
EE345M/EE380L.6 Lecture 10.1

by Jonathan W. Valvano

Lecture 10 objectives are to:
 • Introduce basic principles involved in digital filtering,
 • Define the Z Transform and use it to analyze filters,
 • Develop digital filter implementations

"hello", before filtering

"hello", after filtering

Basic Principles

xc(t) is a continuous analog signal. fs is the sample rate

x(n) = xc(nT) with -∞ < n < +∞.

There are two types of approximations associated with the sampling process.
 finite precision of the ADC
 finite sampling frequency.

aliased
properly represented

undetectable

frequency

Z
2

z

f s
1
2

To prevent aliasing there should be no measurable signal above 0.5fs.

A causal digital filter calculates
 y(n) from y(n-1), y(n-2),... and x(n), x(n-1), x(n-2),...
 not future data (e.g., y(n+1), x(n+1) etc.)
A linear filter is constructed from a linear equation.
A nonlinear filter is constructed from a nonlinear equation.
 One nonlinear filter is the median.
A finite impulse response filter (FIR) relates y(n) only in terms of x(n), x(n-1), x(n-2),...

y(n) =
x(n) + x(n-3)

2

An infinite impulse response filter (IIR) relates y(n) in terms of both x(n), x(n-1),..., and y(n–1), y(n-2),...

 y(n) = (113•x(n) + 113•x(n-2) - 98•y(n-2))/128

The definition of the Z-Transform:

X(z) = [x(n)]
n=-∞

∞

 x(n) z
-n

EE345M/EE380L.6 Lecture 10.2

by Jonathan W. Valvano

Consider the Laplace Transform

x(t)

Laplace
Transform

X(s)

continuous
time domain

frequency
domain

Inverse
Laplace

Transform

X(z)

x(n)discrete
time domain

Z
Transform

frequency
domain

Inverse
Z

Transform

Fig 5.1 A transform is used to study a signal in the frequency domain.

Laplace
Transform

X(s)

Inverse
Laplace

Transform

x(t) Analog
System

y(t)

Laplace
Transform

H(s) Y(s)=H(s)•X(s) X(z)

x(n)

Z
Transform

Inverse
Z

Transform

Digital
System

y(n)

H(z) Y(z)=H(z)•X(z)

Z
Transform

Figure 5.2. A transform can also be used to study a system in the frequency domain.

The gain = |H(s)| at s = j 2f, for all frequencies, f.
The phase = angle(H(s)) at s = j 2f.

The gain and phase of a digital system is specified in its transform, H(z) = Y(z)/X(z).

 from DC to
1
2 fs

 One can use the definition of the Z-Transform to prove that:

[x(n-m)] = z
-m

 [x(n)] = z
-m

 X(z)

For example if X(z) is the Z-Transform of x(n),

 then z
-2

•X(z) is the Z-Transform of x(n-2).

 H(z)
Y(z)
X(z)

To find the response of the filter, let z be a complex number on the unit circle

z e j2f/fs for 0 ≤ f <
1
2 fs

or
z = cos(2f/fs) + j sin(2f/fs)

Let

H(f) = a + bj where a and b are real numbers

The gain of the filter is the complex magnitude of H(z) as f varies from 0 to
1
2 fs.

Gain |H(f)| = a2 + b2

EE345M/EE380L.6 Lecture 10.3

by Jonathan W. Valvano

The phase response of the filter is the angle of H(z) as f varies from 0 to 1
2 fs.

Phase angle[H(f)] = tan-1 b
a

 (13)

5.3 MACQ

x(n-1)

x(n-2)

x(n-3)

x(n)

MACQ before

x[1]

x[2]

x[3]

x[0]

x(n-1)

x(n-2)

x(n-3)

x(n)

MACQ after

1

2

3

4
New data

Figure 5.8. When data is put into a multiple access circular queue, the oldest data is lost

 d(n) =
x(n)+3x(n-1)-3x(n-2)-x(n-3)

∆t

short x[4]; // MACQ (mV)
short d; // derivative(V/s)
void ADC3_Handler(void){
 ADC_ISC_R = ADC_ISC_IN3; // acknowledge ADC sequence 3 completion
 x[3] = x[2]; // shift data
 x[2] = x[1]; // units of mV
 x[1] = x[0];
 x[0] = (375*(ADC_SSFIFO3_R&ADC_SSFIFO3_DATA_M))>>7; // in mV
 d = x[0]+3*x[1]-3*x[2]-x[3]; // in V/s
 Fifo_Put(d); // pass to foreground
}

Program 5.3. Software implementation of first derivative using a multiple access circular queue.

New data

x[6]

MACQ before MACQ after

1
2

x(n-9)

x(n-10)

x(n-11)

x(n-8)

x[1]

x[2]

x[3]

x[0]

x(n-13)

x(n-14)

x(n-15)

x(n-12)

x[5]

x[6]

x[7]

x[4]

x(n-1)

x(n-2)

x(n-3)

x(n)

x[9]

x[10]

x[11]

x[8]

x(n-5)

x(n-6)

x(n-7)

x(n-4)

x[13]

x[14]

x[15]

x[12]

x(n-9)

x(n-10)

x(n-11)

x(n-8)

x[17]

x[18]

x[19]

x[16]

x(n-13)

x(n-14)

x(n-15)

x(n-12)

x[21]

x[22]

x[23]

x[20]

x(n-1)

x(n-2)

x(n-3)

x(n)

x[25]

x[26]

x[27]

x[24]

x(n-5)

x(n-6)

x(n-7)

x(n-4)

x[29]

x[30]

x[31]

x[28]

Pt

x[1]

x[2]

x[3]

x[0]

x[5]

x[7]

x[4]

x[9]

x[10]

x[11]

x[8]

x[13]

x[14]

x[15]

x[12]

x[17]

x[18]

x[19]

x[16]

x[21]

x[22]

x[23]

x[20]

x[25]

x[26]

x[27]

x[24]

x(n-8)

x[29]

x[30]

x[31]

x[28]

Pt

x(n-9)

x(n-10)

x(n-11)

x(n-13)

x(n-14)

x(n-15)

x(n-12)

x(n-1)

x(n-2)

x(n-3)

x(n)

x(n-5)

x(n-6)

x(n-7)

x(n-4)

x(n-9)

x(n-10)

x(n-11)

x(n-8)

x(n-13)

x(n-14)

x(n-15)

x(n-12)

x(n-1)

x(n-2)

x(n-3)

x(n)

x(n-5)

x(n-6)

x(n-7)

x(n-4)

3

Figure 5.9. When data is put into a multiple access circular queue, the oldest data is lost.

EE345M/EE380L.6 Lecture 10.4

by Jonathan W. Valvano

unsigned short x[32]; // two copies
unsigned short *Pt; // pointer to current
unsigned short Sum; // sum of the last 16 samples
void LPF_Init(void){
 Pt = &x[0]; Sum = 0;
}
// calculate one filter output
// called at sampling rate
// Input: new ADC data
// Output: filter output, DAC data
unsigned short LPF_Calc(unsigned short newdata){
 Sum = Sum - *(Pt+16); // subtract the one 16 samples ago
 if(Pt == &x[0]){
 Pt = &x[16]; // wrap
 } else{
 Pt--; // make room for data
 }
 *Pt = *(Pt+16) = newdata; // two copies of the new data
 return Sum/16;
}
Program 5.4. Digital low pass filter implemented by averaging the previous 16 samples (cutoff = fs/32).

5.4. Using the Z-Transform to Derive Filter Response
Although this filter appears to be simple, we can use it to implement a low-Q 60 Hz notch.
 y(n) = (x(n)+x(n-3))/2
Again we take the Z-Transform of both:
 Y(z) = (X(z) + z-3X(z))/2
Next we rewrite the equation in the form of H(z)=Y(z)/X(z).
 H(z) Y(z)/X(z) = ½ (1 + z-3)
We can to determine the gain and phase response of this filter.
 H(f) = ½ (1 + e-j6f/fs) = ½ (1 + cos(6f/fs) - j sin(6f/fs))
 Gain |H(f)| = ½ sqrt((1 + cos(6f/fs))

2 + sin(6f/fs)
2))

 Phase angle(H(f)) = tan-1(-sin(6f/fs)/(1 + cos(6f/fs))
short x[4]; // MACQ
void ADC3_Handler(void){ short y;
 ADC_ISC_R = ADC_ISC_IN3; // acknowledge ADC sequence 3 completion
 x[3] = x[2]; // shift data
 x[2] = x[1]; // units, ADC sample 0 to 1023
 x[1] = x[0];
 x[0] = ADC_SSFIFO3_R&ADC_SSFIFO3_DATA_M; // 0 to 1024
 y = (x[0]+x[3])/2; // filter output
 Fifo_Put(y); // pass to foreground
}

Program 5.5. If the sampling rate is 360 Hz, this filter rejects 60 Hz.

G
ai

n

0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5

frequency f/fs

y(n) =(y(n-1)+x(n))/2

y(n) =(x(n)+x(n-3))/2

y(n) =(x(n)+x(n-1))/2

y(n) =(x(n)+x(n-1)+x(n-2)+
 x(n-3)+x(n-4)+x(n-5))/6

Figure 5.10. Gain versus frequency response for four simple digital filters.

EE345M/EE380L.6 Lecture 10.5

by Jonathan W. Valvano

5.5. IIR Filter design
There are two objectives for this example
 show an example of a digital notch filter,
 demonstrate the use of fixed-point math.

60 Hz noise is a significant problem in most data acquisition systems. The 60 Hz noise reduction can be
accomplished:
 1) Reducing the noise source, e.g., shut off large motors;
 2) Shielding the transducer, cables, and instrument;
 3) Implement a 60 Hz analog notch filter;
 4) Implement a 60 Hz digital notch filter.

analog condition digital condition consequence
zero near s=j2πf line zero near z=ej2πf/fs low gain near the zero
pole near s=j2πf line pole near z=ej2πf/fs high gain near the pole
zeros in conjugate pairs zeros in conjugate pairs the output y(t) is real
poles in conjugate pairs poles in conjugate pairs the output y(t) is real
poles in left half plane poles inside unit circle stable system
poles in right half plane poles outside unit circle unstable system
pole near a zero pole near a zero high Q response
Table Analogies between the analog and digital filters.

 It is the 60 Hz digital notch filter that will be implemented in this example. The signal is sampled at fs=480
Hz. We wish to place the zeros (gain=0) at 60 Hz, thus

 = ± 2π •
60
fs

 = ± π/4

1
2 fs

1
4 fs

1
4 fs-

poles

zeros
=0

=/2

=-/2

=

z = e
j

=2f/fs

Figure 5.13. Pole-zero plot of a 60 Hz digital notch filter.

The zeros are located on the unit circle at 60 Hz
z1 = cos() + j sin() z2 = cos(- j sin()

To implement a flat pass band away from 60 Hz the poles are placed next to the zeros, just inside the unit circle. Let
define the closeness of the poles where 0 < <1.

p1 = z1 p2 = z2

for = 0.75

The transfer function is

EE345M/EE380L.6 Lecture 10.6

by Jonathan W. Valvano

H(z) =
(z z

i
)

(z p
i
)

i 1

k

(z z1)(z z2)

(z p1)(z p2)

which can be put in standard form (i.e., with terms 1, z-1, z-2 ...)

H(z) =
1 2 cos()z1 z2

1 2 cos()z1 2z2

 y(n) = x(n) + x(n-2) -(49*y(n-2))/64

 H(z) =
1 + z-2

1 +
49
64 z-2

At z=1 this reduces to

 DC Gain =
2

1 +
49
64

 =
128

64 + 49 =
128
113

 y(n) = (113•x(n) + 113•x(n-2) - 98•y(n-2))/128

long x[3]; // MACQ for the ADC input data
long y[3]; // MACQ for the digital filter output
void ADC3_Handler(void){
 ADC_ISC_R = ADC_ISC_IN3; // acknowledge ADC sequence 3 completion
 x[2] = x[1]; x[1] = x[0]; // shift data
 y[2] = y[1]; y[1] = y[0];
 x[0] = ADC_SSFIFO3_R&ADC_SSFIFO3_DATA_M; // 0 to 1024
 y[0] = (113*(x[0]+x[2])-98*y[2])/128; // filter output
 Fifo_Put((short)y[0]); // pass to foreground
}

Program 5.7. If the sampling rate is 240 Hz, this filter rejects 60 Hz.

The “Q” of a digital notch filter is defined to be

 Q
fc
∆f

where fc is the center or notch frequency, and ∆f frequency range where is gain is below 0.707 of the DC gain.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120 140 160 180

Frequency (Hz)

G
ai

n

FIR Program 5.5

IIR Program 5.7

y(n)=(x(n)+x(n-3))/2
fs=360Hz

y(n) = (113•x(n) +113•x(n-2)-98•y(n-2))/128
fs=240 Hz

∆f

Figure 5.14. Gain versus frequency response of two 60 Hz digital notch filters.

Show the two spreadsheets DigitalNotchFilter.xls (DigitalFilterDesign.xls)

