Jonathan W. Valvano November 19, 2001, 12:00noon-12:50pm
(25) Question 1. A low-pass FIR digital filter.

```
unsigned char x[ 9] ;
unsigned short sum;
unsigned char filter(unsigned char data){
    x[ 8] =x[ 7] ; x[ 7] =x[ 6] ; x[ 6] =x[ 5] ; x[ 5] =x[ 4] ;
    x[4] =x[ 3] ; x[ 3] =x[ 2]; x[ 2] =x[ 1] ; x[ 1] =x[ 0] ;
    x[ 0] =data;
    sum = sum+x[ 0] -x[ 8]
    return sum/8;
```

(25) Question 2. Assume a 1 Mbyte by 8-bit RAM is connected to the MC68HC812A4. void RAM_Init(void)\{

MODE $=0 \bar{x} 3 B$
PEAR=0x2C;
WINDEF=WINDEF|0x80;
MXAR $=0 \times 0 \mathrm{~F}$;
CSCTL0=CSCTL0।0×10;
CSCTL1=CSCTL1\&0xEF;
CSSTRO $=(C S S T R 0 \& 0 x F C) \mid 0 x 02 ;\} / / 2$ cycle stretches on CSD

Part b) Write a memory write access function.

```
void RAM_Write(long address, char data){ char *pt;
    DPAGE = address>>12; // set address bits 19-12
    pt = (char *) (0x7000+(address&0x0FFF)); // set address bits 11-0
    *pt = data;
}
Part c) Write a memory read access function.
char RAM_Read(long address){ char *pt;
    DPAGE = address>>12; // set address bits 19-12
    pt = (char *)(0x7000+(address&0x0FFF)); // set address bits 11-0
    return *pt;
}
```

(25) Question 3. The gain needs to be $5 / 0.1=50$. The gain is $1+490 / 10$. So, the 9 k resistor is the parallel combination of $10 \mathrm{k} \| 490 \mathrm{k}$ so that the effect of the bias currents is reduced.

(25) Question 4. Thread switch system

Part a) If an entry is added into POSITION A, then the sts $2, x$ and $l d s 2, x$ will not access the StackPt field.
Part b) We fix the bug by changing it to sts $4, x$ and lds $4, x$
Part c) It is OK to add either 8-bit or 16-bit fields at POSITION B.

