
Real Time Operating Systems Lecture 28.1

by Jonathan W. Valvano

Micrium uCOS

Cool features
1) Portable

Real Time Operating Systems Lecture 28.2

by Jonathan W. Valvano

Compiler independent data types
typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned short INT16U;
typedef signed short INT16S;
typedef unsigned int INT32U;
typedef signed int INT32S;
typedef float FP32;
typedef double FP64;

2) User runs with PSP (process stack pointer)
OS_CPU_PendSVHandler
 CPSID I ; Prevent interruption during context switch

Real Time Operating Systems Lecture 28.3

by Jonathan W. Valvano

 MRS R0, PSP ; PSP is process stack pointer
 CBZ R0, OS_CPU_PendSVHandler_nosave ; Skip save the first time

 SUBS R0, R0, #0x20 ; Save remaining regs r4-11 on process stack
 STM R0, {R4-R11}

 LDR R1, =OSTCBCur ; OSTCBCur->OSTCBStkPtr = SP;
 LDR R1, [R1]
 STR R0, [R1] ; R0 is SP of process being switched out

3) User can hook into OS (this is context switch)
 PUSH {R14} ; Save LR exc_return value
 LDR R0, =OSTaskSwHook ; OSTaskSwHook();
 BLX R0
 POP {R14}
OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTaskStkInit()
OSTaskSwHook()
OSTCBInitHook()
OSTimeTickHook()

4) Board Support Package, Hardware Abstraction Layer, Device driver
I/O abstraction. It is often convenient to create a Board Support Package (BSP) for your target
hardware. A BSP could allow you to encapsulate the following functionality:

Timer initialization
ISR Handlers
LED control functions
Reading switches
Setting up the interrupt controller
Setting up communication channel
CAN, I2C, ADC, DAC, SPI, serial,graphics

void LED_Init(void);
void LED_On(CPU_INT08U led_id);
void LED_Off(CPU_INT08U led_id);
void LED_Toggle(CPU_INT08U led_id);

5) Communication and synchronization (timeout, abort)
 Message mail box
 Message queue
 Semaphores
 Flags (software events)
 Groups of flags
 Names
 pend/post, and/or

Real Time Operating Systems Lecture 28.4

by Jonathan W. Valvano

 Mutex
/* Description: This function waits for a mutual exclusion semaphore.
Arguments : pevent pointer to event control block associated with mutex.
 timeout optional timeout period (in clock ticks).
 If non-zero, your task will wait up to the specified time
 If you specify 0, however, will wait forever for resource
 perr pointer to where an error message will be deposited.
 OS_ERR_NONE successful and your task owns the mutex
 OS_ERR_TIMEOUT not available within the 'timeout'.
 OS_ERR_PEND_ABORT mutex was aborted.
 OS_ERR_EVENT_TYPE If you didn't pass a pointer to a mutex
 OS_ERR_PEVENT_NULL 'pevent' is a NULL pointer
 OS_ERR_PEND_ISR called from an ISR
 OS_ERR_PIP_LOWER task priority that owns is HIGHER
 OS_ERR_PEND_LOCKED called when the scheduler is locked
* Returns : none
* Note(s)1) The task that owns the Mutex MUST NOT pend on any other event
while it owns the mutex.
* 2) You MUST NOT change the priority of the task that owns the mutex
*/
void OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *perr)
INT8U OSMutexPost (OS_EVENT *pevent)
{
Other features a OS might include

1) Memory manager
2) Time delay
3) Priority resolution table
4) Debugger aware

Reference Application Note AN-1018, www.Micrium.com
MicroC/OS-II and MicroC/OS-III by Jean J Labrosse.

