Comparison

- Incremental
+ Simple, stable
- Slow response
- PID or PI

+ Theory, fast response
- Needs empirical tuning, depends on load
- Fuzzy Logic Maps human intuition into rules
+ Fast, good when you have expert knowledge
+ Abstractive approach
- Needs empirical tuning

Things that can go bad

- Hitting the wall
- Think of three ways to tell if you hit the wall
- Corrective measures
- Wrong-way Dayo
- Think of ways to reduce the chances
- Three repairs -> disqualification
- Other robots in the way
- Can you distinguish a robot from a wall?
- Strategy for passing

April 8, 2013
Jonathan Valvano
EE445M/EE380L. 6

Fuzzy Membership Set

- Membership set, variable, set
- Value specifying levels of truth
- Collection describes the entire system

$$
\text { 0........32........64......... } 96128160192224 ~ . ~ . ~ 255 ~
$$

$$
\text { Not at all........ } 1 \text { little bit.................128........ } 160192224255
$$

- Examples for a speed control system
- TooSlow
- SlowingDown
- SpeedOK
- SpeedConstant
- TooFast
- SpeedingUp

Fuzzy Membership Set

- Lab 7 example membership sets
- Too close to the right wall
- Distance to the right wall is ok
- Too far away from the right wall
- Too close to the left wall
- Distance to the left wall is ok
- Too far away from the left wall
- Open space to 30 degrees to the right
- Open space to straight ahead
- Open space to 30 degrees to the left

Fuzzy approach

- Preprocessor
- Crisp inputs (variables with units)
- Fuzzification
- Input membership sets
- Fuzzy rules
- Output membership sets
- Defuzzification
- Crisp outputs (variables with units)
- Postprocessor and actuator output

Speed Controller

- Desired state
$-\mathrm{X}^{*}$ is the desired tach period
- Physical plant
-X real state variable, actual period
- State estimator, data acquisition
- X' measured tach period

April 8, 2013

Fuzzy approach

- Preprocessor, crisp inputs
$-E=X^{*}-X^{\prime}$ error in motor period
$-D=X^{\prime}(n)-X^{\prime}(n-1)$ acceleration
unsigned char Ts; // Desired Speed in 3.9 rpm units unsigned char T; I/ Current Speed in 3.9 rpm units unsigned char Told; // Previous Speed in 3.9 rpm units char D; // Change in Speed in 3.9 rpm/time units char E; $\quad / /$ Error in Speed in 3.9 rpm units
void Crisplnput(void)
E=Subtract(Ts,T);
D=Subtract(T,Told);
Told=T; /* Set up Told for next time */
\}
April 8, 2013
Jonathan Valvano
EE445M/EE380L. 6

Fuzzy approach

- Preprocessor, crisp inputs
$-E=X^{\star}-X^{\prime}$ error in motor period
$-D=X^{\prime}(n)-X^{\prime}(n-1)$ acceleration
- Fuzzification

Slow True if the motor is spinning too slow
OK True if the motor is spinning at the proper speed
Fast True if the motor is spinning too fast
Up True if the motor speed is getting larger
Constant True if the motor speed is remaining the same
Down True if the motor speed is getting smaller.

Fuzzification

\#define TE ???
long Fast, OK

Fuzzification

Fuzzy membership value

Fuzzy rules

If $O K$ and Constant then Same
 If $O K$ and $U p$ then Decrease

 If Fast and Constant then Decrease If Fast and Up then Decrease If $O K$ and Down then Increase If Slow and Constant then IncreaseIf Slow and Down then Increase

April 8, 2013 Jonathan Valvano
EE445M/EE380L. 6

Fuzzy rules

Same=(OKandConstant)

Decrease=(OKandUp)or(FastandConstant)or(FastandUp)
Increase $=($ OKandDown $)$ or(SlowandConstant) or(SlowandDown)

- and operation is minimum
- or operation is the maximum
unsigned char static min(unsigned char u1, unsigned char u2)\{ if(u1>u2) return(u2);
else return(u1);
\}
unsigned char static max(unsigned char u1,unsigned char u2)\{ if($\mathbf{u} 1<\mathrm{u} 2)$ return(u 2);
else return(u1);
\}
April 8, 2013 Jonathan Valvano EE445M/EE380L. 6

Fuzzy rules

void OutputMembership(void)\{
Same=min(OK,Constant);
Decrease=min(OK,Up)
Decrease $=$ max (Decrease, \min (Fast,Constant))
Decrease=max(Decrease, $\min ($ Fast,Up));
Increase=min(OK,Down)
Increase=max(Increase, \min (Slow,Constant));
Increase=max(Increase,min(Slow,Down));
\}

April 8, 2013

Fuzzy Logic Controller

void Timer0A_Handler(void)

// estimate speed, set T, 0 to 25
Crispinput(); \quad Caiculate E, D and new Told
InputMembership(); // Sets Fast,OK,Slow,Down,Constant,Up
OutputMembership(); // Sets Increase,Same,Decrease
CrispOutput();
$\mathrm{N}=\max (0, \min (\mathrm{~N}+\mathrm{dN}, 255)$);
PWMO Duty(N); // output to actuator, Program 8.4 TIMERO_ICR_R = TIMER_ICR_CAECINT;// ack
\qquad

Constants

- Number of slots/rotation, $\mathrm{n}=32$
- Wheel diameter, d=886 (0.01cm)
- Wheelbase, w=1651 (0.01 cm)
- Wheel circumference, $c=\pi \mathrm{d}=2783(0.01 \mathrm{~cm})$

April 8, 2013

Measurements

Simple cases

- $-28 \leq \mathrm{m} \leq+28$ each $\Delta \mathrm{t}$
- LCount the number of left slots in Δt
- RCount the number of right slots in Δt
- Counts vary from -28 to +28 each Δt

LCount	RCount	Motion
m	m	straight line motion in the current direction
0	m	pivot about stopped left motor
m	0	pivot about stopped right motor
m	-m	pure rotation about cog

Derivations

We can divide the change in position into two components

Odometry

- Needs very accurate sensors
- Errors accumulate
- OK for relative travel from known position - periodic absolute knowledge of position

