
Introduction to Embedded Microcomputer Systems Lecture 27.1

Jonathan W. Valvano

Read Sections 8.2, 9.1, 9.2.1-4, 12.3, 12.4 (Fifo and SCI)
Recap
 Serial communication; what does the frame look like
 Baud rate vs bandwidth, latency vs real time
 SCI shift register versus SCI data register
 How RDRF is set; how RDRF is cleared
 How TDRE is set; how TDRE is cleared

Overview
 Synchronization: hardware/software, between threads
 SCI interrupts
 Fifo queue: what why how

What is a Fifo; It is a structured way to pass data
 Fifo_Put stores data
 Fifo_Get retreives data
 First in first out means the data remains in order

Introduction to Embedded Microcomputer Systems Lecture 27.2

Jonathan W. Valvano

Source process
Producer

FIFO
or

Double buffer
Sink process
Consumer

Put Get

Figure 12.4. FIFO queues and double buffers can be used to pass data from a
producer to a consumer.

Blind Cycle Counting Synchronization
 Blind cycle counting is appropriate when the I/O delay is
fixed and known. This type of synchronization is blind because
it provides no feedback from the I/O back to the computer.

Gadfly or Busy Waiting Synchronization
 Check busy/ready flag over and over until it is ready

Interrupt Synchronization
 Request interrupt when busy/ready flag is ready

Synchronizing with an input device

Blind Cycle

Wait a fixed time

Read data

Busy-Wait

Status

Read data

Busy

Ready

Interrupt

Fifo

Get data from Fifo

Empty

Ready

Read data

Put data in Fifo

return from interrupt

Introduction to Embedded Microcomputer Systems Lecture 27.3

Jonathan W. Valvano

Synchronizing with an output device

Blind Cycle

Wait a fixed time

Write data

Busy-Wait

Status

Write data

Busy

Ready

Interrupt

Fifo

Put data into Fifo

Full

Idle

Write data

Get data from Fifo

return from interrupt

Fifo
Empty

Run Lab 8 Transmitter on TExaS and show context switch
 Finish instruction
 Push registers on stack (with I=0)
 Disable (I=1)
 Vector fetch into PC

When does the interrupt occur?
 Armed C0I =1 in ritual
 Enabled I=0
 Triggered C0F set when TCNT equals TC0

What happens in ISR?
 Ack Software movb #$01,TFLG1
 Makes C0F become 0
 Read ADC data, encode, send two frames
 rti

Run Lab 8 Receiver on TExaS and show context switch
 Finish instruction
 Push registers on stack (with I=0)
 Disable (I=1)

Introduction to Embedded Microcomputer Systems Lecture 27.4

Jonathan W. Valvano

 Vector fetch into PC

When does the interrupt occur?
 Armed RIE=1 in ritual
 Enabled I=0
 Triggered New frame arrives, setting RDRF

What happens in ISR?
 Ack Software RDRF become 0
 read status, read data
 Pass data to foreground via global memory
 Put into FIFO
 rti

How do we set the ISR vector?

Why FIFO?
 Simple unstructured globals are hard to manage
 Is there data in there?
 Are you writing new data overtop old data?

Are you reading garbage?
 Fifo is a structured way to pass data
 Fifo_Put stores data
 Fifo_Get retreives data
 First in first out means the data remains in order
 Real way to implement thread synchronization
 The producer needs to stall if Fifo is full
 The comsumer needs to stall if Fifo is empty
 Lab8 way to implement thread synchronization
 The producer throws data away if Fifo is full

Introduction to Embedded Microcomputer Systems Lecture 27.5

Jonathan W. Valvano

 The comsumer waits if Fifo is empty

How is the FIFO used?

RDRF ISR
 0) Incoming frame sets RDRf
 1) clear RDRF (acknowledge interrupt)
 2) every other time put 10-bit value into FIFO: Fifo_Put
 3) rti
Main program
 1) Initialize Timer, LCD, Fifo_Init, SCI
 2) Fifo_Get (wait here until data is available)
 3) Convert from 10-bit sample to decimal fixed-point
 4) Display on LCD
 5) repeat 2,3,4 over and over

Interface Latency is the time from trigger
flag being set and the time the ISR is
executed

RxGetPt

RxFifo

RxPutPt

valid
data

List the steps required to implement

Introduction to Embedded Microcomputer Systems Lecture 27.6

Jonathan W. Valvano

 Fifo_Init
 Fifo_Put
 Fifo_Get

GPt

Put

PPt

oldest
newest

GPt

Put
PPt

oldest

newest

GPt

Put

PPt

oldest

newest

GPt

PPt

oldest

newest

GPt

Put

PPt

Get Get Get

GPt

PPt

oldest

newest

Get

GPt

PPt

oldest

newest

PPt
newest

GPt oldest

PPt
newest

GPt oldest

PPt
GPt

Introduction to Embedded Microcomputer Systems Lecture 27.7

Jonathan W. Valvano

Reset tempPt

Fifo_Put

tempPt within buffer

beyond buffer

tempPt = PutPt

Store data at tempPt
tempPt++

PutPt = tempPt

tempPt =GetPt

!= GetPt

return(1) return(0)

full

Reset GetPt

Fifo_Get

GetPt within buffer

beyond buffer

Retreive data at GetPt
GetPt++

GetPt =PutPt

!= PutPt

return(1)

return(0)

empty

Figure 12.10. Flowcharts of the put and get operations.

The following software is in Chapter 12
FIFO_SIZE equ 10
PutPt rmb 2
GetPt rmb 2
Fifo rmb FIFO_SIZE
Fifo_Init movw #Fifo,PutPt
 movw #Fifo,GetPt
 rts
; Input RegA data to put
; Output RegB 1=OK, 0=full
Fifo_Put
 pshx
 ldx PutPt ;Temporary
 staa 1,x+ ;Try to put
 cpx #Fifo+FIFO_SIZE

Introduction to Embedded Microcomputer Systems Lecture 27.8

Jonathan W. Valvano

 bne skip
 ldx #Fifo ;Wrap
skip clrb
 cpx GetPt ;Full if same
 beq ok
 incb ;1 means OK
 stx PutPt
ok pulx
 rts
; Input none
; Output RegA data from Get
; RegB 1=ok, 0=empty
Fifo_Get
 pshx
 clrb
 ldx GetPt
 cpx PutPt ;Empty?
 beq done
 incb ;1=OK
 ldaa 1,x+ ; Data
 cpy #Fifo+FIFO_SIZE
 bne no ;wrap?
 ldx #Fifo ;yes
no stx GetPt
done pulx
 rts
Program 12.4. Implementation of a two-pointer FIFO.

;baud rate=9600
SCI_Init jsr RxFifo_Init ;FIFO is empty
 jsr TxFifo_Init ;FIFO is empty

Introduction to Embedded Microcomputer Systems Lecture 27.9

Jonathan W. Valvano

 movb #$2C,SCI0CR2 ;arm just RDRF
 movw #52,SCI0BD
 cli
 rts

* Inputs: none Outputs: RegA is ASCII
SCI_InChar
 pshb
iloop jsr RxFifo_Get ;B=0 if empty
 tbeq B,iloop
 pulb
 rts ;A=character

* Inputs: RegA is ASCII Outputs: none
SCI_OutCh
 pshb ;A=character
oloop jsr TxFifo_Put ;save in FIFO
 tbeq B,oloop ;B=0 if full
 movb #$AC,SCI0CR2 ;arm TDRE
 pulb
 rts

SCIhandler
 ldaa SCI0SR1
 bita #$20
 beq CkTDRE ;Not RDRF set
 ldaa SCI0DRL ;ASCII character
 bsr RxFifo_Put
CkTDRE ldaa SCI0SR1
 bpl sdone ;Not TDRE set
 ldaa SCI0CR2 ;bit 7 is TIE

Introduction to Embedded Microcomputer Systems Lecture 27.10

Jonathan W. Valvano

 bpl sdone ;disarmed?
 bsr TxFifo_Get
 tbeq B,nomore
 staa SCI0DRL ;start output
 bra sdone
nomore movb #$2C,SCI0CR2 ;disarm TDRE
sdone rti
 org $FFD6
 fdb SCIhandler
Program 12.5. An interrupting SCI (note: Lab7 uses SCI1).

The bottom line
 Interrupts means software runs only when it needs to
 Fifo queue is used to pass data between threads
Exam questions

Can you draw a SCI frame (voltage versus time)?
Can you implement a Fifo with 2-byte storage?
Can you tell what sets/clears RDRF / TDRE?
Given a SCI example, determine bandwidth

