
Introduction to Embedded Microcomputer Systems Lecture 26.1

Jonathan W. Valvano

Recap
 Serial communication; what does the frame look like
 SCI shift register versus SCI data register
 How RDRF is set; how RDRF is cleared
 How TDRE is set; how TDRE is cleared
Overview
 Baud rate vs bandwidth
 Latency vs real time
 Synchronization between computers
 SCI interrupts
Classification
 Simplex: data flows in one direction
 Half-duplex: data flows in both ways, one way at a time
 Full-duplex: data can flow both ways at the same time
Lab 8
 hardware allows for full duplex communication
 it is used in a simplex manner

PS3

PS2

Ground

11 14

1312

MAX232A

PS3

PS2

Ground

9S12DP512

SCI1
TxD

RxD

SG

1114

13 12

MAX232A

9S12DP512

SCI1
TxD

RxD

SG

Shift

Shift
Data

Data

Shift

Shift
Data

Data

Things to remember
 There are two data registers at the same address SCI1DRL
 The transmit SCI1DRL is write only
 The receive SCI1DRL is read only
 There are two shift registers
 The transmit shift register is connected to PS3 output
 The receive shift register is connected to PS2 input
 Frames have 1 start, 8 data and 1 stop bit

5V
0Vb0 b1 b2 b3 b4 b5 b6serial port b7

one frame

start stop

Figure 8.1. A 10-bit serial data frame(with M=0).

Review of how SCI works
To transmit, the software (busy-wait synchronization)
 Waits until TDRE is 1 (meaning data register is empty)
 Writes data to SCI1DRL
To transmit, the hardware
 Moves 8-bit data from data register to shift register
 Adds start bit at front (0)
 Puts stop bit (1) at end
 Shifts the 10-bit frame out PS3 at the baud rate

To receive, the software (busy-wait synchronization)
 Waits until RDRF is 1 (meaning data register has data)
 Reads data from SCI1DRL
To receive, the hardware

Introduction to Embedded Microcomputer Systems Lecture 26.2

Jonathan W. Valvano

 Waits for a 1 to 0 edge defining the start bit
 Shifts the 10-bit frame in from PS2 at the baud rate
 Checks to make sure there are proper start/stop bits
 Moves 8-bit data from shift register to data register
Performance issues (Bandwidth, latency, noise immunity)
1) Bandwidth (information/sec)
bit time is the time per bit
baud rate is the total number of bits per time transmitted

information (data),
plus overhead (start, stop, parity)

 baud rate =
1

bit time

bandwidth is the information bits per time transmitted
 same as bit rate and throughput

Bandwidth =
 number of information bits/frame

total number of bits/frame • baud rate

Performance issue
2) Interface latency
 Time from request to time of service
 Real-time systems have bounded latency

E.g., time from RDRF=1 to software read SCI1DRL
 E.g., time from TDRE=1 to software write SCI1DRL

Consider this case
 SCI receiver is initially idle
 Characters “1” “2” and “3” arrive one right after the other
 Software does not notice RDRF
 When is data lost?

"2"=$32

s 0 1 2 3 4 5 6 7 s s 0 1 2 3 4 5 6 7 s s 0 1 2 3 4 5 6 7 s

"3"=$33"1"=$31

$31 SCI0DRL
RDRF=1

$32 Shift reg
OVRN=1

Figure 8.5. Three receive data frames result in an overrun (OR) error.

Overrun error (lost data) if

One frame is received, data put in data register
Second frame is received, this frame is in shift register
Software does not notice RDRF is set
Third frame begins (no place to put it)

Receiving serial data requires a real-time interface
 Software must read data within 10 bit times of RDRF
Performance issue
3) Noise immunity
 Probability data will be transmitted without error

We could add parity to detect errors
11-bit frame (M=1, PE=1, PT=0)
Even parity means #1’s is an even number
On transmission, parity = eor(bitn), n=0-7
On reception, error = eor(bitn, parity)

Cell phones use error correcting codes to fix mistakes

Solution to real-time system
 Interrupt on RDRF
 Never disable interrupts for longer than 10 bit times

Introduction to Embedded Microcomputer Systems Lecture 26.3

Jonathan W. Valvano

8.2.4. 9S12 SCI Details

address ms

b
 lsb Name

$00D0 - - - 12 11 10 9 8 7 6 5 4 3 2 1 0 SCI1BD

Address Bit 7 6 5 4 3 2 1 Bit 0 Name
$00D2 LOOPS SWAI RSRC M WAKE ILT PE PT SCI1CR1
$00D3 TIE TCIE RIE ILIE TE RE RWU SBK SCI1CR2
$00D4 TDRE TC RDRF IDLE OR NF FE PF SCI1SR1
$00D5 0 0 0 0 0 BRK13 TXDIR RAF SCI1SR2
$00D6 R8 T8 0 0 0 0 0 0 SCI1DRH
$00D7 R7T7 R6T6 R5T5 R4T4 R3T3 R2T2 R1T1 R0T0 SCI1DRL
Similar to Table 8.4. 9S12 SCI ports (SCI1).

How to set up RDRF to interrupt
 Configure SCI
 Enable TE RE
 Arm RIE (interrupt on RDRF)
 Set the baud rate
 No parity, M=0
 Initialize data structure
 Lab 7 used a mailbox
 Lab 8 will use a FIFO
 Interrupt vector for SCI1
 Enable interrupts after all devices are initialized
RDRF interrupt service routine

Invoked when (RDRF=1, RIE=1, I=0)
Reads new input from SCI1DRL, puts into FIFO

 Latency equals maximum time system runs with I=1

Source process
Producer

FIFO
or

Double buffer
Sink process
Consumer

Put Get

Figure 12.4. FIFO queues and double buffers can be used to pass data from a producer to a consumer.

Position
Sensor

Voltage
0 to +5V

ADC
hardware

ADC
driver

ATD0DR0
0 to 1023

OC
ISR

Sample
0 to 1023

OC
hardware

LCD
display

LCD
driver

Fixed-point
0 to 1.50

Position
0 to 1.5 cm

SCI1
driver

SCI1
hardware

main

SCI1
driver

SCI1
hardware

Computer 1

Computer 2

2*Data
0 to 255

2*Frame
0 to 255

2*Frame
0 to 255

FIFO

2*Frame
0 to 255

Data
0 to 1023

Lab 8, Figure 8.3. Data flows from the sensor through the two microcontrollers to the LCD. The output compare
timer is used to trigger the real-time sampling. Use the special serial cable to connect the two SCI1 ports.
Lab 8
 Busy-wait synchronization for transmission
 Interrupt synchronization for reception

Introduction to Embedded Microcomputer Systems Lecture 26.4

Jonathan W. Valvano

Flowcharts for the two systems in Lab 8
Fall 2010
Transmit 8-bit data as one 8-bit SCI frame
Spring 2011
Encode/decode 10-bit data into/out of two 8-bit SCI frames
Transmitter ISR establishes real-time data acquisition
 1) acknowledge the output compare interrupt
 2) specify the time for the next interrupt, every 100ms
 3) toggle PP7, heartbeat
 4) sample the 10-bit ADC
 5) send the 10-bit data to the other computer as two
frames
 6) increment a Counter, used as debugging monitor
 7) return from interrupt

Receiver ISR
 1) acknowledge (read status, read data)
 2) read the data received from SCI1DRL
Look at data (according to your method of encoding/decoding) if first part
 3a) store first part in a private global variable
If it is the second part
 3b) toggle PP7 (change from 0 to 1, or from 1 to 0)
 4b) reconstruct 10-bit data and put 10-bit data into the FIFO queue
 5b) increment a global error count if the FIFO is full

If full don’t loop back, just throw data away
 6b) increment a Counter, used as debugging monitor
 7) return from interrupt

SCI1_InData
 1) Call Fifo_Get over and over until data is returned
 2) Return the 16-bit data

Receiver Main
 1) initialize PLL, FIFO, LCD, PP7, SCI, and enable interrupts
 2) calls SCI1_InData, which will wait until new data arrives
 3) convert sample to fixed-point (same as Lab 7)
 4) output the result as a fixed-point number (same as Lab 7) with units
 5) repeat steps 2,3,4 over and over

The bottom line
 Baud rate, bandwidth, latency, real time
 SCI interrupts

InData

Data
?

No data

Got some
data

rts

Fifo_Get

main

Initializations

InData

Convert

LCD output

Output compare ISR

TDRE
Busy

Idle

rti

Sample ADC

must be broken

TDRE
Busy

SCI1DRL=part of data

Idle
must be broken

SCI1DRL=rest of data

RDRF SCI1 ISR

decode
First part

Second part

rti

Fifo_Put

Save data
in private place

RDRFBusy

Read SCI1DRL data

Has data
must be broken

Reconstruct
10-bit data

