
 EE345M Quiz 2 Spring 2010 Page 1 of 6

Jonathan W. Valvano

Jonathan W. Valvano

 First Name: _______________ Last Name:____________________

April 2, 2010, 10:00 to 10:50am
 Open book, open notes, calculator (no laptops, phones, devices with screens larger than a
TI-89 calculator, devices with wireless communication). Please don’t turn in any extra sheets.

(10) Question 1. Let x(t) be the input signal interfaced to a 12-bit ADC. 256 data points are
sampled at 10 kHz using the ADC, and the collected data are converted to the frequency domain by
calculating the FFT. Consider a situation where for k=0 to 128, all FFT output terms y(k) are zero
except k equals 5. Furthermore, the real part of y(5) is zero, but the imaginary part of y(5) is 0.5 V.
Part a) What was the x(t) input signal in the time domain? I.e., give the amplitude(s), frequency(s)
and phase(s) of the input signal.

Part b) Which of the y(k) terms for k= 129 to 255 are nonzero? For each nonzero term specify its
value.

 EE345M Quiz 2 Spring 2010 Page 2 of 6

Jonathan W. Valvano

(20) Question 2. Consider the following RC circuit.

Vin

R

Vout

C

1 kΩ

100nF

Part a) At time less than zero Vin is zero, and for times greater than zero Vin equals 3.3V, what will
be the transient output? Give both an explicit equation Vout(t) and a rough sketch of Vout versus
time.

Part b) Derive the gain versus frequency response of this circuit? Give both an explicit equation for
gain as a function of frequency and a rough plot of this function in the frequency domain.

 EE345M Quiz 2 Spring 2010 Page 3 of 6

Jonathan W. Valvano

(25) Question 3. The goal of this problem is to implement the following IIR digital filter. The
sampling rate is 20 kHz, and the ADC is a 12-bit unsigned 0 to +3.3V range converter.
 y(n) = 0.3333333333x(n) – 0.2222222222y(n-1)
You will develop C code to implement this filter.
Part a) Write C code to define data structure(s) needed to implement this IIR filter. Full credit will
to the simplest data structure.

Part b) Show the C function that implements this filter using 16-bit signed integer math. 32-bit
integer and floating point are not allowed. Choose integer constants that give a good
implementation and will have no overflow when using 16-bit arithmetic. You cannot cast any
numbers into long. The prototype for the function you are asked to write is
short IIR(short input); // input is the new ADC

An example usage of this filter is
void Producer(void){ short data,result;
 data = ADC_In(1); // sample channel 1
 result = IIR(data); // call your function
 LCD_Plot(result); // display filter output
}

 EE345M Quiz 2 Spring 2010 Page 4 of 6

Jonathan W. Valvano

(30) Question 4. Consider an autonomous vehicle that logs debugging information on a flash
EEPROM-based disk. Each time the vehicle is powered up, a new file is created. Assume name is
unique each time the vehicle starts, calling:
 eFile_Create(name);
 eFile_WOpen(name);
In this application, debugging data exists as 4096-byte chunks. This means whenever data is stored,
eFile_Write is called exactly 4096 times. While the vehicle runs, a stream of debugging data is
saved into the file using code like:
 for(i=0; i<4096; i++)
 eFile_Write(DebugData[i]); // save one 8-bit character
Just before the vehicle is turned off, the file is closed, calling:
 eFile_WClose();
In this system, files are never deleted. The size of the disk will be large enough to hold all data for
the life of the vehicle. If problem with the vehicle occurs (accident, fire, explosion etc.), the
contents of the files will be printed out for legal reasons. For most systems, the data are never read
from the disk. Assume the block size is 4 kibibytes, the disk size is 128 mebibytes, the directory fits
in one block, and the disk contains all the free-space management you need to store.

Part a) What is the simplest way to manage free space? You may assume there will be no bad disk
blocks. Draw pictures to describe your free space management scheme.

Part b) What is the simplest way to organize data on this disk so that there is no external
fragmentation. Draw pictures to describe your allocation scheme.

 EE345M Quiz 2 Spring 2010 Page 5 of 6

Jonathan W. Valvano

Part c) Describe the directory structure you would need. Assume the file names are exactly 4
characters (fits in 32 bits). How many files can you store on this disk?

Part d) In this application is there any internal fragmentation? Justify your answer.

 EE345M Quiz 2 Spring 2010 Page 6 of 6

Jonathan W. Valvano

(15) Question 5. You are asked to design a file system that is extremely reliable. You will consider
individual block errors and not systematic failures like power loss, fire or explosions. In other
words, on your eDisk, there is a small probability p (p<0.0000001) that when you write a block
then later read that block one or more bytes will not have been properly recorded. You may assume
once a block fails on the disk, it will remain nonfunctional. However, the damage may occur
immediately or may occur up to years after the write. You want to reduce the probability of lost
data to less than p2. If an eDisk error were to occur, some data in the block during read would not
equal the data previously written, Other than the data being wrong no other warning or error is
reported by the hardware. You can assume that disk errors in one part of the disk are not correlated
to errors in another part of the disk, and the disk errors are uniformly distributed across the disk.
You may assume the disk size is many times larger than the application requires or you may use
multiple disks. These are the prototypes for the eDisk functions, like Lab 5, that are given.
DRESULT eDisk_WriteBlock (const BYTE *buff, DWORD sector);
DRESULT eDisk_ReadBlock (BYTE *buff, DWORD sector);
Your solution will exist as software layer between eFile and eDisk.
Part a) Briefly describe your new nDisk_WriteBlock you will design. This new function will
be called in eFile in all places the eFile used to call eDisk_WriteBlock. Your
nDisk_WriteBlock will call eDisk_WriteBlock.

Part b) Briefly describe your new nDisk_ReadBlock you will design. This new function will
be called in eFile in all places the eFile used to call eDisk_ReadBlock. Your
nDisk_ReadBlock will call eDisk_ReadBlock.

