

Design a linear FIR digital filter

- Specify gain versus frequency
- Specify phase versus frequency

FFI is a faster version of the Discrete Fourier Transform (DFT)

- FFT spectrum of a cosine, which has a frequency of 0.1 Fs
- Fs $=10000 \mathrm{~Hz}$
- Cosine freq $=1000 \mathrm{~Hz}$
- Region interested in from 0 to $\mathrm{Fs} / 2$ (symmetric about Fs/2)

FIR digital filter

- $Y(z)=H(z) X(z)$
- $\mathrm{h}(\mathrm{n})=\operatorname{IFFT}\{\mathrm{H}(\mathrm{z})\}$
- Convolution
$-y(n)=h(n) * x(n)$

- Constants $h_{0}, h_{1}, \ldots h_{N-1}$
- $\mathrm{y}(\mathrm{n})=\mathrm{h}_{0} \cdot x(\mathrm{n})+\mathrm{h}_{1} \cdot x(\mathrm{n}-1)+\ldots+h_{\mathrm{N}-1} \cdot x(\mathrm{n}-(\mathrm{N}-1))$
- N multiplies, $\mathrm{N}-1$ additions per sample March 18, 2013 EE445M/EE380L. 6

How to choose sampling rate

- Nyquist Rate
- Limitation of display
- Limitation of processor
- Limitation of RAM

- Limitation of human eyes and ears
- Limitation of communication channel

March 18, 2013 Jonathan Valvano Jonathan Valvano
EE445M/EE380L.

Design process (1)

- Specify desired gain and phase, 0 to $1 / 2 f_{s}$
- k goes from 0 to $N / 2\left(f=k f_{s} / N\right)$
$-H(k)$ is complex
$-|H(k)|$ is gain
- angle $(\mathrm{H}(\mathrm{k})$) is phase
- For $1 / 2 \mathrm{f}_{\mathrm{s}}$ to f_{s}
$-\mathrm{H}(\mathrm{N}-\mathrm{k})$ is complex conjugate of $\mathrm{H}(\mathrm{k})$
- Poles and zeros are in complex conjugate pairs

Design process (2)

- Take IDFT of $\mathrm{H}(\mathrm{k})$ to yield $\mathrm{h}(\mathrm{n})$
- n goes from 0 to $\mathrm{N}-1$
$-h(n)$ will be real, because $H(k)$ symmetric
- The digital filter is
$-\mathrm{y}(\mathrm{n})=\mathrm{h}_{0} \cdot x(\mathrm{n})+\mathrm{h}_{1} \cdot x(\mathrm{n}-1)+\ldots+\mathrm{h}_{\mathrm{N}-1} \cdot x(\mathrm{n}-(\mathrm{N}-1))$

Binary Fixed point notation

- Binary fixed-point is faster than decimal fixed-point
- Qn Number (16 bit)
-n : specifies the resolution $=2^{-n}$
- 16-n: specifies Range
- Eg: 10.450 (unsigned number) with $\mathrm{n}=11$?
- How is this number stored as an integer?

Example

- Open FIRdesign51.xls
- Change sampling rate to $10,000 \mathrm{~Hz}$
- Adjust red desired gain to make BPF
- Pass 2 to 4 kHz
- Look at sharp corner versus round corner
- Notice linear phase
- Copy 51 coefficients into software
$2 k$ to 4 k BPF

FIR Filter SW design

const long $\mathrm{h}[51]=\{-3,-9,4,5,0,17,5,-20,-5,-7,-22$, 24,41,-8,2,1,-74,-31,71,20,33,125,-119,-350,67 $462,67,-350,-119,125,33,20,71,-31,-74,1,2,-8,41$, $24,-22,-7,-5,-20,5,17,0,5,4,-9,-3\}$.
static unsigned int $n=50 ; \| / 51,52, \ldots 101$
short Filter(short data)\{unsigned int \mathbf{k};
static long $\times[102]$; II this MACQ needs twice long y;
n++;
if($n==102$) $n=51$;
$x[n]=x[n-51]=$ data; I/ two copies of new data
$\mathrm{y}=0$;
for ($k=0 ; k<51 ; k++$)
$y=y+h[k]^{*} x[n-k] ; \quad / /$ convolution
\}
$y=y / 256 ; / /$ fixed point
return y;
March $\boldsymbol{1}_{8,2013}$
Jonathan Valvano
EF445M/EF380L. 6

Circular Buffering

Array Index	Filter Coefficient Array h[]	Circular Buffer Array xcirc []
0	$h[0]$	$x[n-$ newest $]$
1	$h[1]$	$x[n-$ newest +1$]$
\vdots	\vdots	\vdots
		$x[n-1]$
newest		$x[n]$
oldest		$x[n-N+1]$
		$x[n-N+2]$
\vdots	\vdots	\vdots
$N-2$	$h[N-2]$	$x[n-$ newest -2$]$
$N-1$	$h[N-1]$	$x[n-$ newest -1$]$

Source: "Communication system design using DSP algorithms" by Steven A. Tretter (chapter 3, page 73)

March 18, 2013
Jonathan Valvano
EE445M/EE380L.

Optimization

- Pointer implementations of MACQ faster
- Do not try and shift the data
- Convolution $x[n] * h[n]$ takes N multiplies, $\mathrm{N}-1$ additions per sample
- Can be optimized to N/2 multiplies
- Coefficients are symmetric
- Assembly optimization with MLA
- Multiply with accumulate

