5) Q3 
 

(1) Q1 c) 
 
(1) Q1 d) 
 

(5) Q6 
 

(1) Q1 e) 
 
(1) Q1 f) 
 

(5) Q7 
 

(1) Q1 g) 
 
(1) Q1 h) 
 

(2) Q9 

(1) Q1 i) 
 
(1) Q1 j) 
 

(10) Q10 

(3) Q2 a) 
 

(3) Q11 a) 

(2) Q2 b) (2) Q11 b) 

(10) Q4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EE319K Spring 2011 Final Exam Version A Page 2 of 11 

Jonathan W. Valvano  May 13, 2011 

(5) Q5 a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(5) Q5 b) 



EE319K Spring 2011 Final Exam Version A Page 3 of 11 

Jonathan W. Valvano  May 13, 2011 

(6) Q8 a) 
const struct stuff{ 
 
 
 
 
 
}; 
typedef const struct stuff StuffType; 
(4) Q8 b) 
 
 
 
 
 
 
 
 
(4) Q8 c) 
 
 
 
 
 
 
 
 
 
 
(4) Q8 d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EE319K Spring 2011 Final Exam Version A Page 4 of 11 

Jonathan W. Valvano  May 13, 2011 

(4) Q12 a) 
 
 
 
 
 
 
 
(8) Q12 b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(8) Q12 c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



EE319K Spring 2011 Final Exam Version A Page 5 of 11 

Jonathan W. Valvano  May 13, 2011 

Please read and affirm our honor code: 
 “The core values of The University of Texas at Austin are learning, discovery, freedom, leadership, 
individual opportunity, and responsibility. Each member of the university is expected to uphold these 
values through integrity, honesty, trust, fairness, and respect toward peers and community.” 
(10) Question 1. State the term that is described by each definition. 
Part a) The process of converting an unsigned 8-bit integer into an unsigned 16-bit integer.  
Part b) You are given a 4-bit DAC to test. The DAC input is stepped from 0 to 15. For each input 
change, the change in DAC output is measured. The results are processed by averaging all the changes 
in output.  
Part c) The part of the processor that performs: addition, multiplication, and, or, shift.  
Part d) A system where the response time from when new input is ready until when the new input is 
processed is less than 25 μsec. 
Part e) Error that can occur as a result of a left shift.  
Part f) Error that can occur as a result of a right shift.  
Part g) A variable that can only be accessed by one function.  
Part h) A function parameter that is a pointer to the data.  
Part i) A characteristic of a debugger when the presence of the collection of information itself makes a 
large and important effect on the parameters being measured.  
Part j) A debugging process that fixes all the inputs to a system, so the systems can be run over an 
over yielding the same outputs.  
 
(5) Question 2. The system uses an 8-bit ADC and a serial port running at 100 
bits/sec. Assume every ADC sample you take must be transmitted over the 
serial channel.  
Part a) How many bytes of information per second are being transferred? 
 
Part b) At this rate, what would the be ADC sampling rate in Hz?  
 
(5) Question 3. What is the output voltage Vout when PT1 is high and PT0 is low? Assume VOH is 5V 
and VOL = 0V. 
 
(10) Question 4.  Assume Register X contains the integer portion of an unsigned binary fixed point 
number with resolution 2-4, and Register Y contains the integer portion of an unsigned binary fixed 
point number with resolution 2-2. For example, if the first number is 1.5 then Register X equals 24. If 
the second number is 2.25, then Register Y is 9. Write assembly code that adds the two numbers such 
that the sum is in Register D with a resolution of 2-2. Since 1.5+2.25 is 2.75, Register D should be 
returned with 11. No global variables are allowed, but you may use the stack. Handle potential 
overflow errors by implementing ceiling. Some dropout may occur.     
 
(10) Question 5. There are arrays of 16-bit numbers. The first element of the array is the length and 
remaining elements are 16-bit signed numbers. For example, here are three such possible arrays. 
short buf1[5]={4,1000,-1000,0,33}; 
short buf2[7]={6,-4,100,200,2,0,44}; 
short buf3[1]={0}; 
Part a) Write a C function that takes a pointer to an array and returns the difference between the 
maximum and minimum values. For example 

Vout
10 kΩ

10 kΩ

10 kΩ
PT1

PT0



EE319K Spring 2011 Final Exam Version A Page 6 of 11 

Jonathan W. Valvano  May 13, 2011 

Result1 = MaxDiff(buf1);  // should return 2000 = 1000 – (-1000) 
Result2 = MaxDiff(buf2);  // should return 204 = 200 – (-4) 
Result3 = MaxDiff(buf3);  // should return 0 because array is empty 
 
You are not allowed to add global variables. Don’t worry about overflow calculating the difference. 
 
Part b) Write an assembly subroutine that performs the same operation. The pointer to the array is 
passed in Register D, and the result is returned in Register D. You are not allowed to add any global 
variables. You must use binding to implement local variables. 
 
(5) Question 6.  The following interface can be used for low current LEDs. 
Assume the LED voltage drop is 2 V. The resistor is 1000 Ω. When the 
software outputs a high, the voltage on PP0 becomes 4.9 V. When the 
software outputs a low, the voltage on PP0 becomes 0.5 V. What is the LED 
current when the LED is on? 
 
(5) Question 7.  Assume Register B equals $55, Register A equals $F0 and 
Register X equals $5678. What is the value in Register X after executing these instructions? Give the 
answer as ??? if the value cannot be determined. 
       stx  2,-sp 
       std  2,sp-        
       pulx 
       puld 
 
(18) Question 8.  This question tests your ability to create and use structures. 
Part a) Complete the C code that defines a structure containing an array of three 8-bit unsigned 
numbers, and one 16-bit unsigned number. Call the array Position, and call the number Time.  
 
Part b) Use the StuffType structure to define a ROM-based constant with a Position of 
{100,60,50} and a Time of 1000. Call this constant Command. 
 
Part c) Write a C code (no function, just code) that accesses the above constant and sets a variable max 
to the largest position number of the three. In this case, max will become 100. 
 
Part d) Write a C function that takes a pointer to a constant and returns the largest position number of 
the three. One possible way to call your function is 
max = MaxPosition(&Command); 
In this case, max will become 100. 
 
(2) Question 9.  You are given two 8-bit numbers, where each number is known to exist between 0 and 
100. An 8-bit addition is operated on two numbers. Is it possible for the overflow (V) bit to be set? 
 
(5) Question 10. Assume the E clock is operating at 8 MHz, and TSCR2 = 4.  The output compare ISR 
executes these instructions. What value goes in ????? to make the interrupt frequency 100 Hz?  
OC6ISR movb #$40,TFLG1 
       ldd  TC6   

PP0

+5 V

R



EE319K Spring 2011 Final Exam Version A Page 7 of 11 

Jonathan W. Valvano  May 13, 2011 

       addd #????? 
       std  TC6 
       rti 
 
(5) Question 11.  Assume the PC contains $4007, and the SP equals $3FF4.  
$4007 0750    bsr Function 
Part a) What number is pushed on the stack during the execution of bsr? 
 
Part b) What is the value in the PC after bsr is executed? 
 
(20) Question 12. In this problem, your software should output the alphabet ‘A’ ‘B’ ‘C’ … ‘Z’ over 
and over using SCI0 serial port. You must use SCI0 interrupts (not output compare). The baud rate is 
10000 bits/sec. You may assume the E clock is 8 MHz.  
 
Part a) Show the C code that specifies any global variables you need. 
 
Part b) Write the initialization function in C that sets up the SCI0 interrupts. The main will call this 
initialization once at the beginning, and then perform unrelated tasks. This function should arm and 
enable interrupts. No loops are allowed. 
 
Part c) Write the ISR in C that outputs the alphabet using SCI0. No loops are allowed. 



EE319K Spring 2011 Final Exam Version A Page 8 of 11 

Jonathan W. Valvano  May 13, 2011 

aba 8-bit add RegA=RegA+RegB 
abx unsigned add RegX=RegX+RegB    
aby unsigned add RegY=RegY+RegB  
adca 8-bit add with carry to RegA   
adcb 8-bit add with carry to RegB   
adda 8-bit add to RegA  
addb 8-bit add to RegB   
addd 16-bit add to RegD   
anda 8-bit logical and to RegA  
andb 8-bit logical and to RegB  
andcc 8-bit logical and to RegCC  
asl/lsl   8-bit left shift Memory 
asla/lsla 8-bit left shift RegA 
aslb/lslb 8-bit arithmetic left shift RegB 
asld/lsld 16-bit left shift RegD 
asr 8-bit arithmetic right shift Memory  
asra 8-bit arithmetic right shift to RegA  
asrb 8-bit arithmetic right shift to RegB  
bcc branch if carry clear 
bclr bit clear in memory        bclr PTT,#$01  
bcs branch if carry set 
beq branch if result is zero (Z=1) 
bge branch if signed ≥ 
bgnd enter background debug mode 
bgt branch if signed > 
bhi branch if unsigned > 
bhs branch if unsigned ≥ 
bita 8-bit and with RegA, sets CCR  
bitb 8-bit and with RegB, sets CCR  
ble branch if signed ≤ 
blo branch if unsigned < 
bls branch if unsigned ≤ 
blt branch if signed < 
bmi branch if result is negative (N=1) 
bne branch if result is nonzero (Z=0) 
bpl branch if result is positive (N=0) 
bra branch always 
brclr branch if bits are clear    brclr PTT,#$01,loop   
brn branch never 
brset branch if bits are set      brset PTT,#$01,loop   
bset bit set in memory        bset PTT,#$04  
bsr branch to subroutine 
bvc branch if overflow clear 
bvs branch if overflow set 
call subroutine in expanded memory 
cba 8-bit compare RegA with RegB, RegA-RegB 
clc clear carry bit, C=0 
cli clear I=0, enable interrupts 
clr 8-bit memory clear    
clra RegA clear 
clrb RegB clear 
clv clear overflow bit, V=0 
cmpa 8-bit compare RegA with memory  
cmpb 8-bit compare RegB with memory  
com 8-bit logical complement to memory  
coma 8-bit logical complement to RegA  
comb 8-bit logical complement to RegB  
cpd 16-bit compare RegD with memory  
cpx 16-bit compare RegX with memory  
cpy 16-bit compare RegY with memory  
daa 8-bit decimal adjust accumulator  
dbeq decrement and branch if result=0   dbeq Y,loop  
dbne decrement and branch if result≠0    dbne A,loop  
dec 8-bit decrement memory  
deca 8-bit decrement RegA  
decb  8-bit decrement RegB  

des 16-bit decrement RegSP  
dex 16-bit decrement RegX  
dey 16-bit decrement RegY  
ediv RegY=(Y:D)/RegX, 32-bit by 16-bit unsigned divide 
edivs RegY=(Y:D)/RegX, 32-bit by 16-bit signed divide 
emacs 16 by 16 signed multiply, 32-bit add 
emaxd 16-bit unsigned maximum in RegD 
emaxm 16-bit unsigned maximum in memory 
emind 16-bit unsigned minimum in RegD 
eminm 16-bit unsigned minimum in memory 
emul RegY:D=RegY*RegD, 16 by 16 to 32-bit unsigned multiply  
emuls RegY:D=RegY*RegD, 16 by 16 to 32-bit signed multiply 
eora 8-bit logical exclusive or to RegA  
eorb 8-bit logical exclusive or to RegB  
etbl 16-bit look up and interpolation 
exg exchange register contents          exg X,Y  
fdiv unsigned fract div, X=(65536*D)/X 
ibeq increment and branch if result=0    ibeq Y,loop  
ibne increment and branch if result≠0    ibne A,loop  
idiv 16-bit by 16-bit unsigned div, X=D/X, D=remainder 
idivs 16-bit by 16-bit signed divide, X=D/X, D= remainder 
inc 8-bit increment memory  
inca 8-bit increment RegA  
incb 8-bit increment RegB  
ins 16-bit increment RegSP  
inx 16-bit increment RegX  
iny 16-bit increment RegY  
jmp jump always 
jsr jump to subroutine 
lbcc long branch if carry clear 
lbcs long branch if carry set 
lbeq long branch if result is zero 
lbge long branch if signed ≥ 
lbgt long branch if signed > 
lbhi long branch if unsigned > 
lbhs long branch if unsigned ≥ 
lble long branch if signed ≤ 
lblo long branch if unsigned < 
lbls long branch if unsigned ≤ 
lblt long branch if signed < 
lbmi long branch if result is negative 
lbne long branch if result is nonzero 
lbpl long branch if result is positive  
lbra long branch always 
lbrn long branch never 
lbvc long branch if overflow clear 
lbvs long branch if overflow set 
ldaa 8-bit load memory into RegA  
ldab 8-bit load memory into RegB  
ldd 16-bit load memory into RegD  
lds 16-bit load memory into RegSP  
ldx 16-bit load memory into RegX  
ldy 16-bit load memory into RegY  
leas 16-bit load effective addr to SP   leas 2,sp 
leax 16-bit load effective addr to X     leax 2,x 
leay  16-bit load effective addr to Y     leay 2,y 
lsr 8-bit logical right shift memory  
lsra 8-bit logical right shift RegA  
lsrb 8-bit logical right shift RegB  
lsrd 16-bit logical right shift RegD  
maxa  8-bit unsigned maximum in RegA 
maxm 8-bit unsigned maximum in memory 
mem determine the Fuzzy logic membership grade 
mina 8-bit unsigned minimum in RegA 
minm 8-bit unsigned minimum in memory 
movb 8-bit move memory to memory   movb #100,PTT   



EE319K Spring 2011 Final Exam Version A Page 9 of 11 

Jonathan W. Valvano  May 13, 2011 

movw 16-bit move memory to memory  movw #13,SCIBD   
mul 8 by 8 to 16-bit unsigned RegD=RegA*RegB 
neg 8-bit 2's complement negate memory  
nega 8-bit 2's complement negate RegA  
negb 8-bit 2's complement negate RegB  
oraa 8-bit logical or to RegA  
orab 8-bit logical or to RegB  
orcc 8-bit logical or to RegCC  
psha push 8-bit RegA onto stack  
pshb push 8-bit RegB onto stack 
pshc push 8-bit RegCC onto stack 
pshd push 16-bit RegD onto stack 
pshx push 16-bit RegX onto stack 
pshy push 16-bit RegY onto stack 
pula pop 8 bits off stack into RegA 
pulb pop 8 bits off stack into RegB 
pulc pop 8 bits off stack into RegCC 
puld pop 16 bits off stack into RegD 
pulx pop 16 bits off stack into RegX 
puly pop 16 bits off stack into RegY 
rev Fuzzy logic rule evaluation 
revw weighted Fuzzy rule evaluation 
rol 8-bit roll shift left Memory 
rola 8-bit roll shift left RegA 
rolb 8-bit roll shift left RegB 
ror 8-bit roll shift right Memory 
rora 8-bit roll shift right RegA  
rorb 8-bit roll shift right RegB  
rtc return sub in expanded memory 
rti return from interrupt  
rts return from subroutine 
sba 8-bit subtract RegA=RegA-RegB 
sbca 8-bit sub with carry from RegA  
sbcb 8-bit sub with carry from RegB  
sec set carry bit, C=1 
sei set I=1, disable interrupts 
sev set overflow bit, V=1 
sex sign extend 8-bit to 16-bit reg    sex B,D  
staa 8-bit store memory from RegA  
stab 8-bit store memory from RegB  
std 16-bit store memory from RegD  
sts 16-bit store memory from SP  
stx 16-bit store memory from RegX  
sty 16-bit store memory from RegY  
suba 8-bit sub from RegA  
subb 8-bit sub from RegB  
subd 16-bit sub from RegD  
swi software interrupt, trap 
tab transfer A to B 
tap transfer A to CC  
tba transfer B to A 
tbeq test and branch if result=0      tbeq Y,loop  
tbl 8-bit look up and interpolation 
tbne test and branch if result≠0     tbne A,loop  
tfr transfer register to register     tfr X,Y  
tpa transfer CC to A 
trap illegal instruction interrupt 
trap illegal op code, or software trap 
tst 8-bit compare memory with zero  
tsta 8-bit compare RegA with zero  
tstb 8-bit compare RegB with zero  
tsx transfer S to X  
tsy transfer S to Y  
txs transfer X to S  
tys transfer Y to S  
wai wait for interrupt  
wav weighted Fuzzy logic average 

xgdx exchange RegD with RegX  
xgdy exchange RegD with RegY 
 
Example Mode Effective Address 
ldaa #u immediate  No EA  
ldaa u direct  EA is 8-bit address  
ldaa U extended  EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15) 
ldaa v,+r pre-incr r=r+v, EA=r  (1 to 8) 
ldaa v,-r pre-dec r=r-v, EA=r  (1 to 8) 
ldaa v,r+ post-inc EA=r, r=r+v  (1 to 8) 
ldaa v,r- post-dec EA=r, r=r-v  (1 to 8) 
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D  
ldaa q,r 9-bit index EA=r+q  
ldaa W,r 16-bit index EA=r+W  
ldaa [D,r] D indirect EA={r+D} 
ldaa [W,r] indirect EA={r+W}  
Freescale 6812 addressing modes r is X, Y, SP, or PC 
 
Pseudo op  Meaning 
org               Where to put subsequent code 
= equ set         Define a constant symbol 
dc.b db fcb .byte Allocate byte(s) with values 
fcc               Create an ASCII string  
dc.w dw fdb .word Allocate word(s) with values 
dc.l dl .long     Allocate 32-bit with values 
ds ds.b rmb .blkb Allocate bytes without init 
ds.w .blkw        Allocate word(s) without init 
 
n is Metrowerks number 

Vector  n Interrupt  Source Arm 
$FFFE  Reset None 
$FFF8 3 Trap None 
$FFF6 4 SWI None 
$FFF0 7 Real time interrupt CRGINT.RTIE 
$FFEE 8 Timer channel 0 TIE.C0I 
$FFEC 9 Timer channel 1 TIE.C1I 
$FFEA 10 Timer channel 2 TIE.C2I 
$FFE8 11 Timer channel 3 TIE.C3I 
$FFE6 12 Timer channel 4 TIE.C4I 
$FFE4 13 Timer channel 5 TIE.C5I 
$FFE2 14 Timer channel 6 TIE.C6I 
$FFE0 15 Timer channel 7 TIE.C7I 
$FFDE 16 Timer overflow TSCR2.TOI 
$FFD6 20 SCI0  TDRE, RDRF SCI0CR2.TIE,RIE 
$FFD4 21 SCI1  TDRE, RDRF SCI1CR2.TIE,RIE 
$FFCE  24 Key Wakeup J  PIEJ.[7,6,1,0]  
$FFCC  25 Key Wakeup H  PIEH.[7:0]  
$FF8E  56 Key Wakeup P   PIEP.[7:0]  
Interrupt Vectors and interrupt number. 
 
 
 
 



EE319K Spring 2011 Final Exam Version A Page 10 of 11 

Jonathan W. Valvano  May 13, 2011 

 
Address Bit 7 6 5 4 3 2 1 Bit 0 Name 
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS 
$0044-5 Bit 15 14 13 12 11 10  Bit 0 TCNT 
$0046 TEN TSWAI TSFRZ TFFCA 0 0 0 0 TSCR1 
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE 
$004D TOI 0 PUPT RDPT TCRE PR2 PR1 PR0 TSCR2 
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1 
$004F TOF 0 0 0 0 0 0 0 TFLG2 
$0050-1 Bit 15 14 13 12 11 10  Bit 0 TC0 
$0052-3 Bit 15 14 13 12 11 10   Bit 0 TC1 
$0054-5 Bit 15 14 13 12 11 10   Bit 0 TC2 
$0056-7 Bit 15 14 13 12 11 10   Bit 0 TC3 
$0058-9 Bit 15 14 13 12 11 10  Bit 0 TC4 
$005A-B Bit 15 14 13 12 11 10  Bit 0 TC5 
$005C-D Bit 15 14 13 12 11 10  Bit 0 TC6 
$005E-F Bit 15 14 13 12 11 10  Bit 0 TC7 
$0082 ADPU AFFC ASWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATD0CTL2 
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATD0CTL3 
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATD0CTL4 
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATD0CTL5 
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATD0STAT0 
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATD0STAT1 
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATD0DIEN 
$008F PAD07 PAD06 PAD05 PAD04 PAD03 PAD02 PAD01 PAD00 PORTAD0 
$0090-1 Bit 15 14 13 12 11 10  Bit 0 ATD0DR0 
$0092-3 Bit 15 14 13 12 11 10  Bit 0 ATD0DR1 
$0094-5 Bit 15 14 13 12 11 10  Bit 0 ATD0DR2 
$0096-7 Bit 15 14 13 12 11 10  Bit 0 ATD0DR3 
$0098-9 Bit 15 14 13 12 11 10  Bit 0 ATD0DR4 
$009A-B Bit 15 14 13 12 11 10  Bit 0 ATD0DR5 
$009C-D Bit 15 14 13 12 11 10  Bit 0 ATD0DR6 
$009E-F Bit 15 14 13 12 11 10  Bit 0 ATD0DR7 
$00C9 0 0 0 SBR12 SBR11 SBR10  SBR0 SCI0BD 
$00CA LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI0CR1 
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCI0CR2 
$00CC TDRE TC RDRF IDLE OR NF FE PF SCI0SR1 
$00CD 0 0 0 0 0 BRK13 TXDIR RAF SCI0SR2 
$00CF R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI0DRL 
$00D0-1 0 0 0 SBR12 SBR11 SBR10  SBR0 SCI1BD 
$00D2 LOOPS SCISWAI RSRC M WAKE ILT PE PT SCI1CR1 
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK SCI1CR2 
$00D4 TDRE TC RDRF IDLE OR NF FE PF SCI1SR1 
$00D5 0 0 0 0 0 BRK13 TXDIR RAF SCI1SR2 
$00D7 R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 R0/T0 SCI1DRL 
$0240 PT7 PT6 PT5 PT4 PT3 PT2 PT1 PT0 PTT 
$0242 DDRT7 DDRT6 DDRT5 DDRT4 DDRT3 DDRT2 DDRT1 DDRT0 DDRT 
$0248 PS7 PS6 PS5 PS4 PS3 PS2 PS1 PS0 PTS 
$024A DDRS7 DDRS6 DDRS5 DDRS4 DDRS3 DDRS2 DDRS1 DDRS0 DDRS 
$0250 PM7 PM6 PM5 PM4 PM3 PM2 PM1 PM0 PTM 
$0252 DDRM7 DDRM6 DDRM5 DDRM4 DDRM3 DDRM2 DDRM1 DDRM0 DDRM 
$0258 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 PTP 
$025A DDRP7 DDRP6 DDRP5 DDRP4 DDRP3 DDRP2 DDRP1 DDRP0 DDRP 
$0260 PH7 PH6 PH5 PH4 PH3 PH2 PH1 PH0 PTH 
$0262 DDRH7 DDRH6 DDRH5 DDRH4 DDRH3 DDRH2 DDRH1 DDRH0 DDRH 
$0268 PJ7 PJ6 0 0 0 0 PJ1 PJ0 PTJ 
$026A DDRJ7 DDRJ6 0 0 0 0 DDRJ1 DDRJ0 DDRJ 
 
TSCR1 is the first 8-bit timer control register 
 bit 7 TEN, 1 allows the timer to function normally, 0 means disable timer including TCNT 
TIOS  is the 8-bit output compare select register, one bit for each channel (1 = output compare, 0 = input capture)  
TIE  is the 8-bit output compare arm register, one bit for each channel (1 = armed, 0 = disarmed)  
 



EE319K Spring 2011 Final Exam Page 11 of 10 

Jonathan W Valvano  May 13, 2011 

TSCR2 is the second 8-bit timer control register 
 bits 2,1,0 are PR2, PR1, PR0, which select the rate, let n be the 3-bit number formed by PR2, PR1, PR0 
 without PLL TCNT is 8MHz/2n, with PLL TCNT is 24MHz/2n,  n ranges from 0 to 7 
 

E = 8 MHz E = 24 MHz  
 
PR2 

 
 
PR1 

 
 
PR0 

 
Divide 

by 
TCNT 
period  

TCNT 
frequency 

TCNT 
period  

TCNT 
frequency 

0 0 0 1 125 ns 8 MHz 41.7 ns 24 MHz 
0 0 1 2 250 ns 4 MHz 83.3 ns 12 MHz 
0 1 0 4 500 ns 2 MHz 167 ns 6 MHz 
0 1 1 8 1 µs 1 MHz 333 ns 3 MHz 
1 0 0 16 2 µs 500 kHz 667 ns 1.5 MHz 
1 0 1 32 4 µs 250 kHz 1.33 µs 667 kHz 
1 1 0 64 8 µs 125 kHz 2.67 µs 333 kHz 
1 1 1 128 16 µs 62.5 kHz 5.33 µs 167 kHz 

 
SCI0DRL 8-bit SCI0 data register 
SCI0BD is 16-bit SCI0 baud rate register, let n be the 13-bit number    Baud rate is EClk/n/16 
SCI0CR1 is 8-bit SCI0 control register 
 bit 4 M, Mode, 0 = One start, eight data, one stop bit, 1 = One start, eight data, ninth data, one stop bit  
SCI0CR2 is 8-bit SCI0 control register 
 bit 7 TIE, Transmit Interrupt Enable, 0 = TDRE interrupts disabled, 1 = interrupt whenever TDRE set 
 bit 5 RIE, Receiver Interrupt Enable, 0 = RDRF interrupts disabled, 1 = interrupt whenever RDRF set  
 bit 3 TE, Transmitter Enable, 0 = Transmitter disabled, 1 = SCI transmit logic is enabled 
 bit 2 RE, Receiver Enable, 0 = Receiver disabled, 1 = Enables the SCI receive circuitry. 
SCI0SR1 is 8-bit SCI0 status register 
 bit 7 TDRE, Transmit Data Register Empty Flag  
  Set if transmit data can be written to SCI0DRL 
  Cleared by SCI0SR1 read with TDRE set followed by SCI0DRL write 
 bit 5 RDRF, Receive Data Register Full 
  set if a received character is ready to be read from SCI0DRL  
  Clear the RDRF flag by reading SCI0SR1 with RDRF set and then reading SCI0DRL  
ATD0CTL5 is used to start an ADC conversion 
 bit 7 DJM is set to 1 for right justified and to 0 for left justified 
 bits 2-0 specify the ADC channel to sample 
ATD0STAT0 is used to tell when the ADC conversion is done 
 bit 7 SCF cleared on a write to ATD0CTL5 and is set when the conversion sequence is done 

 

   
 

  
 


