(30) Question 1. Multiply numerator and denominator by 20.
$\mathbf{y}(\mathrm{n})=(\mathbf{1 4 x}(\mathrm{n})-13 x(n-1)+3 x(n-2)-10 y(n-1)+5 y(n-2)) / 20$
\#define CONSTANT 8000 // 1ms = 125ns*8000
$\mathrm{y}[2]=\mathrm{y}[1] ; \mathrm{y}[1]=\mathrm{y}[0] ; / /$ shift MACQs
$x[2]=x[1] ; x[1]=x[0] ;$
$\mathrm{x}[0]=$ A2D (0); $\quad / /$ new 8-bit data, 0 to 255
$y[0]=(14 * x[0]-13 * x[1]+3 * x[2]-10 * y[1]+5 * y[2]) / 20$; // 16-bit will work
(30) Question 2.

1) add ground gain so sum of all gains is one

$$
\mathrm{V}_{\text {out }}=4 \mathrm{~V}_{1}-10 \mathrm{~V}_{2}+\mathrm{V}_{\text {ref }}+6 \mathrm{~V}_{\mathrm{g}}
$$

2) The gains will be

$$
\begin{aligned}
& 4=\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{1} \\
& 10=\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{2} \\
& 1=\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{ref}} \\
& 6=\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{g}}
\end{aligned}
$$

3) The least common multiple of $4,10,1,6$ is 60 . Build the circuit so that the smallest resistor $\left(R_{2}\right)$ larger than 10 $\mathrm{k} \Omega$. Let the feedback resistor $300 \mathrm{k} \Omega$. Thus,

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{R}_{\mathrm{f}} / 4=300 \mathrm{k} \Omega / 4=75 \mathrm{k} \Omega \\
& \mathrm{R}_{2}=\mathrm{R}_{\mathrm{f}} / 10=300 \mathrm{k} \Omega / 10=30 \mathrm{k} \Omega \\
& \mathrm{R}_{\text {ref }}=\mathrm{R}_{\mathrm{f}}=300 \mathrm{k} \Omega \\
& \mathrm{R}_{\mathrm{g}}=\mathrm{R}_{\mathrm{f}} / 6=300 \mathrm{k} \Omega / 6=50 \mathrm{k} \Omega
\end{aligned}
$$

4) build

(40) Question 3. An instrument to measure weight
(10) Part a) Complete the following table.

| W | $\Delta \mathrm{R}$ | R 1 | R 2 | R 3 | R 4 | V 1 | V 2 | $\mathrm{~V} 1-\mathrm{V} 2$ | V 3 | Data |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 100 | 100 | 100 | 100 | 2.500 | 2.500 | 0.000 | 0.00 | 0 |
| 200 | 1 | 99 | 101 | 101 | 99 | 2.525 | 2.475 | 0.050 | 1.25 | 2048 |
| 400 | 2 | 98 | 102 | 102 | 98 | 2.550 | 2.450 | 0.100 | 2.50 | 4095 |
| lbs | $\Omega$ | $\Omega$ | $\Omega$ | $\Omega$ | $\Omega$ | V | V | V | V |  |

(5) Part b) The sampling rate should be greater than 2 Hz , because of the Nyquist Theorem.
(5) Part c) The desired gain is 25. Notice that $\mathrm{V} 3=25 *(\mathrm{~V} 1-\mathrm{V} 2)$
(5) Part d) $\mathbf{R}_{f}$ is $49.4 \mathrm{k} \Omega /($ gain- 1$)=2058 \Omega$
(5) Part e) The maximum allowable noise is range/4096, which is $0.100 / 4096=24 \mu \mathrm{~V}$.
(5) Part f) The measurement resolution is range/4096 $=400 / 4096=0.1 \mathrm{lbs}$.
(5) Part g) Unsigned binary fixed point with a resolution of $1 / 16$.

