Introduction to Embedded Microcomputer Systems

Recap
Debugging
Intrusiveness
Monitors and dumps

Overview
Finite State Machines (Section 8.7)
State graph to assembly

Lab 4. Traffic Light Controller

This lab has these major objectives:
* The usage of linked list data structures;
» Create a segmented software system;
* an input-directed traffic light controller.

Limitations
e three switches
e six LEDs

e PP7 connected to red LED
See description of actual Lab 4 assignment

PT1=0, PT0=0 means no cars exist on either road
PT1=0, PT0=1 means there are cars on the East road
PT1=1, PT0=0 means there are cars on the North road
PT1=1, PT0=1 means there are cars on both roads

9512 PT1 No*th
PTO <—|
PT7 ®] |—O
PT6 East
PT5 % é
PT4 —
PT3 [E9E)
PT2
Figure 6.19. Traffic light interface.
goN, PT7-2 = 100001 makes it green on North and red on East
wailtN, PT7-2 = 100010 makes it yellow on North and red on East
goE, PT7-2 = 001100 makes it red on North and green on East

waltE, PT7-2 = 010100 makes it red on North and yellow on East
Next if input is 01 or 11

00,01,

00,10 01,11 —~.10,11 , -
CgoN WaitN 0l 11WaltE Output
100001, 100010, 001100 010100,
30 5 30 5
Wait time 00,01,10,11

Figure 6.20. Graphical form of a Moore FSM that implements a traffic light.

State \ Input 00 01 10 11
goN (100001,30) | goN | waitN | goN waitN
waitN (100010,5) | goE | goE goE goE
goE (001100,30) goE | goE waltE | waitE
waitE (010100,5) | goN | goN goN goN
Table 6.4. Tabular form of a Moore FSM that implements a traffic light.

Jonathan W. Valvano

Lecture 15.1

Introduction to Embedded Microcomputer Systems

org
Pt rmb

$0800
2 ;state pointer

;Linked data structure

org
ouT equ
WAIT equ

NEXT equ
goN fcb
fdb
fdb
waitN fcb

fdb
fdb
goE fcb
fdb
fdb
wailtE fcb
fdb
fdb
main lds
bsr
ldaa
staa
1dx
StX
FSM Idx
lIdab
Islb
Islb
stab
Idy
bsr
Idab
andb
Islb
abx
1dx
stx
bra
org
fdb

Program 6.22. Linked data structure implementation of the traffic light controller.

$4000 ;Put in ROM

0 ;offset for output

1 ;offset for time

3 ;offset for next

$21 ;North green, East red
3000 ;30sec
goN,waitN,goN,waitN

$22 ;North yellow, East red
500 ;5sec

goE,goE, goE,goE

$0C ;North red, East green
3000 ;30 sec
goE,goE,waitE,waitE

$14 ;North red, East yellow
500 ;5sec

goN,goN,goN, goN

#$4000 ;stack init
Timer_Init ;enable TCNT

#$FC ;PT7-2 are lights

DDRT ;PT1-0 are sensors

#goN ;State pointer

Pt

Pt

ouUT,x ;Output value
;1ine up with 7-2

PTT ;set lights

WAIT, X ;Time delay

Timer_WaitlOms
PTT ;Read input
#3$03 ;just bits 1,0

;2 bytes/address
;add 0,2,4,6
NEXT , X ;Next state
Pt
FSM
$FFFE
main ;reset vector

How do we prove to the judge it works?

Log all (input, time,output) data (like Lab 3)

Prove it works for a machine with a few states

then show the 1-1 mapping

Write in assembly
0) define the controller sequence output, wait, input, next
1) create the structure format (use equ definitions)

Where in memory should the state graph go?
How do we write assembly code to specify where?
How do we specify an arrow? (pointer or index)

2) show the 1-1 mapping from graph to assembly code
3) write assembly code

Jonathan W. Valvano

Lecture 15.2

Introduction to Embedded Microcomputer Systems Lecture 15.3

Start in the middle of the problem
How do we output?
How do we wait?
How do we input?
How do we go to next state?
What needs to be done once?

To add more complexity
(e.g., put a red/red state after each yellow state),
we simply increase the size of the fsm[] structure

define the Out, Time, and Next pointers

To add more output signals

Go +5 +12 +12
+

(e.g., walk light), PM1—eP 161 8 1N4003
use more of Out field. %_lOK 511 2EN 1Y %‘é +12
could increase the precision of the Out field 6812 Turn s : T

PMO 12— <?|84EN &YP——

To add two input lines 1 L293 T
(e.g., walk button), PT7 211A u '
increase the size of Next[8]. PT6 170 2A Y™ i e
size = 2**(number of inputs) E¥2 Eiﬁ 4y 14 =

Stepper motor controller slslidd =

Inputs: Go and Turn 5 +12 12

Outputs: two 4-wire bipolar stepper motors 1N4003

sif12eN 1Y

Bipolar stepper motor interface using an L293 driver +5 A3 4EN 2Y

L293 =

// Port M bits 1-0 are inputs E$g le‘ 3y | 1

// =00 Stop ax 10%2

// =10 Go (55,66,AA,99) PTO 15 4y | =

// =01 RTurn(55,69,AA,96)

/7 =11 LTurn(55,96,AA,69) alsldd =

// Port T bits 7-0 are outputs to steppers

const struct State {
unsigned char out; // command
const struct State *next[4];};

typedef const struct State StateType;

StateType *Pt;

#define S55 &Fsm[O]

#define S66 &Fsm[1]

#define SAA &fFsm[2]

#define S99 &Fsm[3]

#define S69 &Fsm[4]

#define S96 &Fsm[5]

StateType fsm[6]={
{0x55,{S55,569,566,596}}, // S55
{0x66,{S66,SAA,SAA,S55}}, // S66
{OxAA, {SAA,S99,599,569}}, // SAA
{0x99, {S99,SAA,S55,SAA}Y}, 7/ S99
{0x69,{S69,SAA,S55,555}}, // S69
{0x96,{S96,555,SAA,SAA}}}: // S96

This stepper motor FSM has two input signals four outputs.

Jonathan W. Valvano

Introduction to Embedded Microcomputer Systems Lecture 15.4

void main(void){
unsigned char Input;
Timer_Init();
DDRT = OxOff;
DDRM = O;
Pt = S55; // initial state
while(1){ // never quit
PTT = Pt->out; // stepper drivers
Timer_Wait(2000); // 0.25ms wait
Input = PTM&0x03;
Pt = Pt->next[Input];
}
}
Write in assembly

The bottom line
FSM is good if:
1) the FSM is easy to understand,
2) the FSM is easy to change,
3) the state graph defines exactly what it does,
4) the state graph is 1-1 with the data structure,
5) each state has the same format.
In other words, if all you see is the state graph, there should be no ambiguity about what the machine does.

Jonathan W. Valvano

