
 EE345M Quiz 2 Spring 2010 Solution Page 1

Jonathan W. Valvano

Jonathan W. Valvano
(10) Question 1. Let x(t) be the input signal interfaced to a 12-bit ADC.
Part a) The amplitude is the

sqrt(Re[y(5)]2+Im[y(5)]2)= 0.5V.
Since some FFT functions scale differently from the FFT function we used in lab, I will accept as
correct answers either 0.5V/128, or 0.5V/2 as well. The phase is

arctan(Im[y(5)]/Re[y(5)])= π/2.
The frequency is 5*10kHz/256 = 195.3 Hz. The x(t) = 0.5V cos(2π (195.3)t+ π/2)

Part b) k= 256-5 = 251 will also be nonzero, the complex conjugate of y(5). y(251) = -0.5j, or the
real part of y(251) is zero, and the imaginary part of y(251) is -0.5 V.

(20) Question 2. This is a one-pole passive HPF with a time constant, τ, of RC = 100μs.
Part a) Vout = 3.3e-t/τ.

Vin

time

3.3

0
0 0.1ms

Vout

Part b) The capacitor impedance is 1/(j2πf C). We use the resistor-divider problem (Ohm’s Law) to
find the gain as a function of frequency.

Vout/Vin=R/(R+1/(j2πf C))=(j2πf RC)/((j2πf RC)+1)

Let fc be the filter cutoff = 1/(2π RC)=1591 Hz. The gain is the magnitude |(j f/fc)/(j f/fc +1)| which
equals (f/fc)/sqrt((f/fc)2 +1) or f/√(f2+fc

2)

Vin

frequency

1

0
0 1591Hz

Vout

I believe solutions to simple RC circuits like this should be in the short-term memory of all
biomedical, electrical, and computer engineers.

(25) Question 3. Implement y(n) = 0.3333333333x(n) – 0.2222222222y(n-1)
Part a) Memory is a scarce resource. Engineers must learn to conserve it. We can not save every
ADC sample. The idea of a digital filter is to pass it a stream of data, for each input to the filter
there is one output. In order to implement the filter all we need is the previous filter output. So, we
need a private 16-bit variable to store the old filter output
short static y;

 EE345M Quiz 2 Spring 2010 Solution Page 2

Jonathan W. Valvano

Part b) The range of short numbers is -32768 to +32767, so when multiplying the input, the
constant must be less than 32676/4095 = 8. Approximate the first constant by 3/9 and the second
constant by 2/9. Divide last to reduce the effect of dropout.
short IIR(short input){ // input is the new ADC
 return y = (3*input-2*y)/9;
}

The simple way to prove this filter can not overflow is to assume the magnitude of all input
and output numbers will be less than 4096. 3*4096-2*(-4096) < 32768. We know the input
numbers are less than 4096, but to know the range of output numbers, we will need to know the
gain as a function of frequency and find the maximum gain. The DC gain of this filter can be
calculated by solving filter for constant input/output

y =(3*x-2*y)/9
Solving for y/x, we get the DC gain

y/x = 3/11

(30) Question 4. In this system, files are never deleted.
Part a) See Spring 2009 Quiz 1 for a similar problem. 128 mebibytes is 227 bytes, 4 kibibytes is 212
bytes. So there are 227/212 = 215 blocks on the disk. Block 0 is the directory. Blocks 1 to 32767 are
data blocks. Since data are never destroyed/deleted, all we need for free space is the block number
of the first free block. If FreeBlock is 1, the disk is empty. If FreeBlock is 32676, it is full. In
the picture FreeBlock is 13, meaning blocks 13 through 32767 are free.

Jony,1,3

Levy,4,5

John,6,12

Directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
...

32767

File Levy
File Jony

File John

13
FreeBlock

0

1

2

3
...

510

0... 0,0

0... 0,0

Jony,1

Levy,4

John,6

Directory
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
...

32767

File Levy
File Jony

File John

13
FreeBlock

0

1

2

3
...

681

0... 13

0... 0

Part b) The simplest way to organize data on this disk is contiguous allocation. For each file we
need to know the first and last block. In this system, we never open an existing file and add more
data to it.

Part c) We need 4 bytes for the name. If a name is less than 4 characters we can pad with null. The
initial directory has nulls in the name field to signify empty directory entry. Each file also requires
2 bytes for the start block and 2 bytes for the last block of the file. This is a total of 8 bytes/file. We
need 2 bytes for the FreeBlock, so 4094/8 rounded down is 511 files.

You can optimize by removing the 2 bytes for the last block of the file, because the first
block of the next file will always be the last block plus one. This reduces the directory entry size to

 EE345M Quiz 2 Spring 2010 Solution Page 3

Jonathan W. Valvano

6 bytes/file, so 4094/68 rounded down is 682 files. We will not be able to use the last directory
entry for a file because it will not have a subsequent entry to store its size, so we can have 681 files.

Part d) At the end of the day you close the file. The last block written has a full 4096 bytes stored
in it. In this application is there no internal fragmentation because the entire blocks are either used
(have data) or free (have no data). The number of bytes stored in each file is an integer multiple of
4096.

(15) Question 5. The key is to not only detect errors, but correct them. Do a web search for RAID
or Redundant Array of Independent Disks. Basically, you have 3 or more disks running in parallel.
To make the probability of lost data less than or equal to p2 we will use 3 disks. With three disks,
we lose data if two disks fail on the same byte.

Part a) When you write a block, write it to all 3 disks. Of course you will want to implement the
following program in such a way that the 3 disk writes operate in parallel, so the execution speed of
3 approximates the execution speed of one.

DRESULT nDisk_WriteBlock (const BYTE *buff, DWORD sector){
 return (eDisk_WriteBlock1(buff,sector) ||
 eDisk_WriteBlock2(buff,sector) ||
 eDisk_WriteBlock3(buff,sector));
}

Part b) When you read, you read from all three and return the majority vote of the three data
buffers on a bit by bit fashion, a byte by byte fashion, or a block by block fashion. Again you will
want to implement it in such a way that the 3 disk read operate in parallel, so the execution speed of
3 approximates the execution speed of one. You can mark any blocks that have disagreements as
bad, first moving the data to a valid block then removing that bad block from the free space.

DRESULT nDisk_ReadBlock (BYTE *buff, DWORD sector){
 eDisk_ReadBlock1(buff1,sector);
 eDisk_ReadBlock2(buff2,sector);
 eDisk_ReadBlock3(buff2,sector);
 return vote(buff,buff1,buff2,buff3);
}

 EE345M Quiz 2 Spring 2010 Solution Page 4

Jonathan W. Valvano

(bonus question) Question skipped. Consider a similar IIR digital filter. The sampling rate is 20
kHz, and the ADC is a 12-bit unsigned 0 to +3.3V range converter.
 y(n) = 3x(n) – 2y(n-1)
Part a) Derive the H(z) transfer function for this filter.

Part b) Using H(z) calculate the gain of this filter at 10 kHz.

 EE345M Quiz 2 Spring 2010 Solution Page 5

Jonathan W. Valvano

