
Interrupt programming can be frustrating.

# Recap

Synchronization: hardware/software, between threads Output compare interrupts C projects

## **Overview**

Design a DAC Experimental method Output a sine wave



## **Digital to Analog Conversion**

Signal generation (sound, image, touch...)
Output to affect external devices (power, flow, heat...)

The DAC *precision* is the number of distinguishable DAC outputs (e.g., 16 alternatives, 4 bits).

The DAC *range* is the maximum and minimum DAC output (0 to 5V).

The DAC resolution is the smallest distinguishable change in output. (5V/16 = 0.31V)

 $Range(volts) = Precision(alternatives) \cdot Resolution(volts)$ 

The DAC accuracy is (Actual - Ideal) / Ideal

For example, if we were to build a 2-bit DAC. Assume  $V_{OH}$  of the 9S12 is 5, and its  $V_{OL}$  is 0

| N | Q1 | Q0 | V <sub>1</sub> (V) | V2(V) |
|---|----|----|--------------------|-------|
| 0 | 0  | 0  | 0.00               | 0.00  |
| 1 | 0  | 5  | 1.25               | 1.67  |
| 2 | 5  | 0  | 2.50               | 3.33  |
| 3 | 5  | 5  | 3.75               | 5.00  |

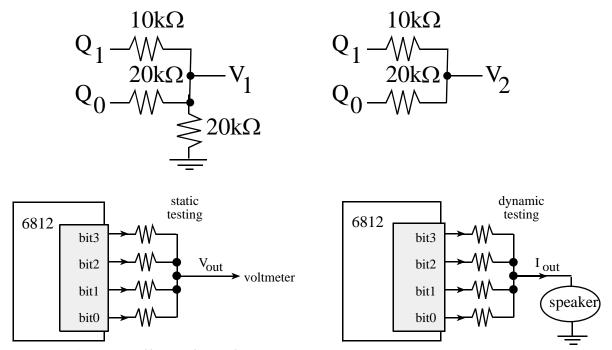
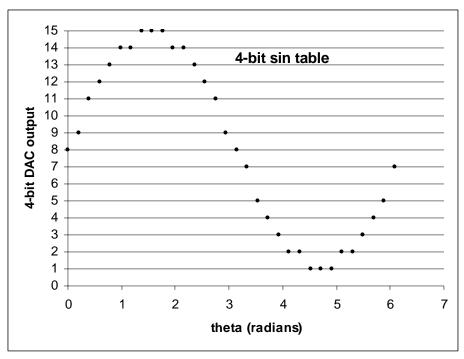



Figure 7.1. DAC allows the software to create music.

You can realistically build a 4-bit DAC using this method.  $Q_n$  is 5V or 0V. Two alternatives (four resistors)

$$V_{out} = (8*Q3 + 4*Q2 + 2*Q1 + Q0)/15$$

Assume  $V_{OH}$  of the 9S12 is 5V, and its  $V_{OL}$  is 0


| N  | Q3 | Q2 | 2 Q | 1 Q0 | theory  | V <sub>out</sub> (V) |
|----|----|----|-----|------|---------|----------------------|
| 0  | 0  | 0  | 0   | 0    | 5*0/15  | 0.00                 |
| 1  | 0  | 0  | 0   | 5    | 5*1/15  | 0.33                 |
| 2  | 0  | 0  | 5   | 0    | 5*2/15  | 0.67                 |
| 8  | 5  | 0  | 0   | 0    | 5*8/15  | 2.67                 |
| 15 | 5  | 5  | 5   | 5    | 5*15/15 | 5.00                 |

or (five resistors)

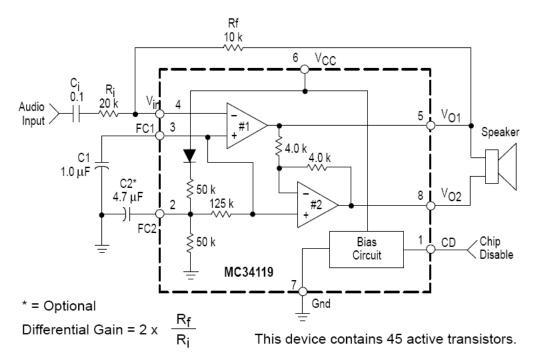
$$V_{\text{out}} = (8*Q3 + 4*Q2 + 2*Q1 + Q0)/16$$

Assume  $V_{OH}$  of the 9S12 is 5V, and its  $V_{OL}$  is 0

| N  | Q3 | Q2 | 2 Q | 1 Q0 | theory  | V <sub>out</sub> (V) |
|----|----|----|-----|------|---------|----------------------|
| 0  | 0  | 0  | 0   | 0    | 5*0/16  | 0.00                 |
| 1  | 0  | 0  | 0   | 5    | 5*1/16  | 0.31                 |
| 2  | 0  | 0  | 5   | 0    | 5*2/16  | 0.63                 |
| 8  | 5  | 0  | 0   | 0    | 5*8/16  | 2.50                 |
| 15 | 5  | 5  | 5   | 5    | 5*15/16 | 4.69                 |



SinTab fcb 8,9,11,12,13,14,14,15,15,15,14 fcb 14,13,12,11,9,8,7,5,4,3,2 fcb 2,1,1,1,2,2,3,4,5,7


## How to create a sin wave with period T?

Periodic interrupt every T/32 Output next entry in table

What happens to the voltage when your DAC is connected to the headphones?

#### In EE445L we will

Interface a 12-bit DAC
Use this amplifier (Rf=10k, Ri=20k) to drive the speaker
Play songs
Include melody and harmony
Change instruments
Add envelops



Using Ohm's law and fact that the digital output voltages will be approximately 0 and 5 V, make a table of the theoretical DAC voltage and as a function of digital value (without the speaker attached). Calculate resolution, range, precision and accuracy

| Bit3 -0 | Theoretical DAC | Measured DAC |
|---------|-----------------|--------------|
|         | voltage         | voltage      |
| 0       |                 |              |
|         |                 |              |
| 1       |                 |              |
|         |                 |              |
| 2       |                 |              |
|         |                 |              |
| 3       |                 |              |
|         |                 |              |
| 4       |                 |              |
|         |                 |              |
| 5       |                 |              |
|         |                 |              |
| 6       |                 |              |
|         |                 |              |
| 7       |                 |              |
|         |                 |              |
| 8       |                 |              |

| 9  |  |
|----|--|
| 10 |  |
| 11 |  |
| 12 |  |
| 13 |  |
| 14 |  |
| 15 |  |

Table 7.2. Static performance evaluation of the DAC.

### **DAC** parameters

Range, resolution, precision Speed Cost (is it easy to manufacture?) Monotonic (always increasing) Accuracy

## Try to use this method to build an 8-bit DAC

Becomes expensive to use very high tolerance resistors or DAC becomes non-monotomic

## Show R-2R ladder, and implement an 8-bit DAC

### The bottom line

DAC: precision, range, resolution, monotonic Use OC interrupts and a DAC to create waveforms Measurement of accuracy