1. Switch debouncing

e Assume a minimum touch time 500ms
e Assume a maximum bounce time 10ms

e On touch

— signal user, call user function (no latency)
— Disarm. AddThread(&BounceWalit)

 BounceWalit
— Sleep for more than 10, less than 500 ms

— Rearm.] ain

i <> <>
— 0S_Kill e /
_ Touch 10ms 10ms

Release

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

2. Switch debounce

e Assume a maximum bounce time 10ms
 Interrupt on both rise and fall

— Ifitis arise, signal touch event Relcase

— If it is a fall, signal release event

— Disarm 4 [
— AddThread(&DebounceTask) 5~ o

e DebounceTask
_ S|eep fOI’ 10 ms Define latency for this interface

— Rearm, Set a global with the input pin value
— OS _Kill

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

2. Switch debounce
e From Quiz 1 Question 9, 2012

void static DebounceTask(void){
OS_Sleep(10); // foreground sleeping, must run within 50ms
LastPD6 = PDG6; // read while it is not bouncing
GPIO_PORTD_ICR_R =0x40; //clear flag6
GPIO_PORTD_IM_R |=0x40; // enable interrupt on PD6
OS Kill();

}

void GPIOPortD _Handler(void){
If(LastPD6 == 0){ //if previous was low, this is rising edge

(*PD6Task)(); // execute user task

}
GPIO_PORTD_IM_R &= ~0x40; // disarm interrupt on PD6
OS_AddThread(&DebounceTask);

} February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

2. Switch debounce
 From Quiz 1 Question 9, Spring 2012

DebounceTask runs DebounceTask runs

2ms max . 2ms max
50ms min -—>

s E\ il [
latency call (*PD6Task) O:

LastPD6

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock conditions

e Mutual exclusion

 Hold and walit

 No preemption of resources
e Circular waiting

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock prevention

e No mutual exclusion

 No hold and wait

— Ask for all at same time

— Release all, then ask again for all
* No circular waiting

— Number all resources
— Ask for resources in a specific order

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock avoidance

 |s there a safe sequence?

e Tell OS current and future needs
— Request a resource
— Specify future requests while holding
— Yes, If there Is one safe sequence
 OS can say no, even If available
— Google search on Banker’s Algorithm

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Deadlock detection

 Add timeouts to semaphore walits
e Cycles in resource allocation graph

e Kill threads and recover resources
— Abort them all, and restart
— Abort them one at a time until it runs

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Resource allocation graph

Thread A Thread B Thread C
wait(&bOLED); //1 wait(&bSDC); //2 wait(&bCAN); /I3
wait(&bSDC); //4 wait(&bCAN); //5 wait(&bOLED); //6
use OLED and SDC use CAN and SDC use CAN and OLED
signal(&bSDC); signal(&bCAN); signal(&bOLED);
signal(&bOLED); signal(&bSDC); signal(&bCAN);

SDC
Request Assignment
Thread A Thread B
| Request
R q
Assignment Assignment Request
OLED CAN
February 21, 2014 Jonathan Valvano

EE445M/EE380L.6

No hold and walit

Thread A Thread B Thread C
wait(&bOLED,&bSDC); wait(&bSDC,&bCAN); wait(&bCAN,&bOLED);
use OLED and SDC use CAN and SDC use CAN and OLED
signal(&bOLED,&bSDC); signal(&bSDC,&bCAN); signal(&bCAN,&bOLED);

No circular waiting

Thread A Thread B Thread C
wait(&bOLED); wait(&bSDC); wait(&bOLED);
wait(&bSDC); wait(&bCAN); wait(&bCAN);
use OLED and SDC use CAN and SDC use CAN and OLED
signal(&bSDC); signal(&bCAN); signal(&bOLED);
signal(&bOLED); signal(&bSDC); signal(&bCAN);

February 21, 2014 Jonathan Valvano

EE445M/EE380L.6

Where Is the deadlock?

Jonathan Valvano
EE445M/EE380L.6

February 21, 2014

Graduate projects ideas

1) Extend the OS with more features (do this if two students in group)
— Efficient with 20 to 50 threads
— Multiple Mailboxes
— Multiple Fifos
— Multiple periodic interrupts
— Multiple edge-triggered input interrupts
— Path expression for LCD and serial port
— Semaphores with timeout
Kill foreground threads that finish
2) Make your Lab3 OS portable
— First implement Lab3 on another architecture (each students does their own)
— Rewrite OS into two parts, OS.c and CPU.c
— Common OS.c (maximize this part)
— Separate CPU.c for each architecture (minimize this part)
3) Design and test a DMA-based eDisk driver for the LaunchPad board (one-person project)
— Compare and contrast your Lab5 to FAT

4) Write your own malloc and free (one-person project)
— Copy two examples code out of a book, or off internet
— Compare and contrast your manager to the existing two implementations

5) Design, manufacture, and test a PCB for your robot
6) Design and test a DMA-based camera driver for the LaunchPad board (one-person project)
— See LM3S811 example http://users.ece.utexas.edu/~valvano/arm/Camera_811.zip
7) Simple CAN driver without StellarisWare
8) Simple node to node Ethernet interface without Stellarisware on new LaunchPad in March
Level of complexity depends on size of group

February 21, 2014 Jonathan Valvano

EE445M/EE380L.6

Priority

e Some tasks are more important than others

* In order to do something first, something
else must be second

 When to run the scheduler?
—Perirodically, systick and sleep
—On 0OS Wait
—On 0S_Signal
—On 0OS _Sleep, 0OS Kill

Reference EE345L book, chapter 5

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Priority Scheduler

e Assigns each thread a priority number
— Problem: How to assign priorities?
— Solution: Performance measures

e Blocking semaphores and not spinlock semaphores

e Priority 2 is run only if no priority 1 are ready

* Priority 3 only if no priority 1 or priority 2 are ready

 If all have the same priority, use a round-robin system
 Reduce latency (response time) by giving high priority
 On a busy system, low priority threads may never be run

— Problem: Starvation
— Solution: Aging

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

How to find highest priority

o Search all for highest priority ready thread
— Skip if blocked
— Skip if sleeping
— Linear search speed (number of threads)
o Sorted list by priority
— Chain/unchain as ready/blocked

* Priority bit table (uCOS-Il and uCOS-III)
— See OSUnMapTbl in os_core.c Smerucostisoe

— See OS_SChed (line 1606)
— See CPU_CntLeadZeros in cpu_a.asm

Software\uC-CPU\Cortex-M3\RealView
February 21, 2014 Jonathan Valvano

EE345M/EE380L.6

Adaptive Priority- Aging

e Solution to starvation
 Real and temporary priorities in TCB
* Priority scheduler uses temporary priority

e Increase temporary priority periodically
— If a thread Is not running

 Reset temporary back to real when runs

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Rate Monotonic Scheduler

e n tasks that are periodic, running with periods T,
e Priority according to this period

0 more frequent tasks having a higher priority
o Little interaction between tasks

n-1p
B o n(21/”—1) < In(2)
0 |

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Exponential Queue

o Multi-level feedback queue
— Automatically adjusts priority

* High priority to I/O bound threads
— Block a lot, need low latency
— Every time it blocks on 1/O,
 Increase priority, Smaller time slice
e Low priority to CPU bound threads

— Every time it runs to completion
» Decrease priority, Longer time slice

February 21, 2014 Jonathan Valvano Final exam 2006, Q5
EE345M/EE380L.6

Exponential Queue

* Exponential comes from doubling/halving
* A) Round robin with variable timeslices
— Time slices 8,4,2,1 ms
* B) Priority with variable priority/timeslices
— Time slices 8,4,2,1 ms and priorities 0,1,2,3

February 21, 2014 Jonathan Valvano Final exam 2006, Q5
EE345M/EE380L.6

/O Centric Scheduler

o Automatically adjusts priority

* High priority to I/O bound threads
—1/0O needs low latency
— Every time it iIssues an input or output,
 Increase priority by one, shorten time slice
e Low priority to CPU bound threads

— Every time it runs to completion
e Decrease priority by one, lengthen time slice

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

Path expression

« Specify the correct calling order
— A group of related functions
— Initialize before use

WRT_OutCha
g

February 21, 2014 Jonathan Valvano Book Section 4.6.2
EE345M/EE380L.6

Path expression Seharowis

a‘l’ in matrix

Int State=3; // start 1n the Closed state
InChar OutChar Close */

int const Path[4][4]={ /7* Init

/* collumn

/* Init row 0*/ {
/* InChar row 1*/ {
/* OutChar row 2*/ {
/* Close row 3*/ {

void UART_Init(void){
iT(Path[State][0]==0) 0S Kill();

State = O;
XXXX regular stuff xxxx

}

char UART_InChar(void){
if(Path[State][1]==0) OS Kill();

State = 1;
XXXX regular stuff xxxx

}

February 21, 2014

R O OOO

1

OR R PR

Jonathan Valvano
EE345M/EE380L.6

2 3 */
, 1, 1 3,
, 1, 1 3,
, 1, 1 3,
, o ., 0 }};

// kill 1t 1llegal
// perform valid Init

// kill 1t 1llegal
// perform valid InChar

Final exam 2004, Q9

Performance measures

e Maximum time running with |=1
* Percentage of time it runs with 1=1

* Time jitter on periodic tasks
At-0t <t —1t, , < At+dt for all n

« CPU utilization
— Percentage time running idle task

e Context switch overhead
— Time to switch tasks

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

How long do you test?

 n =number of times T1 interrupts T2
 m = total number of assembly instructions in T2
* Run this test until n greatly exceeds m

* Think of this corresponding probability question
— m different cards in a deck
— Select one card at random, with replacement

— What is the probability after n selections (with
replacement) that a particular card was never
selected?

— Similarly, what is the probability that all cards were
selected at least once?

February 21, 2014 Jonathan Valvano
EE345M/EE380L.6

How long do you test?

Rx_Fifo_Get

0 424846 0x000009B4 4601 MoV rl,rO ;int RxFifo_Get(rxDataType *datapt){

1 374028 0x000009B6 481D LDR rO,[pc,#116] ; if(RxPutPt == RxGetPt){

2 457111 0x000009B8 6800 LDR ro, [ro,#0x00]

3 402642 0x000009BA 4A1B LDR r2,[pc,#108]

4 204390 0x000009BC 6812 LDR r2,[r2,#0x00]

5 156684 0x000009BE 4290 CMP ro,r2

6 211597 0x000009CO D101 BNE 0x000009C6

7 242024 0x000009C2 2000 MOVS rO,#0x00 ; return(RXFIFOFAIL);

8 3916 0x000009C4 4770 BX Ir S

9 417 0x000009C6 4818 LDR rO0,[pc,#96] ; *datapt = *(RxGetPt++);

10 828 0x000009C8 6800 LDR ro, [ro0,#0x00]

11 1237 0x000009CA 7800 LDRB rO,[r0,#0x00]

12 3099 0x000009CC 7008 STRB rO0,[ri1,#0x00]

13 1859 Ox000009CE 4816 LDR rO,[pc,#88]

14 0 0x000009D0 6800 LDR ro, [ro0,#0x00]

15 2266 0x000009D2 1C40 ADDS r0,r0,#1

16 831 0x000009D4 4A14 LDR r2,[pc,#80]

17 0 0x000009D6 6010 STR ro, [r2,#0x00]

18 1870 0x000009D8 4610 MOV ro,r2

19 3090 0xO00009DA 6802 LDR r2,[ro0,#0x00]

20 5 0x000009DC 4811 LDR rO,[pc,#68]

21 1238 0x000009DE 3020 ADDS rO0,r0,#0x20

22 3 O0xO00009EO0 4282 CMP r2,r0 ; 1T (RxGetPt==&RxFifo[RXFIFOSIZE]){

23 0 Ox000009E2 D102 BNE Ox000009EA

24 0 OxO00009E4 3820 SUBS rO0,r0,#0x20 ; RxGetPt = &RxFifo[0];

25 206 OxO000009E6 4A10 LDR r2,[pc,#64] ; }

26 2471 0x000009E8 6010 STR ro, [r2,#0x00]

27 1651 OxO000009EA 2001 MOVS rO,#0x01

28 0 OxOO0O0009EC E7EA B 0x000009C4 ; return(RXFIFOSUCCESS);}
February 21, 2014 Jonathan Valvano

EE345M/EE380L.6

Context Switch time

e Just like the Lab 1 measur

ement

X=6943ns,0=9936ns,Xx0=2993ns

|

1nhr

J U Uy U

| |
| |
1 | |
2 | |
3 | |
4 ‘ ‘
% 2 4 6 ‘ 8 10 12
19Feb2010 20:08
February 21, 2014 Jonathan Valvano

EE345M/EE380L.6

ERURERE

14 16

il
UL

us
18 20

Running with | = 1

#define OSCRITICAL_ENTER() { sr = SRSave(); }
#define OSCRITICAL_EXIT() { SRRestore(sr); }

e Record time t1 when I=1

#define OSCRITICAL_ENTER() { t1=OS_Time(); sr = SRSave(); }

* Record time t2 when |=0 again

e Measure difference

#define OSCRITICAL_EXIT() { SRRestore(sr);
dt=0S_TimeDifference(OS_Time(),t1); }

e Record maximum and total

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Time Jitter

25000

20000

Frequency

= =

o Ul

o o

o o

o o
| |

5000 -

Time Jitter

—— Disable/enable interrupts

—=— Using LDREX STREX

Time error (cycles)

14

February 21, 2014

Jonathan Valvano
EE445M/EE380L.6

Semaphores have drawbacks

They are shared global variables
Can be accessed from anywhere

No connection between the semaphore
and the data being controlled by the
semaphore

Used both for critical sections (mutual
exclusion) and coordination (scheduling)

No control or guarantee of proper usage

February 21, 2014 Jonathan Valvano

EE445M/EE380L.6

Monitors

* Proper use Is enforced
e Synchronization attached to the data
« Removes hold and walit

e Threads enter Queue of waiting Shared
_ _ threads trying to data
— one active at a time enter the monitor

Procedure

-

Procedure

Procedure

http://lass.cs.umass.edu/~shenoy/courses/fall08/lectures/Lec10.pdf

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Monitors

e Lock

— Only one thread active at a time
— Must have lock to access condition variables

 One or more condition variables
— If cannot complete, leave data consistent
— Threads can sleep inside by releasing lock
— Wait (acquire or sleep)
— Signal (if any waiting, wakeup else nop)
— Broadcast

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

FIFO Monitor

Put(item) Get()

1) lock->Acquire(); 1) lock->Acquire();

2) put item on queue; 2) while queue is empty

3) conditionVar->Signal(); conditionVar->Wait(lock);
4) lock->Release(); 3) remove item from queue;

4) lock->Release();
5) return item,;

http://lass.cs.umass.edu/~shenoy/courses/fall08/lectures/Lec10.pdf

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Hoare vs Mesa Monitor

Hoare wait Mesa wait
if(FIFO empty) while(FIFO empty)
wait(condition) wait(condition)

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Kahn Process Network

e Blocking read
* Non-blocking writes (never full)
 Tokens are data (no time stamp)

(A~
@

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Kahn Process Network

e Deterministic
— Same Inputs result in same outputs
— Independent of scheduler

* Non-blocking writes (never full)
 Monotonic

— Needs only partial inputs to proceed
— Works in continuous time

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Kahn Process Network

void Process3(void){ void Process3(void){
long INA, InB, out; long INA, InB, out;
while(1){ while(1){
while(AFifo_Get(&InA)){}; If(AFifo_Size()==0){
while(BFifo_Get(&InB)){}; while(BFifo_Get(&InB)){};
out = compute(inA,inB); while(AFifo_Get(&InA)){};
CFifo_Put(out); } elsef
} while(AFifo_Get(&InA)){};
} while(BFifo_Get(&InB)){};
}

out = compute(inA,inB);
CFifo_Put(out);
}
}

EE445M/EE380L.6

Kahn Process Network

o Strictly bounded
— Prove it never fills (undecidable)
— dependent of scheduler

e Termination
— All processed blocked on input

e Scheduler
— Needs only partial inputs to proceed
— Works in real time

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Kahn Process Network

* Try to find a mathematical proof

* Experimentally adjust FIFO size
— Needs a realistic test environment
— Profile/histogram DataAvailable for each FIFO
— Leave the profile in delivered machine

 Dynamically adjust size with malloc/free
* Use blocking write (not a KPN anymore)
* Discard the data

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

Thread switch with PSP (1)

* Bottom 8 bits of LR

. OxE1 11110001 Return to Handler mode MSP (using floating point state)
. OxE9 11101001 Return to Thread mode MSP (using floating point state)
. OxED 11101101 Return to Thread mode PSP (using floating point state)
. OxF1 11110001 Return to Handler mode MSP

. O0xF9 11111001 Return to Thread mode MSP

. OxFD 11111101 Return to Thread mode PSP

1[0 Before inferrupt 1[0 Affer inferrupt
Context Switch

IPSE[0 R i IPSE[T5 -

a) Push registers on PSP 1 E1

BASEFRI|0 h::: PC = {0x0000002cC) BASEFRI|D D2
cj Set IFSR.= 15 T

d) Set LR = 0xFFFFFFFD e

s WEF as stack poimnter aldPC
PSP —_ FSF AP SR

} ™ Stadk s Stak

™ Stadk

February 21, t

EE445M/EE380L.6

Thread switch with PSP (2)

;everyone uses MSP (Program 4.9 from book)
SysTick Handler

CPSID
PUSH
LDR
LDR
STR
LDR
STR
LDR
POP
CPSIE
BX

|
{R4-R11}
RO, =RunPt
R1, [RO]
SP, [R1]
R1, [R1,#4]
R1, [RO]
SP, [R1]
{R4-R11}

|

LR

February 21, 2014

1)

- 2)
- 3)
- 4)

5)
6)

7)
8)
9)

Saves RO-R3,R12,LR,PC,PSR
Prevent interrupt durlng switch
Save remaining regs r4-11
RO=pointer to RunPt, old thread
R1 = RunPt

Save SP Into TCB

R1 = RunPt->next

RunPt = R1

new thread SP; SP = RunPt->sp;
restore regs r4-11

run with interrupts enabled

10) restore RO-R3,R12,LR,PC,PSR

Jonathan Valvano
EE445M/EE380L.6

Thread

;tasks use PSP, 0S/1
SysTick Handler
CPSID I
MRS R2, PSP
SUBS R2, R2,

switch with PSP (3)

SR use MSP, Micrium OS-11
; 1) RO-R3,R12,LR,PC,PSR on PSP
, 2) Prevent interrupt during switch
; R2=PSP, the process stack pointer
#0x20

STM R2, {R4-R11} ; 3) Save remaining regs r4-11

LDR RO, =RunPt ; 4) RO=pointer to RunPt, old thread
LDR R1, [RO] ; R1 = RunPt

STR R2, [R1] ; 5) Save PSP into TCB MSP active,

LDR R1, [R1,#4] ; 6) Rl = RunPt->next | R=0xFFFFFFFD
STR R1, [RO] ; RunPt = R1

LDR R2, [R1]} ; 7)) new thread PSP 1In R2

LDM R2, {R4-R11} ; 8) restore regs r4-11

ADDS R2, R2, #0x20

MSR PSP, R2 , Load PSP with new process SP

ORR LR, LR, #0x04 ; OXFFFFFFFD (return to thread PSP)
CPSIE I ; 9) run with interrupts enabled

BX LR
February 21, 2014

; 10) restore RO-R3,R12,LR,PC,PSR

Jonathan Valvano OS calls implemented with TRAP
EE445M/EE380L.6

Reflections

e Use the logic analyzer
— Visualize what is running

e Learn how to use the debugger
 \What to do after a thread calls Kill?

* Breakpoint inside ISR
— Does not seem to single step into ISR

February 21, 2014 Jonathan Valvano
EE445M/EE380L.6

