
Introduction to Embedded Microcomputer Systems Lecture 15.1

Jonathan W. Valvano

Recap
 Debugging
 Intrusiveness
 Monitors and dumps

Overview
 Finite State Machines (Section 8.7)
 State graph to assembly

Lab 4. Traffic Light Controller
This lab has these major objectives:
 • The usage of linked list data structures;
 • Create a segmented software system;
 • an input-directed traffic light controller.
Limitations

• three switches
• six LEDs
• PP7 connected to red LED

See description of actual Lab 4 assignment

PT1=0, PT0=0 means no cars exist on either road
PT1=0, PT0=1 means there are cars on the East road
PT1=1, PT0=0 means there are cars on the North road
PT1=1, PT0=1 means there are cars on both roads

North

East
R

G
Y

R Y G

PT1
PT0

PT7
PT6
PT5
PT4
PT3
PT2

9S12

Figure 6.19. Traffic light interface.
 goN, PT7-2 = 100001 makes it green on North and red on East
 waitN, PT7-2 = 100010 makes it yellow on North and red on East
 goE, PT7-2 = 001100 makes it red on North and green on East
 waitE, PT7-2 = 010100 makes it red on North and yellow on East

goN

30

Next if input is 01 or 11

100001

Wait time

01,1100,10
waitN

5
100010

goE

30
001100

waitE

5
010100

00,01,
10,11 01,11

00,01

00,01,10,11

Output

Figure 6.20. Graphical form of a Moore FSM that implements a traffic light.

State \ Input 00 01 10 11
goN (100001,30) goN waitN goN waitN
waitN (100010,5) goE goE goE goE
goE (001100,30) goE goE waitE waitE
waitE (010100,5) goN goN goN goN

Table 6.4. Tabular form of a Moore FSM that implements a traffic light.

Introduction to Embedded Microcomputer Systems Lecture 15.2

Jonathan W. Valvano

 org $0800
Pt rmb 2 ;state pointer
;Linked data structure
 org $4000 ;Put in ROM
OUT equ 0 ;offset for output
WAIT equ 1 ;offset for time
NEXT equ 3 ;offset for next
goN fcb $21 ;North green, East red
 fdb 3000 ;30sec
 fdb goN,waitN,goN,waitN
waitN fcb $22 ;North yellow, East red
 fdb 500 ;5sec
 fdb goE,goE,goE,goE
goE fcb $0C ;North red, East green
 fdb 3000 ;30 sec
 fdb goE,goE,waitE,waitE
waitE fcb $14 ;North red, East yellow
 fdb 500 ;5sec
 fdb goN,goN,goN,goN
main lds #$4000 ;stack init
 bsr Timer_Init ;enable TCNT
 ldaa #$FC ;PT7-2 are lights
 staa DDRT ;PT1-0 are sensors
 ldx #goN ;State pointer
 stx Pt
FSM ldx Pt
 ldab OUT,x ;Output value
 lslb
 lslb ;line up with 7-2
 stab PTT ;set lights
 ldy WAIT,x ;Time delay
 bsr Timer_Wait10ms
 ldab PTT ;Read input
 andb #$03 ;just bits 1,0
 lslb ;2 bytes/address
 abx ;add 0,2,4,6
 ldx NEXT,x ;Next state
 stx Pt
 bra FSM
 org $FFFE
 fdb main ;reset vector
Program 6.22. Linked data structure implementation of the traffic light controller.

How do we prove to the judge it works?
 Log all (input,time,output) data (like Lab 3)
 Prove it works for a machine with a few states
 then show the 1-1 mapping

Write in assembly
 0) define the controller sequence output, wait, input, next
 1) create the structure format (use equ definitions)
 Where in memory should the state graph go?
 How do we write assembly code to specify where?
 How do we specify an arrow? (pointer or index)
 2) show the 1-1 mapping from graph to assembly code
 3) write assembly code

Introduction to Embedded Microcomputer Systems Lecture 15.3

Jonathan W. Valvano

 Start in the middle of the problem
 How do we output?
 How do we wait?
 How do we input?
 How do we go to next state?
 What needs to be done once?

To add more complexity
 (e.g., put a red/red state after each yellow state),
 we simply increase the size of the fsm[] structure
 define the Out, Time, and Next pointers

To add more output signals
 (e.g., walk light),
 use more of Out field.
 could increase the precision of the Out field

To add two input lines
 (e.g., walk button),
 increase the size of Next[8].
 size = 2**(number of inputs)

Stepper motor controller
Inputs: Go and Turn
Outputs: two 4-wire bipolar stepper motors

Bipolar stepper motor interface using an L293 driver

// Port M bits 1-0 are inputs
// =00 Stop
// =10 Go (55,66,AA,99)
// =01 RTurn(55,69,AA,96)
// =11 LTurn(55,96,AA,69)
// Port T bits 7-0 are outputs to steppers

const struct State {
 unsigned char out; // command
 const struct State *next[4];};
typedef const struct State StateType;
StateType *Pt;
#define S55 &fsm[0]
#define S66 &fsm[1]
#define SAA &fsm[2]
#define S99 &fsm[3]
#define S69 &fsm[4]
#define S96 &fsm[5]
StateType fsm[6]={
 {0x55,{S55,S69,S66,S96}}, // S55
 {0x66,{S66,SAA,SAA,S55}}, // S66
 {0xAA,{SAA,S99,S99,S69}}, // SAA
 {0x99,{S99,SAA,S55,SAA}}, // S99
 {0x69,{S69,SAA,S55,S55}}, // S69
 {0x96,{S96,S55,SAA,SAA}}}; // S96

This stepper motor FSM has two input signals four outputs.

6 8 1 2

PM1

PM0

P T 7
P T6
P T 5
P T 4

+5

10k

G o

T u r n +5

10k

1 , 2 E N

3 , 4 E N

1 A
2 A
3 A
4 A

+5

+5

1

9

2
7
10
15

+ 5
1 6

4 5 1 2 1 3

+ 1 2
8

+12

+12

+12

+123

6

11

14

1 Y

2 Y

3 Y

4 Y

L 2 9 3

1N4003

1 , 2 E N

3 , 4 E N

1 A
2 A
3 A
4 A

+5

+5

1

9

2
7
10
15

+ 5
1 6

4 5 1 2 1 3

+ 1 2
8

+12

+12

+12

+123

6

11

14

1 Y

2 Y

3 Y

4 Y

L 2 9 3

1N4003

P T 3
P T 2
P T 1
P T 0

S55
$55

01

S66
$66

01

SAA
$AA

01

S99
$99

01

00

00 00 00

S69
$69

S96
$96

11

00

00

01

0110 10 10

10 10

10

1111

11

11 11

Introduction to Embedded Microcomputer Systems Lecture 15.4

Jonathan W. Valvano

void main(void){
unsigned char Input;
 Timer_Init();
 DDRT = 0x0ff;
 DDRM = 0;
 Pt = S55; // initial state
 while(1){ // never quit
 PTT = Pt->out; // stepper drivers
 Timer_Wait(2000); // 0.25ms wait
 Input = PTM&0x03;
 Pt = Pt->next[Input];
 }
}
Write in assembly

 The bottom line
 FSM is good if:
 1) the FSM is easy to understand,
 2) the FSM is easy to change,
 3) the state graph defines exactly what it does,
 4) the state graph is 1-1 with the data structure,
 5) each state has the same format.
In other words, if all you see is the state graph, there should be no ambiguity about what the machine does.

