(5) Question 1. A) Finish instruction, push registers, $\mathrm{I}=1, \mathrm{PC}=$ vector, execute ISR.
(5) Question 2. $2^{12}=4096,5 \mathrm{~V} / 4096$, which is about 1.2 mV
(5) Question 3. (We can reduce dropout by multiplying before divide by 100)

Start with the goal of the problem: $\quad \mathbf{A}=\mathbf{H}^{*} \mathbf{W}$
Specify the fixed-point definitions: $\quad \mathbf{A}=\mathbf{I A} / \mathbf{1 0 0}, \mathbf{W}=\mathbf{I W} / \mathbf{1 0 0}, \mathbf{H}=\mathbf{I H} / \mathbf{1 0 0}$
Substitute definitions into problem: IA/100 = IW/100 * IH/100
Solve algebraic
IA = (IW * IH) /100
Questions 4 and 5 Hand execute and build a stack picture
movw \#1000,2,-sp

(5) Question 4. in set 6 ; binding of 16-bit input parameter
(5) Question 5. cnt set 3 ; binding of 8-bit local variable
(15) Question 6. Any resistor set that is a power of 2 is OK.

(5) Question 7. C) The software writes to the ATDCTL5 register.
(5) Question 8. fdb Brake, Go
(5) Question 9. ldab 0,y (or ldab 1,y+)
(5) Question 10. ldy 1,y (or ldy 0,y)
(5) Question 11. C) Because the Fifo queue decouples execution of producer and consumer.
(5) Question 12. D) All of A, B, and C are correct.
(30) Question 13. A system that increments an 8 -bit variable called Second, every 1 second.

