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Cool features 
1) Portable 
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Compiler independent data types 
typedef unsigned char  BOOLEAN; 
typedef unsigned char  INT8U;                     
typedef signed   char  INT8S;                     
typedef unsigned short INT16U;                    
typedef signed   short INT16S;  
typedef unsigned int   INT32U; 
typedef signed   int   INT32S; 
typedef float          FP32;    
typedef double          FP64; 
 

2) User runs with PSP (process stack pointer) 
OS_CPU_PendSVHandler 
    CPSID   I                    ; Prevent interruption during context switch 



Real Time Operating Systems  Lecture 28.3 
 

by Jonathan W. Valvano 

    MRS     R0, PSP              ; PSP is process stack pointer 
    CBZ     R0, OS_CPU_PendSVHandler_nosave  ; Skip save the first time 
 
    SUBS    R0, R0, #0x20        ; Save remaining regs r4-11 on process stack 
    STM     R0, {R4-R11} 
 
    LDR     R1, =OSTCBCur        ; OSTCBCur->OSTCBStkPtr = SP; 
    LDR     R1, [R1] 
    STR     R0, [R1]             ; R0 is SP of process being switched out 

 
3) User can hook into OS (this is context switch) 
    PUSH    {R14}                        ; Save LR exc_return value 
    LDR     R0, =OSTaskSwHook            ; OSTaskSwHook(); 
    BLX     R0 
    POP     {R14} 
OSInitHookBegin() 
OSInitHookEnd() 
OSTaskCreateHook() 
OSTaskDelHook() 
OSTaskIdleHook() 
OSTaskStatHook() 
OSTaskStkInit() 
OSTaskSwHook() 
OSTCBInitHook() 
OSTimeTickHook() 
 

4) Board Support Package, Hardware Abstraction Layer, Device driver 
I/O abstraction. It is often convenient to create a Board Support Package (BSP) for your target 
hardware. A BSP could allow you to encapsulate the following functionality: 

Timer initialization 
ISR Handlers 
LED control functions 
Reading switches 
Setting up the interrupt controller 
Setting up communication channel 
CAN, I2C, ADC, DAC, SPI, serial,graphics 

void LED_Init(void);  
void LED_On(CPU_INT08U led_id);  
void LED_Off(CPU_INT08U led_id);  
void LED_Toggle(CPU_INT08U led_id);  
 
5) Communication and synchronization (timeout, abort) 
 Message mail box 
 Message queue 
 Semaphores 
 Flags (software events) 
  Groups of flags 
  Names 
  pend/post,  and/or  
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 Mutex  
/* Description: This function waits for a mutual exclusion semaphore. 
Arguments  : pevent  pointer to event control block associated with mutex. 
             timeout optional timeout period (in clock ticks).   
               If non-zero, your task will wait up to the specified time 
               If you specify 0, however, will wait forever for resource  
             perr   pointer to where an error message will be deposited.   
                    OS_ERR_NONE        successful and your task owns the mutex 
                    OS_ERR_TIMEOUT     not available within the 'timeout'. 
                    OS_ERR_PEND_ABORT  mutex was aborted. 
                    OS_ERR_EVENT_TYPE  If you didn't pass a pointer to a mutex 
                    OS_ERR_PEVENT_NULL 'pevent' is a NULL pointer 
                    OS_ERR_PEND_ISR    called from an ISR  
                    OS_ERR_PIP_LOWER   task priority that owns is HIGHER 
                    OS_ERR_PEND_LOCKED called when the scheduler is locked 
* Returns    : none 
* Note(s)1) The task that owns the Mutex MUST NOT pend on any other event 
while it owns the mutex. 
*        2) You MUST NOT change the priority of the task that owns the mutex 
*/ 
void   OSMutexPend (OS_EVENT *pevent, INT16U timeout, INT8U *perr) 
INT8U  OSMutexPost (OS_EVENT *pevent) 
{ 
Other features a OS might include 

1) Memory manager 
2) Time delay 
3) Priority resolution table 
4) Debugger aware 

 
Reference Application Note AN-1018, www.Micrium.com  
MicroC/OS-II and MicroC/OS-III by Jean J Labrosse. 
 


