Jonathan Valvano

(5) Question 1. Put your answer A,B,C,D,E, or F in the box.
E) TPS63001 3.3V buck-boost regulator
(7) Question 2. Design the circuit

For a linear regulator, we need a dropout less than 0.3V, like LP2981 or TPS78233. You can also use a buck boost like TPS63001

(7) Question 3. Show your equations and the final calculation.

Calculate battery currents for each mode
Sleep mode $0.95 * 7.4 \mathrm{~V}^{*} I_{\text {sleep }}=3.3 \mathrm{~V}^{*} 0.1 \mathrm{~mA}, I_{\text {sleep }}=0.0469 \mathrm{~mA}$
Active mode $0.95 * 7.4 V^{*} I_{\text {active }}=3.3 \mathrm{~V} * 100 \mathrm{~mA}, I_{\text {active }}=46.9 \mathrm{~mA}$
Average current $=0.9 * 0.0469 \mathrm{~mA}+0.1 * 46.9 \mathrm{~mA}=4.74 \mathrm{~mA}$
Power budget
2200 mA -hour $=T^{*} 4.74 \mathrm{~mA}$
$\mathrm{T}=2200 \mathrm{~mA}$-hour/4.74mA $=464$ hours

(5) Question 4. Part a)

Multiply numerator and demoninator by the same constant $y(n)=(100000 * x(n)-12558 * x(n-1)+100000 * x(n-2)+11302 * y(n-1)-81000 * y(n-2)) / 100000$
(15) Question 4. Part b) Show the SysTick ISR int32_t X[3],Y[3];
void SysTick_Handler(void)\{
$X[2]=X[1] ; / /$ shift data in buffer
$X[1]=X[0]$;
$\mathrm{Y}[2]=\mathrm{Y}[1]$;
$\mathrm{Y}[1]=\mathrm{Y}[0]$;
$X[0]=A D C$ In(); // put new data in
$\mathrm{Y}[0]=\left(100000^{*} \mathrm{X}[0]-12558 * X[1]+100000^{*} \mathrm{X}[2]\right.$ + 11302*Y[1] -81000*Y[2])/ 100000;
\}
(12) Question 5
(3) Part a) What value did the software write to DSS during initialization?
(3) Part b) What value did the software write to SPO during initialization?

7 (8-bit)

1 (clock high)
0 (out on rising)
0x36 (latch on falling)
(10) Question 6. 12-bit ADC measures a 20 kHz sine wave.
(2) Part a) What is the large component at $\mathrm{f}=0 \mathrm{~Hz}$?
(4) Part b) What is the signal to noise ratio in dB ?
(4) Part c) What is the equivalent precision in bits?

DC offset. Since the ADC is 0 to $3.3 V$, there must be a DC component

$$
-15--55 \mathrm{~dB}=40 \mathrm{~dB}
$$

$40 \mathrm{db}=20 \log _{10} \mathrm{~N}, \mathrm{~N}$ (alternative) $=10^{40 / 20}=100$
Precision (bits) $=\log _{2} 100=\log _{10} 100 / \log _{10} 2=7$
(14) Question 7. Design the circuit; show your work

$$
\begin{aligned}
& V_{\text {out }}=4 V_{\text {in }}+1.5, \\
& V_{\text {out }}=4 V_{\text {in }}+V_{\text {ref }}, \\
& V_{\text {out }}=4 V_{\text {in }}+V_{\text {ref }}-4 V_{g}, \\
& \mathrm{R}_{\mathrm{f}}=40 \mathrm{k}, \mathrm{R}_{\text {in }}=10 \mathrm{k}, \\
& \mathrm{R}_{\text {ref }}=40 \mathrm{k}, \mathrm{Rg}_{\mathrm{g}}=10 \mathrm{k}
\end{aligned}
$$

(10) Question 8 Part a) Show the initialization for Port B edge-triggered interrupts
void PortB_Init(void)\{
SYSCTL_RCGCGPIO_R |= 0x02; delay();
GPIO_PORTB_DIR_R =0; // input
GPIO_PORTB_DEN_R =0xFF; // enabled

| GPIO_PORTB_IS_R | $=0 ; ~ / / ~ e d g e ~$ |
| :--- | :--- | :--- | :--- |
| GPIO_PORTB_IBE_R | $=0 ; ~ / / ~ o n e ~ e d g e ~$ |

GPIO_PORTB_IEV_R =0xFF; // rising
GPIO_PORTB_IM_R =0xFF; // all
NVIC_EN0_R
$\operatorname{Max}=0 ;$
$=2 ;$
EnableInterrupts(); \}
(15) Part b) Show the edge-triggered interrupt service routine.
void GPIOPortB_Handler(void) \{

```
// there is a race condition when reading RIS and DATA
// multiple rising edges can occur simultaneously or near each other
// can't read just RIS, because we need to count old touches too
// eliminate race by reading only one of RIS or DATA
uint32_t data = GPIO_PORTB_DATA_R; // switches that are pressed
uint32_t count = 0; // local or current count
    for(uint32_t mask = 0x80; mask > 0; mask = mask>>1;){
        if(mask & data){
                count++;
            }
    }
    if(count > max){
        max = count; // new max
    }
    GPIO_PORTB_ICR_R = data; // clear only ones we have counted
// rising edges occurring after read data will cause another
}
```

