EID:

Jonathan W. Valvano

First:

Last:

October 10, 2019, 3:30-4:45pm. This is a closed book exam, with one 8.5 by 11-inch crib sheet. You have 75 minutes, so please allocate your time accordingly. *Please read the entire quiz before starting*.

(5) Question 1. Consider the IoT system from Lab 4 that communicates between the TM4C123 and the Blynk app on the phone. For this system, explain in one sentence how **sockets** are used within the ESP8266.

(5) Question 2. Consider the IoT system from Lab 4 that communicates between the TM4C123 and the Blynk app on the phone. For this system, explain in one sentence how virtual pins are used.

(5) Question 3. Consider an ideal capacitor, with capacitance C. Give the differential equation that relates capacitor voltage to capacitor current.

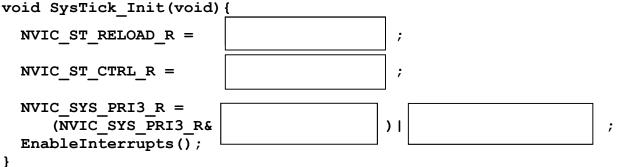
(5) Question 4. You are asked to modify an embedded system to lower the noise on the 3.3V power line. Describe how you would **measure power line noise** to determine if your changes were successful in reducing noise. Be as explicit as possible, including both test equipment and mathematical relations.

(5) Question 5. Consider a producer consumer system that uses a 16-element FIFO to pass data from the producer to the consumer. The producer is software, creating data, putting the data into the FIFO. The consumer is an interrupt-driven **output** device, which gets data from the FIFO and **outputs** it. We have added debugging instruments to the system to determine its status. After every time data is put into the FIFO, we measure the number of elements in the FIFO, and we create a probability mass function (pmf). Roughly sketch the **pmf graphs** illustrating the two cases of I/O bound and CPU bound. Label the axes.

CPU bound

(5) Question 6. Consider the interaction between this ISR and this main program.

void SysTickHander (void) {	void main (void) {
<pre>static uint32_t counter;</pre>	<pre>static uint32_t counter;</pre>
counter++;	<pre>Init();</pre>
// other stuff	<pre>while(1){</pre>
}	counter++;
	// other stuff
	}
	}


Do these read modify write accesses create a **critical section**? Answer yes or no. If no, justify your answer. If yes, describe how you would remove the bug.

You may assume +5V $V_{BE(sat)} = 0.8 \text{ V},$ 50 $I_{C(max)} = 500 \text{ mA},$ 1k $V_{CE(sat)} = 0.5 \text{ V},$ PN2222 PB0 ۸۸۸ $h_{FE(max)} = 100$ 10k - Cutoff (off), You will answer the same three questions for each of three scenarios: - Forward active (linear), Scenario 1) Assume the PB0 is uninitialized with DEN=0 - Saturated (fully on), or - Reversed active In which mode is the BJT? Circle one of these four possibilities: What is the current out of the TM4C123 PB0 pin? What is the current across the 50-ohm speaker? Scenario 2) Assume the PB0 is initialized as an output with DEN=1, - Cutoff (off), DIR=1, DR8R=1, but DATA=0. - Forward active (linear), - Saturated (fully on), or In which mode is the BJT? Circle one of these four possibilities: - Reversed active What is the current out of the TM4C123 PB0 pin? What is the current across the 50-ohm speaker? - Cutoff (off), Scenario 3) Assume the PB0 is initialized as an output with DEN=1, - Forward active (linear), DIR=1, DR8R=1, and DATA=1. - Saturated (fully on), or - Reversed active In which mode is the BJT? Circle one of these four possibilities: What is the current out of the TM4C123 PB0 pin? What is the current across the 50-ohm speaker?

(15) Question 7. Consider this interface between the microcontroller pin PB0 and a 50-ohm speaker:

(20) Question 8. You are given two tasks: **Task20()** should be executed every 20 ms and **Task25()** should be executed every 25 ms. The maximum time to execute either task is 1ms. Minimize the jitter on executing **Task20()**. This means **Task20()** is never delayed by the running any other software. Assume the PLL is active, making the bus clock 12.5 ns (80 MHz). You may assume there are other interrupts, but **Task20** is most important.

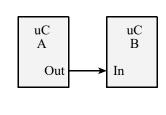
Part a) Show the ritual to initialize this system. You will use SysTick interrupts. You may add global variables.

Part b) Show the SysTick interrupt service routine. No for, while, or do-while loops are allowed. You do not write **Task20()** or **Task25()**, just call them from the ISR.

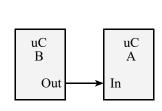
Part c) There should be no jitter on Task20, but what is the worst case jitter on Task25.

(5) Question 9. We will store the value -8 cm with the integer -64 and store the value +8 cm with the value +64. Assuming the integer is stored as an 8-bit signed number, what are the minimum, maximum, precision and resolution of this fixed point number system? Give units for each.

Minimum value =	Precision =
Maximum value =	Resolution of the value =


(10) Question 10. These are the parameters of the GPIO pins on microcontroller A:

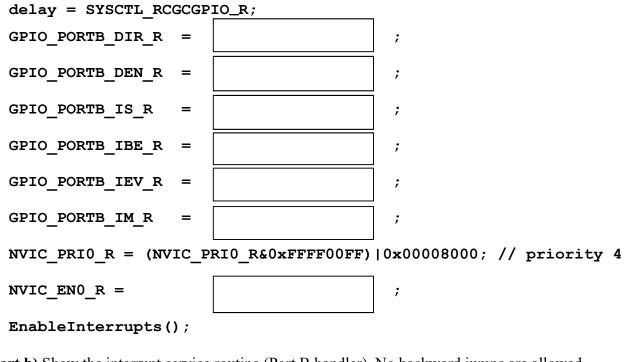
 $I_{OL} = 1 m A, \qquad I_{OH} = 1 m A, \qquad I_{IL} = 1 \mu A, \qquad I_{IH} = 1 \mu A, \\ V_{OL} = 0.3 V, \qquad V_{OH} = 2.7 V, \qquad V_{IL} = 0.5 V, \qquad V_{IH} = 2.0 V$


These are the parameters of the GPIO pins on *microcontroller B*:

 $I_{OL} = 4mA, \qquad I_{OH} = 4mA, \qquad I_{IL} = 20\mu A, \qquad I_{IH} = 20\mu A, \\ V_{OL} = 0.7V, \qquad V_{OH} = 3.2V, \qquad V_{IL} = 1.0V, \qquad V_{IH} = 2.5 \ V$

Part a) Can you directly connect a GPIO output from microcontroller A to a GPIO input on microcontroller B? If yes, prove it. If no, show at least one parameter/equation not satisfied.

Part b) Can you directly connect a GPIO output from microcontroller B to a GPIO input on microcontroller A? If yes, prove it. If no, show at least one parameter/equation not satisfied.


(5) Question 11. Give the definition and one example of a firm real-time system.

(15) Question 12. Make PB1 an input and PB2 an output. PB1 will be an input squarewave of unknown frequency f, and PB2 will be an output squarewave of frequency f/2. Basically, you will toggle PB2 on every rising edge of PB1.

Part a) Show the ritual to initialize this system. Fill in the boxes with a value. It need not be friendly.

```
void PortB_Init(void) { uint32_t volatile delay;
```

SYSCTL_RCGCGPIO_R $|= 0 \times 02;$

Part b) Show the interrupt service routine (Port B handler). No backward jumps are allowed. **void GPIOPortB Handler(void)** {

}

$I_{OL} = 8 \mathrm{mA},$	$I_{OH} = 8 \text{mA},$	$I_{IL} = 2\mu A$,	$I_{IH} = 2\mu A$,
$V_{OL}=0.4\mathrm{V},$	$V_{OH} = 2.4 V,$	$V_{IL} = 1.3 V,$	$V_{IH} = 2.0 \text{ V}$

7	6	5	4	3	2	1	0	Name
,	÷	÷		Ţ.	_		÷	
DATA	GPIO_PORTB_DATA_R							
DIR	GPIO_PORTB_DIR_R							
IS	GPIO_PORTB_IS_R							
IBE	GPIO_PORTB_IBE_R							
IEV	GPIO_PORTB_IEV_R							
IME	GPIO_PORTB_IM_R							
RIS	GPIO_PORTB_RIS_R							
MIS	GPIO_PORTB_MIS_R							
ICR	GPIO_PORTB_ICR_R							
SEL	GPIO_PORTB_AFSEL_R							
DRV2	GPIO_PORTB_DR2R_R							
DRV4	GPIO_PORTB_DR4R_R							
DRV8	GPIO_PORTB_DR8R_R							
ODE	GPIO_PORTB_ODR_R							
PUE	GPIO_PORTB_PUR_R							
PDE	GPIO_PORTB_PDR_R							
SLR	GPIO_PORTB_SLR_R							
DEN	GPIO_PORTB_DEN_R							
CR	GPIO_PORTB_CR_R							
AMSEL	GPIO PORTB AMSEL R							

IS=0 means edge, IS=1 means level IBE=1 means both, IBE=0 means one If IBE=0, IEV=1 means rising, IEV=0 means falling

Address	31 - 29	23 - 21	15 - 13	7 – 5	Name
0xE000E400	GPIO Port D	GPIO Port C	GPIO Port B	GPIO Port A	NVIC_PRI0_R
0xE000E404	SSI0, Rx Tx	SSI0, Rx Tx UART1, Rx Tx UART0.		GPIO Port E	NVIC_PRI1_R
0xE000E408	PWM Gen 1	PWM Gen 0	PWM Fault	I2C0	NVIC_PRI2_R
0xE000E40C	ADC Seq 1	ADC Seq 0	Quad Encoder	PWM Gen 2	NVIC_PRI3_R
0xE000E410	Timer 0A	Watchdog	ADC Seq 3	ADC Seq 2	NVIC_PRI4_R
0xE000E414	Timer 2A	Timer 1B	Timer 1A	Timer 0B	NVIC_PRI5_R
0xE000E418	Comp 2	Comp 1	Comp 0	Timer 2B	NVIC_PRI6_R
0xE000E41C	GPIO Port G	GPIO Port F	Flash Control	System Control	NVIC_PRI7_R
0xE000ED20	SysTick	PendSV		Debug	NVIC_SYS_PRI3_R

Address	30	19	6	5	4	3	2	1	0	Name
0xE000E100	F	Timer0A	UART1	UART0	Е	D	С	В	Α	NVIC_EN0_R
0xE000E104								UART2		NVIC_EN1_R

Address	31-24	23-17	16	15-3	2	1	0	Name
\$E000E010	0	0	0 COUNT 0 CLK_SRC INTEN ENABLE				NVIC_ST_CTRL_R	
\$E000E014	0			24-bit I		NVIC_ST_RELOAD_R		
\$E000E018	0		24-bit CU	NVIC_ST_CURRENT_R				