Recap

> Output compare interrupts Metrowerks Codewarrior

Overview

Analog to Digital Convertor
Transducer: mechanical, electrical
Using output compare interrupts to establish sampling
Range(volts) $=$ Precision(alternatives) \cdot Resolution(volts)

Figure 11.1. An analog signal is represented in the digital domain as discrete samples.

```
10-bit Analog to digital Converter
Analog input \(0 \leq V_{\text {in }} \leq+5\)
Digital output \(0 \leq\) ATD0DR0 \(\leq 1023\)
Digital Output is about \(1024 * \mathrm{~V}_{\text {in }} / 5\)
or
Digital Output is about \(1023 * \mathrm{~V}_{\text {in }} / 5\)
```


Figure 11.2. Input/output functions of a $D A C$ and an $A D C$.

8-bit Analog to digital Converter

Analog input $0 \leq V_{\text {in }} \leq+5$
Digital output $0 \leq$ ATD0DR0 ≤ 255
Digital Output is about $256 * \mathrm{~V}_{\text {in }} / 5$
or
Digital Output is about $255^{*} \mathrm{~V}_{\text {in }} / 5$
Find the 16 analog inputs on the 9S12DG128
See Figure 4.18. Block diagram of a Freescale 9S12DP512.
9S12DG128 has less RAM/ROM and CAN ports
ATD0CTL2=\$80; set bit 7 to enable ADC

ATD0CTL3=\$08; sequence length=1
ATD0CTL4 bit 7=0 for 10-bit, =1 for 8-bit ADC
Bits 4-0 internal clock (how fast the ADC runs)
Let m be the bottom 5 bits of ATD0CTL4
Internal clock is $1 / 2 \mathrm{E} /(\mathrm{m}+1)$
Internal clock can be between 500 kHz and 2 MHz
At 24 MHz
2 MHzmake ATD0CTL4=\$85 ; m=5 (7us)
1 MHzmake ATD0CTL4=\$8B ; m=11(14us)
ATD0CTL5 write channel number to start ADC

- channel number $\$ 80$ to $\$ 87$

ATD0STAT bit 7 SCF

- cleared by write to ATD0CTL5
- set when ADC finished

ATD0DR0 first 10-bit ADC result

- precision 10-bit, 1024 alternatives
- range 0 to +5 V
- resolution (5-0)/1024 $=5 \mathrm{mV}$

Analog Input (V)	Digital Output		
0.000	\%0000000000	$\$ 000$	0
0.005	$\% 0000000001$	$\$ 001$	1
2.500	$\% 1000000000$	$\$ 200$	512
3.750	\%1100000000	\$300	768
5.000	\%1111111111	\$3FF	1023

Table 11.6. Straight binary format used.
ATD0DR0 first 8-bit ADC result

- precision 8-bit, 256 alternatives
- range 0 to +5 V
- resolution $(5-0) / 256=19.5 \mathrm{mV}$

Analog Input (V)	Digital Output		
0.00	\%00000000	$\$ 00$	0
0.02	$\% 00000001$	$\$ 01$	1
2.50	\%10000000	\$80	128
3.75	\%11000000	\$C0	192
5.00	\%11111111	\$FF	255

Table 11.6. Straight binary format used.
Lab 7 is real-time data acquisition system

Lab 7: Design a position meter
Hardware
Software

Hardware

> Transducer
> Electronics
> ADC

Software
ADC device driver
Timer routines
Output compare interrupts
LCD driver
Measurement system
How fast to update
Fixed-point number system
Algorithm to convert ADC into position
A data flow graph is one of the first design steps

A transducer converts position into resistance

Solder wires to pins 1,2,3
Glue transducer to a solid
Position metric ruler (for calibration and testing)
Create a hair-line cursor
Question: what is $\mathbf{R}_{\mathbf{1 2}}+\mathbf{R}_{\mathbf{2 3}}$ at all times?
Question: what are $\mathbf{R}_{\mathbf{1 2}}$ and $\mathbf{R}_{\mathbf{2 3}}$ when cursor is at 1 cm ?
An electrical circuit converts resistance in to a voltage

Question: what is $\mathbf{V}_{\text {in }}$ at 1 cm ?
Question: what is ATD0DR0 at 1 cm ?
Question: what do you want to display on the $\mathbf{L C D}$ at 1 cm ?

1) run Lab 7 starter file, first main program, write ADC
2) see ADC device driver
3) show ADC_Init

Turns it on
Sets it to 10-bit mode
4) show ADC_In
write channel number to ATD0CTL5
wait for SCF flag in ATD0STAT
read 10-bit result from ATD0DR0
5) show Data
complexity abstraction (what we want to do)
divide a complex problem into simple subcomponents
functional abstraction (how we do it)
divide a problem into modules
grouped by function
draw a data flow graph

Run solution to Lab 7, show how to prove real time DAS

start ADC at a regular rate (every 100 ms)
measure the jitter
$100 \mathrm{~ms}-\delta \mathrm{t}<\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{\mathrm{n}-1}<100 \mathrm{~ms}+\delta \mathrm{t}$

Lab 7
Sample ADC every 0.1s
Map (Data is 0 to 1023) into (Position is 0000 to +1500)
Option A) use a linear function
Position $=($ Constant $1 *$ Sample $) /$ Constant $2+$ Constant 3
Position $=(65536 *$ Sample $) /$ Constant $4+$ Constant3
Option B) Use a paired calibration table (S[i],P[i])
$\mathrm{S}[\mathrm{i}]$ are ADC samples measured at corresponding positions $\mathrm{P}[\mathrm{i}]$
Given sample, find i such that $\mathrm{S}[\mathrm{i}]<=$ sample $<\mathrm{S}[\mathrm{i}+1]$
Use linear interpolation (look up etbl in TExaS help)
position $=\mathrm{P}[\mathrm{i}]+(($ sample-S[i])*(P[i+1]-P[i]))/(S[i+1]-S[i])
Option C) Create a 256-entry calibration table (P[ATD0DR0])
Fixed-Point output (using Lab 6 code)
123 is displayed a " 1.23 cm "
The bottom line
ADC converts analog to digital
Controlling time is important

