
EE319K Fall 2005 Quiz 3A Page 1

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

First:________________ Middle Initial: _____ Last:____________________
 This is a closed book exam. You must put your answers on this piece of paper only. You
have 50 minutes, so allocate your time accordingly. Please read the entire quiz before starting.

(5) Question 1.

(5) Question 2.

(5) Question 3.

(5) Question 4.

(5) Question 5.

(5) Question 6.

(5) Question 7.

(5) Question 8.

(5) Question 9.

(5) Question 10.

(5) Question 11.

(5) Question 12.

(5) Question 13.

(5) Question 14.

EE319K Fall 2005 Quiz 3A Page 2

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

(10) Question 15.

(10) Question 16.

(10) Question 17.

EE319K Fall 2005 Quiz 3A Page 3

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

For questions 1 and 2, consider the following C program.
xxxx short V=4;
void function(void){ yyyy short W=4;
}
(5) Question 1. What qualifier should be used for xxxx so that V is allocated in ROM? Select
from signed unsigned volatile const static extern

(5) Question 2. What qualifier should be used for yyyy so that W is permanently allocated in
RAM? Select from signed unsigned volatile const static extern

This Fifo queue can hold up to eight 16-bit data values, and the
picture shows it currently is holding three values (shaded).
(5) Question 3. What value is returned if we were to call
Fifo_Get at this point?

(5) Question 4. Next, assume we call Fifo_Put. What will be the
new PutPt after we call Fifo_Put?

Questions 5 and 6 involve the following assembly code.
main lds #$4000
 ldy #1000
 pshy ; pass 16-bit in parameter on stack
 jsr sub1
 puly ; balance stack
 stop
data set xxx ; binding of 16-bit local variable
in set yyy ; binding of 16-bit input parameter
sub1 pshx ; save register X
 tsx ; RegX stack frame
 leas -2,s ; allocate 16-bit local variable called data
;****body of the subroutine
 ldd in,x ; get a copy of in parameter
 std data,x ; store into local variable data
;****end of body
 leas 2,s ; deallocate data
 pulx ; restore register X
 rts ; return

(5) Question 5. What value should you use in the xxx position to implement the binding of the
local variable, data?

(5) Question 6. What value should you use in the yyy position to implement the binding of the
parameter, in?

$3800
$3802
$3804
$3806
$3808
$380A
$380C
$380E

Address Contents

$1234
$5678
$9ABC

GetPt

PutPt

EE319K Fall 2005 Quiz 3A Page 4

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

(5) Question 7. Consider a 10-bit ADC with a range of 0 to +5V. What is the approximate
resolution of this ADC? Give units.

(5) Question 8. What term do we use to describe it when the debugging code itself makes a
small but acceptable change in the behavior of a software system?

(5) Question 9. To verify the proper functionality of a subroutine, we write a special main
program that provides a known and repeatable sequence of inputs to the subroutine under test. In
this way, each time the test subroutine is changed, we can be sure the change in output values is
caused by the software modification and not due to a change in input values. What is this
debugging procedure called?

The following 6812 assembly program implements a one-input four-output finite state machine.
The input is on Port M bit 0 and the output is on Port T bits 3,2,1,0.
 org $4000 Put in ROM

Stop fcb 1 ;Output
 fdb Stop,Run ;Next
Run fcb 5
 fdb Turn,Run
Turn fcb 10
 fdb sss,ttt
Main lds #$4000
 bset DDRT,#$0F ; PT3-0 outputs
 bclr DDRM,#$01 ; PM0 is input
 ldx #Stop ; RegX is the State pointer
FSM yyy ; RegA is Output value for this state
 staa PTT ; Perform the output
 ldab PTM ; Read input
 andb #$01 ; just interested in bit 0
 lslb ; 2 bytes per 16 bit address
 abx ; add 0,2 depending on input
 zzz ; Next state depending on input
 bra FSM

(5) Question 10. What should you put in the sss,ttt positions?

(5) Question 11. Which instruction causes an unfriendly operation?

(5) Question 12. What instruction (op code and operand) goes in the yyy
position?
(5) Question 13. What instruction (op code and operand) goes in the zzz
position?
(5) Question 14. Specify the resistor value for R1, assuming LED current Id
is 2 mA, the LED voltage Vd is 1.5 V, and the gate output voltage VOL is
0.5V.

Stop

1

Run

5

Turn

10

0

1

1
0

1
0

EE319K Fall 2005 Quiz 3A Page 5

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

(10) Question 15. Write a subroutine that generates one conversion on channel 4 of the
9S12C32 ADC and returns the 10-bit unsigned right-justified ADC conversion in Reg X (return
by value). You may assume the ADC has already been enabled with the following function.
ADC_Init movb #$80,ATDCTL2 ;ADPU=1 enables A/D
 movb #$08,ATDCTL3 ;sequence length=1
 movb #$04,ATDCTL4 ;10-bit A/D
 rts

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0082 ADPU AFFC AWAI ETRIGLE ETRIGP ETRIG ASCIE ASCIF ATDCTL2
$0083 0 S8C S4C S2C S1C FIFO FRZ1 FRZ0 ATDCTL3
$0084 SRES8 SMP1 SMP0 PRS4 PRS3 PRS2 PRS1 PRS0 ATDCTL4
$0085 DJM DSGN SCAN MULT 0 CC CB CA ATDCTL5
$0086 SCF 0 ETORF FIFOR 0 CC2 CC1 CC0 ATDSTAT0
$008B CCF7 CCF6 CCF5 CCF4 CCF3 CCF2 CCF1 CCF0 ATDSTAT1
$008D Bit 7 6 5 4 3 2 1 Bit 0 ATDDIEN
$0270 PTAD7 PTAD6 PTAD5 PTAD4 PTAD3 PTAD2 PTAD1 PTAD0 PTAD
$0272 DDRAD7 DDRAD6 DDRAD5 DDRAD4 DDRAD3 DDRAD2 DDRAD1 DDRAD0 DDRAD
address msb lsb Name
$0090 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR0
$0092 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR1
$0094 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR2
$0096 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR3
$0098 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR4
$009A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR5
$009C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR6
$009E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ATDDR7

(10) Question 16. Write a subroutine that outputs a null-terminated string to the SCI transmitter.
An address to the string is pushed on the stack (call by reference). You may assume the SCI has
already been enabled with the following function.
SCI_Init movb #$0c,SCICR2 ;enable SCI
 movw #1,SCIBD ;baud rate=250000
 rts

Addr Bit 7 6 5 4 3 2 1 Bit 0 Name
$00C8 BTST BSPL BRLD SBR12 SBR11 SBR10 SBR9 SBR8 SCIBD
$00C9 SBR7 SBR6 SBR5 SBR4 SBR3 SBR2 SBR1 SBR0
$00CB TIE TCIE RIE ILIE TE RE RWU SBK SCICR2
$00CC TDRE TC RDRF IDLE OR NF FE PF SCISR1
$00CF R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0 SCIDRL

An example calling sequence is
Message fcb “Hello world”,0
Main lds #$4000
 jsr SCI_Init
 movw #Message,2,-sp ;push address on stack
 jsr SCI_Out ;your subroutine
 leas 2,s ;balance stack

EE319K Fall 2005 Quiz 3A Page 6

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

(10) Question 17. Assume 16-bit TCNT is enabled and running. Write an SWI handler that reads
the value on TCNT and returns the result in Reg X (return by value). An example calling
sequence
 swi
After the software interrupt returns, RegX contains the value from TCNT. The SWI vector is
located at $FFF6.

EE319K Fall 2005 Quiz 3A Page 7

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

aba 8-bit add RegA=RegA+RegB
abx unsigned add RegX=RegX+RegB
aby unsigned add RegY=RegY+RegB
adca 8-bit add with carry to RegA
adcb 8-bit add with carry to RegB
adda 8-bit add to RegA
addb 8-bit add to RegB
addd 16-bit add to RegD
anda 8-bit logical and to RegA
andb 8-bit logical and to RegB
andcc 8-bit logical and to RegCC
asl/lsl 8-bit left shift Memory
asla/lsla 8-bit left shift RegA
aslb/lslb 8-bit arith left shift RegB
asld/lsld 16-bit left shift RegD
asr 8-bit arith right shift Memory
asra 8-bit arith right shift
asrb 8-bit arith right shift to RegB
bcc branch if carry clear
bclr clear bits in memory
bcs branch if carry set
beq branch if result is zero (Z=1)
bge branch if signed ≥
bgnd enter background debug mode
bgt branch if signed >
bhi branch if unsigned >
bhs branch if unsigned ≥
bita 8-bit and with RegA, sets CCR
bitb 8-bit and with RegB, sets CCR
ble branch if signed ≤
blo branch if unsigned <
bls branch if unsigned ≤
blt branch if signed <
bmi branch if result is negative (N=1)
bne branch if result is nonzero (Z=0)
bpl branch if result is positive (N=0)
bra branch always
brclr branch if bits are clear,
brn branch never
brset branch if bits are set
bset set bits in memory
bsr branch to subroutine
bvc branch if overflow clear
bvs branch if overflow set
call subroutine in expanded memory
cba 8-bit compare RegA with RegB
clc clear carry bit, C=0
cli clear I=0, enable interrupts
clr 8-bit Memory clear
clra RegA clear
clrb RegB clear
clv clear overflow bit, V=0
cmpa 8-bit compare RegA with memory
cmpb 8-bit compare RegB with memory
com 8-bit logical complement to Memory
coma 8-bit logical complement to RegA
comb 8-bit logical complement to RegB
cpd 16-bit compare RegD with memory
cpx 16-bit compare RegX with memory
cpy 16-bit compare RegY with memory
daa 8-bit decimal adjust accumulator
dbeq decrement and branch if result=0
dbne decrement and branch if result≠0
dec 8-bit decrement memory
deca 8-bit decrement RegA
decb 8-bit decrement RegB
des 16-bit decrement RegSP
dex 16-bit decrement RegX
dey 16-bit decrement RegY
ediv RegY=(Y:D)/RegX, unsigned divide
edivs RegY=(Y:D)/RegX, signed divide
emacs 16 by 16 signed mult, 32-bit add
emaxd 16-bit unsigned maximum in RegD
emaxm 16-bit unsigned maximum in memory
emind 16-bit unsigned minimum in RegD

eminm 16-bit unsigned minimum in memory
emul RegY:D=RegY*RegD unsigned mult
emuls RegY:D=RegY*RegD signed mult
eora 8-bit logical exclusive or to RegA
eorb 8-bit logical exclusive or to RegB
etbl 16-bit look up and interpolation
exg exchange register contents
fdiv 16-bit unsigned fractional divide
ibeq increment and branch if result=0
ibne increment and branch if result≠0
idiv 16-bit unsigned divide, X=D/X
idivs 16-bit signed divide, X=D/X
inc 8-bit increment memory
inca 8-bit increment RegA
incb 8-bit increment RegB
ins 16-bit increment RegSP
inx 16-bit increment RegX
iny 16-bit increment RegY
jmp jump always
jsr jump to subroutine
lbcc long branch if carry clear
lbcs long branch if carry set
lbeq long branch if result is zero
lbge long branch if signed ≥
lbgt long branch if signed >
lbhi long branch if unsigned >
lbhs long branch if unsigned ≥
lble long branch if signed ≤
lblo long branch if unsigned <
lbls long branch if unsigned ≤
lblt long branch if signed <
lbmi long branch if result is negative
lbne long branch if result is nonzero
lbpl long branch if result is positive
lbra long branch always
lbrn long branch never
lbvc long branch if overflow clear
lbvs long branch if overflow set
ldaa 8-bit load memory into RegA
ldab 8-bit load memory into RegB
ldd 16-bit load memory into RegD
lds 16-bit load memory into RegSP
ldx 16-bit load memory into RegX
ldy 16-bit load memory into RegY
leas 16-bit load effective addr to SP
leax 16-bit load effective addr to X
leay 16-bit load effective addr to Y
lsr 8-bit logical right shift memory
lsra 8-bit logical right shift RegA
lsrb 8-bit logical right shift RegB
lsrd 16-bit logical right shift RegD
maxa 8-bit unsigned maximum in RegA
maxm 8-bit unsigned maximum in memory
mem determine the membership grade
mina 8-bit unsigned minimum in RegA
minm 8-bit unsigned minimum in memory
movb 8-bit move memory to memory
movw 16-bit move memory to memory
mul RegD=RegA*RegB
neg 8-bit 2's complement negate memory
nega 8-bit 2's complement negate RegA
negb 8-bit 2's complement negate RegB
oraa 8-bit logical or to RegA
orab 8-bit logical or to RegB
orcc 8-bit logical or to RegCC
psha push 8-bit RegA onto stack
pshb push 8-bit RegB onto stack
pshc push 8-bit RegCC onto stack
pshd push 16-bit RegD onto stack
pshx push 16-bit RegX onto stack
pshy push 16-bit RegY onto stack
pula pop 8 bits off stack into RegA
pulb pop 8 bits off stack into RegB
pulc pop 8 bits off stack into RegCC
puld pop 16 bits off stack into RegD

EE319K Fall 2005 Quiz 3A Page 8

Jonathan W. Valvano December 2, 2005 10:00am-10:50am

pulx pop 16 bits off stack into RegX
puly pop 16 bits off stack into RegY
rev Fuzzy logic rule evaluation
revw weighted Fuzzy rule evaluation
rol 8-bit roll shift left Memory
rola 8-bit roll shift left RegA
rolb 8-bit roll shift left RegB
ror 8-bit roll shift right Memory
rora 8-bit roll shift right RegA
rorb 8-bit roll shift right RegB
rtc return sub in expanded memory
rti return from interrupt
rts return from subroutine
sba 8-bit subtract RegA=RegA-RegB
sbca 8-bit sub with carry from RegA
sbcb 8-bit sub with carry from RegB
sec set carry bit, C=1
sei set I=1, disable interrupts
sev set overflow bit, V=1
sex sign extend 8-bit to 16-bit reg
staa 8-bit store memory from RegA
stab 8-bit store memory from RegB
std 16-bit store memory from RegD
sts 16-bit store memory from SP
stx 16-bit store memory from RegX

sty 16-bit store memory from RegY
suba 8-bit sub from RegA
subb 8-bit sub from RegB
subd 16-bit sub from RegD
swi software interrupt, trap
tab transfer A to B
tap transfer A to CC
tba transfer B to A
tbeq test and branch if result=0
tbl 8-bit look up and interpolation
tbne test and branch if result≠0
tfr transfer register to register
tpa transfer CC to A
trap illegal op code, or software trap
tst 8-bit compare memory with zero
tsta 8-bit compare RegA with zero
tstb 8-bit compare RegB with zero
tsx transfer S to X
tsy transfer S to Y
txs transfer X to S
tys transfer Y to S
wai wait for interrupt
wav weighted Fuzzy logic average
xgdx exchange RegD with RegX
xgdy exchange RegD with RegY

example addressing mode Effective Address
ldaa #u immediate none
ldaa u direct EA is 8-bit address (0 to 255)
ldaa U extended EA is a 16-bit address
ldaa m,r 5-bit index EA=r+m (-16 to 15)
ldaa v,+r pre-increment r=r+v, EA=r (1 to 8)
ldaa v,-r pre-decrement r=r-v, EA=r (1 to 8)
ldaa v,r+ post-increment EA=r, r=r+v (1 to 8)
ldaa v,r- post-decrement EA=r, r=r-v (1 to 8)
ldaa A,r Reg A offset EA=r+A, zero padded
ldaa B,r Reg B offset EA=r+B, zero padded
ldaa D,r Reg D offset EA=r+D
ldaa q,r 9-bit index EA=r+q (-256 to 255)
ldaa W,r 16-bit index EA=r+W (-32768 to 65535)
ldaa [D,r] D indirect EA={r+D}
ldaa [W,r] indirect EA={r+W} (-32768 to 65535)

Freescale 6812 addressing modes

Pseudo op meaning
 org Specific absolute address to put subsequent object code
 = equ Define a constant symbol
 set Define or redefine a constant symbol
 dc.b db fcb .byte Allocate byte(s) of storage with initialized values
 fcc Create an ASCII string (no termination character)
 dc.w dw fdb .word Allocate word(s) of storage with initialized values
 dc.l dl .long Allocate 32-bit long word(s) of storage with initialized values
 ds ds.b rmb .blkb Allocate bytes of storage without initialization
 ds.w .blkw Allocate bytes of storage without initialization
 ds.l .blkl Allocate 32-bit words of storage without initialization

