
EE319K Fall 2012 Exam 1B Page 1

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

Quiz 1 Fun Times
Date: October 5, 2012

Printed Name:

Last, First

Your signature is your promise that you have not cheated and will not cheat on this exam, nor will you help others to cheat
on this exam:

Signature:

Instructions:
 Closed book and closed notes.
 No calculators or any electronic devices (turn cell phones off).
 You must put your answers on pages 2-6 only.
 You have 50 minutes, so allocate your time accordingly.
 Show your work, and put your answers in the boxes.
 Please read the entire quiz before starting.

EE319K Fall 2012 Exam 1B Page 2

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

(3) Question 1. Which of the following statements is most true? If we wished to reduce the power
consumption used by our microcontroller
A) we could decrease the operating voltage?
B) we could decrease the frequency of the bus clock?
C) we could clear bits in the DEN register for unused pins?
D) none of A B or C is correct
E) A B and C are all correct

(4) Question 2. Digital logic currently uses binary because it is fast, low power, and very small. In the
future, an EE319K student invents quinary logic that is faster, smaller and lower power than binary.
This means each quinary digit can be 0, 1, 2, 3, or 4. Quinary means base 5 in the same way binary
means base 2. What are the three basis elements of unsigned three-digit quinary number? Give your
answers as a decimal numbers.

(3) Question 3. Consider the following 8-bit subtraction (assume registers are 8 bits wide)
 Load 0x9C into R1
 Load 0x32 into R2
 Subtract R3 = R1-R2
What will be the 8-bit result in Register R3? --

What will be the value of the overflow (V) bit? ---

What will be the value of the carry (C) bit? ---

EE319K Fall 2012 Exam 1B Page 3

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

(20) Question 4. Interface the LED to PA0 in positive logic. The desired LED operating point is 1.0V
at 20 mA. At 20 mA you can assume the VOL of the 7406 will be 0.5 V. Assume the output high
voltage of the microcontroller is 3.2 V and the output low voltage is 0.1V. Interface the switch to PB0
using negative logic. No software is required in this question, and you may assume PA0 is an output
and PB0 an input. Assume the pull-up feature of PB0 will be activated by software. Your bag of parts
includes the switch, the 7406, the LED, and resistors (you specify the values). Pick the fewest
components to use (you may or may not need them all.) You may also use 3.3V, 5V power and
ground.

(15) Question 5. Write an assembly subroutine that selects bit 9. The input to the subroutine is a 32-bit
number in R0. The output in R0 is 0 if the input bit 9 is 0, and the output is 1 if the input bit 9 is 1.

PB0

PA0

LM3S

7406

EE319K Fall 2012 Exam 1B Page 4

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

(5) Question 6. Write C function that selects bit 9. The input to the function is an unsigned 32-bit
number. The output of the function is 0 if the input bit 9 is 0, and the output is 1 if the input bit 9 is 1.

For questions 7 and 8, don’t worry about establishing the reset vector, creating a main program, or
initializing the stack pointer. You may use RAM-based global variables. Bit-specific addressing is
allowed but not required. You may use the following definitions
GPIO_PORTB_DATA_R EQU 0x400053FC
GPIO_PORTB_DIR_R EQU 0x40005400
GPIO_PORTB_AFSEL_R EQU 0x40005420
GPIO_PORTB_DEN_R EQU 0x4000551C
SYSCTL_RCGC2_R EQU 0x400FE108
SYSCTL_RCGC2_GPIOB EQU 0x00000002 ; port B Clock Gating Control

(10) Question 7. Fill in the boxes with hexadecimal numbers that initialize Port B. Bits 0, 1, and 2 are
input. Bits 4 and 6 are output.
PortB_Init
 LDR R1, =SYSCTL_RCGC2_R
 LDR R0, [R1]
 ORR R0, R0, #--
 STR R0, [R1]
 NOP
 NOP
 LDR R1, =GPIO_PORTB_DIR_R
 LDR R0, [R1] /--
 ORR R0, R0, #--/
 BIC R0, R0, #--\
 STR R0, [R1] \----
 LDR R1, =GPIO_PORTB_AFSEL_R
 LDR R0, [R1]
 BIC R0, R0, #---
 STR R0, [R1]
 LDR R1, =GPIO_PORTB_DEN_R
 LDR R0, [R1]
 ORR R0, R0, #--
 STR R0, [R1]
 BX LR

EE319K Fall 2012 Exam 1B Page 5

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

(30) Question 8. Write an assembly language main program that first calls the initialization and then
performs steps 2, 3, and 4 over and over infinitely.
 1) execute PortB_Init defined in Question 7.
 2) read the inputs;
 3) if all three inputs are equal to each other (inputs are 000 or 111) then toggle output bit 4,
 4) otherwise (inputs are 001, 010, 011, 100, 101, or 110) toggle output bit 6.
Write friendly code. Comments are allowed but not needed.

EE319K Fall 2012 Exam 1B Page 6

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

(10) Question 9. Write a C language main program that first calls the initialization and then performs
steps 2, 3, and 4 over and over infinitely.
 1) execute PortB_Init(); defined in Question 7.
 2) read the inputs;
 3) if all three inputs are equal to each other (inputs are 000 or 111) then toggle output bit 4,
 4) otherwise (inputs are 001, 010, 011, 100, 101, or 110) toggle output bit 6.
Write friendly code. Comments are allowed but not needed. With this definition
#define PORTB (*((volatile unsigned long *)0x400053FC))
You will be able to read and write to Port B. For example
 n = PORTB; // reads all 8 bits of Port B into variable n
 PORTB = m; // write all 8 bits of Port B with data from m

EE319K Fall 2012 Exam 1B Page 7

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

Memory access instructions
 LDR Rd, [Rn] ; load 32-bit number at [Rn] to Rd
 LDR Rd, [Rn,#off] ; load 32-bit number at [Rn+off] to Rd
 LDR Rd, =value ; set Rd equal to any 32-bit value (PC rel)
 LDRH Rd, [Rn] ; load unsigned 16-bit at [Rn] to Rd
 LDRH Rd, [Rn,#off] ; load unsigned 16-bit at [Rn+off] to Rd
 LDRSH Rd, [Rn] ; load signed 16-bit at [Rn] to Rd
 LDRSH Rd, [Rn,#off] ; load signed 16-bit at [Rn+off] to Rd
 LDRB Rd, [Rn] ; load unsigned 8-bit at [Rn] to Rd
 LDRB Rd, [Rn,#off] ; load unsigned 8-bit at [Rn+off] to Rd
 LDRSB Rd, [Rn] ; load signed 8-bit at [Rn] to Rd
 LDRSB Rd, [Rn,#off] ; load signed 8-bit at [Rn+off] to Rd
 STR Rt, [Rn] ; store 32-bit Rt to [Rn]
 STR Rt, [Rn,#off] ; store 32-bit Rt to [Rn+off]
 STRH Rt, [Rn] ; store least sig. 16-bit Rt to [Rn]
 STRH Rt, [Rn,#off] ; store least sig. 16-bit Rt to [Rn+off]
 STRB Rt, [Rn] ; store least sig. 8-bit Rt to [Rn]
 STRB Rt, [Rn,#off] ; store least sig. 8-bit Rt to [Rn+off]
 PUSH {Rt} ; push 32-bit Rt onto stack
 POP {Rd} ; pop 32-bit number from stack into Rd
 ADR Rd, label ; set Rd equal to the address at label
 MOV{S} Rd, <op2> ; set Rd equal to op2
 MOV Rd, #im16 ; set Rd equal to im16, im16 is 0 to 65535
 MVN{S} Rd, <op2> ; set Rd equal to -op2
Branch instructions
 B label ; branch to label Always
 BEQ label ; branch if Z == 1 Equal
 BNE label ; branch if Z == 0 Not equal
 BCS label ; branch if C == 1 Higher or same, unsigned ≥
 BHS label ; branch if C == 1 Higher or same, unsigned ≥
 BCC label ; branch if C == 0 Lower, unsigned <
 BLO label ; branch if C == 0 Lower, unsigned <
 BMI label ; branch if N == 1 Negative
 BPL label ; branch if N == 0 Positive or zero
 BVS label ; branch if V == 1 Overflow
 BVC label ; branch if V == 0 No overflow
 BHI label ; branch if C==1 and Z==0 Higher, unsigned >
 BLS label ; branch if C==0 or Z==1 Lower or same, unsigned ≤
 BGE label ; branch if N == V Greater than or equal, signed ≥
 BLT label ; branch if N != V Less than, signed <
 BGT label ; branch if Z==0 and N==V Greater than, signed >
 BLE label ; branch if Z==1 and N!=V Less than or equal, signed ≤
 BX Rm ; branch indirect to location specified by Rm
 BL label ; branch to subroutine at label
 BLX Rm ; branch to subroutine indirect specified by Rm
Interrupt instructions
 CPSIE I ; enable interrupts (I=0)
 CPSID I ; disable interrupts (I=1)

Logical instructions
 AND{S} {Rd,} Rn, <op2> ; Rd=Rn&op2 (op2 is 32 bits)
 ORR{S} {Rd,} Rn, <op2> ; Rd=Rn|op2 (op2 is 32 bits)
 EOR{S} {Rd,} Rn, <op2> ; Rd=Rn^op2 (op2 is 32 bits)
 BIC{S} {Rd,} Rn, <op2> ; Rd=Rn&(~op2) (op2 is 32 bits)
 ORN{S} {Rd,} Rn, <op2> ; Rd=Rn|(~op2) (op2 is 32 bits)

EE319K Fall 2012 Exam 1B Page 8

Jonathan W. Valvano October 5, 2012 2:00pm-2:50pm

 LSR{S} Rd, Rm, Rs ; logical shift right Rd=Rm>>Rs (unsigned)
 LSR{S} Rd, Rm, #n ; logical shift right Rd=Rm>>n (unsigned)
 ASR{S} Rd, Rm, Rs ; arithmetic shift right Rd=Rm>>Rs (signed)
 ASR{S} Rd, Rm, #n ; arithmetic shift right Rd=Rm>>n (signed)
 LSL{S} Rd, Rm, Rs ; shift left Rd=Rm<<Rs (signed, unsigned)
 LSL{S} Rd, Rm, #n ; shift left Rd=Rm<<n (signed, unsigned)
Arithmetic instructions
 ADD{S} {Rd,} Rn, <op2> ; Rd = Rn + op2
 ADD{S} {Rd,} Rn, #im12 ; Rd = Rn + im12, im12 is 0 to 4095
 SUB{S} {Rd,} Rn, <op2> ; Rd = Rn - op2
 SUB{S} {Rd,} Rn, #im12 ; Rd = Rn - im12, im12 is 0 to 4095
 RSB{S} {Rd,} Rn, <op2> ; Rd = op2 - Rn
 RSB{S} {Rd,} Rn, #im12 ; Rd = im12 – Rn
 CMP Rn, <op2> ; Rn – op2 sets the NZVC bits
 CMN Rn, <op2> ; Rn - (-op2) sets the NZVC bits
 MUL{S} {Rd,} Rn, Rm ; Rd = Rn * Rm signed or unsigned
 MLA Rd, Rn, Rm, Ra ; Rd = Ra + Rn*Rm signed or unsigned
 MLS Rd, Rn, Rm, Ra ; Rd = Ra - Rn*Rm signed or unsigned
 UDIV {Rd,} Rn, Rm ; Rd = Rn/Rm unsigned
 SDIV {Rd,} Rn, Rm ; Rd = Rn/Rm signed
Notes Ra Rd Rm Rn Rt represent 32-bit registers
 value any 32-bit value: signed, unsigned, or address
 {S} if S is present, instruction will set condition codes
 #im12 any value from 0 to 4095
 #im16 any value from 0 to 65535
 {Rd,} if Rd is present Rd is destination, otherwise Rn
 #n any value from 0 to 31
 #off any value from -255 to 4095
 label any address within the ROM of the microcontroller
 op2 the value generated by <op2>
Examples of flexible operand <op2> creating the 32-bit number. E.g., Rd = Rn+op2
 ADD Rd, Rn, Rm ; op2 = Rm
 ADD Rd, Rn, Rm, LSL #n ; op2 = Rm<<n Rm is signed, unsigned
 ADD Rd, Rn, Rm, LSR #n ; op2 = Rm>>n Rm is unsigned
 ADD Rd, Rn, Rm, ASR #n ; op2 = Rm>>n Rm is signed
 ADD Rd, Rn, #constant ; op2 = constant, where X and Y are hexadecimal digits:

 produced by shifting an 8-bit unsigned value left by any number of bits
 in the form 0x00XY00XY
 in the form 0xXY00XY00
 in the form 0xXYXYXYXY

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R13 (MSP)
R14 (LR)
R15 (PC)

Stack pointer
Link register

Program counter

General
purpose
registers

256k Flash
ROM

64k RAM

I/O ports

Internal I/O
PPB

0x0000.0000

0x0003.FFFF

0x2000.0000

0x2000.FFFF

0x4000.0000

0x41FF.FFFF

0xE000.0000

0xE004.0FFF

Condition code bits
N negative
Z zero
V signed overflow
C carry or
 unsigned overflow

