
February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Semaphores
P or wait

Dutch word proberen, to test
probeer te verlagen, try to decrease
OS_Wait OSSemPend

V or signal
Dutch word verhogen, to increase
OS_Signal OSSemPost

Reference Book, chapter 4

Edsger Dijkstra

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Semaphore means something

• Counter
– Number of elements stored in FIFO
– Space left in the FIFO
– Number of printers available

• Binary
– Free (1), busy (0)
– Event occurred (1), not occurred (0)

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Spin-lock binary

bWait(&s);

// access LCD

bSignal(&s);

bWait

s

s=0

return

s==0

s==1

bSignal

s=1

return

Mutual exclusion

What does the
semaphores mean?

What would be a
better name for s?

How do we use this to solve critical sections?

Why is this a good solution for critical sections?

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Mailbox

MailBox_Send
- bWait(&BoxFree)
- Put data into Mailbox
- bSignal(&DataValid)

MailBox_Recv
- bWait(&DataValid)
- Retrieve data from Mailbox
- bSignal(&BoxFree)

Consumer Display

Mailbox

Send Recv

What are the initial values?What do the semaphores mean?

What if we remove bWait(&BoxFree) and bSignal(&BoxFree)?

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Spin-lock counting

What does the semaphore mean?
return

signal

s=s+1

return

wait

s

s=s-1

s==0

s>0

What to do with the I bit?

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Spin-lock semaphores
OS_Wait ;R0 points to counter

LDREX R1, [R0] ; counter
SUBS R1, #1 ; counter -1,
ITT PL ; ok if >= 0
STREXPL R2,R1,[R0] ; try update
CMPPL R2, #0 ; succeed?
BNE OS_Wait ; no, try again
BX LR

OS_Signal ; R0 points to counter
LDREX R1, [R0] ; counter
ADD R1, #1 ; counter + 1
STREX R2,R1,[R0] ; try update
CMP R2, #0 ; succeed?
BNE OS_Signal ;no, try again
BX LR

void OS_Wait(long *s){
DisableInterrupts();
while((*s) <= 0){
EnableInterrupts();
DisableInterrupts();

}
(*s) = (*s) - 1;
EnableInterrupts();

}
void OS_Signal(long *s){

long status;
status = StartCritical();
(*s) = (*s) + 1;
EndCritical(status);

}

Program 4.11

February 12, 2014

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Cooperative spin-lock
Regular spin-lockCooperative spin-lock

signal

s=s+1

return

wait

s

s=s-1

return

s==0

s>0
Suspend

wait

s

s=s-1

s==0

s>0

Why would you want a timeout error?
How would you implement timeout?

if(OS_Wait(&free,T100ms)){
// use it
OS_Signal(&free);
} else{
// error

}

Could be implemented with a catch and throw

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Cooperative semaphores

Let other thread run

void OS_Wait(long *s){
DisableInterrupts();
while((*s) <= 0){
EnableInterrupts();
OS_Suspend();
DisableInterrupts();

}
(*s) = (*s) - 1;
EnableInterrupts();

}
void OS_Signal(long *s){
long status;
status = StartCritical();
(*s) = (*s) + 1;
EndCritical(status);

}

February 12, 2014

Do an experiment of Lab 2 with
and without cooperation

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

FIFO, queue, or Pipe
FIFO_Put
Wait(&DataRoomLeft)
Disable Interrupts
Enter data into Fifo
Enable Interrupts
Signal(&DataAvailable)

FIFO_Get
Wait(&DataAvailable)
Disable Interrupts
Remove data from Fifo
Enable Interrupts
Signal(&DataRoomLeft)

FIFO_Put
Wait(&DataRoomLeft)
bWait(&Mutex)
Enter data into Fifo
bSignal(&Mutex)
Signal(&DataAvailable)

FIFO_Get
Wait(&DataAvailable)
bWait(&Mutex)
Remove data from Fifo
bSignal(&Mutex)
Signal(&DataRoomLeft)

What do the semaphores mean?
What if the FIFO never fills?

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Can’t wait from background

• Redo Mailbox if Send in background
• Redo Fifo if Put in background (RX)
• Redo Fifo if Get in background (TX)

arm output

write data
to output

disarm
output

full
TxFifo

not empty

empty

TxPutFifo

not full
TxGetFifo

rti

TxFifo
read data
from input

ERROR

not empty

empty

InChar

RxGetFifo RxPutFifo

not full

full

rti

RxFifoRxFifo

rts

RDRF ISR

OutChar

rts

TDRE ISR

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Blocking semaphore (Lab 3)

• Recapture time lost in the spin operation of
spin-lock

• Eliminate wasted time running threads that
are not doing work (e.g.., waiting)

• Implement bounded waiting
– once thread calls Wait and is not serviced,
– there are a finite number of threads that will go

ahead

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Blocking semaphore

wait

s

s=s-1

rts

s<0

s>0block

signal

s

s=s+1

rts

s<0

s>0wakeup one

What does the semaphores mean?

What to do with I bit?

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

1) Blocking semaphore
OS_Wait(Sema4Type *semaPt)

1) Save the I bit and disable interrupts
2) Decrement the semaphore counter, S=S-1

(semaPt->Value)--;
3) If the Value < 0 then this thread will be blocked

set the status of this thread to blocked,
specify this thread blocked on this semaphore
suspend thread

4) Restore the I bit

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

1) Blocking semaphore
OS_Signal (Sema4Type *semaPt)

1) Save I bit, then disable interrupts
2) Increment the semaphore counter, S=S+1

(semaPt->Value)++;
3) If the Value ≤ 0 then

Wake up one thread from the TCB linked list
Bounded waiting -> the one waiting the longest
Priority -> the one with highest priority

Move TCB of the “wakeup” thread
from the blocked list to the active list

What to do with the thread that called OS_Signal?
Round robin -> do not suspend
Priority -> suspend if wakeup thread is higher priority

4) Restore I bit

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

1) Blocking semaphore
Each semaphore has a blocked TCB linked list

contains the threads that are blocked
empty if semaphore Value ≥ 0
e.g., if Value == -2, then two threads are blocked
order on blocked list determine sequence of blocking
sequence of blocking determine which to wake up

previous
to be
blocked

next to runX Y

TCB TCB TCB "to be blocked" already blocked
X Y

TCBTCB TCB

How is the scheduler different?

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

2) Blocking semaphore
-All threads exist on circular TCB list: active and blocked
-Each semaphore simply has a Value
-No blocked threads if semaphore Value ≥ 0
e.g., if Value is -2, then two threads are blocked

-No information about which thread has waited longest
-Add to TCB, a BlockPt, of type Sema4Type

initially, this pointer is null
null means this thread is active and ready to run

-If blocked, this pointer contains the semaphore address

New Scheduler
Find the next active thread from the TCB list
only run threads with BlockPt equal to null

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

2) Blocking semaphore
OS_Wait(Sema4Type *semaPt)

1) Disable interrupts, I=1
2) Decrement the semaphore counter, S=S-1

(semaPt->Value)--;
3) If the Value<0 then this thread will be blocked

specify this thread is blocked to this semaphore
RunPt->BlockPt = semaPt;

suspend thread;
4) Enable interrupts, I=0

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

2) Blocking semaphore
OS_Signal(Sema4Type *semaPt)

1) Save I bit, then disable interrupts
2) Increment the semaphore Value, S=S+1

(semaPt->Value)++;
3) If Value ≤ 0 then

wake up one thread from the TCB linked list
(no bounded waiting)

do not suspend the thread that called OS_Signal
search TCBs for thread with BlockPt == semaPt

set the BlockPt of this TCB to null
4) Restore I bit

How is the scheduler different?

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Applications

• Sequential execution
– Run-A then Run-B then Run-C

• Rendezvous
• Event trigger

– Event-A and Event-B
– Event-A or Event-B

• Fork and join
• Readers-Writers Problem

Look at old exams

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Readers-Writers Problem
Reader Threads

1) Execute ROpen(file)

2) Read information from file

3) Execute RClose(file)

file

Writer Threads

1) Execute WOpen(file)

2) Read information from file

3) Write information to file

4) Execute WClose(file)

ReadCount=0, number
mutex=1, semaphore
wrt=1, semaphore

R1

R2

Rn

W1

W2

Wn
……

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Readers-Writers Problem

ROpen
wait(&mutex);
ReadCount++;
if(ReadCount==1) wait(&wrt)
signal(&mutex);

RClose
wait(&mutex);
ReadCount--;
if(ReadCount==0) signal(&wrt)
signal(&mutex);

WOpen
wait(&wrt);

WClose
signal(&wrt);

ReadCount, number of Readers that are open
mutex, semaphore controlling access to ReadCount
wrt, semaphore is true if a writer is allowed access

February 12, 2014 Jonathan Valvano
EE445M/EE380L.6

Cool stuff we’ll make the graduate
students do

• Bounded waiting
• Time-out
• Deadlock detection

– Wait-for-graph
– Resource allocation graph

• Two types of boxes
Threads, resources

• Two types of arrows
Assignment, request

Thread1

Resource A

Thread2

Resource B
Thread 1 captures

Resource A
Thread 2 blocked

on Resource B

Two names for the same thing

Works for single instance resources

Request edgeAssignment edge

