First:
Last: \qquad EID: \qquad
This is the closed book section. Calculator is allowed (no laptops, phones, devices with wireless communication). You must put your answers in the boxes. When you are done, you turn in the closedbook part and can start the open book part.
(5) Question 1. For each description, choose the best voltage regulator that matches the description. Let ($V_{\text {in }}, I_{\text {in }}$) be the input (voltage, current). Let ($V_{\text {out }}, I_{\text {out }}$) be the output (voltage, current). In each case, you may assume the output, $V_{\text {out }}$, is constant. Put one letter, A - D, into each box. You may choose an answer more than once or not at all.
A) Linear regulator like the LM2937, LP2950, or 78M05
B) Buck regulator
C) Boost regulator
D) None of the above
(1) Part a) A creates an output current, $I_{o u t}$, that is constant.
(1) Part b) The input current of a \square is approximately equal to the output current $I_{\text {in }} \approx I_{\text {out }}$.
(1) Part c) A
 converts DC to AC, uses a transformer to increase the voltage, then converts AC to DC, so the $V_{\text {out }}$ is a constant.
(1) Part d) A \square uses a switching network, a diode, and an inductor to increase the voltage ($V_{\text {in }}<V_{\text {out }}$). It is very power efficient, $V_{\text {in }}{ }^{*} I_{\text {in }} \approx V_{\text {out }}{ }^{*} I_{\text {out }}$.
(1) Part e) A separates the grounds, so that the ground from the input voltage is not connected to the ground of the output voltage.
(5) Question 2. For each sentence, choose the best device that matches. Put one letter, A - E, into each box. You may choose an answer more than once or not at all.
A) Resistor
B) Ceramic capacitor
C) Tantalum capacitor
D) Inductor
E) None of the above
(1) Part a) A \square is polarized, meaning it only works with current in one direction.
(1) Part b) A \square is used with the crystal to create a high-precision clock.
(1) Part c) We add a \square to the motor interface circuit to remove back EMF.
(1) Part d) We use a \square in a solid state relay interface circuit to set the desired current.
(1) Part e) Power dissipated in a \square is a linear function of the slope of the current through the device versus the voltage across it.
(10) Question 3. Show the circuit for a 3-bit resistor-string DAC. You may use resistors and capacitors without showing their values. You may select any of the components from the menu on the right. There are three digital inputs and one analog output. You can make the output range whatever you wish. Show enough detail so the basic theory of operation is apparent. Not all components may be needed.

(5) Question 4. What does the Civil Rights Act of 1964 have in common with the IEEE Code of Ethics?
(5) Question 5. The goal of modular design is to maximize the number of software modules while minimizing the coupling between modules. One obvious measure of coupling is the amount of data flowing between the modules; this is categorized as bandwidth coupling. Describe two other different types of coupling that should also be minimized.
\square
\square
(5) Question 6. Consider a real-time data acquisition system with an 8 -bit ADC sampled at f_{s}. The following data were sampled at the input of the ADC. The desired signal exists in the 0 to 10 Hz range, and the rest of what you see in this spectrum is noise. Yes, it needs an analog filter. However, if you were to sample this signal exactly like this, what is the slowest sampling rate f_{s} allowed that will prevent aliasing? Show your work. In particular, calculate the ADC resolution in $d B_{F S}$ and draw it as a horizontal line on this graph.

(10) Question 7. The FSM is initialized in main and the FSM controller runs in the SysTick handler.

int main(void)\{	uint32_t S; // index to current state
Robot_Init(); // Init F, SysTick	void SysTick_Handler(void)\{
s = Center; // initial state	uint32_t input; // state input: 0,1,2,3
EnableInterrupts();	input = (GPIO_PORTF_DATA_R\&0x01)+
while(1)\{	((GPIO_PORTF_DATA_R\&0x10)>>3);
GPIO_PORTF_DATA_R ^= 0x08;	S = fsm[S].Next[input]; // next
Body(); // other stuff	GPIO_PORTF_DATA_R = (fsm[S].Out<<1)+
$\}$	(GPIO_PORTF_DATA_R\&~0x06);
$\}$	$\}$

(5) Part a) Does this usage create a critical section? Select: critical or not critical
(5) Part b) If critical, fix the bug. If not critical, prove it has no bug.
(5) Problem 8. A PWM system uses an 8 MHz clock to generate a 1 kHz wave. What is the precision of the PWM system in alternatives and in binary bits?

Jonathan W. Valvano
First: \qquad Last: \qquad EID: \qquad
Open book, open notes, calculator (no laptops, phones, devices with screens larger than a TI-89 calculator, devices with wireless communication). You must put your answers on these pages. Please don't turn in any extra sheets.
(10) Question 9. This system (Program 6.5) has no bugs, it measures pulse width of the input signal connected to both PB6 and PB7, placing the 24-bit measurement in PW and setting the Done flag. You are asked to change the software to use PF0 and PF1 (the input is now connected to both PF0 and PF1). Cross out parts of the code you wish to delete and insert necessary additions.
uint32_t PW; // 24 bits, 12.5 ns units
int Done; // set each falling
void PWMeasure2_Init(void)\{
SYSCTL_RCGCTIMER_R |= 0x01;
SYSCTL_RCGCGPIO_R |= 0x02;
Done = 0;
GPIO_PORTB_DIR_R \&= ~0xC0;
GPIO_PORTB_DEN_R |= 0xC0;
GPIO_PORTB_AFSEL_R |= 0xC0;
GPIO_PORTB_PCTL_R = (GPIO_PORTB_PCTL_R\&0x00FFFFFF)+0x77000000;
TIMER0_CTL_R \&= ~0x00000003;
TIMER0_CFG_R = 0x00000004;
TIMER0_TAMR_R = 0x00000007;
TIMER0_CTL_R = (TIMER0_CTL_R\&(~0x0C))+0x04;
TIMER0_TAILR_R = 0x0000FFFF;
TIMER0_TAPR_R = 0xFF;
TIMER0_IMR_R |= TIMER_IMR_CAEIM;
TIMER0_ICR_R = TIMER_ICR_CAECINT;
TIMER0_TBMR_R = 0x00000007;
TIMER0_CTL_R = (TIMER0_CTL_R\&(~0x0C00))+0x00;
TIMER0_TBILR_R = 0x0000FFFF;
TIMER0_TBPR_R = 0xFF;
TIMER0_IMR_R \&= ~0x700;
TIMER0_CTL_R |= 0x00000003;
NVIC_PRI4_R = (NVIC_PRI4_R\&0x00FFFFFF)|0x40000000;
NVIC_EN0_R = 1<<19;
EnableInterrupts();\}
void Timer0A_Handler(void)\{
TIMER0_ICR_R = 0x00000004;
PW = (TIMER0_TBR_R-TIMER0_TAR_R)\&0x00FFFFFF;
Done = 1; $\}$
(10) Problem 10. You will implement a PID controller that runs as a SysTick background thread at 1 kHz . There is a state estimator function that returns the current speed as an integer in rps (ranges from 0 to 1000 rps), and an actuator function that sets the power to the motor as an integer in mW (ranges from 0 to 1000 mW). These two functions are given (prototypes below), and you do not need to write them.
int16_t CurrentSpeed(void); // current speed in rps
void SetPower(int16_t power); // apply power to the motor in mW There is a shared global variable containing the desired speed in rps (ranges from 100 to 500 rps). int16_t Xstar=100; // desired speed in rps (may change)
Theoretically, we define the setpoint as X^{*} in rps, and the state estimation as X^{\prime} in rps. Calculate error $E(t)=X^{*}(t)-X^{\prime}(t)$
Theoretically, we define the actuator as U in mW , and the goal of the PID controller is to implement this control equation every 1 ms .

$$
U(t)=K_{p} E(t)+\int_{0}^{t} K_{i} E(\tau) d \tau+K_{d} \frac{d E(t)}{d t}
$$

where $K_{p}=0.1 \mathrm{~mW} / \mathrm{rps}, K_{i}=0.25 \mathrm{~mW} / \mathrm{rps} / \mathrm{ms}$, and $K_{d}=0.01 \mathrm{~mW}-\mathrm{ms} / \mathrm{rps}$. You do not need to implement antireset windup. You may assume SysTick is configured for 1 kHz interrupts, and do not need to show I/O initialization or SysTick initialization, just show the SysTick ISR that implements the PID controller. Please do not use floating point. The essence of this question is to implement integration and differentiation in software operated on sampled digital data.
void SysTick_Handler(void)\{ // Executed every 1ms
(10) Question 11. The Li-Ion battery cell voltage is 3.7 V . Using multiple cells, we can create a power source at integer multiples of 3.7 V . Interface this electromagnetic relay to the microcontroller. To activate, the relay needs anywhere from 6 to 8 V at 600 mA . Include protection against back EMF. Label part numbers for all interface components and resistor values. If you use NPN or PNP transistors, assume the $V_{C E}$ is 0.5 V and the $V_{B E}$ is 1 V . You must select which Li-Ion battery to use.

(5) Question 12. Consider a simplex synchronous serial interface passing data from slave to master. The master clock is 50% duty cycle 2 MHz Clock. The master shifts data in on the rising edge of the Clock. The master hold time is 50 ns and the setup time is 100 ns . The slave shifts data out on the falling edge of the Clock. The maximum propagation delay from Clock to slave data output is 200 ns . Complete the timing diagram to scale showing data available and data required timing, proving that this interface does not work. Show the transfer of one bit (not the entire frame).

(15) Question 13. Interface this transducer to the ADC. The information is encoded as V_{1}, and it is relative to ground. The transducer output ranges from 1 to 2 V , in other words, $1 \leq V_{1} \leq 2$. The goal of the circuit is to convert the input into an analog signal at the ADC that ranges as $0.5 \leq V_{2} \leq 2.5 \mathrm{~V}$. The signals of interest are 0 to 1 kHz . The software sampling rate will be 5 kHz . There is a large unwanted noise signal at 22 kHz . Please include an antialiasing low pass filter (f_{c} approximately equal to 2.5 kHz). Show all resistors, capacitors, and chip numbers, choosing standard resistor and capacitor values. The available power supply voltage is 3.3 V . Assume R1 and R2 are already chosen to achieve a reference of 1.5 V .

0.5 to 2.5 V

Standard values for 5% resistors range from 10Ω to $22 \mathrm{M} \Omega$. We can multiply a number in Table 1 by powers of 10 to select a standard value 5% resistor. For example, if we need a $25 \mathrm{k} \Omega 5 \%$ resistor, the closest number is $24 * 1000$, or $24 \mathrm{k} \Omega$. Table 2 shows standard capacitor values.

10	11	12	13	15	16	18	20	22	24	27	30
33	36	39	43	47	51	56	62	68	75	82	91

Table 1. Standard resistor values for 5\% tolerance

10 pF	100 pF	1000 pF	$0.010 \mu \mathrm{~F}$	$0.10 \mu \mathrm{~F}$	$1.0 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$
12 pF	120 pF	1200 pF	$0.012 \mu \mathrm{~F}$	$0.12 \mu \mathrm{~F}$	$1.2 \mu \mathrm{~F}$	
15 pF	150 pF	1500 pF	$0.015 \mu \mathrm{~F}$	$0.15 \mu \mathrm{~F}$	$1.5 \mu \mathrm{~F}$	
18 pF	180 pF	1800 pF	$0.018 \mu \mathrm{~F}$	$0.18 \mu \mathrm{~F}$	$1.8 \mu \mathrm{~F}$	
22 pF	220 pF	2200 pF	$0.022 \mu \mathrm{~F}$	$0.22 \mu \mathrm{~F}$	$2.2 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$
27 pF	270 pF	2700 pF	$0.027 \mu \mathrm{~F}$	$0.27 \mu \mathrm{~F}$	$2.7 \mu \mathrm{~F}$	
33 pF	330 pF	3300 pF	$0.033 \mu \mathrm{~F}$	$0.33 \mu \mathrm{~F}$	$3.3 \mu \mathrm{~F}$	$33 \mu \mathrm{~F}$
39 pF	390 pF	3900 pF	$0.039 \mu \mathrm{~F}$	$0.39 \mu \mathrm{~F}$	$3.9 \mu \mathrm{~F}$	
47 pF	470 pF	4700 pF	$0.047 \mu \mathrm{~F}$	$0.47 \mu \mathrm{~F}$	$4.7 \mu \mathrm{~F}$	47 FF
56 pF	560 pF	5600 pF	$0.056 \mu \mathrm{~F}$	$0.56 \mu \mathrm{~F}$	$5.6 \mu \mathrm{~F}$	
68 pF	680 pF	6800 pF	$0.068 \mu \mathrm{~F}$	$0.68 \mu \mathrm{~F}$	$6.8 \mu \mathrm{~F}$	
82 pF	820 pF	8200 pF	$0.082 \mu \mathrm{~F}$	$0.82 \mu \mathrm{~F}$	$8.2 \mu \mathrm{~F}$	

Table 2. Standard capacitor values for 10% tolerance

