
Introduction to Embedded Microcomputer Systems Lecture 19.1

Jonathan W. Valvano

Working in teams,

“Everything you think is blindingly obvious is wrong.”
Tim Fields, UT EE grad, Lead Designer for Brute Force at

Microsoft

Recap
 Parameter passing using the stack
 LCD programming
 Fixed-point conversions

Overview
 I/O synchronization
 Interrupts
 Output compare periodic interrupts

Read Book Sections 9.1, 9.2, 9.4, 9.6.1, 9.6.2

Blind Cycle Counting Synchronization
 Blind cycle counting is appropriate when the I/O delay is
fixed and known. This type of synchronization is blind because
it provides no feedback from the I/O back to the computer.

Gadfly or Busy Waiting Synchronization
 Check busy/ready flag over and over until it is ready

Interrupt Synchronization
 Request interrupt when busy/ready flag is ready

Introduction to Embedded Microcomputer Systems Lecture 19.2

Jonathan W. Valvano

Synchronizing with an input device

Blind Cycle

Wait a fixed time

Read data

Busy-Wait

Status

Read data

Busy

Ready

Interrupt

Fifo

Get data from Fifo

Empty

Ready

Read data

Put data in Fifo

return from interrupt

Synchronizing with an output device

Blind Cycle

Wait a fixed time

Write data

Busy-Wait

Status

Write data

Busy

Ready

Interrupt

Fifo

Put data into Fifo

Full

Idle

Write data

Get data from Fifo

return from interrupt

Fifo
Empty

What are interrupts?

An interrupt is the automatic transfer of software execution

in response to hardware that is asynchronous with current software execution.
external I/O device (like a keyboard or printer) or
an internal event (like an op code fault, or a periodic timer.)
occurs the hardware needs service (busy to done state transition)

 A thread is defined as the path of action of software as it executes.
 a background thread interrupt service routine is called.
 a new background thread is created for each interrupt request.
 local variables and registers used in the interrupt service routine are unique
 threads share globals

Introduction to Embedded Microcomputer Systems Lecture 19.3

Jonathan W. Valvano

Each potential interrupt source has a separate arm bit. E.g., C0I
 Set arm bits for those devices from which it wishes to accept interrupts,
 Deactivate arm bits in those devices from which interrupts are not allowed

Each potential interrupt source has a separate flag bit. E.g., C0F
 hardware sets the flag when it wishes to request an interrupt
 software clears the flag in ISR to signify it is processing the request

Interrupt enable bit, I, which is in the condition code register.
 enable all armed interrupts by setting I=0, or cli
 disable all interrupts by setting I=1. sei
 I=1 does not dismiss the interrupt requests, rather it postpones

Three conditions must be true simultaneously for an interrupt to occur:
1) Initialization software will set the arm bit. e.g., C0I
 individual control bit for each possible flag that can interrupt
2) When it is convenient, the software will enable, I=0
 allow all interrupts now
3) Hardware action (busy to done) sets a flag e.g., C0F
 new input data ready,
 output device idle,
 periodic,
 alarm

What happens when an interrupt is processed?
 1) the execution of the main program is suspended

the current instruction is finished,
 pushes registers on the stack
 sets the I bit
 gets the vector address from high memory
 2) the interrupt service routine (ISR), or background thread is executed,
 clears the flag that requested the interrupt
 performs necessary operations
 communicates using global variables
 3) the main program is resumed when ISR executes rti.
 pulls the registers from the stack

Introduction to Embedded Microcomputer Systems Lecture 19.4

Jonathan W. Valvano

Hardware

Hardware
needs
service

ISR
provides
service

Busy Done Busy

Saves
execution
state

Restores
execution
stateInterrupt

Thread

Main
Thread

time

Software must respond to events within a prescribed time.

Software latency or interface latency
 Time from when new input is ready until time software reads data.
 Time from when output is idle until time software writes new data.
 Execute tasks at periodic intervals
Interrupts guarantee an upper bound on the software response time

Count maximum time running with I=1, plus
Time to process the interrupt.

Respond to infrequent but important events.
Alarm conditions like low battery power and
Error conditions can be handled with interrupts.

Periodic interrupts, generated by the timer at a regular rate
Clocks and timers
Computer-based data input/output
 DAC used play music
 ADC used to acquire data
Digital control systems.

Introduction to Embedded Microcomputer Systems Lecture 19.5

Jonathan W. Valvano

Increase the overall bandwidth

Situtations where system is doing many tasks
Buffer the data, spend less time waiting.
Small packets use a first in first out queue
 Fifo_Put saves data in FIFO
 Fifo_Get removes data from FIFO
Large blocks use a double buffer

What type of situations lend themselves to interrupt solutions?
Busy-wait Interrupts DMA
Predicable Variable arrival times low latency
Simple I/O Complex I/O, different speeds high bandwidth
Fixed load Variable load
Dedicated, single thread Other functions to do
Single process Multithread or multiprocess
Nothing else to do Infrequent but important alarms
 Program errors
 Overflow, invalid op code
 Illegal stack or memory access
 Machine errors
 Power failure, memory fault
 Breakpoints for debugging
 Real time clocks
 Data acquisition and control

9S12DP512 interrupts we will be using
0xFFD4 interrupt 21 SCI1
0xFFD6 interrupt 20 SCI0
0xFFDE interrupt 16 timer overflow
0xFFE0 interrupt 15 timer channel 7
0xFFE2 interrupt 14 timer channel 6
0xFFE4 interrupt 13 timer channel 5
0xFFE6 interrupt 12 timer channel 4
0xFFE8 interrupt 11 timer channel 3
0xFFEA interrupt 10 timer channel 2
0xFFEC interrupt 9 timer channel 1

Introduction to Embedded Microcomputer Systems Lecture 19.6

Jonathan W. Valvano

0xFFEE interrupt 8 timer channel 0
0xFFF0 interrupt 7 RTI real time interrupt
0xFFF6 interrupt 4 SWI software interrupt
0xFFF8 interrupt 3 trap software interrupt
0xFFFE interrupt 0 reset

(The interrupt number is used by the Metrowerks C compiler)

MC9S12 Periodic Interrupt using Output Compare 0
(OC.rtf OC.uc OC.io files created with TExaS installation)

address msb lsb Name
$0044 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TCNT
$0050 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC0
$0052 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC1
$0054 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC2
$0056 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC3
$0058 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC4
$005A 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC5
$005C 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC6
$005E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TC7

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$0046 TEN TSWAI TSBCK TFFCA 0 0 0 0 TSCR1
$004D TOI 0 0 0 TCRE PR2 PR1 PR0 TSCR2
$0040 IOS7 IOS6 IOS5 IOS4 IOS3 IOS2 IOS1 IOS0 TIOS
$004C C7I C6I C5I C4I C3I C2I C1I C0I TIE
$004E C7F C6F C5F C4F C3F C2F C1F C0F TFLG1
$004F TOF 0 0 0 0 0 0 0 TFLG2
Table MC9S12 registers used to configure periodic interrupts.

The rate is dependent of the PLL, TSCR2, and 1000 in ISR

; Bottom three bits of TSCR2 (PR2,PR1,PR0)
; determine TCNT period
; divide BootMode(24MHz) Run Mode (8MHz)
;000 1 42ns TOF 2.73ms 125ns TOF 8.192ms
;001 2 84ns TOF 5.46ms 250ns TOF 16.384ms
;010 4 167ns TOF 10.9ms 500ns TOF 32.768ms
;011 8 333ns TOF 21.8ms 1us TOF 65.536ms
;100 16 667ns TOF 43.7ms 2us TOF 131.072ms

Introduction to Embedded Microcomputer Systems Lecture 19.7

Jonathan W. Valvano

;101 32 1.33us TOF 87.4ms 4us TOF 262.144ns
;110 64 2.67us TOF 174.8ms 8us TOF 524.288ms
;111 128 5.33us TOF 349.5ms 16us TOF 1.048576s

Things you must do in every interrupt service routine
Acknowledge (clear flag that requested the interrupt)

Things you must do in an OC interrupt service routine
Acknowledge (make C0F become zero)
Set the timer to specify when to interrupt next

;interrupts every 1000 TCNT cycles
;every 1ms, assuming TCNT at 1us
TC0handler
 ldd TC0
 addd #1000
 std TC0 ; time for next interrupt
 movb #$01,TFLG1 ;ack, clear C0F
;this stuff gets executed every 1ms
 ldaa PTP
 eora #$80 ;toggle PP7
 staa PTP
 rti
void interrupt 8 TC0handler(void){

OC 0 ISR main

OC0_StartA ckno w ledge

set up next

to gg le PP7

R T I

toggle PT7

Introduction to Embedded Microcomputer Systems Lecture 19.8

Jonathan W. Valvano

 TC0 = TC0+1000;
 TFLG1 = 0x01;
 PTP ^= 0x80;
}

All our vectors go at the bottom of code
 org $FFEE
 fdb TC0handler ;OC0 interrupt vector
 org $FFFE
 fdb Main ;reset vector

Things you must do in every ritual

Arm (specify a flag may interrupt)
Enable (allow all interrupts on the 9S12)

Things you must do in an OC ritual
Turn on TCNT (TEN=1)
Set channel to output compare (TIOS)
Specify TCNT rate (TSCR2, PACTL, PLL)
Arm (C0I=1)
When to generate first interrupt
Enable (I=0)

Main lds #$4000
 movb #$80,TSCR1 ;enable TCNT
 bset TIOS,#$01 ;activate OC0
 bset TIE,#$01 ;arm OC0
 movb #$03,TSCR2 ;1us TCNT
 ldd TCNT
 addd #25
 std TC0 ;C0F set in 25 us

Introduction to Embedded Microcomputer Systems Lecture 19.9

Jonathan W. Valvano

 bset DDRP,#$80 ;used for testing
 bset DDRT,#$80 ;used for testing
 cli ;enable
loop ldaa PTT
 eora #$80 ;toggle PT7
 staa PTT
 bra loop
void main(void){
 TSCR1 = 0x80; // enable TCNT
 TIOS |= 0x01; // activate OC0
 TIE |= 0x01; // arm OC0
 TSCR2 = 0x03; // 1us TCNT
 TC0 = TCNT+25; // C0F set in 25 us
 DDRP |= 0x80; // used for testing
 DDRT |= 0x80; // used for testing
asm cli // enable
 for(;;){
 PTT ^= 0x80; // toggle PT7
}

In TExaS, open OC.rtf example, paste in, and look at scope

Switch to real mode, assemble, see scope signals

The bottom line
 Interrupts are hardware-triggered software action
 Three conditions cause interrupt
 Enabled (I=0) by software
 Armed (C0I=1) by software
 Triggered (C0F=1) by hardware
 Context switch
 Finish instruction

Introduction to Embedded Microcomputer Systems Lecture 19.10

Jonathan W. Valvano

 Push registers on stack (with I=0)
 Disable (I=1)
 Vector fetch into PC
 ISR programming
 Acknowledge (make the flag 0 become 0)
 Do something appropriate
 Pass data in and out via global memory
 Return to main program (rti instruction)

