
January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Threads
TCB
Stacks
Scheduler

Reference book, chapter 4

Thread1

Count1=0

Count1++

Thread2

Count2=0

Count2++

Thread3

Count3=0

Count3++

See Testmain1

See Testmain2

ne x t
T hr e a d1

next
Thread2

next
Thread3

R unP t

ne x t
T hr e a d1

next
Thread2

next
Thread3

R u nPt

ne x t
T hr e a d1

next
Thread2

next
Thread3

RunPt

T hr e a d1
i s r un ni ng

T hr e a d2
i s r un ni ng

T hr e a d3
is r u nnin g

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread or Light-weight process

• Execution of a software task
• Has its own registers
• Has its own stack
• Local variables are private
• Threads cooperate for common goal
• Private global variables

– Managed by the OS
– Allocated in the TCB (e.g., Id)

R0
R1
...

SP
PC
PSR

Stack

Program

Thread

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Communication/sharing

• Shared Globals
• Mailbox (Lab 2)
• FIFO queues (Lab 2)
• Message (Lab 6)

pt

Thread1

Global

pt

Thread2
pt

Thread3

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread States

Cooperative, OS_Suspend
Round robin (Lab 2)
Weighted round robin
Priority (Lab 3)

Lab 3 will add Blocked

active run
time slice is over, OS takes control away

OS grants control

sleep
calls OS_Sleep

calls OS_Suspend

time over

dead

calls OS_Kill

OS_AddThread

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread Control Block

• Stack pointer
• Next or Next/Previous links
• Id
• Sleep counter
• Blocked pt (Lab 3)
• Priority (Lab 3)

struct TCB {
// order??, types??

};
typedef struct TCB
TCBType;
typedef TCBType * TCBPtr;

Look at TCB in uCOS-II ucos_ii.h

Where are the registers saved?

Micrium\Software\uCOS-II\Source
os_tcb

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Round Robin
OS_AddThread(&Interpreter);
OS_AddThread(&Consumer);
OS_AddThread(&Math);
OS_Launch(TIMESLICE); // doesn't return

RunPt

Next
StackPt
Id

stack

SP

RunPt

ConsumerInterpreter Math

PC

Next
StackPt
Id

stack

Next
StackPt
Id

stack

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread Switch
• Prevent switching out background tasks
• PendSV handler
• Give PendSV handler lowest priority
• Use C code to find next thread
• Trigger PendSV NVIC_INT_CTRL EQU 0xE000ED04

NVIC_PENDSVSET EQU 0x10000000
ContextSwitch

LDR R0, =NVIC_INT_CTRL
LDR R1, =NVIC_PENDSVSET
STR R1, [R0]
BX LR

TCB of a running thread

STM32
 R0-R14,
 PC, PSR

stack pointer
TCB link
Id
stack area

 local variables
 return pointers

TCB of a thread not running

stack pointer
TCB link
Id
stack area

 R0-R14,
 PC, PSR
 local variables
 return pointers

SP

NVIC_INT_CTRL_R = 0x10000000;

Page 124 of lm3s8962.pdf

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

PendSV Thread Switch
1) disable interrupts
2) save registers R4 to R11 on the user stack
3) save stack pointer into TCB
4) choose next thread
5) retrieve stack pointer from new TCB
6) restore registers R4 to R11
7) reenable interrupts
8) return from interrupt

Run Testmain1
-Show TCB chain
-Show stacks
-Explain switch

Micrium\Software\uCOS-II\Ports\ARM-Cortex-M3\Generic\RealView

os_cpu_a.asm

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread Switch

TCBRunPt
sp

next

Active thread

R4
--
R11
R0
--
R3
R12
LR
PC
PSR

Stack

R0
--
R12
LR
SP
PC
PSR

Stack
Running thread

TCB
sp

next

Real registers

Running program
Suspended
program

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Assembly Thread Switch
SysTick_Handler ; 1) Saves R0-R3,R12,LR,PC,PSR

CPSID I ; 2) Make atomic
PUSH {R4-R11} ; 3) Save remaining regs r4-11
LDR R0, =RunPt ; 4) R0=pointer to RunPt, old
LDR R1, [R0] ; R1 = RunPt
STR SP, [R1] ; 5) Save SP into TCB
LDR R1, [R1,#4] ; 6) R1 = RunPt->next
STR R1, [R0] ; RunPt = R1
LDR SP, [R1] ; 7) new thread SP; SP=RunPt->sp;
POP {R4-R11} ; 8) restore regs r4-11
CPSIE I ; 9) tasks run enabled
BX LR ; 10) restore R0-R3,R12,LR,PC,PSR

This code is in the book

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Decisions

• MSP or MSP/PSP?
• Trap or regular function call?

– How do you link OS to user code?
• Protection versus speed?

– MSP/PSP
– Check for stack overflow
– Check for valid parameters

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

NVIC

• Set priorities
– PendSV low
– Timer1 high

• Trigger PendSV

Launch

• Set SysTick period
• Set PendSV priority
• Using RunPt

– Pop initialize Reg
• Enable interrupts
• Branch to user

NVIC_INT_CTRL_R = 0x10000000;

Page 158 of
tm4c123gh6pm.pdf

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

To do first (1)
• Debugging
• Interrupts
• OS_AddThread
• Assembly
• NVIC
• PendSV
• OS_Suspend
• OS_Launch

To do last (2)
• Stack size
• FIFO size
• Timer1 period
• SysTick period
• Semaphores
• PSP

– Just use MSP

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Lab 2 Part 1 (1)
• Debugging

– How to breakpoint, run to, dump, heartbeat
• Interrupts

– How to arm, acknowledge, set vectors
– What does the stack look like? What is in LR?

• OS_AddThread
– Static allocation of TCBs and Stack
– Execute 1,2,3 times and look at TCBs and Stack

• Assembly
– PendSV, push/pull registers, load and store SP
– Enable, disable interrupts
– Access global variables like RunPt

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Lab 2 Part 1(2)

• NVIC
– Arm/disarm, priority

• PendSV
– How to trigger
– Write a PendSV handler to switch tasks

• OS_Suspend (scheduler and PendSV)
• OS_Launch (this is hard)

– Run to a line at the beginning of the tread
– Make sure TCB and stack are correct

January 31, 2014 Jonathan Valvano
EE445M/EE380L.6

Debugging tips

• Visualize the stacks
• Dumps and logs
• Logic analyzer

