
1. Switch debouncing

• Assume a minimum touch time 500ms
• Assume a maximum bounce time 10ms
• On touch

– signal user, call user function (no latency)
– Disarm. AddThread(&BounceWait)

• BounceWait
– Sleep for more than 10, less than 500 ms
– Rearm.
– OS_Kill

Touch
Release

10ms 10ms

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

2. Switch debounce
• Assume a maximum bounce time 10ms
• Interrupt on both rise and fall

– If it is a rise, signal touch event
– If it is a fall, signal release event
– Disarm
– AddThread(&DebounceTask)

• DebounceTask
– Sleep for 10 ms
– Rearm, Set a global with the input pin value
– OS_Kill

Touch
Release

10ms 10ms

Define latency for this interface

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

2. Switch debounce
• From Quiz 1 Question 9, 2012

void static DebounceTask(void){
OS_Sleep(10); // foreground sleeping, must run within 50ms
LastPD6 = PD6; // read while it is not bouncing
GPIO_PORTD_ICR_R = 0x40; // clear flag6
GPIO_PORTD_IM_R |= 0x40; // enable interrupt on PD6
OS_Kill();

}
void GPIOPortD_Handler(void){
if(LastPD6 == 0){ // if previous was low, this is rising edge
(*PD6Task)(); // execute user task

}
GPIO_PORTD_IM_R &= ~0x40; // disarm interrupt on PD6
OS_AddThread(&DebounceTask);

} February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

2. Switch debounce
• From Quiz 1 Question 9, Spring 2012

PD6
call (*PD6Task)();

2ms max 2ms max50ms min

latency

DebounceTask runs

LastPD6

DebounceTask runs

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock conditions

• Mutual exclusion
• Hold and wait
• No preemption of resources
• Circular waiting

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock prevention

• No mutual exclusion
• No hold and wait

– Ask for all at same time
– Release all, then ask again for all

• No circular waiting
– Number all resources
– Ask for resources in a specific order

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock avoidance

• Is there a safe sequence?
• Tell OS current and future needs

– Request a resource
– Specify future requests while holding
– Yes, if there is one safe sequence

• OS can say no, even if available
– Google search on Banker’s Algorithm

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock detection

• Add timeouts to semaphore waits
• Cycles in resource allocation graph
• Kill threads and recover resources

– Abort them all, and restart
– Abort them one at a time until it runs

Resource allocation graph

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread A Thread C Thread B

OLED CAN

SDC

Assignment

Request

Assignment

Assignment

Request

Request

Thread A
wait(&bOLED); //1
wait(&bSDC); //4
use OLED and SDC

signal(&bSDC);
signal(&bOLED);

Thread B
wait(&bSDC); //2
wait(&bCAN); //5
use CAN and SDC

signal(&bCAN);
signal(&bSDC);

Thread C
wait(&bCAN); //3
wait(&bOLED); //6
use CAN and OLED

signal(&bOLED);
signal(&bCAN);

No hold and wait

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread A
wait(&bOLED,&bSDC);
use OLED and SDC
signal(&bOLED,&bSDC);

Thread B
wait(&bSDC,&bCAN);
use CAN and SDC
signal(&bSDC,&bCAN);

Thread C
wait(&bCAN,&bOLED);
use CAN and OLED
signal(&bCAN,&bOLED);

No circular waiting
Thread A

wait(&bOLED);
wait(&bSDC);
use OLED and SDC
signal(&bSDC);
signal(&bOLED);

Thread B
wait(&bSDC);
wait(&bCAN);
use CAN and SDC
signal(&bCAN);
signal(&bSDC);

Thread C
wait(&bOLED);
wait(&bCAN);
use CAN and OLED

signal(&bOLED);
signal(&bCAN);

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Where is the deadlock?

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Graduate projects ideas
• 1) Extend the OS with more features (do this if two students in group)

– Efficient with 20 to 50 threads
– Multiple Mailboxes
– Multiple Fifos
– Multiple periodic interrupts
– Multiple edge-triggered input interrupts
– Path expression for LCD and serial port
– Semaphores with timeout
– Kill foreground threads that finish

• 2) Make your Lab3 OS portable
– First implement Lab3 on another architecture (each students does their own)
– Rewrite OS into two parts, OS.c and CPU.c
– Common OS.c (maximize this part)
– Separate CPU.c for each architecture (minimize this part)

• 3) Design and test a DMA-based eDisk driver for the LaunchPad board (one-person project)
– Compare and contrast your Lab5 to FAT

• 4) Write your own malloc and free (one-person project)
– Copy two examples code out of a book, or off internet
– Compare and contrast your manager to the existing two implementations

• 5) Design, manufacture, and test a PCB for your robot
• 6) Design and test a DMA-based camera driver for the LaunchPad board (one-person project)

– See LM3S811 example http://users.ece.utexas.edu/~valvano/arm/Camera_811.zip
• 7) Simple CAN driver without StellarisWare
• 8) Simple node to node Ethernet interface without Stellarisware on new LaunchPad in March

Level of complexity depends on size of group

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Priority
• Some tasks are more important than others
• In order to do something first, something
else must be second
• When to run the scheduler?

–Periodically, systick and sleep
–On OS_Wait
–On OS_Signal
–On OS_Sleep, OS_Kill

Reference EE345L book, chapter 5

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Priority Scheduler
• Assigns each thread a priority number

– Problem: How to assign priorities?
– Solution: Performance measures

• Blocking semaphores and not spinlock semaphores
• Priority 2 is run only if no priority 1 are ready
• Priority 3 only if no priority 1 or priority 2 are ready
• If all have the same priority, use a round-robin system
• Reduce latency (response time) by giving high priority
• On a busy system, low priority threads may never be run

– Problem: Starvation
– Solution: Aging

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

How to find highest priority
• Search all for highest priority ready thread

– Skip if blocked
– Skip if sleeping
– Linear search speed (number of threads)

• Sorted list by priority
– Chain/unchain as ready/blocked

• Priority bit table (uCOS-II and uCOS-III)
– See OSUnMapTbl in os_core.c
– See OS_Sched (line 1606)

– See CPU_CntLeadZeros in cpu_a.asm
Software\uC-CPU\Cortex-M3\RealView

Software\uCOS-II\Source

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Adaptive Priority- Aging

• Solution to starvation
• Real and temporary priorities in TCB
• Priority scheduler uses temporary priority
• Increase temporary priority periodically

– If a thread is not running
• Reset temporary back to real when runs

Rate Monotonic Scheduler

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

  ln(2)12
1

0

1/ 




n

i

n

i

i n
T
E

• n tasks that are periodic, running with periods Ti
• Priority according to this period

o more frequent tasks having a higher priority
• Little interaction between tasks

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Exponential Queue
• Multi-level feedback queue

– Automatically adjusts priority
• High priority to I/O bound threads

– Block a lot, need low latency
– Every time it blocks on I/O,

• Increase priority, Smaller time slice

• Low priority to CPU bound threads
– Every time it runs to completion

• Decrease priority, Longer time slice

Final exam 2006, Q5

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Exponential Queue
• Exponential comes from doubling/halving
• A) Round robin with variable timeslices

– Time slices 8,4,2,1 ms
• B) Priority with variable priority/timeslices

– Time slices 8,4,2,1 ms and priorities 0,1,2,3

Final exam 2006, Q5

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

I/O Centric Scheduler
• Automatically adjusts priority
• High priority to I/O bound threads

– I/O needs low latency
– Every time it issues an input or output,

• Increase priority by one, shorten time slice

• Low priority to CPU bound threads
– Every time it runs to completion

• Decrease priority by one, lengthen time slice

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Path expression

• Specify the correct calling order
– A group of related functions
– Initialize before use

Book Section 4.6.2

UART_Init

UART_OutChar

UART_InChar

UART_Close

d

b
e

i

j
f

a

c

g

h

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Path expression
int State=3; // start in the Closed state
int const Path[4][4]={ /* Init InChar OutChar Close */
/* column 0 1 2 3 */
/* Init row 0*/ { 0 , 1 , 1 , 1 },
/* InChar row 1*/ { 0 , 1 , 1 , 1 },
/* OutChar row 2*/ { 0 , 1 , 1 , 1 },
/* Close row 3*/ { 1 , 0 , 0 , 0 }};
void UART_Init(void){
if(Path[State][0]==0) OS_Kill(); // kill if illegal
State = 0; // perform valid Init

xxxx regular stuff xxxx
}
char UART_InChar(void){
if(Path[State][1]==0) OS_Kill(); // kill if illegal
State = 1; // perform valid InChar

xxxx regular stuff xxxx
}

Final exam 2004, Q9

Each arrow is
a ‘1’ in matrix

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Performance measures

• Maximum time running with I=1
• Percentage of time it runs with I=1
• Time jitter on periodic tasks

• CPU utilization
– Percentage time running idle task

• Context switch overhead
– Time to switch tasks

t-t < tn – tn-1 < t+t for all n

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

How long do you test?
• n = number of times T1 interrupts T2
• m = total number of assembly instructions in T2
• Run this test until n greatly exceeds m
• Think of this corresponding probability question

– m different cards in a deck
– Select one card at random, with replacement
– What is the probability after n selections (with

replacement) that a particular card was never
selected?

– Similarly, what is the probability that all cards were
selected at least once?

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

How long do you test?
Rx_Fifo_Get
0 424846 0x000009B4 4601 MOV r1,r0 ;int RxFifo_Get(rxDataType *datapt){
1 374028 0x000009B6 481D LDR r0,[pc,#116] ; if(RxPutPt == RxGetPt){
2 457111 0x000009B8 6800 LDR r0,[r0,#0x00]
3 402642 0x000009BA 4A1B LDR r2,[pc,#108]
4 204390 0x000009BC 6812 LDR r2,[r2,#0x00]
5 156684 0x000009BE 4290 CMP r0,r2
6 211597 0x000009C0 D101 BNE 0x000009C6
7 242024 0x000009C2 2000 MOVS r0,#0x00 ; return(RXFIFOFAIL);
8 3916 0x000009C4 4770 BX lr ; }
9 417 0x000009C6 4818 LDR r0,[pc,#96] ; *datapt = *(RxGetPt++);
10 828 0x000009C8 6800 LDR r0,[r0,#0x00]
11 1237 0x000009CA 7800 LDRB r0,[r0,#0x00]
12 3099 0x000009CC 7008 STRB r0,[r1,#0x00]
13 1859 0x000009CE 4816 LDR r0,[pc,#88]
14 0 0x000009D0 6800 LDR r0,[r0,#0x00]
15 2266 0x000009D2 1C40 ADDS r0,r0,#1
16 831 0x000009D4 4A14 LDR r2,[pc,#80]
17 0 0x000009D6 6010 STR r0,[r2,#0x00]
18 1870 0x000009D8 4610 MOV r0,r2
19 3090 0x000009DA 6802 LDR r2,[r0,#0x00]
20 5 0x000009DC 4811 LDR r0,[pc,#68]
21 1238 0x000009DE 3020 ADDS r0,r0,#0x20
22 3 0x000009E0 4282 CMP r2,r0 ; if(RxGetPt==&RxFifo[RXFIFOSIZE]){
23 0 0x000009E2 D102 BNE 0x000009EA
24 0 0x000009E4 3820 SUBS r0,r0,#0x20 ; RxGetPt = &RxFifo[0];
25 206 0x000009E6 4A10 LDR r2,[pc,#64] ; }
26 2471 0x000009E8 6010 STR r0,[r2,#0x00]
27 1651 0x000009EA 2001 MOVS r0,#0x01
28 0 0x000009EC E7EA B 0x000009C4 ; return(RXFIFOSUCCESS);}

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Context Switch time

• Just like the Lab 1 measurement

µs
0 2 4 6 8 10 12 14 16 18 20

V

-5

-4

-3

-2

-1

0

1

2

3

4

5
x=6943ns,o=9936ns,xo=2993ns

19Feb2010 20:08

x o

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Running with I = 1

• Record time t1 when I=1

• Record time t2 when I=0 again
• Measure difference

• Record maximum and total

#define OSCRITICAL_ENTER() { sr = SRSave(); }
#define OSCRITICAL_EXIT() { SRRestore(sr); }

#define OSCRITICAL_EXIT() { SRRestore(sr);
dt=OS_TimeDifference(OS_Time(),t1); }

#define OSCRITICAL_ENTER() { t1=OS_Time(); sr = SRSave(); }

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Time jitter
Time Jitter

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12 14

Time error (cycles)

Fr
eq

ue
nc

y

Disable/enable interrupts

Using LDREX STREX

Semaphores have drawbacks

• They are shared global variables
• Can be accessed from anywhere
• No connection between the semaphore

and the data being controlled by the
semaphore

• Used both for critical sections (mutual
exclusion) and coordination (scheduling)

• No control or guarantee of proper usage
February 21, 2014 Jonathan Valvano

EE445M/EE380L.6

Monitors

• Proper use is enforced
• Synchronization attached to the data
• Removes hold and wait
• Threads enter

– one active at a time

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

http://lass.cs.umass.edu/~shenoy/courses/fall08/lectures/Lec10.pdf

Monitors

• Lock
– Only one thread active at a time
– Must have lock to access condition variables

• One or more condition variables
– If cannot complete, leave data consistent
– Threads can sleep inside by releasing lock
– Wait (acquire or sleep)
– Signal (if any waiting, wakeup else nop)
– Broadcast

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

FIFO Monitor

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Put(item)
1) lock->Acquire();
2) put item on queue;
3) conditionVar->Signal();
4) lock->Release();

Get()
1) lock->Acquire();
2) while queue is empty

conditionVar->Wait(lock);
3) remove item from queue;
4) lock->Release();
5) return item;

http://lass.cs.umass.edu/~shenoy/courses/fall08/lectures/Lec10.pdf

Hoare vs Mesa Monitor

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Hoare wait
if(FIFO empty)
wait(condition)

Mesa wait
while(FIFO empty)
wait(condition)

Kahn Process Network

• Blocking read
• Non-blocking writes (never full)
• Tokens are data (no time stamp)

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

P1

P2

P3

A

B
C P4

Kahn Process Network

• Deterministic
– Same inputs result in same outputs
– Independent of scheduler

• Non-blocking writes (never full)
• Monotonic

– Needs only partial inputs to proceed
– Works in continuous time

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Kahn Process Network

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

void Process3(void){
long inA, inB, out;
while(1){
while(AFifo_Get(&inA)){};
while(BFifo_Get(&inB)){};
out = compute(inA,inB);
CFifo_Put(out);

}
}

void Process3(void){
long inA, inB, out;
while(1){
if(AFifo_Size()==0){
while(BFifo_Get(&inB)){};
while(AFifo_Get(&inA)){};

} else{
while(AFifo_Get(&inA)){};
while(BFifo_Get(&inB)){};

}
out = compute(inA,inB);
CFifo_Put(out);

}
}

Kahn Process Network

• Strictly bounded
– Prove it never fills (undecidable)
– dependent of scheduler

• Termination
– All processed blocked on input

• Scheduler
– Needs only partial inputs to proceed
– Works in real time

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Kahn Process Network

• Try to find a mathematical proof
• Experimentally adjust FIFO size

– Needs a realistic test environment
– Profile/histogram DataAvailable for each FIFO
– Leave the profile in delivered machine

• Dynamically adjust size with malloc/free
• Use blocking write (not a KPN anymore)
• Discard the data
February 21, 2014 Jonathan Valvano

EE445M/EE380L.6

Thread switch with PSP (1)

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

• Bottom 8 bits of LR
• 0xE1 11110001 Return to Handler mode MSP (using floating point state)
• 0xE9 11101001 Return to Thread mode MSP (using floating point state)
• 0xED 11101101 Return to Thread mode PSP (using floating point state)
• 0xF1 11110001 Return to Handler mode MSP
• 0xF9 11111001 Return to Thread mode MSP
• 0xFD 11111101 Return to Thread mode PSP

Thread switch with PSP (2)

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

;everyone uses MSP (Program 4.9 from book)
SysTick_Handler ; 1) Saves R0-R3,R12,LR,PC,PSR

CPSID I ; 2) Prevent interrupt during switch
PUSH {R4-R11} ; 3) Save remaining regs r4-11
LDR R0, =RunPt ; 4) R0=pointer to RunPt, old thread
LDR R1, [R0] ; R1 = RunPt
STR SP, [R1] ; 5) Save SP into TCB
LDR R1, [R1,#4] ; 6) R1 = RunPt->next
STR R1, [R0] ; RunPt = R1
LDR SP, [R1] ; 7) new thread SP; SP = RunPt->sp;
POP {R4-R11} ; 8) restore regs r4-11
CPSIE I ; 9) run with interrupts enabled
BX LR ; 10) restore R0-R3,R12,LR,PC,PSR

Thread switch with PSP (3)

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

;tasks use PSP, OS/ISR use MSP, Micrium OS-II
SysTick_Handler ; 1) R0-R3,R12,LR,PC,PSR on PSP
CPSID I ; 2) Prevent interrupt during switch

MRS R2, PSP ; R2=PSP, the process stack pointer
SUBS R2, R2, #0x20
STM R2, {R4-R11} ; 3) Save remaining regs r4-11
LDR R0, =RunPt ; 4) R0=pointer to RunPt, old thread
LDR R1, [R0] ; R1 = RunPt
STR R2, [R1] ; 5) Save PSP into TCB
LDR R1, [R1,#4] ; 6) R1 = RunPt->next
STR R1, [R0] ; RunPt = R1
LDR R2, [R1] ; 7) new thread PSP in R2
LDM R2, {R4-R11} ; 8) restore regs r4-11
ADDS R2, R2, #0x20
MSR PSP, R2 ; Load PSP with new process SP
ORR LR, LR, #0x04 ; 0xFFFFFFFD (return to thread PSP)
CPSIE I ; 9) run with interrupts enabled
BX LR ; 10) restore R0-R3,R12,LR,PC,PSR

MSP active,
LR=0xFFFFFFFD

OS calls implemented with TRAP

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Reflections

• Use the logic analyzer
– Visualize what is running

• Learn how to use the debugger
• What to do after a thread calls Kill?
• Breakpoint inside ISR

– Does not seem to single step into ISR

