Important Mistakes to Fix, August 15, 2012
Introduction to Embedded Systems: Interfacing to the Freescale 9S12 Textbook, Cengage Publishing 2009, ISBN-10: 049541137X | ISBN-13: 9780495411376

Page 21, add the work not, change
Maintenance Tip: It is better to have a software system that runs slow than one that does run at all.
to
Maintenance Tip: It is better to have a software system that runs slow than one that does not run at all.

On page 38, in the line directly above Figure 2.10 change
PC equals \$F007
to
PC equals \$F005.
page 41, table at the bottom, change -32787 to -32768 twice
page 44, figures 2.13 and 2.14 , change the two flowcharts of Set
Flag $=0$
to
Flag $=1$

Page 74, Example 3.6, Program 3.1. change
anda \#\$BF ;PT5 low
anda \#\$DF ;PT5 low

Page 77, delete this line (this instruction does not exist)
asrd ; RegD=RegD/2 Signed shift right

Page 131. Program 4.3. Change
\#define PTM _P(0x0258)
to
\#define PTP _P(0x0258)

Page 131. Program 4.3. Change

DDRH	equ \$026A	Direction
DDRJ	equ \$0262	Direction
to		
DDRH	equ $\$ 0262$	Direction
DDRJ	equ \$026A	Direction

Page 136, 3 lines above figure 4.22, change
If one were to pull again from the stack (e.g., execute pula), the 3 would be popped off the stack into Reg
A, and 1 would now be on the top of the stack (right-most picture of Figure 4.22).
to
If one were to pull again from the stack (e.g., execute pula), the 2 would be popped off the stack into Reg A, and 1 would now be on the top of the stack (right-most picture of Figure 4.22).

Page 193, section 6.1.1, line 2. Change $\mathbf{+ 1 2 7}$ to $\mathbf{+ 2 5 5}$
Indexed addressing mode uses a fixed offset with the 16 -bit registers: $\mathrm{X}, \mathrm{Y}, \mathrm{SP}$, or PC. The offset can be 5 -bit (-16 to +15), 9 -bit (-256 to +255), or 16 -bit.

Page 218, Mistake Figure 6.20 (label from goE to waitE should be $\mathbf{1 0 , 1 1}$ not 01,11)

Page 220, Program 6.23 C version,
Change
PTT = FSM[n].Out<2; // set lights
To
PTT = FSM[n].Out<<2; // set lights

Page 530 change
Checkpoint 2.13: Idaa \#\$32 loads Register A with the value 50. On the other hand, ldaa \$36 loads the 8 -bit memory contents at address $\$ 0032$, which happens to be Port K.
to
Checkpoint 2.13: Idaa \#\$32 loads Register A with the value 50. On the other hand, ldaa $\$ 32$ loads the 8 -bit memory contents at address $\$ 0032$, which happens to be Port K.

Page 533, change
Checkpoint 3.40: $-56+64=8$, so $\mathrm{V}=0.200+64=264$, so $\mathrm{C}=1$ (overflow). $\mathrm{N}=0$ (positive) and $\mathrm{Z}=0$ (not zero).
Checkpoint 3.40: $-56+64=8$, so $\mathrm{V}=0.200-192=8$, so $\mathrm{C}=0 . \mathrm{N}=0$ (positive) and $\mathrm{Z}=0$ (not zero).

