First:
Last: \qquad
October 10, 2014, 10:00am-10:50am. This is a closed book exam, with one 8.5 by 11 inch crib sheet. You have 50 minutes, so please allocate your time accordingly. Please read the entire quiz before starting.
(15) Question 1. This debugging instrument measures a histogram of count versus the number of FIFO elements stored. The index-based FIFO is index based, so (uint32_t)(TxPutI-TxGetI) returns the current number of elements stored in the FIFO, which can vary from 0 to 15 . The macro TxProfile() is invoked just before every time the foreground calls TxFifo_Put. Thus, TxPDF [0] is the number of times the FIFO was empty at the time when put was called. uint32_t TxPDF[16];

```
#define TxProfile() TxPDF[(uint32_t)(TxPutI-TxGetI)]++;
```

When the TxProfile macro is expanded it creates the following assembly code. According to the technical reference manual, the load and store instructions take two bus cycles and the addition and subtraction instructions take only one bus cycle. The software is running at 16 MHz (62.5 ns).

0x0000075A	492E	LDR	r1, [pc, \#184]	@0x00000814	2]
0x0000075C	6809	LDR	r1, [r1,\#0x00]	TxPutI	[2]
0x0000075E	4A2E	LDR	r2, [pc,\#184]	@0x00000818	[2]
0x00000760	6812	LDR	r2, [r2,\#0x00]	TxGetI	[2]
0x00000762	1A89	SUBS	r1, r1, r2	TxPutI-TxGetI	[1]
0x00000764	4A2D	LDR	r2, [pc,\#180]	@0x0000081C	[2]
0x00000766	EB020081	ADD	r0,r2,r1, LSL \#2	;	[1]
0x0000076A	6801	LDR	r1, [r0,\#0x00]		[2]
0x0000076C	$1 \mathrm{C49}$	ADDS	r1, r1, \#1	increment PDF	[1]
0x0000076E	6001	STR	r1, [r0,\#0x00]		[2]

Part a) What does TxPDF [1] represent?

Part b) There are on average 100,000 elements per second (ISR called every $10 \mu \mathrm{~s}$) being passed from the foreground (main program) to the background (ISR). Is this debugging instrument nonintrusive, minimally intrusive, or highly intrusive? Justify your answer.

Part c) Make a rough sketch of the data in TxPDF that would occur if the system were to be CPU bound.

Bonus) What would it mean if the ADDS instruction were to set the carry bit?
(5) Question 2. Consider the same debugging instrument from Question 1 in other context, where TxPDF[(uint32_t)(TxPutI-TxGetI)]++;
is invoked from multiple ISRs with different priorities. This code is not reentrant. Specify the critical section. Do not consider the interaction with Fifo_Put and Fifo_Get. Only consider this code as it interacts with threads that reenter this code. In particular, between which assembly instructions is the critical section? Do not circle instructions, rather place arrows between instructions that are critical.

0x0000075A	492E	LDR	r1, [pc,\#184]	@0x00000814	2]
0x0000075C	6809	LDR	r1, [r1,\#0x00]	TxPutI	[2]
0x0000075E	4A2E	LDR	r2, [pc,\#184]	@0x00000818	[2]
0x00000760	6812	LDR	r2, [r2,\#0x00]	TxGetI	[2]
0x00000762	1A89	SUBS	r1, r1, r2	TxPutI-TxGetI	[1]
0x00000764	4A2D	LDR	r2,[pc,\#180]	@0x0000081C	[2]
0x00000766	EB020081	ADD	r0,r2,r1, LSL \#2	;	[1]
0x0000076A	6801	LDR	r1, [r0,\#0x00]		[2]
0x0000076C	1C49	ADDS	r1, r1, \#1	increment PDF	[1]
0x0000076E	6001	STR	r1, [r0,\#0x00]		[2]

(10) Question 3. These are the parameters of the GPIO pins on a 9S12DP512 microcontroller:

$$
\begin{array}{llll}
\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}, & \mathrm{I}_{\mathrm{OH}}=10 \mathrm{~mA}, & \mathrm{I}_{\mathrm{IL}}=1 \mu \mathrm{~A}, & \mathrm{I}_{\mathrm{IH}}=1 \mu \mathrm{~A}, \\
\mathrm{~V}_{\mathrm{OL}}=0.8 \mathrm{~V}, & \mathrm{~V}_{\mathrm{OH}}=4.2 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IL}}=1.75 \mathrm{~V}, & \mathrm{~V}_{\mathrm{IH}}=3.25 \mathrm{~V}
\end{array}
$$

Part a) Can you interface a 9S12DP512 GPIO output to a TM4C12xx GPIO input? If yes, prove it. If no, show at least one parameter not satisfied.

Part b) Can you interface a TM4C12xx GPIO output to a 9S12DP512 GPIO input? If yes, prove it. If no, show at least one parameter not satisfied.
(25) Question 4. Make PB1 and PB2 inputs. You are given two tasks: the subroutine Task1 () should be executed on the rising edge of PB1. It takes 10 to 100μ s to execute Task1. The subroutine Task2() should be executed on the rising edge of PB2. It takes 10 to 20μ s to execute Task2. Both tasks are equally important but you should minimize the sum of the latencies for both tasks. You may assume there are other interrupts with priorities 1,2 and 3 . Rising edges can occur at the same time, or close to each other. However, the time from rising edge to rising edge on that same signal is large compared to $100 \mu \mathrm{~s}$.

Part a) Show the ritual to initialize this system. Fill in the boxes with an operator and a value to make the ritual friendly. The first one and last have been completed to show you what it should look like.
void PortB_Init(void)\{ unsigned long volatile delay;

delay = SYSCTL_RCGCGPIO_R;
GPIO_PORTB_DIR_R

GPIO_PORTB_DEN_R

GPIO_PORTB_IS_R

GPIO_PORTB_IBE_R
GPIO_PORTB_IEV_R

GPIO_PORTB_IM_R

EnableInterrupts();
\}
Part b) Show the interrupt service routine (Port B handler). No backward jumps are allowed.
void GPIOPortB_Handler(void) \{
(10) Question 5. Consider an ideal capacitor, with capacitance C. Let V be the voltage across the capacitor, and let I be the current through the capacitor. Give an equation that relates C, I, and V.
(10) Question 6. PWM is used to deliver variable power to a DC motor. The time constant of the motor is 10 ms , so the PWM period is selected to be 1 ms . The maximum speed of the motor is 100 rps . The bus clock is 16 MHz . What is the equivalent number of bits of precision for this actuator? In other words, how many choices of delivered power can this interface generate? Show your work.
(25) Question 7. Interface an electromagnetic relay to the microcontroller. A digital output on PB0 controls the relay. If PB0 is high, a voltage should applied across the relay coil (any voltage $6 \mathrm{~V} \pm 1.2 \mathrm{~V}$), and the 120VAC switch will activate causing the appliance to turn on. If PB0 is low, no current should flow through the relay coil, and the 120VAC switch will deactivate causing the appliance to turn off. The maximum relay coil current is 50 mA . Decide whether to use the PN2222 ($\$ 0.21$), 2N2222 ($\$ 0.44$), or the TIP120 (\$0.72). Select the least expensive transistor that will operate the relay. You may use +3.7 V , $+7.4 \mathrm{~V},+11.1 \mathrm{~V}$, and/or +14.8 V power. Show your work including resistance values. No software needed, just the hardware circuit.

Parameter	PN2222 $\left(\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}\right)$ PN2907 $\left(\mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}\right)$	$2 \mathrm{~N} 2222\left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}\right)$ $2 N 2907\left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{~mA}\right)$	TIP120 $\left(\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}\right)$ TIP125 $\left(\mathrm{I}_{\mathrm{C}}=3 \mathrm{~A}\right)$
$\mathbf{h}_{\text {fe }}$	100	40	1000
$\mathbf{V}_{\text {BEsat }}$	0.6	2	2.5 V
$\mathbf{V}_{\text {CE }}$ at saturation	0.3	1	2 V

Parameters for the TM4C12xx microcontroller (no 12mA mode will be used)

$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{OH}}=8 \mathrm{~mA}$,	$\mathrm{I}_{\mathrm{IL}}=2 \mu \mathrm{~A}$,	$\mathrm{I}_{\mathrm{IH}}=2 \mu \mathrm{~A}$,
$\mathrm{V}_{\text {OL }}=0.4 \mathrm{~V}$,	$\mathrm{V}_{\text {OH }}=2.4 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{IL}}=1.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}$

7	6	5	4	3	2	1	0	Name
DATA	GPIO_PORTB_DATA_R							
DIR	GPIO_PORTB_DIR_R							
IS	GPIO_PORTB_IS_R							
IBE	GPIO_PORTB_IBE_R							
IEV	GPIO_PORTB_IEV_R							
IME	GPIO_PORTB_IM_R							
RIS	GPIO_PORTB_RIS_R							
MIS	GPIO_PORTB_MIS_R							
ICR	GPIO_PORTB_ICR_R							
SEL	GPIO_PORTB_AFSEL_R							
DRV2	GPIO_PORTB_DR2R_R							
DRV4	GPIO_PORTB_DR4R_R							
DRV8	GPIO_PORTB_DR8R_R							
ODE	GPIO_PORTB_ODR_R							
PUE	GPIO_PORTB_PUR_R							
PDE	GPIO_PORTB_PDR_R							
SLR	GPIO_PORTB_SLR_R							
DEN	GPIO_PORTB_DEN_R							
CR	GPIO_PORTB_CR_R							
AMSEL	GPIO_PORTB_AMSEL_R							

Address	$31-29$	$23-21$	$15-13$	$7-5$	Name
0xE000E400	GPIO Port D	GPIO Port C	GPIO Port B	GPIO Port A	NVIC_PRI0_R
0xE000E404	SSI0, Rx Tx	UART1, Rx Tx	UART0, Rx Tx	GPIO Port E	NVIC_PRI1_R
0xE000E408	PWM Gen 1	PWM Gen 0	PWM Fault	I2C0	NVIC_PRI2_R
0xE000E40C	ADC Seq 1	ADC Seq 0	Quad Encoder	PWM Gen 2	NVIC_PRI3_R
0xE000E410	Timer 0A	Watchdog	ADC Seq 3	ADC Seq 2	NVIC_PRI4_R
0xE000E414	Timer 2A	Timer 1B	Timer 1A	Timer 0B	NVIC_PRI__R
0xE000E418	Comp 2	Comp 1	Comp 0	Timer 2B	NVIC_PRI_R
0xE000ED20	SysTick	PendSV	--	Debug	NVIC_SYS_PRI3_R

Address	31	30	$29-7$	6	5	4	3	2	1	0	Name
0xE000E100	G	F	\ldots	UART1	UART0	E	D	C	B	A	NVIC_EN0_R
0xE000E104			\ldots						UART2	H	NVIC_EN1_R

Address	$31-24$	$23-17$	16	$15-3$	2	1	0	Name
\$E000E010	0	0	COUNT	0	CLK_SRC	INTEN	ENABLE	NVIC_ST_CTRL_R
\$E000E014	0	24-bit RELOAD value						NVIC_ST_RELOAD_R
\$E000E018	0	24-bit CURRENT value of SysTick counter					NVIC_ST_CURRENT_R	

Address	$31-29$	$28-24$	$23-21$	$20-8$	$7-5$	$4-0$	Name
\$E000ED20	TICK	0	PENDSV	0	DEBUG	0	NVIC_SYS_PRI3_R

