
(10) Question 3. You wish to connect a device to a GPIO output of the TM4C123. These are the parameters of the I/O device:

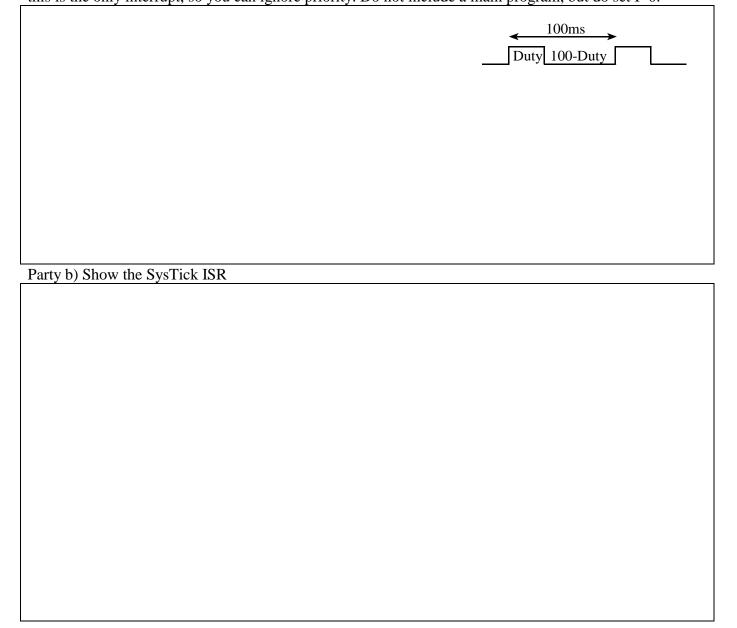
 $I_{IL} = 10 \text{mA},$ $I_{IH} = 10 \text{mA},$ $V_{IL} = 0.5 \text{V},$ $V_{IH} = 2.2 \text{ V}$

Can you directly connect a TM4C123 output to this device? Select Yes or No:

If yes, prove it. If no, show at least one parameter/equation not satisfied.

- n yes, prove it. it no, show at least one parameter/equation not satisfied.
 - (5) **Question 4.** Consider an ideal capacitor, with capacitance C. Let V be the voltage across the capacitor, and let I be the current through the capacitor. Give an equation that relates C, I, and V.

(5) Question 5. We need to store values from -1 to +1 m, but must limit memory to 8 bits. Choose the best **decimal fixed-point** format assuming we are using 8-bit precision. I.e., what resolution should we use, including units?

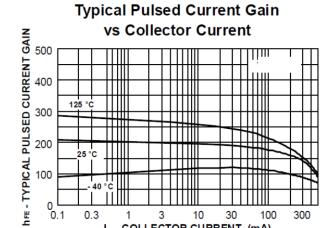

EE445L Fall 2016 Quiz 1A Page 3 of 6

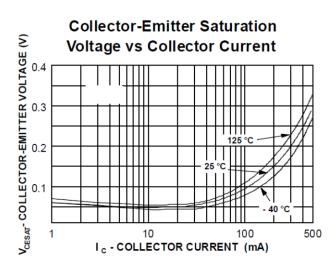
(15) Question 6) You are asked to configure all 8 bits of Port B for priority 1 falling edge interrupts. You must be friendly. Put your answers in the boxes. SYSCTL_RCGCGPIO_R = 0x02; delay = SYSCTL_RCGCGPIO_R; GPIO_PORTB_PCTL_R = 0x00000000; GPIO_PORTB_DIR_R = 0x00; GPIO_PORTB_DEN_R = 0xFF;
GPIO_PORTB_IS_R = ;
GPIO_PORTB_IBE_R = ;
GPIO_PORTB_IEV_R = ;
GPIO_PORTB_IM_R = ;
NVIC_PRIO_R = (NVIC_PRIO_R&) ;
NVIC_ENO_R = ;
<pre>(5) Question 7. Consider the following user application that should create a squarewave on PB0 int main(void){ Init(); // initialize Port B while(1){ GPIO_PORTB_DATA_R &= ~0x01; // make it low GPIO_PORTB_DATA_R = 0x01; // make it high } } Describe a debugging technique you could use to determine the frequency and duty cycle of this output. Make it as noninvasive as possible.</pre>

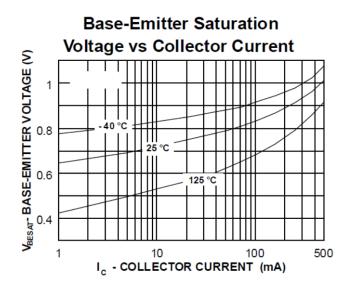
(30) Question 8. The goal to create a digital output wave on PBO with a fixed period of 100ms and a variable duty cycle from 1 to 99%. The **Duty** is a shared global. E.g., if **Duty** is 25 then the wave should have a 25% duty cycle (high for 25 ms, and low for 75 ms). The main program, which you do not write, sets the global and your ISR reads it. You must use SysTick periodic interrupts for this solution, where once the initialization is called, the main program is free to run other unrelated operations. You cannot use any timer or PWM features of the TM4C123. Assume the bus clock is 16 MHz.

```
uint8_t Duty; // 1 to 99
#define PB0 (*((volatile uint32_t *)0x40005004))
```

Part a) Show the SysTick initialization function. Assume PB0 is already initialized as an output. Assume this is the only interrupt, so you can ignore priority. Do not include a main program, but do set I=0.

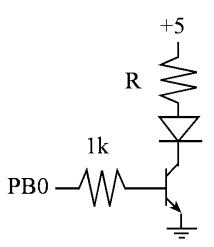

(10) Question 9. Interface this 3-V 50-mA LED to PB0 using a PN2222A. Assume T=25C.


- (2) Part a) Estimate h_{FE} for the conditions in this problem.
- (3) Part b) Using h_{FE} as a variable, show the equation needed for minimum I_B required as a function of h_{FE} .
- (3) Part d) Using V_{CE} as a variable, show the equation needed for R in ohms as a function


of just one variable, V_{CE} in volts.

0.1

(2) Part c) What will be V_{CE} at saturation?



10

Ic - COLLECTOR CURRENT (mA)

30

100

Parameters for the TM4C123 microcontroller (with 8mA mode selected)

 $I_{OL} = 8 \text{mA}, \quad I_{OH} = 8 \text{mA}, \qquad I_{IL} = 2 \mu \text{A}, \quad I_{IH} = 2 \mu \text{A}, \ V_{OL} = 0.4 \text{V}, \quad V_{OH} = 2.4 \text{V}, \quad V_{IL} = 1.3 \text{V}, \quad V_{IH} = 2.0 \text{ V}$

7	6	5	4	3	2	1	0	Name
DATA	GPIO_PORTB_DATA_R							
DIR	GPIO_PORTB_DIR_R							
IS	GPIO_PORTB_IS_R							
IBE	GPIO_PORTB_IBE_R							
IEV	GPIO_PORTB_IEV_R							
IME	GPIO_PORTB_IM_R							
RIS	GPIO_PORTB_RIS_R							
MIS	GPIO_PORTB_MIS_R							
ICR	GPIO_PORTB_ICR_R							
SEL	GPIO_PORTB_AFSEL_R							
DRV2	GPIO_PORTB_DR2R_R							
DRV4	GPIO_PORTB_DR4R_R							
DRV8	GPIO_PORTB_DR8R_R							
ODE	GPIO_PORTB_ODR_R							
PUE	GPIO_PORTB_PUR_R							
PDE	GPIO_PORTB_PDR_R							
SLR	GPIO_PORTB_SLR_R							
DEN	GPIO_PORTB_DEN_R							
CR	GPIO_PORTB_CR_R							
AMSEL	GPIO_PORTB_AMSEL_R							

Address	31 – 29	23 – 21	15 – 13	7 – 5	Name
0xE000E400	GPIO Port D	GPIO Port C	GPIO Port B	GPIO Port A	NVIC_PRI0_R
0xE000E404	SSI0, Rx Tx	UART1, Rx Tx	UARTO, Rx Tx	GPIO Port E	NVIC_PRI1_R
0xE000E408	PWM Gen 1	PWM Gen 0	PWM Fault	I2C0	NVIC_PRI2_R
0xE000E40C	ADC Seq 1	ADC Seq 0	Quad Encoder	PWM Gen 2	NVIC_PRI3_R
0xE000E410	Timer 0A	Watchdog	ADC Seq 3	ADC Seq 2	NVIC_PRI4_R
0xE000E414	Timer 2A	Timer 1B	Timer 1A	Timer 0B	NVIC_PRI5_R
0xE000E418	Comp 2	Comp 1	Comp 0	Timer 2B	NVIC_PRI6_R
0xE000ED20	SysTick	PendSV		Debug	NVIC_SYS_PRI3_R

Address	30	19	6	5	4	3	2	1	0	Name
0xE000E100	F	Timer0A	UART1	UART0	Е	D	С	В	Α	NVIC_EN0_R
0xE000E104								UART2		NVIC_EN1_R

Address	31-24	23-17	16	15-3	2	1	0	Name
\$E000E010	0	0	0 COUNT 0 CLK_SRC IN				ENABLE	NVIC_ST_CTRL_R
\$E000E014	0			NVIC_ST_RELOAD_R				
\$E000E018	0		24-bit CU	NVIC_ST_CURRENT_R				