Recap

Digital to Analog Conversion

Signal generation (sound, image, touch...) Output to affect external devices (power, flow, heat...)

- The DAC *precision* is the number of distinguishable DAC outputs (e.g., 16 alternatives, 4 bits).
- The DAC *range* is the maximum and minimum DAC output (0 to 5V).
- The DAC *resolution* is the smallest distinguishable change in output. (5V/16 = 0.31V)

Range(volts) = Precision(alternatives) • Resolution(volts)

The DAC accuracy is (Actual - Ideal) / Ideal

For example, if we were to build a 2-bit DAC. Assume V_{OH} of the 9S12 is 5, and its V_{OL} is 0

Ν	Q1 Q0	V1(V)	V2(V)
0	0 0	0.00	0.00
1	05	1.25	1.67
2	50	2.50	3.33
3	55	3.75	5.00

Figure 8.1. DAC allows the software to create music.

You can realistically build a 4-bit DAC using this method. $Q_{n} \mbox{ is 5V or 0V}.$

Two alternatives (four resistors)

 $\label{eq:Vout} \begin{array}{l} V_{Out}=~(8^*Q_3+4^*Q_2+2^*Q_1+Q_0)/15\\ \mbox{Assume }V_{OH}~\mbox{of the }9S12~\mbox{is }5V,~\mbox{and its }V_{OL}~\mbox{is }0 \end{array}$

the 9S12 is 5V, and its V_{OL} is 0									
	N	Q3	Q2	Q	l Q0	theory	V _{out} (V)		
-	0	0	0	0	0	5*0/15	0.00		
	1	0	0	0	5	5*1/15	0.33		
	2	0	0	5	0	5*2/15	0.67		
	8	5	0	0	0	5*8/15	2.67		
	15	5	5	5	5	5*15/15	5.00		

or (five resistors)

 $V_{out} = (8*Q_3 + 4*Q_2 + 2*Q_1 + Q_0)/16$

```
Assume V_{OH} of the 9S12 is 5V, and its V_{OL} is 0
```

Ν	Q3	Q	2 Q	1 Q0	theory	V _{out} (V)
0	0	0	0	0	5*0/16	0.00
1	0	0	0	5	5*1/16	0.31
2	0	0	5	0	5*2/16	0.63
8	5	0	0	0	5*8/16	2.50
15	5	5	5	5	5*15/16	4.69

Periodic interrupt every T/32 Output next entry in table

What happens to the voltage when your DAC is connected to the headphones?

In EE445L we will

Interface a 12-bit DAC Use this amplifier (Rf=10k, Ri=20k) to drive the speaker Play songs Include melody and harmony Change instruments Add envelops

Using Ohm's law and fact that the digital output voltages will be approximately 0 and 5 V, make a table of the theoretical DAC voltage and as a function of digital value (without the speaker attached). Calculate resolution, range, precision and accuracy

DAC parameters

Range, resolution, precision Speed Cost (is it easy to manufacture?) Monotonic (always increasing) Accuracy

Try to use this method to build an 8-bit DAC

- Becomes expensive to use very high tolerance resistors
- or DAC becomes non-monotomic

Show R-2R ladder, and implement an 8-bit DAC

The bottom line

DAC: precision, range, resolution, monotonic Use OC interrupts and a DAC to create waveforms Measurement of accuracy