
EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 1

EE345M/EE380L:
Real Time Operating Systems

Andreas Gerstlauer
Electrical and Computer Engineering

University of Texas at Austin
gerstl@ece.utexas.edu

Guest Lecture - Real-Time Scheduling

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 2

Outline

• Real-time scheduling problem

• Scheduling models

• Scheduling algorithms

• Classic periodic task scheduling

• Rate-monotonic and earliest-deadline-first

• Scheduling anomalies

• Multi-processor scheduling

• Symmetric and asymmetric multi-processing

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 2

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 3

Embedded Software

Capability of
Technology
2x/18 Months

Gates/Chip
Gates/Day

Software
Productivity
2x/5 years

log

time

19
81

19
85

19
89

19
93

19
97

20
01

20
05

20
09

LoC SW/Chip

Average HW + SW
Design Productivity

LoC/Day

Additional SW
required for HW
2x all 10 months

Moore’s Law

Silicon System
Design Gap

HW Design
Gap

HW Design
Productivity
1.6x/18 Months

Source: W. Ecker, W. Müller, R. Dömer, Hardware-dependent Software - Principles and Practice, Springer 2009.

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 4

Scheduling

V1 V2 V4V3

t

G=(V,E)

Dt

• Assume that we are given a specification graph G=(V,E)

• A schedule of G is a mapping
V Dt

of a set of tasks V to start times from domain Dt

 In traditional embedded system design (simple model)
• Uni-processor scheduling
• Hardware accelerators as special case

Source: P. Marwedel

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 3

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 5

Scheduling Model

• Task model of computation
• Set of tasks { T1, T2, … }

– Task Ti := process/actor

• Independent tasks vs. task graph
– Task graph = precedence graph (= HSDF)

• Aperiodic vs. periodic (vs. sporadic) tasks
– Timed model of computation: arrival/release time ai, period ti

• Task metrics
• Execution time ei

– Estimation? Worst case upper bounds

• Real-time constraints and cost functions
• Throughput fixed in uni-processor case, focus on latency

– Response time ri = finish time fi – arrival time ai

– Deadline di: ri < di, in periodic case often di = ti (soft vs. hard
deadlines)

– Lateness li = ri - di

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 6

Real-Time Scheduling

• Static vs. quasi-static (static order) vs. dynamic

• Statically known arrival times and dependencies?

• Statically known execution times (bounds)?

 Many algorithms support static & dynamic
– Design-time priority/order to provide guarantee/bounds

– Run-time triggering (self-timed execution) to recover variations

• Preemptive vs. non-preemptive

• Non-simultaneous task arrivals, long-running tasks?
– Preemption to increase responsiveness, but context switch overhead

 Optimization objectives

• Schedulability analysis
– Ability to satisfy all deadlines (while maximizing CPU utilization)

• Minimize cost function
– E.g. response times, lateness

• Implementation overhead
– Decision making, timed-triggered execution, preemption

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 4

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 7

Real-Time Scheduling Algorithms (1)

• Aperiodic, independent tasks (task set)

• Simultaneous (at system start) arrival times
– Earliest Due Date (EDD) minimizes max. lateness (non-preemptive)

• Arbitrary arrival times (statically know or dynamic)
– Earliest Deadline First (EDF) minimizes max. lateness (preemptive)

– Without preemption optimality only possible if arrival times known

• Aperiodic, dependent tasks (task graph)

• Simultaneous (at system start) arrival times
– Latest Deadline First (LDF) minimizes max. lateness (non-preempt.)

• Arbitrary arrival times (statically know or dynamic)
– Modified EDF* w/ successor-adjusted deadlines

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 8

Real-Time Scheduling Algorithms (2)

• Periodic, independent tasks

• Schedulability only (preemptive, static or dynamic)
– Rate Monotonic Scheduling (RMS) is optimal fixed priority scheme

» Does not achieve 100% CPU utilization for guaranteed schedulability

– Earliest Deadline First (EDF) is optimal dynamic priority scheme
» 100% utilization, but runtime support/overhead for dynamic priorities

• Periodic/sporadic, dependent tasks

• NP-complete in general
– Use of heuristics, see multi-processor scheduling

– Split into periodic, independent and aperiodic, dependent subgraphs

 Scheduling anomalies through dependencies (blocking)
– Deadlocks

– Priority inversions

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 5

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 9

Outline

 Real-time scheduling problem

Scheduling models

Scheduling algorithms

• Classic periodic task scheduling

• Rate-monotonic and earliest-deadline-first

• Scheduling anomalies

• Multi-processor scheduling

• Symmetric and asymmetric multi-processing

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 10

• Scheduling Policies
• RMS – Rate Monotonic Scheduling

– Task Priority = Rate = 1/Period
– RMS is the optimal preemptive fixed-priority scheduling policy

• EDF – Earliest Deadline First
– Task Priority = Current Absolute Deadline
– EDF is the optimal preemptive dynamic-priority scheduling policy

• Scheduling assumptions
• Single processor
• All tasks are periodic
• Zero context-switch time
• Worst-case task execution times are known
• No data dependencies among tasks

 RMS and EDF have both been extended to relax these

Periodic Task Scheduling

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 6

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 11

Metrics

• How do we evaluate a scheduling policy

• Ability to satisfy all deadlines

• CPU utilization
– Percentage of time devoted to useful work

• Scheduling overhead
– Time required to make scheduling decision

• Constraints

• Set of tasks T with period i each

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 12

Rate Monotonic Scheduling (RMS)

• Model

• All process run on single CPU.

• Zero context switch time.

• No data dependencies between processes.

• Process execution time is constant.

• Deadline is at end of period.

• Highest-priority ready process runs.

 RMS [Liu and Layland, 73]

• Widely-used, analyzable scheduling policy.

 Rate Monotonic Analysis (RMA)

• Theoretical analysis

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 7

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 13

Process Parameters

• Ti is execution time of process i
• Deadline i is period of process I

 Response time
• Time required to finish a process/task.

 Critical instant
• Scheduling state that gives worst response time.

– Occurs when all higher-priority processes are ready to execute.

Period i

Pi

Computation time Ti

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 14

Critical Instant

P4

P3

P2

P1

Critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

Worst case period for P4…

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 8

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 15

RMS Priorities

• Optimal (fixed) priority assignment

• Shortest-period process gets highest priority
– priority based preemption can be used…

• Priority inversely proportional to period

• Break ties arbitrarily

 No fixed-priority scheme does better.

 RMS provides the highest worst case CPU utilization while
ensuring that all processes meet their deadlines

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 16

RMS Example 1

Process Execution Time Period
tiTiPi

41P1

62P2

123P3

0 2 4 6 8 10 12

P3

P2

P1

(least common multiple of
process periods)

Unrolled schedule

Static priority: P1 >> P2 >> P3

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 9

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 17

RMS Example 2

Time
0 5 10

P2 period

P1 period

P1

P2

P1 P1

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 18

RMS CPU Utilization

• Utilization for n processes is

i Ti / i

• Schedulability analysis

i Ti / i ≤ n(21/n – 1)

• As number of tasks approaches infinity, the worst case
maximum utilization approaches 69%
• Yet, is not uncommon to find total utilizations around .90 or

more (.69 is worst case behavior of algorithm)
• Achievable utilization is strongly dependent upon the

relative values of the periods of the tasks comprising the
task set…

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 10

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 19

RMS Example 3

Process Execution Time Period
tiTiPi

41P1

86P2

Is this task set schedulable?? If yes, give the CPU utilization.

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 20

RMS CPU Utilization (cont’d)

• RMS cannot asymptotically guarantee use of 100% of
CPU, even with zero context switch overhead.

• Must keep idle cycles available to handle worst-case
scenario.

• However, RMS guarantees all processes will always meet
their deadlines.

Time0 5 10

P2 period

P1 period

P1

P2

P1 P1

P2

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 11

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 21

RMS Implementation

• Statically fixed priority assignment

• Inversely proportional to period

 Efficient implementation

• Scan processes

• Choose highest-priority active process

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 22

Earliest-Deadline-First (EDF) Scheduling

• Dynamic priority scheduling scheme.
• Process closest to its deadline has highest priority
• Requires recalculating processes at every timer interrupt

• EDF analysis
• EDF can use 100% of CPU for worst case
 Optimal for periodic scheduling

• EDF implementation
• On each timer interrupt:

– Compute time to deadline
– Choose process closest to deadline

• Generally considered too expensive to use in practice,
unless the task count is small

– Does not work in an OS with only fixed priorities!

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 12

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 23

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 24

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 13

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 25

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 26

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 14

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 27

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 28

EDF Example

P2

P1

t

No process is
ready…

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 15

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 29

EDF Example

P2

P1

t

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 30

EDF Example

P2

P1

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 16

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 31

Scheduling Anomalies

• “What really happened on Mars?” [WindRiver97]

Courtesy NASA/JPL-Caltech

 Priority inversion Priority inversion

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 32

Priority Inversion

• Low-priority process keeps high-priority process from
running.

• Improper use of system resources can cause scheduling
problems

– Low-priority process grabs I/O device.

– High-priority device needs I/O device, but can’t get it until low-
priority process is done.

 Can cause deadlock

 Give priorities to system resources

 Have process inherit the priority of a resource that it
requests

 Low-priority process inherits priority of device if higher

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 17

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 33

Priority-Based Scheduling

• Normal operation

• Priority inversion

Time

Priority

Low

High

t1 t2 tn-1 tn

Deadline

Low

High

t1 t2 tn-1 tn

Deadline

Time

Priority

t3

 Blocked Blocked

 Deadline violation Deadline violation

Critical
section

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 34

Priority Inversion

• Low-priority process blocking a high-priority one
• Starvation of high priority processes

 Avoid preemption in critical sections [Sha90]
 Interrupt masking
 Priority Ceiling Protocol (PCP)
 Priority Inheritance Protocol (PIP)

Low

Middle

t1 t2 tn-1 tn
Time

Priority

t3

High

tn-3 tn-2

Priority inversion

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 18

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 35

Priority Ceiling Protocol (PCP)

• Elevate priorities in critical sections
• Assign priority ceilings to semaphore/mutex

 Change task priority on semaphore/mutex access
 Also avoid potential deadlocks
 Potential overhead & blocking of unrelated processes

Low

Middle

t1 t2
Time

Priority

t3

High

tn-1 tnt4 t5

Ceiling

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 36

• Dynamically elevate priorities only when needed
• Raise priorities to level of requesting task

 Change priority on request by higher-priority task
 Potential for deadlocks remains
 Potentially multiple priority changes per critical section

Priority Inheritance Protocol (PIP)

Low

Middle

t1 t2
Time

Priority

t3

High

t4 tn-1 tnt5

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 19

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 37

Performance Evaluation

• Context switch time

• Non-zero context switch time can push limits of a tight
schedule

• Hard to calculate effects
– Depends on order of context switches

• In practice, OS context switch overhead is small

• May want to test

• Context switch time assumptions on real platform

• Scheduling policy

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 38

What about interrupts?

• Interrupt overhead
• Interrupts take time away from processes
• Other event processing may be masked

during interrupt service routine (ISR)
• Perform minimum work possible in the

interrupt handler

 Device processing structure
• Interrupt service routine (ISR) performs

minimal I/O.
– Get register values, put register values

• Interrupt service process/thread performs
most of device function.

P1

OS

P2

OS

intr

P3

© Margarida Jacome, UT Austin

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 20

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 39

Caches

• Processes can cause additional caching problems.

• Even if individual processes are well-behaved, processes
may interfere with each other

• Worst-case execution time with bad cache behavior is
usually much worse than execution time with good cache
behavior

 Perform schedulability analysis without caches

• Take any online performance gains as “free lunch”

© Margarida Jacome, UT Austin

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 40

Outline

 Real-time scheduling problem

Scheduling models

Scheduling algorithms

 Classic periodic task scheduling

Rate-monotonic and earliest-deadline-first

Scheduling anomalies

• Multi-processor scheduling

• Symmetric and asymmetric multi-processing

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 21

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 41

Multi-Processor System-on-Chip (MPSoC)

• Multi-processor
• Heterogeneous
• Asymmetric multi-

processing (AMP)
• Distributed memory

& operating system

• Multi-core
• Homogeneous
• Symmetric multi-processing (SMP)
• Shared memory & operating system
 Multi-core processors in a multi-processor system

• Many-core
• > 10 cores …

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 42

MPSoC Scheduling

• Scheduling

• Real-time scheduling on homogeneous multi-cores (SMP)
– Partitioned or global queue schedulers

– Task migration, load balancing, cache pollution

Uni-processor extensions: partitioned EDF, global EDF, PFair, …

• Heterogeneous multi-processor scheduling (AMP)
– Minimize makespan (maximize throughput)

– Tight dependency on partition

– Distributed or centralized OS, coordination

Heuristics for static scheduling w/ dependencies: Hu’s, list
scheduling

EE345M/EE380L Guest Lecture 2/29/12

© 2012 A. Gerstlauer 22

EE345M/EE380L, 2/29/12 © 2012 A. Gerstlauer 43

Summary

• Embedded systems are real-time

• Doesn’t equal fast

• But means timing guarantees

• Real-time scheduling

• Crucial to meeting timing guarantees
– Deadlines

– Latency/make-span

– Responsiveness

