Jonathan W. Valvano

First:

March 3, 2017, 9:00am-9:50am. This is a closed book exam, with one 8.5 by 11-inch crib sheet. You have 50 minutes, so please allocate your time accordingly. *Please read the entire quiz before starting*.

(15) Question 1. You are asked to consult on a project because they have weird and intermittent bugs. The system runs on a Freescale 9S12, which is nothing like the Cortex M, but you decide to look at it anyway. You see many read-modify-write accesses to output ports. To set bit 2, the software executes **PTT** $|= 0 \times 04$; To clear bit 0, the software executes **PTT** &= -0×01 ; To set bit 7, the software executes **PTT** | = **0x80**; To investigate, you find this assembly code generated by the compiler.

LDAA PTT	LDAA PTT	LDAA PTT
ORAA #4	ANDA #\$FE	ORAA #\$80
STAA PTT	STAA PTT	STAA PTT

Do these read-modify-write accesses to Port T create critical sections? Circle your choice and justify

On most computers individual instructions execute atomically. Notice the access to the shared global requires three instructions. It is critical because the read-modifywrite accesses are nonatomic.

Last:

(10) **Question 2.** You have connected a TM4C123 output pin to an unknown device, with 8-mA mode selected. Your software outputs a 1 to the pin, but vour voltmeter measures only 2.3 V.

Is it broken? Specify *OK* or *Broken*:

If OK, explain why. If Broken, show at least one parameter/equation not satisfied.

It is broken, because the output voltage is less than $V_{OH} = 2.4 V$

(5) Question 3. Consider an ideal capacitor. Which is correct? There is one answer, put letter in box.

- A) Voltage is directly proportional to current.
- B) Current is proportional to a change in voltage.
- C) Voltage is proportional to a change in current.
- D) At DC, the capacitor can be considered a short circuit.
- E) None of the above.

(10) Question 4. Let *N1 N2 N3 N4* be the values of four 16-bit signed decimal fixed-point numbers each with a resolution of 0.1 Assume **I1**, **I2**, **I3**, and **I4** are the corresponding integer parts. Write the body of the function that implements fixed-point math, N4 = N3*N2+N1. Minimize dropout, but don't worry about overflow.

int16_t Math(int16_t I1, int16_t I2, int16_t I3){ int16_t I4;

```
// step 1, write desired action: N4 = N3*N2+N1
// step 2, substitute definitions: I4/10 = I3/10*I2/10+I1/10
// step 3, solve for I4, factor, simplify:
I4 = (I3*I2)/10 + I1;
```

return I4;
}

Count--;

}

(10) Question 5. Show the C code to create a signed 16-bit global variable that is shared between the main program and an ISR. For example, define **Count** in the correct manner for this use case.

```
int16_t volatile Count;
// adding static is ok, const is very wrong
void main(void){
    Init(); // Systick interrupts every 1ms
    while(1){
        Count = 1000;
        while(Count>0){}
        GPIO_PORTF_DATA_R ^= 0x02;
    }
}
void SysTick_Handler(void){
```

```
(10) Question 6. How much stack space does this ISR need?
Give your answer in 32-bit words.
uint32_t Count=0;
void Timer5A_Handler(void){
   Count++;
   TIMER5_ICR_R = 0x0000001; // acknowledge timeout
}
```

8 registers are pushed, each is 1 word, 8 words are needed

Count is not local, it is static; meaning it does not get placed on the stack. Interrupts push R0,R1,R2,R3,R12,LR,PC,PSW on stack (5) Question 7. What is the response from the internet when a TCP packet is lost?

TCP guarantees delivery, so it will try again. Contrast with UDP, which will not retransmit.

(15) Question 8) You are asked to configure Timer 5A to interrupt every 100us. The bus clock is 80 MHz. Put your answers in the boxes. Make Timer 5A an interrupt with the lowest priority. Timer 5 priority is in bits 7,6,5 of PRI23 register. Timer 5A is interrupt 92, which is bit 92-64=28 of EN2.

(15) Question 9. Interface a solid state relay to the microcontroller. A digital output on PB0 controls the relay. PB0 is an output with 8-mA selected. If PB0 is high, a 2V signal should be applied across the relay control, and the 120VAC switch will activate causing the appliance to turn on. If PB0 is low, no current should flow through the relay control, and the 120VAC switch will deactivate causing the appliance to turn off. The desired set-point to activate the relay is 2V, 2mA. The following graph plots the voltage current relation on the relay control.

You may use +3.7V, +7.4V, +11.1V, or 14.4V power. Decide whether to use no transistor (\$0.00), a 2N2222 (\$0.44), or a TIP120 (\$0.72). Select the least expensive circuit that will operate the relay. Show your work including resistance values. No software needed, just the hardware circuit.

The interface is a simple positive LED interface with no driver. It is ok to pick any V_{OH} between 2.4 and 3.3 V. At $V_{OH} = 2.4$ V, R = (2.4-2)/2mA = 0.4V/2mA = 200 ohms. At $V_{OH} = 3.3$ V, R = (3.3-2)/2mA = 1.3V/2mA = 650 ohms. So any resistance between 200 and 650 ohms is ok.

$I_{OL} = 8$	8mA,	I_O	H =	8mA,		I_{IL} =	= 2µÁ	.,	I_{II}	$_{H} = 2$	μΑ,							
$V_{OL} =$	0.4V,	V_{c}	он =	= 2.4V,	,	V_{IL} :	= 1.3	V,	V	H = 2	2.0 V							
01				31–3							2-0					e		
\$4003.0000												GPTN	1CFG		TIM	ER0_CFG_R		
					31_4						3		2	1-0				
\$4003.0004					51 4					TA	AMS	TAC	CMR	TAMR	ER0_TAMR_R			
														1	-			
+	14	1	1	13	11-10	8		(6		5	3	3-2 0			1		
\$4003.000C	003.000C TBPWML TBOTE T			BEVENT TBEN			TAPWML TAOT			AOTE	TAE	VENT	TAEN	JTIMER0_CTL_R				
	31-11 10 9 8 7-4 2 1 0																	
\$4003.0018			CB	EIM	CBMIM TBTOI		DIM	M		C	AEIM	A CAMIN		M TATOIM		ER0_IMR_R		
¢4002.001.C	31-1	1 10		9	9 8		7-4			2								
\$4003.001C			CBERIS		CBMRIS	JEMRIS TETOR		15		CA	CAERIS		MRIS	TATORIS	IIMER0_RIS_R			
	31-1	11	1	10	9	8		7.	-4		2		1	0				
\$4003.0020			CBE	CINT	CBMCINT	TBTO	CINT			CA	ECINT	CAM	ICINT	TATOCINT	TIM	ER0_ICR_R		
\$4002.0028	-			31-	-16 DU							5-0 II DI			τω	CDO TAILD D		
\$4005.0028				TAIL							IA	ILKL				EKU_TAILK_K		
					31	-8							7	-0				
\$4003.0038										TAPSR				TIM	ER0_TAPR_R			
					21	0							-	0				
\$4003.0040					31	-8							/	-U SMD	тм	EDO TADMO D	,	
\$+005.00+0													IAI	SMIK	1 1101	LK0_1AI WIK_F		
				31-	16						1	5-0			_			
\$4003.0048				TAI	RH			TARL							TIM	ER0_TAR_R		
		-		• •														
Address	7400	CD	31 -	- 29	23 -	23 – 21			15 - 13			- 5	N	ame	D			
0xE000E	2400	GP	IO Po	ort D	GPIO Poi	GPIO Port C C			GPIO Port B			ort A		VIC_PRI0_	R D			
0xE000F	2404	221	$\frac{0}{MC}$	an 1	UARTI,	UARTI, KX IX			UARIO, KX IX			ort E		VIC_PRI1_	K D			
0xE000F	2408 540C	AD		C Seg 1 ADC Se		0	PW	Juad Encoder		r P	PWM Gen 2			VIC_PRI2_	R P			
0xE000F	5410	Tin	imer 0.4 W:		Watchdog	Watchdog 4		ADC Seq 3			ADC Seq 2			VIC_PRI4	R			
0xE000E	5414	Tin	ner 2A Tin		Timer 1B	Timer 1B 7		Timer 1A		Т	Timer 0B		N	NVIC PRI5				
0xE000H	000E418 Comp 2		Comp 1			Comp 0			Timer 2B			VIC PRI6	R					
0xE000E	0xE000E45C Wide Timer 0B		Wide Tin	Wide Timer 0A Timer 5B					Timer 5A NVIC_PRI23				R					
0xE000E	0xE000ED20 SysTick		PendSV					Debug				VIC_SYS_I	R					
											1				1			
Address		3	30	28	19		6			5	4	3	2	1	0	Name		
0xE000E	100		F		Timer0.	A	UAR	T1	UA	ART0	E	D	С	В	Α	NVIC_EN0_	R	
0xE000E	104		-	T. C.										UART2		NVIC_ENI_	<u>R</u>	
UXE000E	108			1 imers/	4											INVIC_EN2_	ĸ	
Address 31-24 23-17 16 15-3 2 1 0 Name																		
\$E000E0	\$E000E010 0 0 CC		COUNT	0	CLI	– K SR	RC	INTE	TEN ENABLE NVIC ST CI				RL I	2				
\$E000E0)14		0	-		24-bit RELOAD value					NVIC ST REL				D_R			
\$E000E0	\$E000E018 0 24-bit CURRENT value of SysTick counter				N	NVIC_ST_CURRENT_R												
			2	$2N22\overline{2}$	$2 V_{ca}$	= 0.	3V _		- 11	TIP1	20	V	=	0.8V				

Parameters for the TM4C123 microcontroller, with 8-mA mode selected

$\begin{array}{c c} 2N2222 & V_{ce} &= 0.3V \\ V_{be} &= 0.6V \\ h_{fe} &= 100 \\ I_{ce} &= 500 \text{mA max} \end{array}$	$\begin{array}{c c} \text{TIP120} & V_{ce} &= 0.8V \\ \hline V_{be} &= 1.5V \\ h_{fe} &= 2000 \\ \hline I_{ce} &= 5A \text{ max} \end{array}$
--	---